1
|
De Giorgi M, Park SH, Castoreno A, Cao M, Hurley A, Saxena L, Chuecos MA, Walkey CJ, Doerfler AM, Furgurson MN, Ljungberg MC, Patel KR, Hyde S, Chickering T, Lefebvre S, Wassarman K, Miller P, Qin J, Schlegel MK, Zlatev I, Han J, Beeton C, Li RG, Kim J, Martin JF, Bissig KD, Jadhav V, Bao G, Lagor WR. In vivo expansion of gene-targeted hepatocytes through transient inhibition of an essential gene. Sci Transl Med 2025; 17:eadk3920. [PMID: 39937884 DOI: 10.1126/scitranslmed.adk3920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 07/29/2024] [Accepted: 01/17/2025] [Indexed: 02/14/2025]
Abstract
Homology-directed repair (HDR)-based genome editing is an approach that could permanently correct a broad range of genetic diseases. However, its utility is limited by inefficient and imprecise DNA repair mechanisms in terminally differentiated tissues. Here, we tested Repair Drive, a platform technology for selectively expanding HDR-corrected hepatocytes in adult mice in vivo. Repair Drive involves transient conditioning of the liver by knocking down an essential gene, fumarylacetoacetate hydrolase (Fah), and delivering an untargetable version of the essential gene in cis with a therapeutic transgene. We show that Repair Drive increased the percentage of correctly targeted hepatocytes in healthy wild-type mice up to 25%, which resulted in a fivefold increased expression of a therapeutic transgene, human factor IX (FIX). Repair Drive was well tolerated and did not induce toxicity or tumorigenesis during a 1-year follow-up. This approach may broaden the range of liver diseases that can be treated with somatic genome editing.
Collapse
Affiliation(s)
- Marco De Giorgi
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - So Hyun Park
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | | | - Mingming Cao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Ayrea Hurley
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lavanya Saxena
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Marcel A Chuecos
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher J Walkey
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexandria M Doerfler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mia N Furgurson
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - M Cecilia Ljungberg
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kalyani R Patel
- Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Sarah Hyde
- Alnylam Pharmaceuticals Inc., Cambridge, MA 02142, USA
| | | | | | | | | | - June Qin
- Alnylam Pharmaceuticals Inc., Cambridge, MA 02142, USA
| | | | - Ivan Zlatev
- Alnylam Pharmaceuticals Inc., Cambridge, MA 02142, USA
| | - Jun Han
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- UVic-GBC Proteomics Centre, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Christine Beeton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rich Gang Li
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Heart Institute, Houston, TX 77030, USA
| | - Jong Kim
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Heart Institute, Houston, TX 77030, USA
| | - James F Martin
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Heart Institute, Houston, TX 77030, USA
| | - Karl-Dimiter Bissig
- Department of Pediatrics, Alice and Y. T. Chen Center for Genetics and Genomics, Division of Medical Genetics, Duke University, Durham, NC 27710, USA
| | - Vasant Jadhav
- Alnylam Pharmaceuticals Inc., Cambridge, MA 02142, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - William R Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Lagunas-Rangel FA, Liepinsh E, Fredriksson R, Alsehli AM, Williams MJ, Dambrova M, Jönsson J, Schiöth HB. Off-target effects of statins: molecular mechanisms, side effects and the emerging role of kinases. Br J Pharmacol 2024; 181:3799-3818. [PMID: 39180421 DOI: 10.1111/bph.17309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 08/26/2024] Open
Abstract
Statins are one of the most important classes of drugs. In this analytical review, we elucidate the intricate molecular mechanisms and toxicological rationale regarding both the on- (targeting 3-hydroxy-3-methylglutaryl-coenzyme A reductase [HMGCR]) and off-target effects of statins. Statins interact with a number of membrane kinases, such as epidermal growth factor receptor (EGFR), erb-b2 receptor tyrosine kinase 2 (HER2) and MET proto-oncogene, receptor tyrosine kinase (MET), as well as cytosolic kinases, such as SRC proto-oncogene, non-receptor tyrosine kinase (Src) and show inhibitory activity at nanomolar concentrations. In addition, they interact with calcium ATPases and peroxisome proliferator-activated receptor α (PPARα/NR1C1) at higher concentrations. Statins interact with mitochondrial complexes III and IV, and their inhibition of coenzyme Q10 synthesis also impairs the functioning of complexes I and II. Statins act as inhibitors of kinases, calcium ATPases and mitochondrial complexes, while activating PPARα. These off-target effects likely contribute to the side effects observed in patients undergoing statin therapy, including musculoskeletal symptoms and hepatic effects. Interestingly, some off-target effects of statins could also be the cause of favourable outcomes, relating to repurposing statins in conditions such as inflammatory disorders and cancer.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ahmed M Alsehli
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Michael J Williams
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, Riga, Latvia
| | - Jörgen Jönsson
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Liepinsh E, Zvejniece L, Clemensson L, Ozola M, Vavers E, Cirule H, Korzh S, Skuja S, Groma V, Briviba M, Grinberga S, Liu W, Olszewski P, Gentreau M, Fredriksson R, Dambrova M, Schiöth HB. Hydroxymethylglutaryl-CoA reductase activity is essential for mitochondrial β-oxidation of fatty acids to prevent lethal accumulation of long-chain acylcarnitines in the mouse liver. Br J Pharmacol 2024; 181:2750-2773. [PMID: 38641905 DOI: 10.1111/bph.16363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND AND PURPOSE Statins are competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGCR), and exert adverse effects on mitochondrial function, although the mechanisms underlying these effects remain unclear. We used a tamoxifen-induced Hmgcr-knockout (KO) mouse model, a multi-omics approach and mitochondrial function assessments to investigate whether decreased HMGCR activity impacts key liver energy metabolism pathways. EXPERIMENTAL APPROACH We established a new mouse strain using the Cre/loxP system, which enabled whole-body deletion of Hmgcr expression. These mice were crossed with Rosa26Cre mice and treated with tamoxifen to delete Hmgcr in all cells. We performed transcriptomic and metabolomic analyses and thus evaluated time-dependent changes in metabolic functions to identify the pathways leading to cell death in Hmgcr-KO mice. KEY RESULTS Lack of Hmgcr expression resulted in lethality, due to acute liver damage caused by rapid disruption of mitochondrial fatty acid β-oxidation and very high accumulation of long-chain (LC) acylcarnitines in both male and female mice. Gene expression and KO-related phenotype changes were not observed in other tissues. The progression to liver failure was driven by diminished peroxisome formation, which resulted in impaired mitochondrial and peroxisomal fatty acid metabolism, enhanced glucose utilization and whole-body hypoglycaemia. CONCLUSION AND IMPLICATIONS Our findings suggest that HMGCR is crucial for maintaining energy metabolism balance, and its activity is necessary for functional mitochondrial β-oxidation. Moreover, statin-induced adverse reactions might be rescued by the prevention of LC acylcarnitine accumulation.
Collapse
Affiliation(s)
- Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Riga Stradins University, Riga, Latvia
| | | | | | - Melita Ozola
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Riga Stradins University, Riga, Latvia
| | - Edijs Vavers
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Helena Cirule
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | | | | | - Monta Briviba
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Wen Liu
- Uppsala University, Uppsala, Sweden
| | | | | | | | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Riga Stradins University, Riga, Latvia
| | | |
Collapse
|
4
|
Li Y, Yang H, Nong H, Wang F, Wang Y, Xu Y, Zhang J, Zhao H, Cao Z, Yang Q, Li J. 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGCR) protects hair cells from cisplatin-induced ototoxicity in vitro: possible relation to the activities of p38 MAPK signaling pathway. Arch Toxicol 2023; 97:2955-2967. [PMID: 37608195 DOI: 10.1007/s00204-023-03588-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGCR) gene encodes rate-limiting enzyme in cholesterol biosynthesis, which is related to cell proliferation and mitochondrial function. The present study was designed to explore the expression of HMGCR in murine cochlear hair cells and HEI-OC1 cells and the possible mechanisms underpinning the actions of HMGCR in cisplatin-induced ototoxicity, with special attention given to p38 mitogen-activated protein kinase (MAPK) activities in vitro. The expressions of HMGCR, p-p38, cleaved caspase-3 and LC3B was measured by immunofluorescence and western blot. JC-1 staining and MitoSOX Red were used to detect mitochondria membrane potential (MMP) and reactive oxygen species (ROS) levels respectively. The apoptosis of auditory cells was assessed by TUNEL staining and flow cytometry. Protein levels of bcl2/bax and beclin1 were examined by western blot. We found that HMGCR was widely expressed in the auditory cells, of both neonatal mice and 2-month-old mice, in cytoplasm, nucleus and stereocilia. Moreover, 30 μM cisplatin elicited the formation of ROS, which, in turn, led to HMGCR reduction, activating p38 kinase-related apoptosis and autophagy in auditory cells. Meanwhile, co-treatment with ROS scavenger at a concentration of 2 mM, N-acetyl-L-cysteine (NAC), could alleviate the aforementioned changes. In addition, HMGCR silencing resulted in higher p38 MAPK-mediated apoptosis and autophagy under cisplatin injury. Taken together, we demonstrate that, for the first time, that HMGCR is expressed in the cochlear. Furthermore, HMGCR exerts protective benefit on auditory cells against cisplatin-mediated injury stimulated by ROS, culminating in regulation of p38 MAPK-dependent apoptosis and autophagy.
Collapse
Affiliation(s)
- Yanan Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Huiming Yang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Huiming Nong
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Fan Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yajie Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yue Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Junhong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hao Zhao
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, China
| | - Zhixin Cao
- Department of Pathology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Qianqian Yang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Jianfeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China.
| |
Collapse
|
5
|
Sneha NP, Dharshini SAP, Taguchi YH, Gromiha MM. Investigating Neuron Degeneration in Huntington's Disease Using RNA-Seq Based Transcriptome Study. Genes (Basel) 2023; 14:1801. [PMID: 37761940 PMCID: PMC10530489 DOI: 10.3390/genes14091801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused due to a CAG repeat expansion in the huntingtin (HTT) gene. The primary symptoms of HD include motor dysfunction such as chorea, dystonia, and involuntary movements. The primary motor cortex (BA4) is the key brain region responsible for executing motor/movement activities. Investigating patient and control samples from the BA4 region will provide a deeper understanding of the genes responsible for neuron degeneration and help to identify potential markers. Previous studies have focused on overall differential gene expression and associated biological functions. In this study, we illustrate the relationship between variants and differentially expressed genes/transcripts. We identified variants and their associated genes along with the quantification of genes and transcripts. We also predicted the effect of variants on various regulatory activities and found that many variants are regulating gene expression. Variants affecting miRNA and its targets are also highlighted in our study. Co-expression network studies revealed the role of novel genes. Function interaction network analysis unveiled the importance of genes involved in vesicle-mediated transport. From this unified approach, we propose that genes expressed in immune cells are crucial for reducing neuron death in HD.
Collapse
Affiliation(s)
- Nela Pragathi Sneha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (N.P.S.); (S.A.P.D.)
| | - S. Akila Parvathy Dharshini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (N.P.S.); (S.A.P.D.)
| | - Y.-h. Taguchi
- Department of Physics, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan;
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (N.P.S.); (S.A.P.D.)
| |
Collapse
|
6
|
Yin J, Fu J, Shao Y, Xu J, Li H, Chen C, Zhao Y, Zheng Z, Yu C, Zheng L, Wang B. CYP51-mediated cholesterol biosynthesis is required for the proliferation of CD4 + T cells in Sjogren's syndrome. Clin Exp Med 2023; 23:1691-1711. [PMID: 36413274 DOI: 10.1007/s10238-022-00939-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022]
Abstract
CYtochrome P450, family 51 (CYP51) is an important enzyme for de novo cholesterol synthesis in mammalian cells. In the present study, we found that the expression of CYP51 positively correlated with CD4+ T cell activation both in vivo and in vitro. The addition of ketoconazole, a pharmacological inhibitor of CYP51, prevented the proliferation and activation of anti-CD3/CD28-expanded mouse CD4+ T cells in a dose-dependent fashion. Liquid chromatography-tandem mass spectrometry indicated an increase in levels of lanosterol in T cells treated with ketoconazole during activation. Ketoconazole-induced blockade of the cholesterol synthesis pathway also caused Sterol regulatory element binding protein 2 (SREBP2) activation in CD4+ T cells. Additionally, ketoconazole treatment elicited an integrated stress response in T cells that up-regulated activating transcription factor 4 (ATF4) and DNA-damage inducible transcript 3 (DDIT3/CHOP) at the translational level. Furthermore, treatment with ketoconazole significantly decreased the amount of CD4+ T cells infiltrating lesions in the submandibular glands of NOD/Ltj mice. In summary, our results suggest that CYP51 plays an essential role in the proliferation and survival of CD4+ T cells, which makes ketoconazole an inhibitor of CD4+ T cell proliferation and of the SS-like autoimmune response through regulating the biosynthesis of cholesterol and inducing the integrated stress response.
Collapse
Affiliation(s)
- Junhao Yin
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jiayao Fu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yanxiong Shao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jiabao Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hui Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Changyu Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yijie Zhao
- Department of Oral and Maxillofacial Surgery, Shanghai Stomatological Hospital, Fudan University, 1258 Fuxin Zhong Road, Shanghai, China
| | - Zhanglong Zheng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Chuangqi Yu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lingyan Zheng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Baoli Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, China.
| |
Collapse
|
7
|
Lv T, Fu JX, Liu XY, Tang R, Yang GL. Case analysis of epilepsy, neurodevelopmental disorder, and motor disorders associated with mutations in the dehydrodolichyl diphosphate synthase gene. Seizure 2023; 110:126-135. [PMID: 37356182 DOI: 10.1016/j.seizure.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023] Open
Abstract
The objective of this study is to analyze the role of dehydrodolichyl diphosphate synthase (DHDDS), a crucial enzyme in the mevalonate pathway, and its encoded mutations in the onset of developmental delay and seizures, with or without movement abnormalities. Its genotype-phenotype characteristics are still inconclusive. We analyzed the clinical characteristics of epilepsy, and neurodevelopmental and motor disorders related to DHDDS gene mutations and report the genotype-phenotype characteristics of a child with epilepsy caused by DHDDS gene mutation, providing a summary and a statistical analysis of epilepsy cases associated with DHDDS gene mutation up until February 2022. METHODS Using "DHDDS; epilepsy; neurodevelopmental disorder" as the keywords, the literature relevant to DHDDS gene mutations up until February 2022 was reviewed. A total of 25 cases were retrieved, among which 21 cases with complete data were included in the chi-squared test. The clinical characteristics of DHDDS gene-related cases were summarized and analyzed. RESULTS The onset of epilepsy caused by mutations of the DHDDS gene typically occurs during infancy. Predominantly, the mutation occurs in the locus of c.632G>A p.R211Q. Myoclonus is frequently the initial manifestation of epilepsy; it frequently coexists with neurodevelopmental disorder and intellectual disability, and patients have no specific type of motor disorder. Cranial magnetic resonance imaging (MRI) reveals no abnormalities, whereas electroencephalogram (EEG) frequently exhibits abnormalities. Valproic acid (VPA) yields good curative effects. CONCLUSION Mutations in the DHDDS gene are associated with congenital glycosylation disorder, autosomal recessive retinitis pigmentosa, and epilepsy. According to statistical analysis using the chi-squared test, for pediatric patients with mutations in this gene locus, most of the epilepsy types are myoclonic epilepsies with intellectual disability and neurodevelopmental disorders. They have normal brain MRIs and abnormal EEGs. VPA produces beneficial therapeutic results and the differences are all statistically significant. The current diagnosis still relies on next-generation sequencing or whole-exome sequencing.
Collapse
Affiliation(s)
- Ting Lv
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, No. 1 North Channel Road, Inner Mongolia, Hohhot 010050, China
| | - Jun-Xian Fu
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, No. 1 North Channel Road, Inner Mongolia, Hohhot 010050, China
| | - Xiao-Yang Liu
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, No. 1 North Channel Road, Inner Mongolia, Hohhot 010050, China
| | - Rong Tang
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, No. 1 North Channel Road, Inner Mongolia, Hohhot 010050, China
| | - Guang-Lu Yang
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, No. 1 North Channel Road, Inner Mongolia, Hohhot 010050, China; Inner Mongolia Science and Technology Department, Inner Mongolia Autonomous Region nervous system disease clinical medical research center, No. 1 North Road, Huimin District, Hohhot 010050, China.
| |
Collapse
|
8
|
Wang Y, Hurley A, De Giorgi M, Tanner MR, Hu RC, Pennington MW, Lagor WR, Beeton C. Adeno-Associated virus 8 delivers an immunomodulatory peptide to mouse liver more efficiently than to rat liver. PLoS One 2023; 18:e0283996. [PMID: 37040361 PMCID: PMC10089316 DOI: 10.1371/journal.pone.0283996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Targeting the Kv1.3 potassium channel has proven effective in reducing obesity and the severity of animal models of autoimmune disease. Stichodactyla toxin (ShK), isolated from the sea anemone Stichodactyla helianthus, is a potent blocker of Kv1.3. Several of its analogs are some of the most potent and selective blockers of this channel. However, like most biologics, ShK and its analogs require injections for their delivery, and repeated injections reduce patient compliance during the treatment of chronic diseases. We hypothesized that inducing the expression of an ShK analog by hepatocytes would remove the requirement for frequent injections and lead to a sustained level of Kv1.3 blocker in the circulation. To this goal, we tested the ability of Adeno-Associated Virus (AAV)8 vectors to target hepatocytes for expressing the ShK analog, ShK-235 (AAV-ShK-235) in rodents. We designed AAV8 vectors expressing the target transgene, ShK-235, or Enhanced Green fluorescent protein (EGFP). Transduction of mouse livers led to the production of sufficient levels of functional ShK-235 in the serum from AAV-ShK-235 single-injected mice to block Kv1.3 channels. However, AAV-ShK-235 therapy was not effective in reducing high-fat diet-induced obesity in mice. In addition, injection of even high doses of AAV8-ShK-235 to rats resulted in a very low liver transduction efficiency and failed to reduce inflammation in a well-established rat model of delayed-type hypersensitivity. In conclusion, the AAV8-based delivery of ShK-235 was highly effective in inducing the secretion of functional Kv1.3-blocking peptide in mouse, but not rat, hepatocytes yet did not reduce obesity in mice fed a high-fat diet.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ayrea Hurley
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Marco De Giorgi
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mark R. Tanner
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rong-Chi Hu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| | | | - William R. Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Christine Beeton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
9
|
Kwon J, Yeh YS, Kawarasaki S, Minamino H, Fujita Y, Okamatsu-Ogura Y, Takahashi H, Nomura W, Matsumura S, Yu R, Kimura K, Saito M, Inagaki N, Inoue K, Kawada T, Goto T. Mevalonate biosynthesis pathway regulates the development and survival of brown adipocytes. iScience 2023; 26:106161. [PMID: 36895651 PMCID: PMC9988578 DOI: 10.1016/j.isci.2023.106161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/08/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
The high thermogenic activity of brown adipose tissue (BAT) has received considerable attention. Here, we demonstrated the role of the mevalonate (MVA) biosynthesis pathway in the regulation of brown adipocyte development and survival. The inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme in the MVA pathway and the molecular target of statins, suppressed brown adipocyte differentiation by suppressing protein geranylgeranylation-mediated mitotic clonal expansion. The development of BAT in neonatal mice exposed to statins during the fetal period was severely impaired. Moreover, statin-induced geranylgeranyl pyrophosphate (GGPP) deficiency led to the apoptosis of mature brown adipocytes. Brown adipocyte-specific Hmgcr knockout induced BAT atrophy and disrupted thermogenesis. Importantly, both genetic and pharmacological inhibition of HMGCR in adult mice induced morphological changes in BAT accompanied by an increase in apoptosis, and statin-treated diabetic mice showed worsened hyperglycemia. These findings revealed that MVA pathway-generated GGPP is indispensable for BAT development and survival.
Collapse
Affiliation(s)
- Jungin Kwon
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | - Yu-Sheng Yeh
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | - Satoko Kawarasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | - Hiroto Minamino
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshihito Fujita
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yuko Okamatsu-Ogura
- Departments of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Haruya Takahashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | - Wataru Nomura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Shigenobu Matsumura
- Division of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka 583-0872, Japan
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Kazuhiro Kimura
- Departments of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Masayuki Saito
- Departments of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Doerfler AM, Park SH, Assini JM, Youssef A, Saxena L, Yaseen AB, De Giorgi M, Chuecos M, Hurley AE, Li A, Marcovina SM, Bao G, Boffa MB, Koschinsky ML, Lagor WR. LPA disruption with AAV-CRISPR potently lowers plasma apo(a) in transgenic mouse model: A proof-of-concept study. Mol Ther Methods Clin Dev 2022; 27:337-351. [PMID: 36381302 PMCID: PMC9630778 DOI: 10.1016/j.omtm.2022.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Lipoprotein(a) (Lp(a)) represents a unique subclass of circulating lipoprotein particles and consists of an apolipoprotein(a) (apo(a)) molecule covalently bound to apolipoprotein B-100. The metabolism of Lp(a) particles is distinct from that of low-density lipoprotein (LDL) cholesterol, and currently approved lipid-lowering drugs do not provide substantial reductions in Lp(a), a causal risk factor for cardiovascular disease. Somatic genome editing has the potential to be a one-time therapy for individuals with extremely high Lp(a). We generated an LPA transgenic mouse model expressing apo(a) of physiologically relevant size. Adeno-associated virus (AAV) vector delivery of CRISPR-Cas9 was used to disrupt the LPA transgene in the liver. AAV-CRISPR nearly completely eliminated apo(a) from the circulation within a week. We performed genome-wide off-target assays to determine the specificity of CRISPR-Cas9 editing within the context of the human genome. Interestingly, we identified intrachromosomal rearrangements within the LPA cDNA in the transgenic mice as well as in the LPA gene in HEK293T cells, due to the repetitive sequences within LPA itself and neighboring pseudogenes. This proof-of-concept study establishes the feasibility of using CRISPR-Cas9 to disrupt LPA in vivo, and highlights the importance of examining the diverse consequences of CRISPR cutting within repetitive loci and in the genome globally.
Collapse
Affiliation(s)
- Alexandria M. Doerfler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - So Hyun Park
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Julia M. Assini
- Department of Biochemistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, ON N6A 5B7, Canada
| | - Amer Youssef
- Robarts Research Institute, Schulich School of Medicine and Dentistry, London, ON N6G 2V4, Canada
| | - Lavanya Saxena
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Adam B. Yaseen
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Marco De Giorgi
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marcel Chuecos
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ayrea E. Hurley
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ang Li
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | | | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Michael B. Boffa
- Department of Biochemistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, ON N6A 5B7, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, London, ON N6G 2V4, Canada
| | - Marlys L. Koschinsky
- Robarts Research Institute, Schulich School of Medicine and Dentistry, London, ON N6G 2V4, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, London, ON N6A 5B7, Canada
| | - William R. Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| |
Collapse
|
11
|
Doerfler AM, Han J, Jarrett KE, Tang L, Jain A, Saltzman A, De Giorgi M, Chuecos M, Hurley AE, Li A, Morand P, Ayala C, Goodlett DR, Malovannaya A, Martin JF, de Aguiar Vallim TQ, Shroyer N, Lagor WR. Intestinal Deletion of 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase Promotes Expansion of the Resident Stem Cell Compartment. Arterioscler Thromb Vasc Biol 2022; 42:381-394. [PMID: 35172604 PMCID: PMC8957608 DOI: 10.1161/atvbaha.122.317320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The intestine occupies the critical interface between cholesterol absorption and excretion. Surprisingly little is known about the role of de novo cholesterol synthesis in this organ, and its relationship to whole body cholesterol homeostasis. Here, we investigate the physiological importance of this pathway through genetic deletion of the rate-limiting enzyme. METHODS Mice lacking 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr) in intestinal villus and crypt epithelial cells were generated using a Villin-Cre transgene. Plasma lipids, intestinal morphology, mevalonate pathway metabolites, and gene expression were analyzed. RESULTS Mice with intestine-specific loss of Hmgcr were markedly smaller at birth, but gain weight at a rate similar to wild-type littermates, and are viable and fertile into adulthood. Intestine lengths and weights were greater relative to body weight in both male and female Hmgcr intestinal knockout mice. Male intestinal knockout had decreased plasma cholesterol levels, whereas fasting triglycerides were lower in both sexes. Lipidomics revealed substantial reductions in numerous nonsterol isoprenoids and sterol intermediates within the epithelial layer, but cholesterol levels were preserved. Hmgcr intestinal knockout mice also showed robust activation of SREBP-2 (sterol-regulatory element binding protein-2) target genes in the epithelium, including the LDLR (low-density lipoprotein receptor). At the cellular level, loss of Hmgcr is compensated for quickly after birth through a dramatic expansion of the stem cell compartment, which persists into adulthood. CONCLUSIONS Loss of Hmgcr in the intestine is compatible with life through compensatory increases in intestinal absorptive surface area, LDLR expression, and expansion of the resident stem cell compartment.
Collapse
Affiliation(s)
- Alexandria M. Doerfler
- Molecular Physiology and Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Jun Han
- University of Victoria - Genome British Columbia Proteomics Centre, Victoria, British Columbia, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Kelsey E. Jarrett
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Division of Cardiology, University of California Los Angeles, Los Angeles, USA
| | - Li Tang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
| | - Alexander Saltzman
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
| | - Marco De Giorgi
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Marcel Chuecos
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas, USA
| | - Ayrea E. Hurley
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Ang Li
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Pauline Morand
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, USA
| | - Claudia Ayala
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - David R. Goodlett
- University of Victoria - Genome British Columbia Proteomics Centre, Victoria, British Columbia, Canada
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Anna Malovannaya
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - James F. Martin
- Molecular Physiology and Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas USA
| | - Thomas Q. de Aguiar Vallim
- Department of Medicine, Division of Cardiology, University of California Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, USA
- Johnsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, USA
| | - Noah Shroyer
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
| | - William R. Lagor
- Molecular Physiology and Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas USA
| |
Collapse
|
12
|
Galosi S, Edani BH, Martinelli S, Hansikova H, Eklund EA, Caputi C, Masuelli L, Corsten-Janssen N, Srour M, Oegema R, Bosch DGM, Ellis CA, Amlie-Wolf L, Accogli A, Atallah I, Averdunk L, Barañano KW, Bei R, Bagnasco I, Brusco A, Demarest S, Alaix AS, Di Bonaventura C, Distelmaier F, Elmslie F, Gan-Or Z, Good JM, Gripp K, Kamsteeg EJ, Macnamara E, Marcelis C, Mercier N, Peeden J, Pizzi S, Pannone L, Shinawi M, Toro C, Verbeek NE, Venkateswaran S, Wheeler PG, Zdrazilova L, Zhang R, Zorzi G, Guerrini R, Sessa WC, Lefeber DJ, Tartaglia M, Hamdan FF, Grabińska KA, Leuzzi V. De novo DHDDS variants cause a neurodevelopmental and neurodegenerative disorder with myoclonus. Brain 2022; 145:208-223. [PMID: 34382076 PMCID: PMC8967098 DOI: 10.1093/brain/awab299] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/03/2021] [Accepted: 07/16/2021] [Indexed: 11/12/2022] Open
Abstract
Subcellular membrane systems are highly enriched in dolichol, whose role in organelle homeostasis and endosomal-lysosomal pathway remains largely unclear besides being involved in protein glycosylation. DHDDS encodes for the catalytic subunit (DHDDS) of the enzyme cis-prenyltransferase (cis-PTase), involved in dolichol biosynthesis and dolichol-dependent protein glycosylation in the endoplasmic reticulum. An autosomal recessive form of retinitis pigmentosa (retinitis pigmentosa 59) has been associated with a recurrent DHDDS variant. Moreover, two recurring de novo substitutions were detected in a few cases presenting with neurodevelopmental disorder, epilepsy and movement disorder. We evaluated a large cohort of patients (n = 25) with de novo pathogenic variants in DHDDS and provided the first systematic description of the clinical features and long-term outcome of this new neurodevelopmental and neurodegenerative disorder. The functional impact of the identified variants was explored by yeast complementation system and enzymatic assay. Patients presented during infancy or childhood with a variable association of neurodevelopmental disorder, generalized epilepsy, action myoclonus/cortical tremor and ataxia. Later in the disease course, they experienced a slow neurological decline with the emergence of hyperkinetic and/or hypokinetic movement disorder, cognitive deterioration and psychiatric disturbances. Storage of lipidic material and altered lysosomes were detected in myelinated fibres and fibroblasts, suggesting a dysfunction of the lysosomal enzymatic scavenger machinery. Serum glycoprotein hypoglycosylation was not detected and, in contrast to retinitis pigmentosa and other congenital disorders of glycosylation involving dolichol metabolism, the urinary dolichol D18/D19 ratio was normal. Mapping the disease-causing variants into the protein structure revealed that most of them clustered around the active site of the DHDDS subunit. Functional studies using yeast complementation assay and in vitro activity measurements confirmed that these changes affected the catalytic activity of the cis-PTase and showed growth defect in yeast complementation system as compared with the wild-type enzyme and retinitis pigmentosa-associated protein. In conclusion, we characterized a distinctive neurodegenerative disorder due to de novo DHDDS variants, which clinically belongs to the spectrum of genetic progressive encephalopathies with myoclonus. Clinical and biochemical data from this cohort depicted a condition at the intersection of congenital disorders of glycosylation and inherited storage diseases with several features akin to of progressive myoclonus epilepsy such as neuronal ceroid lipofuscinosis and other lysosomal disorders.
Collapse
Affiliation(s)
- Serena Galosi
- Department of Human Neuroscience, Sapienza University, Rome 00185, Italy
| | - Ban H Edani
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Hana Hansikova
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague 12808, Czech Republic
| | - Erik A Eklund
- Section for Pediatrics, Department of Clinical Sciences, Lund University, Lund 22184, Sweden
| | - Caterina Caputi
- Department of Human Neuroscience, Sapienza University, Rome 00185, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University, Rome 00161, Italy
| | - Nicole Corsten-Janssen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9700, The Netherlands
| | - Myriam Srour
- Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC H4A 3J1, Canada
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Daniëlle G M Bosch
- Department of Genetics, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Colin A Ellis
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Louise Amlie-Wolf
- Division of Medical Genetics, Nemours/A I duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Andrea Accogli
- Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC H4A 3J1, Canada
| | - Isis Atallah
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Luisa Averdunk
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf 40225, Germany
| | - Kristin W Barañano
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Irene Bagnasco
- Division of Neuropsychiatry, Epilepsy Center for Children, Martini Hospital, Turin 10128, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino & Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin 10126, Italy
| | - Scott Demarest
- Children's Hospital Colorado, Aurora, CO 80045, USA.,Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Anne-Sophie Alaix
- Hopital Universitaire Necker Enfants Malades APHP, Paris 75015, France
| | | | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf 40225, Germany
| | - Frances Elmslie
- South West Thames Regional Genetics Service, St. George's Healthcare NHS Trust, London SW17 0QT, UK
| | - Ziv Gan-Or
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H4A 3J1, Canada.,Montréal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada.,Department of Human Genetics, McGill University, Montréal, QC H3A 0C7, Canada
| | - Jean-Marc Good
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Karen Gripp
- Division of Medical Genetics, Nemours/A I duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen 6525, The Netherlands
| | - Ellen Macnamara
- Undiagnosed Diseases Program, National Institutes of Health, Bethesda, MD 20892-2152, USA
| | - Carlo Marcelis
- Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen 6525, The Netherlands
| | - Noëlle Mercier
- Service d'Epileptologie et Médecine du handicap, Hôpital Neurologique, Institution de Lavigny, Lavigny 1175, Switzerland
| | - Joseph Peeden
- East Tennessee Children's Hospital, University of Tennessee Department of Medicine, Knoxville, TN 37916, USA
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Luca Pannone
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Marwan Shinawi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Camilo Toro
- Undiagnosed Diseases Program, National Institutes of Health, Bethesda, MD 20892-2152, USA
| | - Nienke E Verbeek
- Department of Genetics, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Sunita Venkateswaran
- Division of Neurology, Children's Hospital of Eastern Ontario, Ottawa ON K1H 8L1, Canada
| | | | - Lucie Zdrazilova
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague 12808, Czech Republic
| | - Rong Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Giovanna Zorzi
- Department of Pediatric Neurology, IRCCS Foundation Carlo Besta Neurological Institute, Milan 20133, Italy
| | - Renzo Guerrini
- AOU Meyer, Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence 50139, Italy
| | - William C Sessa
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Dirk J Lefeber
- Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen 6525 AJ, The Netherlands
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Fadi F Hamdan
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC H3T1C5, Canada
| | - Kariona A Grabińska
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University, Rome 00185, Italy
| |
Collapse
|
13
|
Qu L, Liu C, Ke C, Zhan X, Li L, Xu H, Xu K, Liu Y. Atractylodes lancea Rhizoma Attenuates DSS-Induced Colitis by Regulating Intestinal Flora and Metabolites. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:525-552. [PMID: 35114907 DOI: 10.1142/s0192415x22500203] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Atractylodes lancea (Thunb.) DC. is a herb widely used traditionally for the treatment of gastrointestinal diseases such as gastric ulcer, spleen deficiency, and diarrhea. In China, people fry raw A. lancea (SCZ) together with wheat bran to make bran-fried A. lancea (FCZ). Ancient Chinese texts have documented that FCZ can enhance the function of regulating the intestines and stomach. Nevertheless, the effect and mechanism of SCZ and FCZ on ulcerative colitis (UC) are still unclear. The aim of this study was to compare the therapeutic effects of SCZ and FCZ and their mechanisms on dextran sulfate sodium (DSS)-induced UC in mice. The chemical constituents of SCZ and FCZ were analyzed using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) with six reference compounds. The effects of SCZ and FCZ were investigated based on their effects on weight loss, disease activity index (DAI) score, colon length shortening, goblet cell loss, and pathological changes using the colons from a mouse model of DSS-induced UC. The effects of SCZ and FCZ on levels of the inflammatory cytokines (tumor necrosis factor-[Formula: see text], interleukin-6, interleukin-1[Formula: see text], mucoprotein (MUC2), tight protein (ZO-1, occludin), and the activation of macrophages were determined using immunohistochemistry (IHC) and immunofluorescence (IF). 16s RNA sequencing technology was used to detect the composition of the intestinal flora in each group. Nontargeted metabonomics was used to detect the serum metabolite levels of mice in each group. Pearson analysis was used to determine the correlation between the intestinal flora, metabolites, and pathological indices. Reverse transcription-polymerase chain reaction was used to detect the genes of different metabolite-related enzymes. A pseudogerm free (PGF) mouse model was used to verify whether the effect of SCZ and FCZ in UC depends on the regulation of intestinal flora. SCZ and FCZ could inhibit weight loss and decrease the DAI score, colon length shortening, goblet cell loss, and the extent of pathological changes in the colons of mice with DSS-induced colitis. Moreover, SCZ and FCZ inhibited the decrease in MUC2, ZO-1, occludin, production of pro-inflammatory factors, and activation of pro-inflammatory macrophages in colonic tissue. The effect of FCZ was better than that of SCZ. SCZ and FCZ not only inhibited the abundance of harmful bacteria and increased the abundance of beneficial bacteria, but also regulated the metabolism of disease-related metabolites such as amino acid and cholesterol metabolism. Both preparations inhibited the gene expression (Slc6A7, PRODH, Sdsl, HMGCR, SREBP-2) of different metabolite-related enzymes. In the PGF mouse model, the above effects were not observed. Rhizoma Atractylodes was effective in alleviating DSS-induced UC in mice, and FCZ was found to be superior to SCZ. The mechanism of action of FCZ and SCZ is mainly related to the regulation of intestinal flora and their associated metabolites.
Collapse
Affiliation(s)
- Linghang Qu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China
| | - Chunlian Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China
| | - Chang Ke
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China
| | - Xin Zhan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China
| | - Lanqing Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China
| | - Haiying Xu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China
| | - Kang Xu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China.,Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, P. R. China
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China.,Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, P. R. China
| |
Collapse
|
14
|
De Giorgi M, Jarrett KE, de Aguiar Vallim TQ, Lagor WR. In Vivo Gene Editing in Lipid and Atherosclerosis Research. Methods Mol Biol 2022; 2419:673-713. [PMID: 35237996 DOI: 10.1007/978-1-0716-1924-7_42] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The low-density lipoprotein receptor (Ldlr) and apolipoprotein E (Apoe) germline knockout (KO) models have provided fundamental insights in lipid and atherosclerosis research for decades. However, testing new candidate genes in these models requires extensive breeding, which is highly time and resource consuming. In this chapter, we provide methods for rapidly modeling hypercholesterolemia and atherosclerosis as well as testing new genes in adult mice through somatic gene editing. Adeno-associated viral (AAV) vectors are exploited to deliver the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 genome editing system (AAV-CRISPR) to the liver. This tool enables rapid and efficient editing of lipid- and atherosclerosis-related genes in the liver.
Collapse
Affiliation(s)
- Marco De Giorgi
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Kelsey E Jarrett
- Department of Medicine, Cardiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Thomas Q de Aguiar Vallim
- Department of Medicine, Cardiology, University of California Los Angeles, Los Angeles, CA, USA.,Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA
| | - William R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
15
|
De Giorgi M, Li A, Hurley A, Barzi M, Doerfler AM, Cherayil NA, Smith HE, Brown JD, Lin CY, Bissig KD, Bao G, Lagor WR. Targeting the Apoa1 locus for liver-directed gene therapy. Mol Ther Methods Clin Dev 2021; 21:656-669. [PMID: 34141821 PMCID: PMC8166646 DOI: 10.1016/j.omtm.2021.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/21/2021] [Indexed: 12/25/2022]
Abstract
Clinical application of somatic genome editing requires therapeutics that are generalizable to a broad range of patients. Targeted insertion of promoterless transgenes can ensure that edits are permanent and broadly applicable while minimizing risks of off-target integration. In the liver, the Albumin (Alb) locus is currently the only well-characterized site for promoterless transgene insertion. Here, we target the Apoa1 locus with adeno-associated viral (AAV) delivery of CRISPR-Cas9 and achieve rates of 6% to 16% of targeted hepatocytes, with no evidence of toxicity. We further show that the endogenous Apoa1 promoter can drive robust and sustained expression of therapeutic proteins, such as apolipoprotein E (APOE), dramatically reducing plasma lipids in a model of hypercholesterolemia. Finally, we demonstrate that Apoa1-targeted fumarylacetoacetate hydrolase (FAH) can correct and rescue the severe metabolic liver disease hereditary tyrosinemia type I. In summary, we identify and validate Apoa1 as a novel integration site that supports durable transgene expression in the liver for gene therapy applications.
Collapse
Affiliation(s)
- Marco De Giorgi
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ang Li
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Ayrea Hurley
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mercedes Barzi
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27710, USA
| | - Alexandria M. Doerfler
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nikitha A. Cherayil
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harrison E. Smith
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan D. Brown
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles Y. Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Therapeutic Innovation Center, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karl-Dimiter Bissig
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27710, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - William R. Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|