1
|
Takefuji M, Krüger M, Sivaraj KK, Kaibuchi K, Offermanns S, Wettschureck N. RhoGEF12 controls cardiac remodeling by integrating G protein- and integrin-dependent signaling cascades. ACTA ACUST UNITED AC 2013; 210:665-73. [PMID: 23530122 PMCID: PMC3620351 DOI: 10.1084/jem.20122126] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RhoGEF12 is required for stretch-induced RhoA activation, and its absence protects mice against overload-induced heart failure. Structural cardiac remodeling, including hypertrophy and fibrosis, plays a crucial role in the pathogenesis of heart failure. In vitro studies suggested a role of the small GTPase RhoA in hypertrophic cardiomyocyte growth, but neither the molecular mechanisms leading to RhoA activation nor their relevance in vivo are known. We use here a mass spectrometric approach to identify Rho guanine nucleotide exchange factors (RhoGEFs) activated during cardiac pressure overload in vivo and show that RhoGEF12 is a central player during cardiac remodeling. We show that RhoGEF12 is required for stretch-induced RhoA activation and hypertrophic gene transcription in vitro and that its activation depends on integrin β1 and heterotrimeric G proteins of the G12/13 family. In vivo, cardiomyocyte-specific deletion of RhoGEF12 protects mice from overload-induced hypertrophy, fibrosis, and development of heart failure. Importantly, in mice with preexisting hypertrophy, induction of RhoGEF12 deficiency protects from cardiac decompensation, resulting in significantly increased long-term survival. Collectively, RhoGEF12 acts as an integrator of stretch-induced signaling cascades in cardiomyocytes and is an interesting new target for therapeutic intervention in patients with pressure overload–induced heart failure.
Collapse
Affiliation(s)
- Mikito Takefuji
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | | | | | | | | | | |
Collapse
|
2
|
Takefuji M, Wirth A, Lukasova M, Takefuji S, Boettger T, Braun T, Althoff T, Offermanns S, Wettschureck N. G(13)-mediated signaling pathway is required for pressure overload-induced cardiac remodeling and heart failure. Circulation 2012; 126:1972-82. [PMID: 22972902 DOI: 10.1161/circulationaha.112.109256] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Cardiac remodeling in response to pressure or volume overload plays an important role in the pathogenesis of heart failure. Various mechanisms have been suggested to translate mechanical stress into structural changes, one of them being the release of humoral factors such as angiotensin II and endothelin-1, which in turn promote cardiac hypertrophy and fibrosis. A large body of evidence suggests that the prohypertrophic effects of these factors are mediated by receptors coupled to the G(q/11) family of heterotrimeric G proteins. Most G(q/11)-coupled receptors, however, can also activate G proteins of the G(12/13) family, but the role of G(12/13) in cardiac remodeling is not understood. METHODS AND RESULTS We use siRNA-mediated knockdown in vitro and conditional gene inactivation in vivo to study the role of the G(12/13) family in pressure overload-induced cardiac remodeling. We show in detail that inducible cardiomyocyte-specific inactivation of the α subunit of G(13), Gα(13), does not affect basal heart function but protects mice from pressure overload-induced hypertrophy and fibrosis as efficiently as inactivation of Gα(q/11). Furthermore, inactivation of Gα(13) prevents the development of heart failure up to 1 year after overloading. On the molecular level, we show that Gα(13), but not Gα(q/11), controls agonist-induced expression of hypertrophy-specific genes through activation of the small GTPase RhoA and consecutive activation of myocardin-related transcription factors. CONCLUSION Our data show that the G(12/13) family of heterotrimeric G proteins is centrally involved in pressure overload-induced cardiac remodeling and plays a central role in the transition to heart failure.
Collapse
Affiliation(s)
- Mikito Takefuji
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Grubb DR, Luo J, Yu YL, Woodcock EA. Scaffolding protein Homer 1c mediates hypertrophic responses downstream of Gq in cardiomyocytes. FASEB J 2011; 26:596-603. [PMID: 22012123 DOI: 10.1096/fj.11-190330] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Activation of the heterotrimeric G protein, Gq, causes cardiomyocyte hypertrophy in vivo and in cell models. Responses to activated Gq in cardiomyocytes are mediated exclusively by phospholipase Cβ1b (PLCβ1b), because it localizes at the sarcolemma by binding to Shank3, a high-molecular-weight (MW) scaffolding protein. Shank3 can bind to the Homer family of low-MW scaffolding proteins that fine tune Ca(2+) signaling by facilitating crosstalk between Ca(2+) channels at the cell surface with those on intracellular Ca(2+) stores. Activation of α(1)-adrenergic receptors, expression of constitutively active Gαq (GαqQL), or PLCβ1b initiated cardiomyocyte hypertrophy and increased Homer 1c mRNA expression, by 1.6 ± 0.18-, 1.9 ± 0.17-, and 1.5 ± 0.07-fold, respectively (means ± se, 6 independent experiments, P<0.05). Expression of Homer 1c induced an increase in cardiomyocyte area from 853 ± 27 to 1146 ± 31 μm(2) (P<0.05); furthermore, expression of dominant-negative Homer (Homer 1a) reversed the increase in cell size caused by α(1)-adrenergic agonist or PLCβ1b treatment (1503±48 to 996±28 and 1626±48 to 828±31 μm(2), respectively, P<0.05). Homer proteins were localized near the sarcolemma, associated with Shank3 and phospholipase Cβ1b. We conclude that Gq-mediated hypertrophy involves activation of PLCβ1b scaffolded onto a Shank3/Homer complex. Signaling downstream of Homer 1c is necessary and sufficient for Gq-initiated hypertrophy.
Collapse
Affiliation(s)
- David R Grubb
- Molecular Cardiology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne,Victoria, Australia
| | | | | | | |
Collapse
|
4
|
Cheng YC, Wu CH, Kuo WW, Lin JA, Wang HF, Tsai FJ, Tsai CH, Huang CY, Hsu TC, Tzang BS. Ameliorate Effects of Li-Fu Formula on IL-6-Mediated Cardiac Hypertrophy in Hamsters Fed with a Hyper-Cholesterol Diet. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:485471. [PMID: 21785627 PMCID: PMC3135657 DOI: 10.1093/ecam/neq066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 05/13/2010] [Indexed: 01/28/2023]
Abstract
Hypercholesterolemia diets are considered as major sources to cause cardiac hypertrophy. This study intends to evaluate the effects of Li-Fu formula on cardiac hypertrophy induced by hypercholesterolemia diet. Twenty-four male Golden Syrian hamsters were randomly divided into control, cholesterol and Li-Fu formula groups and fed with different experimental diets for 2 months. Histopathological analysis and western blotting were performed to measure the myocardial architecture, and various cardiac hypertrophy-associated molecules in the excised left ventricle from hamsters. The ratios of whole heart weight/body weight (BW) and left ventricle weight/BW were significantly higher in the cholesterol group but significantly lower in the Li-Fu formula group. The protein levels of both atrial natriuretic peptide and brain natriuretic peptide were significantly increased in the cholesterol group but significantly reduced in the Li-Fu formula group. Additionally, significantly increased interleukin-6, STAT3, MEK5, p-ERK5 and non-cardiomyocyte proliferate signal molecules such as p-MEK and p-ERK, were detected in the cholesterol group but significantly reduced in the Li-Fu formula group. Notably, no significant variations of inflammatory signaling molecules, including p-P38 and p-JNK, were detected in all groups. Our experimental results demonstrated the significant reductions of cardiac hypertrophy and related eccentric hypertrophy signaling, non-cardiomyocyte proliferate signaling in the excised left ventricle of hamsters from the Li-Fu formula. We suggested the protective effects of Li-Fu formula on cardiac hypertrophy that may be useful in prevention or treatment of hypertrophy-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Yi-Chang Cheng
- Emergency Department of Taichung Veterans General Hospital, China Medical University, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Wang Q, Maillard M, Schibler U, Burnier M, Gachon F. Cardiac hypertrophy, low blood pressure, and low aldosterone levels in mice devoid of the three circadian PAR bZip transcription factors DBP, HLF, and TEF. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1013-9. [DOI: 10.1152/ajpregu.00241.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cardiovascular system is under the control of the circadian clock, and disturbed circadian rhythms can induce cardiovascular pathologies. This cyclic regulation is probably brought about by the circadian expression of genes encoding enzymes and regulators involved in cardiovascular functions. We have previously shown that the rhythmic transcription of output genes is, in part, regulated by the clock-controlled PAR bZip transcription factors DBP (albumin D-site binding protein), HLF (hepatic leukemia factor), and TEF (thyrotroph embryonic factor). The simultaneous deletion of all three PAR bZip transcription factors leads to increased morbidity and shortened life span. In the present study, we demonstrate that Dbp/ Tef/ Hlf triple knockout mice develop cardiac hypertrophy and left ventricular dysfunction associated with a low blood pressure. These dysfunctions are exacerbated by an abnormal response to this low blood pressure characterized by low aldosterone levels. The phenotype of PAR bZip knockout mice highlights the importance of circadian regulators in the modulation of cardiovascular functions.
Collapse
Affiliation(s)
- Qing Wang
- Service of Nephrology and Hypertension, Centre Hospitalier Universitaire Vaudois, Lausanne
- Huazhong University of Science and Technology, Wuhan, China
| | - Marc Maillard
- Service of Nephrology and Hypertension, Centre Hospitalier Universitaire Vaudois, Lausanne
| | - Ueli Schibler
- Department of Molecular Biology and National Center of Competence Research Frontiers in Genetics, University of Geneva, Geneva
| | - Michel Burnier
- Service of Nephrology and Hypertension, Centre Hospitalier Universitaire Vaudois, Lausanne
| | - Frédéric Gachon
- Department of Molecular Biology and National Center of Competence Research Frontiers in Genetics, University of Geneva, Geneva
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
| |
Collapse
|
6
|
Esposito G, Perrino C, Schiattarella GG, Belardo L, di Pietro E, Franzone A, Capretti G, Gargiulo G, Pironti G, Cannavo A, Sannino A, Izzo R, Chiariello M. Induction of Mitogen-Activated Protein Kinases Is Proportional to the Amount of Pressure Overload. Hypertension 2010; 55:137-43. [DOI: 10.1161/hypertensionaha.109.135467] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pressure overload has been shown to induce mitogen activated protein kinases (MAPKs) and reactivate the atrial natriuretic factor in the heart. To test the sensitivity of these signals to pressure overload, we assayed the activity of MAPKs extracellular signal–regulated kinase, c-Jun N-terminal kinase 1, and p38 in protein lysates from the left ventricle (LV) or white blood cells (WBC) isolated from aortic banded mice with varying levels of pressure overload. In separated mice we measured atrial natriuretic factor mRNA levels by Northern blotting. As expected, a significant induction of atrial natriuretic factor mRNA levels was observed after aortic banding, and it significantly correlated with the
trans
-stenotic systolic pressure gradient but not with the LV weight:body weight ratio. In contrast, a significant correlation with systolic pressure gradient or LV weight:body weight ratio was observed for all of the MAPK activity detected in LV samples or WBCs. Importantly, LV activation of MAPKs significantly correlated with their activation in WBCs from the same animal. To test whether MAPK activation in WBCs might reflect uncontrolled blood pressure levels in humans, we assayed extracellular signal–regulated kinase, c-Jun N-terminal kinase 1, and p38 activation in WBCs isolated from normotensive volunteers, hypertensive patients with controlled blood pressure values, or hypertensive patients with uncontrolled blood pressure values. Interestingly, in hypertensive patients with controlled blood pressure values, LV mass and extracellular signal–regulated kinase phosphorylation were significantly reduced compared with those in hypertensive patients with uncontrolled blood pressure values. These results suggest that MAPKs are sensors of pressure overload and that extracellular signal–regulated kinase activation in WBCs might be used as a novel surrogate biomarker of uncontrolled human hypertension.
Collapse
Affiliation(s)
- Giovanni Esposito
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Cinzia Perrino
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Gabriele Giacomo Schiattarella
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Lorena Belardo
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Elisa di Pietro
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Anna Franzone
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Giuliana Capretti
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Giuseppe Gargiulo
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Gianluigi Pironti
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Alessandro Cannavo
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Anna Sannino
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Raffaele Izzo
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Massimo Chiariello
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| |
Collapse
|
7
|
Tsang S, Woo AYH, Zhu W, Xiao RP. Deregulation of RGS2 in cardiovascular diseases. Front Biosci (Schol Ed) 2010; 2:547-57. [PMID: 20036967 DOI: 10.2741/s84] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Alteration of G protein-coupled receptor (GPCR) signaling is a salient feature of hypertension and the associated heart diseases. Recent studies have revealed a large family of Regulators of G-protein Signaling (RGS) proteins as important endogenous regulators of GPCR signaling. RGS2 selectively regulates Galphaq/11 signaling, an essential cause of hypertension and cardiac hypertrophy. Both clinical and animal studies have shown that deregulation of RGS2 leads to exacerbated Galphaq/11 signaling. There is an inverse correlation between RGS2 expression and blood pressure, as well as a selective down-regulation of RGS2 in various models of cardiac hypertrophy. The causal relationship has been established in animal studies. RGS2 knockout mice exhibit not only hypertension phenotype but also accelerated cardiac hypertrophy and heart failure in response to pressure-overload. Further in vitro studies have shown that RGS2 knockdown with RNA interference exacerbates, whilst RGS2 over-expression completely abolishes the Galphaq/11-induced hypertrophy. These findings indicate that deregulation of RGS2 plays a crucial role in the pathogenesis of cardiovascular diseases, marking RGS2 as a potential therapeutic target or biomarker of hypertension or hypertensive heart diseases.
Collapse
Affiliation(s)
- Sharon Tsang
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
8
|
Davis J, Westfall MV, Townsend D, Blankinship M, Herron TJ, Guerrero-Serna G, Wang W, Devaney E, Metzger JM. Designing heart performance by gene transfer. Physiol Rev 2008; 88:1567-651. [PMID: 18923190 DOI: 10.1152/physrev.00039.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The birth of molecular cardiology can be traced to the development and implementation of high-fidelity genetic approaches for manipulating the heart. Recombinant viral vector-based technology offers a highly effective approach to genetically engineer cardiac muscle in vitro and in vivo. This review highlights discoveries made in cardiac muscle physiology through the use of targeted viral-mediated genetic modification. Here the history of cardiac gene transfer technology and the strengths and limitations of viral and nonviral vectors for gene delivery are reviewed. A comprehensive account is given of the application of gene transfer technology for studying key cardiac muscle targets including Ca(2+) handling, the sarcomere, the cytoskeleton, and signaling molecules and their posttranslational modifications. The primary objective of this review is to provide a thorough analysis of gene transfer studies for understanding cardiac physiology in health and disease. By comparing results obtained from gene transfer with those obtained from transgenesis and biophysical and biochemical methodologies, this review provides a global view of cardiac structure-function with an eye towards future areas of research. The data presented here serve as a basis for discovery of new therapeutic targets for remediation of acquired and inherited cardiac diseases.
Collapse
Affiliation(s)
- Jennifer Davis
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cheng Y, Ji R, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C. MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1831-40. [PMID: 17525252 PMCID: PMC1899438 DOI: 10.2353/ajpath.2007.061170] [Citation(s) in RCA: 412] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
MicroRNAs (miRNAs) are a recently discovered class of endogenous, small, noncoding RNAs that regulate gene expression. Although miRNAs are highly expressed in the heart, their roles in heart diseases are currently unclear. Using microarray analysis designed to detect the majority of mammalian miRNAs identified thus far, we demonstrated that miRNAs are aberrantly expressed in hypertrophic mouse hearts. The time course of the aberrant miRNA expression was further identified in mouse hearts at 7, 14, and 21 days after aortic banding. Nineteen of the most significantly dysregulated miRNAs were further confirmed by Northern blot and/or real-time polymerase chain reaction, in which miR-21 was striking because of its more than fourfold increase when compared with the sham surgical group. Similar aberrant expression of the most up-regulated miRNA, miR-21, was also found in cultured neonatal hypertrophic cardiomyocytes stimulated by angiotensin II or phenylephrine. Modulating miR-21 expression via antisense-mediated depletion (knockdown) had a significant negative effect on cardiomyocyte hypertrophy. The results suggest that miRNAs are involved in cardiac hypertrophy formation. miRNAs might be a new therapeutic target for cardiovascular diseases involving cardiac hypertrophy such as hypertension, ischemic heart disease, valvular diseases, and endocrine disorders.
Collapse
Affiliation(s)
- Yunhui Cheng
- Cardiovascular Research Laboratory, Vascular Biology Center and Department of Surgery, University of Tennessee Health Science Center, 956 Court Avenue, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Fisch S, Gray S, Heymans S, Haldar SM, Wang B, Pfister O, Cui L, Kumar A, Lin Z, Sen-Banerjee S, Das H, Petersen CA, Mende U, Burleigh BA, Zhu Y, Pinto YM, Liao R, Jain MK. Kruppel-like factor 15 is a regulator of cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 2007; 104:7074-9. [PMID: 17438289 PMCID: PMC1855421 DOI: 10.1073/pnas.0701981104] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cardiac hypertrophy is a common response to injury and hemodynamic stress and an important harbinger of heart failure and death. Herein, we identify the Kruppel-like factor 15 (KLF15) as an inhibitor of cardiac hypertrophy. Myocardial expression of KLF15 is reduced in rodent models of hypertrophy and in biopsy samples from patients with pressure-overload induced by chronic valvular aortic stenosis. Overexpression of KLF15 in neonatal rat ventricular cardiomyocytes inhibits cell size, protein synthesis and hypertrophic gene expression. KLF15-null mice are viable but, in response to pressure overload, develop an eccentric form of cardiac hypertrophy characterized by increased heart weight, exaggerated expression of hypertrophic genes, left ventricular cavity dilatation with increased myocyte size, and reduced left ventricular systolic function. Mechanistically, a combination of promoter analyses and gel-shift studies suggest that KLF15 can inhibit GATA4 and myocyte enhancer factor 2 function. These studies identify KLF15 as part of a heretofore unrecognized pathway regulating the cardiac response to hemodynamic stress.
Collapse
Affiliation(s)
- Sudeshna Fisch
- *Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Susan Gray
- *Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Stephane Heymans
- Experimental and Molecular Cardiology/CARIM, University of Maastricht, 6200 MD, Maastricht, The Netherlands; and
| | - Saptarsi M. Haldar
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, 2103 Cornell Road, Room 4-503, Cleveland, OH 44106
| | - Baiqiu Wang
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, 2103 Cornell Road, Room 4-503, Cleveland, OH 44106
| | | | - Lei Cui
- Cardiac Muscle Research Laboratory
| | - Ajay Kumar
- *Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Zhiyong Lin
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, 2103 Cornell Road, Room 4-503, Cleveland, OH 44106
| | - Sucharita Sen-Banerjee
- *Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Hiranmoy Das
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, 2103 Cornell Road, Room 4-503, Cleveland, OH 44106
| | - Christine A. Petersen
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115
| | - Ulrike Mende
- *Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Barbara A. Burleigh
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115
| | - Yan Zhu
- Division of Cardiovascular Research, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135
| | - Yigal M. Pinto
- Experimental and Molecular Cardiology/CARIM, University of Maastricht, 6200 MD, Maastricht, The Netherlands; and
| | | | - Mukesh K. Jain
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, 2103 Cornell Road, Room 4-503, Cleveland, OH 44106
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Chen LM, Kuo WW, Yang JJ, Wang SGP, Yeh YL, Tsai FJ, Ho YJ, Chang MH, Huang CY, Lee SD. Eccentric cardiac hypertrophy was induced by long-term intermittent hypoxia in rats. Exp Physiol 2006; 92:409-16. [PMID: 17185350 DOI: 10.1113/expphysiol.2006.036590] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is unclear whether cardiac hypertrophy and hypertrophy-related pathways will be induced by long-term intermittent hypoxia. Thirty-six Sprague-Dawley rats were randomly assigned into three groups: normoxia, and long-term intermittent hypoxia (12% O(2), 8 h per day) for 4 weeks (4WLTIH) or for 8 weeks (8WLTIH). Myocardial morphology, trophic factors and signalling pathways in the three groups were determined by heart weight index, histological analysis, Western blotting and reverse transcriptase-polymerase chain reaction from the excised left ventricle. The ratio of whole heart weight to body weight, the ratio of left ventricular weight to body weight, the gross vertical cross-section of the heart and myocardial morphological changes were increased in the 4WLTIH group and were further augmented in the 8WLTIH group. In the 4WLTIH group, tumour necrosis factor-alpha(TNFalpha), insulin-like growth factor (IGF)-II, phosphorylated p38 mitogen-activated protein kinase (P38), signal transducers and activators of transcription (STAT)-1 and STAT-3 were significantly increased in the cardiac tissues. However, in the 8WLTIH group, in addition to the above factors, interleukin-6, mitogen-activated protein kinase (MEK)5 and extracellular signal-regulated kinase (ERK)5 were significantly increased compared with the normoxia group. We conclude that cardiac hypertrophy associated with TNFalpha and IGF-II was induced by intermittent hypoxia. The longer duration of intermittent hypoxia further activated the eccentric hypertrophy-related pathway, as well as the interleukin 6-related MEK5-ERK5 and STAT-3 pathways, which could result in the development of cardiac dilatation and pathology.
Collapse
Affiliation(s)
- Li-Mien Chen
- Center of General Education, Central Taiwan University of Science & Technology, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
van den Hoff MJB, Postma AV, Michel MC. Candidate genes for the hereditary component of cardiac hypertrophy. J Hypertens 2006; 24:273-7. [PMID: 16508570 DOI: 10.1097/01.hjh.0000200520.93190.7d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Maurice J B van den Hoff
- Department of Anatomy and Embryology, Experimental and Molecular Cardiology Group, Amsterdam, The Netherlands
| | | | | |
Collapse
|
13
|
Zhang W, Anger T, Su J, Hao J, Xu X, Zhu M, Gach A, Cui L, Liao R, Mende U. Selective Loss of Fine Tuning of Gq/11 Signaling by RGS2 Protein Exacerbates Cardiomyocyte Hypertrophy. J Biol Chem 2006; 281:5811-20. [PMID: 16380388 DOI: 10.1074/jbc.m507871200] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Alterations in cardiac G protein-mediated signaling, most prominently G(q/11) signaling, are centrally involved in hypertrophy and heart failure development. Several RGS proteins that can act as negative regulators of G protein signaling are expressed in the heart, but their functional roles are still poorly understood. RGS expression changes have been described in hypertrophic and failing hearts. In this study, we report a marked decrease in RGS2 (but not other major cardiac RGS proteins (RGS3-RGS5)) that occurs prior to hypertrophy development in different models with enhanced G(q/11) signaling (transgenic expression of activated Galpha(q)(*) and pressure overload due to aortic constriction). To assess functional consequences of selective down-regulation of endogenous RGS2, we identified targeting sequences for effective RGS2 RNA interference and used lipid-based transfection to achieve uptake of fluorescently labeled RGS2 small interfering RNA in >90% of neonatal and adult ventricular myocytes. Endogenous RGS2 expression was dose-dependently suppressed (up to 90%) with no major change in RGS3-RGS5. RGS2 knockdown increased phenylephrine- and endothelin-1-induced phospholipase Cbeta stimulation in both cell types and exacerbated the hypertrophic effect (increase in cell size and radiolabeled protein) in neonatal myocytes, with no major change in G(q/11)-mediated ERK1/2, p38, or JNK activation. Taken together, this study demonstrates that endogenous RGS2 exerts functionally important inhibitory restraint on G(q/11)-mediated phospholipase Cbeta activation and hypertrophy in ventricular myocytes. Our findings point toward a potential pathophysiological role of loss of fine tuning due to selective RGS2 down-regulation in G(q/11)-mediated remodeling. Furthermore, this study shows the feasibility of effective RNA interference in cardiomyocytes using lipid-based small interfering RNA transfection.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Disease Models, Animal
- Enzyme Activation
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Humans
- Hypertrophy
- Isoenzymes/metabolism
- Male
- Mice
- Mice, Transgenic
- Mitogen-Activated Protein Kinases/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Phospholipase C beta
- RGS Proteins/genetics
- RGS Proteins/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Sprague-Dawley
- Second Messenger Systems/physiology
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Wei Zhang
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Woodcock EA, Matkovich SJ. Ins(1,4,5)P3 receptors and inositol phosphates in the heart-evolutionary artefacts or active signal transducers? Pharmacol Ther 2005; 107:240-51. [PMID: 15908009 DOI: 10.1016/j.pharmthera.2005.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The generation of the second messenger inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) and its associated release of Ca(2+) from internal stores is a highly conserved module in intracellular signaling from Drosophila to mammals. Many cell types, often nonexcitable cells, depend on this pathway to couple external signals to intracellular Ca(2+) release. However, despite the presence of the requisite Ins(1,4,5)P(3) signaling machinery, excitable cells such as cardiac myocytes employ a robust alternate system of intracellular Ca(2+) release, namely, a coupled system of Ca(2+) influx, followed by Ca(2+) release via the IP(3)R-related ryanodine receptors. In these systems, Ins(1,4,5)P(3) signaling pathways appear to be largely dormant. In this review, we consider the general features of inositol phosphate (InsP) responses in cardiac myocytes and the molecules mediating these responses. The spatial localization of Ins(1,4,5)P(3) generation and Ins(1,4,5)P(3) receptor (IP(3)Rs) is likely of key importance, and we examine the state of knowledge in atrial, ventricular, and Purkinje myocytes. Several studies have implicated Ins(1,4,5)P(3) generation in both arrhythmogenic and hypertrophic responses, and possible mechanisms involving Ins(1,4,5)P(3) are discussed. While Ins(1,4,5)P(3) is unlikely to be a key player in cardiac excitation-contraction (EC) coupling, its potential role in an alternate Ca(2+) release system to signal changes in gene transcription warrants further investigation. Such studies will help to determine whether cardiac Ins(1,4,5)P(3) generation represents a vestigial pathway or plays an active role in cardiac signaling.
Collapse
Affiliation(s)
- Elizabeth A Woodcock
- Cellular Biochemistry Laboratory, Baker Heart Research Institute, Commercial Road, Melbourne, Australia.
| | | |
Collapse
|
15
|
Abstract
Heterotrimeric G proteins are key players in transmembrane signaling by coupling a huge variety of receptors to channel proteins, enzymes, and other effector molecules. Multiple subforms of G proteins together with receptors, effectors, and various regulatory proteins represent the components of a highly versatile signal transduction system. G protein-mediated signaling is employed by virtually all cells in the mammalian organism and is centrally involved in diverse physiological functions such as perception of sensory information, modulation of synaptic transmission, hormone release and actions, regulation of cell contraction and migration, or cell growth and differentiation. In this review, some of the functions of heterotrimeric G proteins in defined cells and tissues are described.
Collapse
Affiliation(s)
- Nina Wettschureck
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | | |
Collapse
|