1
|
Choi JY, Ha NG, Lee WJ, Boo YC. Synthetic and Natural Agents Targeting Advanced Glycation End-Products for Skin Anti-Aging: A Comprehensive Review of Experimental and Clinical Studies. Antioxidants (Basel) 2025; 14:498. [PMID: 40298870 PMCID: PMC12024170 DOI: 10.3390/antiox14040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025] Open
Abstract
Advanced glycation end-products (AGEs) cause blood vessel damage and induce diabetic complications in various organs, such as the eyes, kidneys, nerves, and skin. As glycation stress causes aesthetic, physical, and functional changes in the skin, glycation-targeting skin anti-aging strategies are attracting attention in cosmetology and dermatology. The primary goal of this review is to understand the significance of glycation-induced skin aging and to examine the therapeutic potential of glycation-targeting strategies. This study covers experimental and clinical studies exploring various interventions to attenuate glycation-induced skin aging. Glycation stress decreases the viability of cells in culture media, the cell-mediated contraction of collagen lattices in reconstructed skin models, and the expression of fibrillin-1 at the dermo-epidermal junction in the skin explants. It also increases cross-links in tail tendon collagen in animals, prolonging its breakdown time. However, these changes are attenuated by several synthetic and natural agents. Animal and clinical studies have shown that dietary or topical administration of agents with antiglycation or antioxidant activity can attenuate changes in AGE levels (measured by skin autofluorescence) and skin aging parameters (e.g., skin color, wrinkles, elasticity, hydration, dermal density) induced by chronological aging, diabetes, high-carbohydrate diets, ultraviolet radiation, or oxidative stress. Therefore, the accumulating experimental and clinical evidence supports that dietary supplements or topical formulations containing one or more synthetic and natural antiglycation agents may help mitigate skin aging induced by AGEs.
Collapse
Affiliation(s)
- Joon Yong Choi
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Nam Gyoung Ha
- Department of Dermatology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea; (N.G.H.); (W.J.L.)
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Weon Ju Lee
- Department of Dermatology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea; (N.G.H.); (W.J.L.)
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yong Chool Boo
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
2
|
Li WZ, Liu XX, Shi YJ, Wang XR, Li L, Tai ML, Yi F. Unveiling the mechanism of high sugar diet induced advanced glycosylation end products damage skin structure via extracellular matrix-receptor interaction pathway. J Cosmet Dermatol 2024; 23:2496-2508. [PMID: 38501159 DOI: 10.1111/jocd.16295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/09/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND AGEs accumulate in the skin as a result of a high-sugar diet and play an important role in the skin aging process. OBJECTIVES The aim of this study was to characterize the mechanism underlying the effect of a high-sugar diet on skin aging damage at a holistic level. METHODS We established a high-sugar diet mouse model to compare and analyze differences in physiological indexes. The effect of a high-sugar diet on skin aging damage was analyzed by means of a transcriptome study and staining of pathological sections. Furthermore, the differences in the protein expression of AGEs and ECM components between the HSD and control groups were further verified by immunohistochemistry. RESULTS The skin in the HSD group mice tended toward a red, yellow, dark, and deep color. In addition, the epidermis was irregular with anomalous phenomena, the epidermis was thinned, and the dermis lost its normal structure and showed vacuolated changes. Transcriptomics results revealed significant downregulation of the ECM-receptor interaction pathway, significant upregulation of the expression of AGEs and significant downregulation of the expression levels of COLI, FN1, LM5, and TNC, among others ECM proteins and ECM receptors. CONCLUSIONS High-sugar diets cause skin aging damage by inducing the accumulation of AGEs, disrupting the expression of ECM proteins and their receptors, and downregulating the ECM-receptor interaction pathway, which affects cellular behavioral functions such as cell proliferation, migration, and adhesion, as well as normal skin tissue structure.
Collapse
Affiliation(s)
- Wan-Zhao Li
- R&D Center, Infinitus (China) Company Ltd, Guangzhou, China
| | - Xiao-Xing Liu
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Yu-Jing Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Rui Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Mei-Ling Tai
- R&D Center, Infinitus (China) Company Ltd, Guangzhou, China
| | - Fan Yi
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
3
|
Liu X, Chen C, Lin Y, Liu Y, Cai S, Li D, Li L, Xiao P, Yi F. Withania somnifera root extract inhibits MGO-induced skin fibroblast cells dysfunction via ECM-integrin interaction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117699. [PMID: 38185262 DOI: 10.1016/j.jep.2023.117699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera (L.) Dunal, known as Ashwagandha, has long been used in traditional medicine in Ayurveda, India, a representative adaptogen. The main active constituents of W. somnifera are withanolides, and the root is often used as a medicine with a wide range of pharmacological activities, which can be used to treat insomnia, neurasthenia, diabetes mellitus and skin cancer. AIM OF THE STUDY Whole-component qualitative and quantitative analyses were performed on W. somnifera. We explored the ameliorative effect of the adaptogen representative plant W. somnifera on the senescence events of MGO-injured fibroblasts and its action mechanism and verified the hypotheses that WS can inhibit the accumulation of AGEs and regulate the dynamic balance among the components of the ECM by modulating the expression of integrin β1 receptor; as a result, WS maintains cellular behavioural and biological functions in a normal range and retards the aging of skin from the cellular level. MATERIALS AND METHODS In this study, the components of WS were first qualitatively and quantitatively analysed by HPLC fingerprinting and LC-MS detection. Second, a model of MGO-induced injury of CML-overexpressing fibroblasts was established. ELISA was used to detect CML expression and the synthesis of key extracellular matrix ECM protein components COL1, FN1, LM5 and TNC synthesis; CCK-8 was used to detect cell viability; EDU was used to detect cell proliferation capacity; fluorescence was used to detect cell adhesion capacity; and migration assay were used to detect cell migration capacity; qRT-PCR was used to detect the regulatory pathway TGF-β1 and MMP-2, MMP-9 in ECMs; immunofluorescence was used to detect the expression of ITGB1; and WB was used to detect the expression of COL1, FN1, LM5, Tnc, TGF-β1, MMP-2, MMP-9 and ITGB1. RESULTS In total, 27 active ingredients were analysed from WS, which mainly consisted of withanolide components, such as withaferin A and withanolide A. Based on the model of MGO-induced fibroblast senescence injury, WS significantly inhibited CML synthesis. By up-regulating the expression of integrin β1, it upregulated the expression of the TGF-β1 gene, which is closely related to the generation of ECMs, downregulated the expression of the MMP-2 and MMP-9 genes, which are closely related to the degradation of ECMs, maintained the dynamic balance of the four types of ECMs, and improved cell viability as well as proliferation, migration and adhesion abilities. CONCLUSIONS WS can prevent cellular behavioural dysfunction and delay skin ageing by reducing the accumulation of CML, upregulating the expression of the ITGB1 receptor, maintaining the normal function of ECM-integrin receptor interaction and preventing an imbalance between the production and degradation of protein components of ECMs. The findings reported in this study suggest that WS as a CML inhibitor can modulate ECM-integrin homeostasis and has great potential in the field of aging retardation.
Collapse
Affiliation(s)
- Xiaoxing Liu
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Institute of cosmetic regulatory science, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China
| | - Chunyu Chen
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Institute of cosmetic regulatory science, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China
| | - Yingying Lin
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Institute of cosmetic regulatory science, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China
| | - Yanhong Liu
- Hua An Tang Biotech Group Co., Ltd., No.13, Liuwei Street, Hualong Town, Panyu District, Guangzhou, 511434, PR China
| | - Shaochun Cai
- Hua An Tang Biotech Group Co., Ltd., No.13, Liuwei Street, Hualong Town, Panyu District, Guangzhou, 511434, PR China
| | - Dongcui Li
- Hua An Tang Biotech Group Co., Ltd., No.13, Liuwei Street, Hualong Town, Panyu District, Guangzhou, 511434, PR China
| | - Li Li
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Institute of cosmetic regulatory science, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, 151 Malianwa N, Haidian District, Beijing, 100193, PR China
| | - Fan Yi
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Institute of cosmetic regulatory science, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China.
| |
Collapse
|
4
|
De Decker I, Notebaert M, Speeckaert MM, Claes KEY, Blondeel P, Van Aken E, Van Dorpe J, De Somer F, Heintz M, Monstrey S, Delanghe JR. Enzymatic Deglycation of Damaged Skin by Means of Combined Treatment of Fructosamine-3-Kinase and Fructosyl-Amino Acid Oxidase. Int J Mol Sci 2023; 24:ijms24108981. [PMID: 37240327 DOI: 10.3390/ijms24108981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The consensus in aging is that inflammation, cellular senescence, free radicals, and epigenetics are contributing factors. Skin glycation through advanced glycation end products (AGEs) has a crucial role in aging. Additionally, it has been suggested that their presence in scars leads to elasticity loss. This manuscript reports fructosamine-3-kinase (FN3K) and fructosyl-amino acid oxidase (FAOD) in counteracting skin glycation by AGEs. Skin specimens were obtained (n = 19) and incubated with glycolaldehyde (GA) for AGE induction. FN3K and FAOD were used as monotherapy or combination therapy. Negative and positive controls were treated with phosphate-buffered saline and aminoguanidine, respectively. Autofluorescence (AF) was used to measure deglycation. An excised hypertrophic scar tissue (HTS) (n = 1) was treated. Changes in chemical bonds and elasticity were evaluated using mid-infrared spectroscopy (MIR) and skin elongation, respectively. Specimens treated with FN3K and FAOD in monotherapy achieved an average decrease of 31% and 33% in AF values, respectively. When treatments were combined, a decrease of 43% was achieved. The positive control decreased by 28%, whilst the negative control showed no difference. Elongation testing of HTS showed a significant elasticity improvement after FN3K treatment. ATR-IR spectra demonstrated differences in chemical bounds pre- versus post-treatment. FN3K and FAOD can achieve deglycation and the effects are most optimal when combined in one treatment.
Collapse
Affiliation(s)
- Ignace De Decker
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Margo Notebaert
- Department of Diagnostic Sciences, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Karel E Y Claes
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Phillip Blondeel
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Elisabeth Van Aken
- Department of Head and Skin, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Filip De Somer
- Department of Cardiac Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Margaux Heintz
- Faculty of Medicine and Health Sciences, Ghent University, Sint-Pietersnieuwstraat 33, 9000 Ghent, Belgium
| | - Stan Monstrey
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Phang SJ, Basak S, Teh HX, Packirisamy G, Fauzi MB, Kuppusamy UR, Neo YP, Looi ML. Advancements in Extracellular Matrix-Based Biomaterials and Biofabrication of 3D Organotypic Skin Models. ACS Biomater Sci Eng 2022; 8:3220-3241. [PMID: 35861577 DOI: 10.1021/acsbiomaterials.2c00342] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the last decades, three-dimensional (3D) organotypic skin models have received enormous attention as alternative models to in vivo animal models and in vitro two-dimensional assays. To date, most organotypic skin models have an epidermal layer of keratinocytes and a dermal layer of fibroblasts embedded in an extracellular matrix (ECM)-based biomaterial. The ECM provides mechanical support and biochemical signals to the cells. Without advancements in ECM-based biomaterials and biofabrication technologies, it would have been impossible to create organotypic skin models that mimic native human skin. In this review, the use of ECM-based biomaterials in the reconstruction of skin models, as well as the study of complete ECM-based biomaterials, such as fibroblasts-derived ECM and decellularized ECM as a better biomaterial, will be highlighted. We also discuss the benefits and drawbacks of several biofabrication processes used in the fabrication of ECM-based biomaterials, such as conventional static culture, electrospinning, 3D bioprinting, and skin-on-a-chip. Advancements and future possibilities in modifying ECM-based biomaterials to recreate disease-like skin models will also be highlighted, given the importance of organotypic skin models in disease modeling. Overall, this review provides an overview of the present variety of ECM-based biomaterials and biofabrication technologies available. An enhanced organotypic skin model is expected to be produced in the near future by combining knowledge from previous experiences and current research.
Collapse
Affiliation(s)
- Shou Jin Phang
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Soumyadeep Basak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247 667, Uttarakhand, India
| | - Huey Xhin Teh
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Gopinath Packirisamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247 667, Uttarakhand, India
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yun Ping Neo
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Mee Lee Looi
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Chen CY, Zhang JQ, Li L, Guo MM, He YF, Dong YM, Meng H, Yi F. Advanced Glycation End Products in the Skin: Molecular Mechanisms, Methods of Measurement, and Inhibitory Pathways. Front Med (Lausanne) 2022; 9:837222. [PMID: 35646963 PMCID: PMC9131003 DOI: 10.3389/fmed.2022.837222] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/21/2022] [Indexed: 12/19/2022] Open
Abstract
Advanced glycation end products (AGEs) are a series of stable compounds produced under non-enzymatic conditions by the amino groups of biomacromolecules and the free carbonyl groups of glucose or other reducing sugars commonly produced by thermally processed foods. AGEs can cause various diseases, such as diabetes, atherosclerosis, neurodegeneration, and chronic kidney disease, by triggering the receptors of AGE (RAGEs) in the human body. There is evidence that AGEs can also affect the different structures and physiological functions of the skin. However, the mechanism is complicated and cumbersome and causes various harms to the skin. This article aims to identify and summarise the formation and characteristics of AGEs, focussing on the molecular mechanisms by which AGEs affect the composition and structure of normal skin substances at different skin layers and induce skin issues. We also discuss prevention and inhibition pathways, provide a systematic and comprehensive method for measuring the content of AGEs in human skin, and summarise and analyse their advantages and disadvantages. This work can help researchers acquire a deeper understanding of the relationship between AGEs and the skin and provides a basis for the development of effective ingredients that inhibit glycation.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Jia-Qi Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Li Li
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Miao-Miao Guo
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Yi-Fan He
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Yin-Mao Dong
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Hong Meng
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Fan Yi
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| |
Collapse
|
7
|
Markiewicz E, Jerome J, Mammone T, Idowu OC. Anti-Glycation and Anti-Aging Properties of Resveratrol Derivatives in the in-vitro 3D Models of Human Skin. Clin Cosmet Investig Dermatol 2022; 15:911-927. [PMID: 35615726 PMCID: PMC9126233 DOI: 10.2147/ccid.s364538] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/03/2022] [Indexed: 01/03/2023]
Abstract
Purpose Human skin undergoes modifications affecting its structural properties and barrier functions involved in protection against age-related damage. Glycation is a non-enzymatic reaction between macromolecules and sugars causing alterations to the elastic fibers and premature aging of the skin. Glycation can be prevented by a range of bioactive molecules; however, at present only a few of them are validated for inclusion in cosmetic products. There is also a demand for reproducible in-vitro assays demonstrating the anti-aging effect of compounds on the skin. This study aimed to define the potential targets for screening and validation of anti-glycation activity of novel cosmetic candidates from natural products and to provide a plausible mechanism for their anti-aging potential based on 3D skin models. Methods Dermal fibroblasts and 3D skin models were treated with glycation agent and topical applications of Resveratrol derivatives. The samples were analyzed for advanced glycation end products (AGEs) alongside an organization of elastic fibers and expression of proliferative, senescence, and oxidative stress markers by autofluorescence, immunocytochemistry and quantitative assays. Results Accumulation of AGEs in the 3D skin model is associated with reduced stratification of the epidermis and re-organization of the collagen in the upper, cell-dense layer of the dermis. Treatment of dermal fibroblasts with Resveratrol, OxyResveratrol, Piceatannol, and Triacetyl Resveratrol ameliorates the effects of glycation consistent with cellular aging. Subsequent topical application of the compounds in skin models results in a reduction in glycation-induced AGEs, an increase in collagen expression and a stratification of the epidermis. Conclusion Glycation could result in age-related alterations in the structural and cellular organizations of the superficial layers of the skin, which can be restored by Resveratrol derivatives, pointing to their promising capacities as bioactive ingredients in cosmetic products. Insight into the potential parameters affected by skin glycation could also serve as a reference for screening the bioactive molecules for cosmetic purposes.
Collapse
Affiliation(s)
- Ewa Markiewicz
- Hexis Lab Limited, The Catalyst, Newcastle Helix, Newcastle upon Tyne, UK
| | - Jaimie Jerome
- Estee Lauder Research Laboratories, Melville, NY, USA
| | | | - Olusola C Idowu
- Hexis Lab Limited, The Catalyst, Newcastle Helix, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Roig-Rosello E, Rousselle P. The Human Epidermal Basement Membrane: A Shaped and Cell Instructive Platform That Aging Slowly Alters. Biomolecules 2020; 10:E1607. [PMID: 33260936 PMCID: PMC7760980 DOI: 10.3390/biom10121607] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
One of the most important functions of skin is to act as a protective barrier. To fulfill this role, the structural integrity of the skin depends on the dermal-epidermal junction-a complex network of extracellular matrix macromolecules that connect the outer epidermal layer to the underlying dermis. This junction provides both a structural support to keratinocytes and a specific niche that mediates signals influencing their behavior. It displays a distinctive microarchitecture characterized by an undulating pattern, strengthening dermal-epidermal connectivity and crosstalk. The optimal stiffness arising from the overall molecular organization, together with characteristic anchoring complexes, keeps the dermis and epidermis layers extremely well connected and capable of proper epidermal renewal and regeneration. Due to intrinsic and extrinsic factors, a large number of structural and biological changes accompany skin aging. These changes progressively weaken the dermal-epidermal junction substructure and affect its functions, contributing to the gradual decline in overall skin physiology. Most changes involve reduced turnover or altered enzymatic or non-enzymatic post-translational modifications, compromising the mechanical properties of matrix components and cells. This review combines recent and older data on organization of the dermal-epidermal junction, its mechanical properties and role in mechanotransduction, its involvement in regeneration, and its fate during the aging process.
Collapse
Affiliation(s)
- Eva Roig-Rosello
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS-Université Lyon 1, SFR BioSciences Gerland-Lyon Sud, 7 Passage du Vercors, 69367 Lyon, France;
- Roger Gallet SAS, 4 rue Euler, 75008 Paris, France
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS-Université Lyon 1, SFR BioSciences Gerland-Lyon Sud, 7 Passage du Vercors, 69367 Lyon, France;
| |
Collapse
|
9
|
Balansin Rigon R, Kaessmeyer S, Wolff C, Hausmann C, Zhang N, Sochorová M, Kováčik A, Haag R, Vávrová K, Ulrich M, Schäfer-Korting M, Zoschke C. Ultrastructural and Molecular Analysis of Ribose-Induced Glycated Reconstructed Human Skin. Int J Mol Sci 2018; 19:ijms19113521. [PMID: 30413126 PMCID: PMC6275002 DOI: 10.3390/ijms19113521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 01/12/2023] Open
Abstract
Aging depicts one of the major challenges in pharmacology owing to its complexity and heterogeneity. Thereby, advanced glycated end-products modify extracellular matrix proteins, but the consequences on the skin barrier function remain heavily understudied. Herein, we utilized transmission electron microscopy for the ultrastructural analysis of ribose-induced glycated reconstructed human skin (RHS). Molecular and functional insights substantiated the ultrastructural characterization and proved the relevance of glycated RHS beyond skin aging. In particular, electron microscopy mapped the accumulation and altered spatial orientation of fibrils and filaments in the dermal compartment of glycated RHS. Moreover, the epidermal basement membrane appeared thicker in glycated than in non-glycated RHS, but electron microscopy identified longitudinal clusters of the finest collagen fibrils instead of real thickening. The stratum granulosum contained more cell layers, the morphology of keratohyalin granules decidedly differed, and the stratum corneum lipid order increased in ribose-induced glycated RHS, while the skin barrier function was almost not affected. In conclusion, dermal advanced glycated end-products markedly changed the epidermal morphology, underlining the importance of matrix⁻cell interactions. The phenotype of ribose-induced glycated RHS emulated aged skin in the dermis, while the two to three times increased thickness of the stratum granulosum resembled poorer cornification.
Collapse
Affiliation(s)
- Roberta Balansin Rigon
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| | - Sabine Kaessmeyer
- Institute of Veterinary Anatomy, Department of Veterinary Medicine, Freie Universität Berlin, Koserstr. 20, 14195 Berlin, Germany.
| | - Christopher Wolff
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| | - Christian Hausmann
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| | - Nan Zhang
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| | - Michaela Sochorová
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | - Andrej Kováčik
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany; Germany.
| | - Kateřina Vávrová
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | - Martina Ulrich
- Collegium Medicum Berlin, Luisenstr. 54, 10117 Berlin, Germany.
| | - Monika Schäfer-Korting
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| | - Christian Zoschke
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| |
Collapse
|
10
|
Kim JH, Yoon NY, Kim DH, Jung M, Jun M, Park HY, Chung CH, Lee K, Kim S, Park CS, Liu KH, Choi EH. Impaired permeability and antimicrobial barriers in type 2 diabetes skin are linked to increased serum levels of advanced glycation end-product. Exp Dermatol 2018; 27:815-823. [PMID: 29151267 DOI: 10.1111/exd.13466] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2017] [Indexed: 12/17/2022]
Abstract
The incidence of type 2 diabetes mellitus (DM) has been increasing rapidly, and the disease has become a serious sociomedical problem. Many skin problems, such as xerosis, pruritus, skin infections and delayed wound healing, that might be related to chronic impairment of skin barrier function decrease the quality of life in patients with DM. However, the status of the permeability and antimicrobial barrier of the skin in DM remains unknown. This study aimed to elucidate skin barrier impairment in patients with type 2 DM and its pathomechanisms using classic animal models of type 2 DM. Functional studies of the skin barrier and an analysis of stratum corneum (SC) lipids were compared between patients with type 2 DM and age- and sex-matched non-diabetes controls. Also, functional studies on the skin barrier, epidermal lipid analyses, and electron microscopy and biomolecular studies were performed using type 2 DM animal models, db/db and ob/ob mice. Patients with type 2 DM presented with epidermal barrier impairments, including SC hydration, which was influenced by blood glucose control (HbA1c level). In the lipid analysis of SC, ceramides, fatty acids and cholesterol were significantly decreased in patients with type 2 DM compared with controls. Type 2 DM murine models presented with severe hyperglycaemia, impairment of skin barrier homeostasis, decreases in epidermal proliferation and epidermal lipid synthesis, decreases in lamellar body (LB) and epidermal antimicrobial peptides (AMPs), an increase in receptors for advanced glycation end-product (AGE) in the epidermis and an increase in serum AGE. Impairment of the skin barrier was observed in type 2 DM, which results in part from a decrease in epidermal proliferation. Serum AGE and its epidermal receptors were increased in type 2 diabetic mice which display impaired skin barrier parameters such as epidermal lipid synthesis, LB production, epidermal AMP and SC lipids.
Collapse
Affiliation(s)
- Jae-Hong Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Na Young Yoon
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Dong Hye Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Minyoung Jung
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Myungsoo Jun
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hwa-Young Park
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Choon Hee Chung
- Department of Internal medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Kyohoon Lee
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Korea
| | - Sunki Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Korea
| | - Chang Seo Park
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Korea
| | - Kwang-Hyeon Liu
- College of Pharmacy and Research, Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
11
|
Hu JL, Todhunter ME, LaBarge MA, Gartner ZJ. Opportunities for organoids as new models of aging. J Cell Biol 2017; 217:39-50. [PMID: 29263081 PMCID: PMC5748992 DOI: 10.1083/jcb.201709054] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/13/2017] [Accepted: 11/27/2017] [Indexed: 01/02/2023] Open
Abstract
The biology of aging is challenging to study, particularly in humans. As a result, model organisms are used to approximate the physiological context of aging in humans. However, the best model organisms remain expensive and time-consuming to use. More importantly, they may not reflect directly on the process of aging in people. Human cell culture provides an alternative, but many functional signs of aging occur at the level of tissues rather than cells and are therefore not readily apparent in traditional cell culture models. Organoids have the potential to effectively balance between the strengths and weaknesses of traditional models of aging. They have sufficient complexity to capture relevant signs of aging at the molecular, cellular, and tissue levels, while presenting an experimentally tractable alternative to animal studies. Organoid systems have been developed to model many human tissues and diseases. Here we provide a perspective on the potential for organoids to serve as models for aging and describe how current organoid techniques could be applied to aging research.
Collapse
Affiliation(s)
- Jennifer L Hu
- University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA
| | - Michael E Todhunter
- Center for Cancer and Aging, Beckman Research Institute at City of Hope, Duarte, CA
| | - Mark A LaBarge
- Center for Cancer and Aging, Beckman Research Institute at City of Hope, Duarte, CA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA .,National Science Foundation Center for Cellular Construction, University of California San Francisco, San Francisco, CA.,Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
12
|
Amino Carbonylation of Epidermal Basement Membrane Inhibits Epidermal Cell Function and Is Suppressed by Methylparaben. COSMETICS 2017. [DOI: 10.3390/cosmetics4040038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
13
|
Lee KH, Ng YP, Cheah PS, Lim CK, Toh MS. Molecular characterization of glycation-associated skin ageing: an alternative skin model to study in vitro antiglycation activity of topical cosmeceutical and pharmaceutical formulations. Br J Dermatol 2016; 176:159-167. [PMID: 27363533 DOI: 10.1111/bjd.14832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Glycation is a nonenzymatic reaction that cross-links a sugar molecule and protein macromolecule to form advanced glycation products (AGEs) that are associated with various age-related disorders; thus glycation plays an important role in skin chronological ageing. OBJECTIVES To develop a novel in vitro skin glycation model as a screening tool for topical formulations with antiglycation properties and to further characterize, at the molecular level, the glycation stress-driven skin ageing mechanism. METHODS The glycation model was developed using human reconstituted full-thickness skin; the presence of Nε -(carboxymethyl) lysine (CML) was used as evidence of the degree of glycation. Topical application of emulsion containing a well-known antiglycation compound (aminoguanidine) was used to verify the sensitivity and robustness of the model. Cytokine immunoassay, quantitative real-time polymerase chain reaction and histological analysis were further implemented to characterize the molecular mechanisms of skin ageing in the skin glycation model. RESULTS Transcriptomic and cytokine profiling analyses in the skin glycation model demonstrated multiple biological changes, including extracellular matrix catabolism, skin barrier function impairment, oxidative stress and subsequently the inflammatory response. Darkness and yellowness of skin tone observed in the in vitro skin glycation model correlated well with the degree of glycation stress. CONCLUSIONS The newly developed skin glycation model in this study has provided a new technological dimension in screening antiglycation properties of topical pharmaceutical or cosmeceutical formulations. This study concomitantly provides insights into skin ageing mechanisms driven by glycation stress, which could be useful in formulating skin antiageing therapy in future studies.
Collapse
Affiliation(s)
- K H Lee
- Wipro Skin Research and Innovation Centre, No. 7, Persiaran Subang Permai, Taman Perindustrian Subang, 47610, Subang Jaya, Selangor, Malaysia
| | - Y P Ng
- Wipro Skin Research and Innovation Centre, No. 7, Persiaran Subang Permai, Taman Perindustrian Subang, 47610, Subang Jaya, Selangor, Malaysia
| | - P S Cheah
- Department of Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - C K Lim
- Wipro Skin Research and Innovation Centre, No. 7, Persiaran Subang Permai, Taman Perindustrian Subang, 47610, Subang Jaya, Selangor, Malaysia
| | - M S Toh
- Wipro Skin Research and Innovation Centre, No. 7, Persiaran Subang Permai, Taman Perindustrian Subang, 47610, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
14
|
Randag A, Graaff R, Dreise M, Vierkötter A, Werker P, Stenekes M. Body mass index, chronological age and hormonal status are better predictors of biological skin age than arm skin autofluorescence in healthy women who have never smoked. Br J Dermatol 2015. [DOI: 10.1111/bjd.14044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A.C. Randag
- Department of Plastic Surgery; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - R. Graaff
- Department of Endocrinology; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - M.M. Dreise
- Department of Plastic Surgery; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - A. Vierkötter
- IUF - Leibniz Research Institute for Environmental Medicine; Düsseldorf Germany
| | - P.M.N. Werker
- Department of Plastic Surgery; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - M.W. Stenekes
- Department of Plastic Surgery; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| |
Collapse
|
15
|
Pageon H, Zucchi H, Dai Z, Sell DR, Strauch CM, Monnier VM, Asselineau D. Biological Effects Induced by Specific Advanced Glycation End Products in the Reconstructed Skin Model of Aging. Biores Open Access 2015; 4:54-64. [PMID: 26309782 PMCID: PMC4497626 DOI: 10.1089/biores.2014.0053] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Advanced glycation end products (AGEs) accumulate in the aging skin. To understand the biological effects of individual AGEs, skin reconstructed with collagen selectively enriched with Nɛ-(carboxymethyl)-lysine (CML), Nɛ-(carboxyethyl)-lysine (CEL), methylglyoxal hydroimidazolone (MG-H1), or pentosidine was studied. Immunohistochemistry revealed increased expression of α6 integrin at the dermal epidermal junction by CEL and CML (p<0.01). Laminin 5 was diminished by CEL and MG-H1 (p<0.05). Both CML and CEL induced a robust increase (p<0.01) in procollagen I. In the culture medium, IL-6, VEGF, and MMP1 secretion were significantly decreased (p<0.05) by MG-H1. While both CEL and CML decreased MMP3, only CEL decreased IL-6 and TIMP1, while CML stimulated TIMP1 synthesis significantly (p<0.05). mRNA expression studies using qPCR in the epidermis layer showed that CEL increased type 7 collagen (COL7A1), β1, and α6 integrin, while CML increased only COL7A1 (p<0.05). MG-H1-modified collagen had no effect. Importantly, in the dermis layer, MMP3 mRNA expression was increased by both CML and MG-H1. CML also significantly increased the mRNAs of MMP1, TIMP1, keratinocyte growth factor (KGF), IL-6, and monocyte chemoattractant protein 1 (MCP1) (p<0.05). Mixed effects were present in CEL-rich matrix. Minimally glycoxidized pentosidine-rich collagen suppressed most mRNAs of the genes studied (p<0.05) and decreased VEGF and increased MCP1 protein expression. Taken together, this model of the aging skin suggests that a combination of AGEs tends to counterbalance and thus minimizes the detrimental biological effects of individual AGEs.
Collapse
Affiliation(s)
- Hervé Pageon
- L'Oréal, Research & Innovation , Aulnay-sous-bois, France
| | - Hélène Zucchi
- L'Oréal, Research & Innovation , Aulnay-sous-bois, France
| | - Zhenyu Dai
- Department of Pathology, Case Western Reserve University , Cleveland, Ohio
| | - David R Sell
- Department of Pathology, Case Western Reserve University , Cleveland, Ohio
| | | | - Vincent M Monnier
- Department of Pathology, Case Western Reserve University , Cleveland, Ohio. ; Department of Biochemistry, Case Western Reserve University , Cleveland, Ohio
| | | |
Collapse
|
16
|
Chaichalotornkul S, Nararatwanchai T, Narkpinit S, Dararat P, Kikuchi K, Maruyama I, Tancharoen S. Secondhand smoke exposure-induced nucleocytoplasmic shuttling of HMGB1 in a rat premature skin aging model. Biochem Biophys Res Commun 2014; 456:92-7. [PMID: 25446104 DOI: 10.1016/j.bbrc.2014.11.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 11/15/2014] [Indexed: 10/24/2022]
Abstract
Secondhand cigarette smoke exposure (SSE) has been linked to carcinogenic, oxidative, and inflammatory reactions. Herein, we investigated whether premature skin aging could be induced by SSE in a rat model, and assessed the cytoplasmic translocation of high mobility group box 1 (HMGB1) protein and collagen loss in skin tissues. Animals were divided into two groups: SSE and controls. Whole body SSE was carried out for 12 weeks. Dorsal skin tissue specimens were harvested for HMGB1 and Mallory's azan staining. Correlations between serum HMGB1 and collagen levels were determined. Rat skin exposed to secondhand smoke lost collagen bundles in the papillary dermis and collagen decreased significantly (p<0.05) compared with control rats. In epidermal keratinocytes, cytoplasmic HMGB1 staining was more diffuse and there were more HMGB1-positive cells after four weeks in SSE compared to control rats. A negative correlation between HMGB1 serum and collagen levels (r=-0.631, p=0.28) was also observed. Therefore, cytoplasmic HMGB1 expression in skin tissues might be associated with skin collagen loss upon the initiation of SSE. Additionally, long-term SSE might affect the appearance of the skin, or could accelerate the skin aging process.
Collapse
Affiliation(s)
| | | | - Somphong Narkpinit
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pornpen Dararat
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Kiyoshi Kikuchi
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand; Division of Brain Science, Department of Physiology, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Ikuro Maruyama
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | - Salunya Tancharoen
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
17
|
Shin JU, Lee WJ, Oh SH, Kim DY, Kim DS, Jung I, Lee JH. Altered vimentin protein expression in human dermal microvascular endothelial cells after ultraviolet or intense pulsed light treatment. Lasers Surg Med 2014; 46:431-8. [DOI: 10.1002/lsm.22253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Jung U Shin
- Department of Dermatology and Cutaneous Biology Research Institute, Institute for Human Tissue Restoration; Yonsei University College of Medicine; Seoul South Korea
| | - Won Jai Lee
- Department of Plastic and Reconstructive Surgery; Yonsei University College of Medicine; Seoul South Korea
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Institute for Human Tissue Restoration; Yonsei University College of Medicine; Seoul South Korea
| | - Do Young Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Institute for Human Tissue Restoration; Yonsei University College of Medicine; Seoul South Korea
| | - Dae Suk Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Institute for Human Tissue Restoration; Yonsei University College of Medicine; Seoul South Korea
| | - Inhee Jung
- Department of Dermatology and Cutaneous Biology Research Institute, Institute for Human Tissue Restoration; Yonsei University College of Medicine; Seoul South Korea
| | - Ju Hee Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Institute for Human Tissue Restoration; Yonsei University College of Medicine; Seoul South Korea
| |
Collapse
|
18
|
Jafferany M, Huynh TV, Silverman MA, Zaidi Z. Geriatric dermatoses: a clinical review of skin diseases in an aging population. Int J Dermatol 2012; 51:509-22. [PMID: 22515576 DOI: 10.1111/j.1365-4632.2011.05311.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Geriatric dermatoses are a challenging job for the physician in terms of diagnosis, management, and followup. Since skin of the elderly population is going through a lot of changes from both an intrinsic and extrinsic point of view, it is imperative for the physician to have a better understanding of the pathophysiology of geriatric skin disorders and their specific management, which differs slightly from an adult population. This review focuses on a brief introduction to the pathophysiological aspects of skin disorders in elderly, the description of some common geriatric skin disorders and their management and the new emerging role of psychodermatological aspects of geriatric dermatoses is also discussed. At the end, ten multiple choice questions are also added to further enhance the knowledge base of the readers.
Collapse
Affiliation(s)
- Mohammad Jafferany
- Psychodermatology Clinic, Department of Psychiatry and Behavioral Sciences, Synergy Medical Education Alliance, MI 48603, USA.
| | | | | | | |
Collapse
|
19
|
Humbert P, Viennet C, Legagneux K, Grandmottet F, Robin S, Muret P. In the shadow of the wrinkle: experimental models. J Cosmet Dermatol 2012; 11:79-83. [PMID: 22360339 DOI: 10.1111/j.1473-2165.2011.00601.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Research on aging has run for decades, and knowledge on the biologic process of skin chronological and photoaging is still increasing thanks to read across results generated between human, animal, and in vitro studies. However, wrinkles should not be considered to result only from the aging process. There are few reports on specific wrinkle histological features compared to the surrounding skin, and there is thus a need in really wrinkling skin animal and in vitro models. UV-irradiated Hr mouse is a good model because it develops wrinkles. Nevertheless, as mouse skin is somehow different from human skin, the innovative model of wrinkling human skin xenograft on SCID mice seems to be really promising. Concerning in vitro and ex vivo models, although there have been considerable advances in reconstructing realistic aged skins, there is still a lack of in vitro wrinkling skin model, and unfortunately, this gap will probably be difficult to fill.
Collapse
Affiliation(s)
- Philippe Humbert
- Engineering and Cutaneous Biology Team, INSERM UMR 645, IFR 133, University of Franche-Comte, Besançon, France.
| | | | | | | | | | | |
Collapse
|
20
|
Park HY, Kim JH, Jung M, Chung CH, Hasham R, Park CS, Choi EH. A long-standing hyperglycaemic condition impairs skin barrier by accelerating skin ageing process. Exp Dermatol 2011; 20:969-74. [DOI: 10.1111/j.1600-0625.2011.01364.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Brohem CA, da Silva Cardeal LB, Tiago M, Soengas MS, de Moraes Barros SB, Maria-Engler SS. Artificial skin in perspective: concepts and applications. Pigment Cell Melanoma Res 2011; 24:35-50. [PMID: 21029393 PMCID: PMC3021617 DOI: 10.1111/j.1755-148x.2010.00786.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Skin, the largest organ of the human body, is organized into an elaborate layered structure consisting mainly of the outermost epidermis and the underlying dermis. A subcutaneous adipose-storing hypodermis layer and various appendages such as hair follicles, sweat glands, sebaceous glands, nerves, lymphatics, and blood vessels are also present in the skin. These multiple components of the skin ensure survival by carrying out critical functions such as protection, thermoregulation, excretion, absorption, metabolic functions, sensation, evaporation management, and aesthetics. The study of how these biological functions are performed is critical to our understanding of basic skin biology such as regulation of pigmentation and wound repair. Impairment of any of these functions may lead to pathogenic alterations, including skin cancers. Therefore, the development of genetically controlled and well characterized skin models can have important implications, not only for scientists and physicians, but also for manufacturers, consumers, governing regulatory boards and animal welfare organizations. As cells making up human skin tissue grow within an organized three-dimensional (3D) matrix surrounded by neighboring cells, standard monolayer (2D) cell cultures do not recapitulate the physiological architecture of the skin. Several types of human skin recombinants, also called artificial skin, that provide this critical 3D structure have now been reconstructed in vitro. This review contemplates the use of these organotypic skin models in different applications, including substitutes to animal testing.
Collapse
Affiliation(s)
- Carla Abdo Brohem
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Laura Beatriz da Silva Cardeal
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Manoela Tiago
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - María S. Soengas
- Centro Nacional de Investigaciones Oncológicas (Spanish National Cancer Research Center) Madrid, Spain
| | | | - Silvya Stuchi Maria-Engler
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Byrne AJ, Al-Bader T, Kerrigan D, Hickey S, Laloeuf A, Rawlings AV. Synergistic action of a triple peptide complex on an essential extra-cellular matrix protein exhibits significant anti-aging benefits. J Cosmet Dermatol 2010; 9:108-16. [DOI: 10.1111/j.1473-2165.2010.00494.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Abstract
Aging processes leading to specific organ problems are not obvious in aging psittacines. In general, birds live long and age slowly despite their high metabolic rates and very high total lifetime energy expenditures. Most pathologic processes seen in older parrots are generally not specific for aging because they are seen in young birds as well. Pathologic processes that have a tendency to occur more in older psittacines are atherosclerosis and repeated injury processes, such as chronic pulmonary interstitial fibrosis, pneumoconiosis, liver fibrosis, and lens cataracts. Also, some neoplasms are more often seen at an older age.
Collapse
|