1
|
Jayakody SA, Gonzalez-Cordero A, Ali RR, Pearson RA. Cellular strategies for retinal repair by photoreceptor replacement. Prog Retin Eye Res 2015; 46:31-66. [PMID: 25660226 DOI: 10.1016/j.preteyeres.2015.01.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 02/08/2023]
Abstract
Loss of photoreceptors due to retinal degeneration is a major cause of blindness in the developed world. While no effective treatment is currently available, cell replacement therapy, using pluripotent stem cell-derived photoreceptor precursor cells, may be a feasible future treatment. Recent reports have demonstrated rescue of visual function following the transplantation of immature photoreceptors and we have seen major advances in our ability to generate transplantation-competent donor cells from stem cell sources. Moreover, we are beginning to realise the possibilities of using endogenous populations of cells from within the retina itself to mediate retinal repair. Here, we present a review of our current understanding of endogenous repair mechanisms together with recent progress in the use of both ocular and pluripotent stem cells for the treatment of photoreceptor loss. We consider how our understanding of retinal development has underpinned many of the recent major advances in translation and moved us closer to the goal of restoring vision by cellular means.
Collapse
Affiliation(s)
- Sujatha A Jayakody
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Anai Gonzalez-Cordero
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Robin R Ali
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| | - Rachael A Pearson
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK.
| |
Collapse
|
2
|
Oh J, Daniels GJ, Chiou LS, Ye EA, Jeong YS, Sakaguchi DS. Multipotent adult hippocampal progenitor cells maintained as neurospheres favor differentiation toward glial lineages. Biotechnol J 2014; 9:921-33. [PMID: 24844209 DOI: 10.1002/biot.201400019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/04/2014] [Accepted: 05/16/2014] [Indexed: 12/31/2022]
Abstract
Adult hippocampal progenitor cells (AHPCs) are generally maintained as a dispersed monolayer population of multipotent neural progenitors. To better understand cell-cell interactions among neural progenitors and their influences on cellular characteristics, we generated free-floating cellular aggregates, or neurospheres, from the adherent monolayer population of AHPCs. Results from in vitro analyses demonstrated that both populations of AHPCs were highly proliferative under maintenance conditions, but AHPCs formed in neurospheres favored differentiation along a glial lineage and displayed greater migrational activity than the traditionally cultured AHPCs. To study the plasticity of AHPCs from both populations in vivo, we transplanted green fluorescent protein (GFP)-expressing AHPCs via intraocular injection into the developing rat eyes. Both AHPC populations were capable of surviving and integrating into developing host central nervous system, but considerably more GFP-positive cells were observed in the retinas transplanted with neurosphere AHPCs, compared to adherent AHPCs. These results suggest that the culture configuration during maintenance for neural progenitor cells (NPCs) influences cell fate and motility in vitro as well as in vivo. Our findings have implication for understanding different cellular characteristics of NPCs according to distinct intercellular architectures and for developing cell-based therapeutic strategies using lineage-committed NPCs.
Collapse
Affiliation(s)
- Jisun Oh
- Neuroscience Program, Iowa State University, Ames, IA, USA; Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA; Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | | | | | | | | | | |
Collapse
|
3
|
Photoreceptor replacement therapy: Challenges presented by the diseased recipient retinal environment. Vis Neurosci 2014; 31:333-44. [DOI: 10.1017/s0952523814000200] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractVision loss caused by the death of photoreceptors is the leading cause of irreversible blindness in the developed world. Rapid advances in stem cell biology and techniques in cell transplantation have made photoreceptor replacement by transplantation a very plausible therapeutic strategy. These advances include the demonstration of restoration of vision following photoreceptor transplantation and the generation of transplantable populations of donor cells from stem cells. In this review, we present a brief overview of the recent progress in photoreceptor transplantation. We then consider in more detail some of the challenges presented by the degenerating retinal environment that must play host to these transplanted cells, how these may influence transplanted photoreceptor cell integration and survival, and some of the progress in developing strategies to circumnavigate these issues.
Collapse
|
4
|
Johnson TV, Bull ND, Martin KR. Stem cell therapy for glaucoma: possibilities and practicalities. EXPERT REVIEW OF OPHTHALMOLOGY 2014; 6:165-174. [PMID: 21686079 DOI: 10.1586/eop.11.3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glaucoma is a progressive, neurodegenerative, optic neuropathy in which currently available therapies cannot always prevent, and do not reverse, vision loss. Stem cell transplantation may provide a promising new avenue for treating many presently incurable degenerative conditions, including glaucoma. This article will explore the various ways in which transplantation of stem or progenitor cells may be applied for the treatment of glaucoma. We will critically discuss the translational prospects of two cell transplantation-based treatment modalities: neuroprotection and retinal ganglion cell replacement. In addition, we will identify specific questions that need to be addressed and obstacles to overcome on the path to clinical translation, and offer insight into potential strategies for approaching this goal.
Collapse
Affiliation(s)
- Thomas V Johnson
- Cambridge Centre for Brain Repair, University of Cambridge ED Adrian Building Forvie Site, Robinson Way, Cambridge, CB2 OPY, UK
| | | | | |
Collapse
|
5
|
Pearson RA. Advances in repairing the degenerate retina by rod photoreceptor transplantation. Biotechnol Adv 2014; 32:485-91. [PMID: 24412415 PMCID: PMC4070022 DOI: 10.1016/j.biotechadv.2014.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 09/26/2013] [Accepted: 01/01/2014] [Indexed: 02/01/2023]
Abstract
Despite very different aetiologies, age-related macular degeneration (AMD) and most inherited retinal disorders culminate in the same final common pathway, loss of the light-sensitive photoreceptors. There are few clinical treatments and none can reverse the loss of vision. Photoreceptor replacement by transplantation is proposed as a broad treatment strategy applicable to all degenerations. The past decade has seen a number of landmark achievements in this field, which together provide strong justification for continuing investigation into photoreceptor replacement strategies. These include proof of principle for restoring vision by rod-photoreceptor transplantation in mice with congenital stationary night blindness and advances in stem cell biology, which have led to the generation of complete optic structures in vitro from embryonic stem cells. The latter represents enormous potential for generating suitable and renewable donor cells with which to achieve the former. However, there are still challenges presented by the degenerating recipient retinal environment that must be addressed as we move to translating these technologies towards clinical application.
Collapse
Affiliation(s)
- Rachael A Pearson
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
| |
Collapse
|
6
|
Gullapalli VK, Khodair MA, Wang H, Sugino IK, Madreperla S, Zarbin MA. Transplantation Frontiers. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Cai S, Smith ME, Redenti SM, Wnek GE, Young MJ. Mouse retinal progenitor cell dynamics on electrospun poly (ϵ-caprolactone). JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1451-65. [PMID: 21781383 DOI: 10.1163/092050611x584388] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Age-related macular degeneration, retinitis pigmentosa and glaucoma are among the many retinal degenerative diseases where retinal cell death leads to irreversible vision loss and blindness. Working toward a cell-replacement-based therapy for such diseases, a number of research groups have recently evaluated the feasibility of using retinal progenitor cells (RPCs) cultured and transplanted on biodegradable polymer substrates to replace damaged retinal tissue. Appropriate polymer substrate design is essential to providing a three-dimensional environment that can facilitate cell adhesion, proliferation and post-transplantation migration into the host environment. In this study, we have designed and fabricated a novel, ultra-thin electrospun poly(ϵ-caprolactone) (PCL) scaffold with microscale fiber diameters, appropriate porosity for infiltration by RPCs, and biologically compatible mechanical characteristics. We have verified that our electrospun PCL scaffold supports robust mouse RPC proliferation, adhesion, and differentiation in vitro, as well as migration into mouse retinal explants. These promising results make PCL a strong candidate for further development as a cell transplantation substrate in retinal regenerative research.
Collapse
Affiliation(s)
- Sophie Cai
- a Department of Ophthalmology , Schepens Eye Research Institute, Harvard Medical School , 20 Staniford Street , Boston , MA , 02114 , USA
| | | | | | | | | |
Collapse
|
8
|
West EL, Pearson RA, Duran Y, Gonzalez-Cordero A, MacLaren RE, Smith AJ, Sowden JC, Ali RR. Manipulation of the recipient retinal environment by ectopic expression of neurotrophic growth factors can improve transplanted photoreceptor integration and survival. Cell Transplant 2012; 21:871-87. [PMID: 22325046 DOI: 10.3727/096368911x623871] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Degeneration of the neural retina is the leading cause of untreatable blindness in the developed world. Stem cell replacement therapy offers a novel strategy for retinal repair. Postmitotic photoreceptor precursors derived from the early postnatal (P) retina are able to migrate and integrate into the adult mouse retina following transplantation into the subretinal space, but it is likely that a large number of these cells would be required to restore vision. The adult recipient retina presents a very different environment to that from which photoreceptor precursor donor cells isolated from the developing postnatal retina are derived. Here we considered the possibility that modulation of the recipient environment by ectopic expression of developmentally regulated growth factors, normally present during photoreceptor development, might enhance the migration and integration of transplanted cells into the adult neural retina. Adeno-associated viral (AAV) vectors were used to introduce three growth factors previously reported to play a role in photoreceptor development, IGF1, FGF2, and CNTF, into the adult retina, prior to transplantation of P4 cells derived from the Nrl.GFP(+ve) neural retina. At 3 weeks posttransplantation the number of integrated, differentiated photoreceptor cells present in AAV-mediated neurotrophic factor-treated eyes was assessed and compared to control treated contralateral eyes. We show, firstly, that it is possible to manipulate the recipient retinal microenvironment via rAAV-mediated gene transfer with respect to these developmentally relevant growth factors. Moreover, when combined with cell transplantation, AAV-mediated expression of IGF1 led to significantly increased levels of cell integration, while overexpression of FGF2 had no significant effect on integrated cell number. Conversely, expression of CNTF led to a significant decrease in cell integration and an exacerbated glial response that led to glial scarring. Together, these findings demonstrate the importance of the extrinsic environment of the recipient retina for photoreceptor cell transplantation and show for the first time that it is possible to manipulate this environment using viral vectors to influence photoreceptor transplantation efficiency.
Collapse
Affiliation(s)
- E L West
- Department of Genetics, University College London Institute of Ophthalmology, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Hynes SR, Rauch MF, Bertram JP, Lavik EB. A library of tunable poly(ethylene glycol)/poly(L-lysine) hydrogels to investigate the material cues that influence neural stem cell differentiation. J Biomed Mater Res A 2009; 89:499-509. [PMID: 18435406 DOI: 10.1002/jbm.a.31987] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neural stem cells (NSCs) have the potential to replace the major cell types of the central nervous system (CNS) and may be important in therapies for injuries to and diseases of the CNS. However, for such treatments to be safe and successful, NSCs must survive and differentiate appropriately following transplantation. A number of polymer scaffolds have shown promise in improving the survival and promoting the differentiation of NSCs. To capitalize on the interaction between scaffolds and NSCs, we need to determine the fundamental material properties that influence NSC behavior. To investigate the role of material properties on NSCs, we synthesized a library of 52 hydrogels composed of poly(ethylene glycol) and poly(L-lysine) (PLL). This library of hydrogels allows independent variation of chemical and mechanical properties across a wide range of values. By culturing NSCs on this library, we have identified a subset of gels that promotes NSC migration and a further subset that promotes NSC differentiation. By combining the material properties of these subsets with the cell behavior, we determined that mechanical properties play a critical role in NSC behavior with elastic moduli promoting NSC migration and neuronal differentiation. Amine concentration is less critical, but PLL molecular weight also plays a role in NSC differentiation.
Collapse
Affiliation(s)
- Sara R Hynes
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
10
|
West E, Pearson R, MacLaren R, Sowden J, Ali R. Cell transplantation strategies for retinal repair. PROGRESS IN BRAIN RESEARCH 2009; 175:3-21. [PMID: 19660645 PMCID: PMC3272389 DOI: 10.1016/s0079-6123(09)17501-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell transplantation is a novel therapeutic strategy to restore visual responses to the degenerate adult neural retina and represents an exciting area of regenerative neurotherapy. So far, it has been shown that transplanted postmitotic photoreceptor precursors are able to functionally integrate into the adult mouse neural retina. In this review, we discuss the differentiation of photoreceptor cells from both adult and embryonic-derived stem cells and their potential for retinal cell transplantation. We also discuss the strategies used to overcome barriers present in the degenerate neural retina and improve retinal cell integration. Finally, we consider the future translation of retinal cell therapy as a therapeutic strategy to treat retinal degeneration.
Collapse
Affiliation(s)
- E.L. West
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| | - R.A. Pearson
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| | - R.E. MacLaren
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
- Vitreoretinal Service, Moorfields Eye Hospital, London, UK
| | - J.C. Sowden
- Developmental Biology Unit, UCL Institute of Child Health, London, UK
| | - R.R. Ali
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
- Molecular Immunology Unit, UCL Institute of Child Health, London, UK
| |
Collapse
|
11
|
Abstract
The strategic importance of the genome sequence of the gray, short-tailed opossum, Monodelphis domestica, accrues from both the unique phylogenetic position of metatherian (marsupial) mammals and the fundamental biologic characteristics of metatherians that distinguish them from other mammalian species. Metatherian and eutherian (placental) mammals are more closely related to one another than to other vertebrate groups, and owing to this close relationship they share fundamentally similar genetic structures and molecular processes. However, during their long evolutionary separation these alternative mammals have developed distinctive anatomical, physiologic, and genetic features that hold tremendous potential for examining relationships between the molecular structures of mammalian genomes and the functional attributes of their components. Comparative analyses using the opossum genome have already provided a wealth of new evidence regarding the importance of noncoding elements in the evolution of mammalian genomes, the role of transposable elements in driving genomic innovation, and the relationships between recombination rate, nucleotide composition, and the genomic distributions of repetitive elements. The genome sequence is also beginning to enlarge our understanding of the evolution and function of the vertebrate immune system, and it provides an alternative model for investigating mechanisms of genomic imprinting. Equally important, availability of the genome sequence is fostering the development of new research tools for physical and functional genomic analyses of M. domestica that are expanding its versatility as an experimental system for a broad range of research applications in basic biology and biomedically oriented research.
Collapse
|
12
|
Dunn-Thomas TE, Dobbs DL, Sakaguchi DS, Young MJ, Honovar VG, Greenlee MHW. Proteomic Differentiation Between Murine Retinal and Brain-Derived Progenitor Cells. Stem Cells Dev 2008; 17:119-31. [DOI: 10.1089/scd.2007.0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Tyra E. Dunn-Thomas
- Department of Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50010
| | - Drena L. Dobbs
- Department of Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50010
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50010
| | - Donald S. Sakaguchi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50010
| | - Michael J. Young
- Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114
| | - Vasant G. Honovar
- Department of Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50010
- Deparment of Computer Science, Iowa State University, Ames, IA 50010
| | - M. Heather West Greenlee
- Department of Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50010
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50010
| |
Collapse
|
13
|
Abstract
Neural regeneration and repair in the central nervous system are currently hot topics in neuroscience. For many years there has been a hope that neurodegenerative diseases which are resistant to current therapies may be treated by the selective replacement of cells. Yet it is only recently that we have started to acquire the knowledge, tools, and techniques that may translate such optimism into new therapies. In this article, we will consider the potential to restore function to the damaged optic nerve. We will consider the technical issues involved and suggest a strategy for research progress.
Collapse
|
14
|
Micci MA, Pasricha PJ. Neural stem cells for the treatment of disorders of the enteric nervous system: strategies and challenges. Dev Dyn 2007; 236:33-43. [PMID: 17029286 DOI: 10.1002/dvdy.20975] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The main goal of this review is to summarize the status of the research in the field of stem cells transplantation, as it is applicable to the treatment of gastrointestinal motility. This field of research has advanced tremendously in the past 10 years, and recent data produced in our laboratories as well as others is contributing to the excitement on the use of neural stem cells (NSC) as a valuable therapeutic approach for disorders of the enteric nervous system characterized by a loss of critical neuronal subpopulations. There are several sources of NSC, and here we describe therapeutic strategies for NSC transplantation in the gut. These include using NSC as a relatively nonspecific cellular replacement strategy in conditions where large populations of neurons or their subsets are missing or destroyed. As with many other recent "breakthroughs" stem cell therapy may eventually prove to be overrated. However, at the present time, it does appear to provide the hope for a true cure for many currently intractable diseases of both the central and the peripheral nervous system. Certainly more extensive research is needed in this field. We hope that our review will encourage new investigators in entering this field of research ad contribute to our knowledge of the potentials of NSC and other cells for the treatment of gastrointestinal dysmotility.
Collapse
Affiliation(s)
- Maria-Adelaide Micci
- Enteric Neuromuscular Disorders and Pain Laboratory, Division of Gastroenterology and Hepatology, University of Texas Medical Branch, Galveston, Texas 77555-0764, USA
| | | |
Collapse
|
15
|
Samollow PB. Status and applications of genomic resources for the gray, short-tailed opossum, Monodelphis domestica, an American marsupial model for comparative biology. AUST J ZOOL 2006. [DOI: 10.1071/zo05059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Owing to its small size, favourable reproductive characteristics, and simple husbandry, the gray, short-tailed opossum, Monodelphis domestica, has become the most widely distributed and intensively utilised laboratory-bred research marsupial in the world today. This article provides an overview of the current state and future projections of genomic resources for this species and discusses the potential impact of this growing resource base on active research areas that use M. domestica as a model system. The resources discussed include: fully arrayed, bacterial artificial chromosome (BAC) libraries; an expanding linkage map; developing full-genome BAC-contig and chromosomal fluorescence in situ hybridisation maps; public websites providing access to the M. domestica whole-genome-shotgun sequence trace database and the whole-genome sequence assembly; and a new project underway to create an expressed-sequence database and microchip expression arrays for functional genomics applications. Major research areas discussed span a variety of genetic, evolutionary, physiologic, reproductive, developmental, and behavioural topics, including: comparative immunogenetics; genomic imprinting; reproductive biology; neurobiology; photobiology and carcinogenesis; genetics of lipoprotein metabolism; developmental and behavioural endocrinology; sexual differentiation and development; embryonic and fetal development; meiotic recombination; genome evolution; molecular evolution and phylogenetics; and more.
Collapse
|