1
|
Jores RD, Baldera D, Schirru E, Muntoni S, Rossino R, Manchinu MF, Marongiu MF, Caria CA, Ripoli C, Ricciardi MR, Cucca F, Congia M. Peripheral blood mononuclear cells reactivity in recent-onset type I diabetes patients is directed against the leader peptide of preproinsulin, GAD65 271-285 and GAD65 431-450. Front Immunol 2023; 14:1130019. [PMID: 36969220 PMCID: PMC10034372 DOI: 10.3389/fimmu.2023.1130019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction T cell reactivity against pancreatic autoantigens is considered one of the main contributors to the destruction of insulin-producing cells in type 1 diabetes (T1D). Over the years, peptide epitopes derived from these autoantigens have been described in NOD mice and in both HLA class II transgenic mice and humans. However, which ones are involved in the early onset or in the progressive phases of the disease is still unclear. Methods In this work we have investigated, in early-onset T1D pediatric patients and HLA-matched controls from Sardinia, the potential of preproinsulin (PPI) and glutamate decarboxylase 65 (GAD65)-derived peptides to induce spontaneous T cell proliferation responses of peripheral blood mononuclear cells (PBMCs). Results Significant T cell responses against PPI1-18, PPI7-19 and PPI31-49, the first two belonging to the leader sequence of PPI, and GAD65271-285 and GAD65431-450, were found in HLA-DR4, -DQ8 and -DR3, -DQ2 T1D children. Conclusions These data show that cryptic epitopes from the leader sequence of the PPI and GAD65271-285 and GAD65431-450 peptides might be among the critical antigenic epitopes eliciting the primary autoreactive responses in the early phases of the disease. These results may have implications in the design of immunogenic PPI and GAD65 peptides for peptide-based immunotherapy.
Collapse
Affiliation(s)
- Rita D. Jores
- Department Outpatient Clinic, ASL8 Outpatient Clinic Quartu Sant’Elena, Cagliari, Italy
| | - Davide Baldera
- Centro Servizi di Ateneo per gli Stabulari (CeSaSt), University of Cagliari, Monserrato, Italy
| | - Enrico Schirru
- Centro Servizi di Ateneo per gli Stabulari (CeSaSt), University of Cagliari, Monserrato, Italy
| | - Sandro Muntoni
- Department of Biomedical Science, University of Cagliari, Monserrato, Italy
| | - Rossano Rossino
- Department of Pediatrics, Clinic of Pediatric and Rare Diseases, Microcitemico Pediatric Hospital, A.Cao, ASL8, Cagliari, Italy
- Department of Medical Science and Public Health, University of Cagliari, Monserrato, Italy
| | - Maria F. Manchinu
- Department of Biomedical Sciences, Institute for Genetic and Biomedical Research, Monserrato, Italy
| | - Maria F. Marongiu
- Department of Biomedical Sciences, Institute for Genetic and Biomedical Research, Monserrato, Italy
| | - Cristian A. Caria
- Department of Biomedical Sciences, Institute for Genetic and Biomedical Research, Monserrato, Italy
| | - Carlo Ripoli
- Department of Pediatric, Diabetologic Unit, Microcitemico Pediatric Hospital, A.Cao, ASL8, Cagliari, Italy
| | - Maria R. Ricciardi
- Department of Pediatric, Diabetologic Unit, Microcitemico Pediatric Hospital, A.Cao, ASL8, Cagliari, Italy
| | - Francesco Cucca
- Department of Biomedical Sciences, Institute for Genetic and Biomedical Research, Monserrato, Italy
- Department of Biomedical Science, University of Sassari, Sassari, Italy
| | - Mauro Congia
- Department of Pediatrics, Clinic of Pediatric and Rare Diseases, Microcitemico Pediatric Hospital, A.Cao, ASL8, Cagliari, Italy
- Department of Biomedical Sciences, Institute for Genetic and Biomedical Research, Monserrato, Italy
| |
Collapse
|
2
|
Foster A, Bhattacharjee P, Tresoldi E, Pakusch M, Cameron FJ, Mannering SI. Glutamine deamidation does not increase the immunogenicity of C-peptide in people with type 1 diabetes. J Transl Autoimmun 2022; 6:100180. [PMID: 36619657 PMCID: PMC9811213 DOI: 10.1016/j.jtauto.2022.100180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease in which the insulin-producing beta cells are destroyed. While it is clear that full-length C-peptide, derived from proinsulin, is a major antigen in human T1D it is not clear how and why C-peptide becomes a target of the autoimmune CD4+ T-cell responses in T1D. Neoepitopes formed by the conversion of glutamine (Q) residues to glutamic acid (E) by deamidation are central to the immune pathogenesis of coeliac disease and have been implicated in autoimmune responses in T1D. Here, we asked if the immunogenicity of full-length C-peptide, which comprises four glutamine residues, was enhanced by deamidation, which we mimicked by substituting glutamic acid for glutamine residue. First, we used a panel of 18 well characterized CD4+ T-cell lines specific for epitopes derived from human C-peptide. In all cases, when the substitution fell within the cognate epitope the response was diminished, or in a few cases unchanged. In contrast, when the substitution fell outside the epitope recognized by the TCR responses were unchanged or slightly augmented. Second, we compared CD4+ T-cell proliferation responses, against deamidated and unmodified C-peptide, in the peripheral blood of people with or without T1D using the CFSE-based proliferation assay. While, as reported previously, responses were detected to unmodified C-peptide, no deamidated C-peptide was consistently more stimulatory than native C-peptide. Overall responses were weaker to deamidated C-peptide compared to unmodified C-peptide. Hence, we conclude that deamidated C-peptide does not play a role in beta-cell autoimmunity in people with T1D.
Collapse
Affiliation(s)
- Abby Foster
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, Victoria, 3065, Australia
| | - Pushpak Bhattacharjee
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, Victoria, 3065, Australia
| | - Eleonora Tresoldi
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, Victoria, 3065, Australia
| | - Miha Pakusch
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, Victoria, 3065, Australia
| | - Fergus J. Cameron
- Department of Endocrinology and Diabetes, Royal Children's Hospital, Australia,Murdoch Children's Research Institute, Parkville, VIC, Australia,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Stuart I. Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, Victoria, 3065, Australia,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria, 3065, Australia,Corresponding author. St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, Victoria, 3065, Melbourne, Australia
| |
Collapse
|
3
|
Wesley JD, Pfeiffer S, Schneider D, Friedrich D, Perdue N, Sehested-Hansen B, Hagopian W, von Herrath MG. Peripheral autoreactive CD8 T-cell frequencies are too variable to be a reliable predictor of disease progression of human type 1 diabetes. Clin Transl Immunology 2021; 10:e1309. [PMID: 34267894 PMCID: PMC8273427 DOI: 10.1002/cti2.1309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
Objectives The detection of a peripheral immune cell signature that specifically reflects autoimmunity in type 1 diabetes would enable the prediction and staging of disease on an individual basis. However, defining such a signature is technically challenging. Reliable interpretation of immune cell‐related biomarkers depends on their inherent variability and, to understand this variability, longitudinal analyses are required. Methods We performed a longitudinal observational study in which 40 individuals with elevated genetic risk of type 1 diabetes and persistent islet autoantibodies provided a blood sample every 4–6 weeks for > 1 year. Results Peripheral immune cell composition (T cells, NK cells and monocytes) was assessed using well‐validated flow cytometry panels and demonstrated that, while non‐antigen‐specific immune cell subsets were stable over time, autoantigen‐reactive T‐cell frequencies were highly variable in and between individuals. Neither the frequency nor phenotype of non‐antigen‐specific subsets or autoreactive CD8+ T cells associated with clinical onset of T1D. Conclusion The findings from the Type 1 Diabetes Longitudinal BIomarker Trial underscore the inherent challenge of evaluating changes in peripheral immune cell populations as surrogates of organ‐specific disease activity. The variability of peripheral antigen‐specific T cells precludes their use as a prognostic marker and clearly demonstrates that a reliable prognostic cell signature remains elusive.
Collapse
Affiliation(s)
| | | | | | | | - Nikole Perdue
- Novo Nordisk Research Center Seattle, Inc. Seattle WA USA
| | | | | | | |
Collapse
|
4
|
The dark side of insulin: A primary autoantigen and instrument of self-destruction in type 1 diabetes. Mol Metab 2021; 52:101288. [PMID: 34242821 PMCID: PMC8513143 DOI: 10.1016/j.molmet.2021.101288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Background Since its discovery 100 years ago, insulin, as the ‘cure’ for type 1 diabetes, has rescued the lives of countless individuals. As the century unfolded and the autoimmune nature of type 1 diabetes was recognised, a darker side of insulin emerged. Autoimmunity to insulin was found to be an early marker of risk for type 1 diabetes in young children. In humans, it remains unclear if autoimmunity to insulin is primarily due to a defect in the beta cell itself or to dysregulated immune activation. Conversely, it may be secondary to beta-cell damage from an environmental agent (e.g., virus). Nevertheless, direct, interventional studies in non-obese diabetic (NOD) mouse models of type 1 diabetes point to a critical role for (pro)insulin as a primary autoantigen that drives beta cell pathology. Scope of review Modelled on Koch's postulates for the pathogenicity of an infectious agent, evidence for a pathogenic role of (pro)insulin as an autoantigen in type 1 diabetes, particularly applicable to the NOD mouse model, is reviewed. Evidence in humans remains circumstantial. Additionally, as (pro)insulin is a target of autoimmunity in type 1 diabetes, its application as a therapeutic tool to elicit antigen-specific immune tolerance is assessed. Major conclusions Paradoxically, insulin is both a ‘cure’ and a potential ‘cause’ of type 1 diabetes, actively participating as an autoantigen to drive autoimmune destruction of beta cells - the instrument of its own destruction.
Collapse
|
5
|
Rodriguez-Calvo T, Johnson JD, Overbergh L, Dunne JL. Neoepitopes in Type 1 Diabetes: Etiological Insights, Biomarkers and Therapeutic Targets. Front Immunol 2021; 12:667989. [PMID: 33953728 PMCID: PMC8089389 DOI: 10.3389/fimmu.2021.667989] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying type 1 diabetes (T1D) pathogenesis remain largely unknown. While autoantibodies to pancreatic beta-cell antigens are often the first biological response and thereby a useful biomarker for identifying individuals in early stages of T1D, their role in T1D pathogenesis is not well understood. Recognition of these antigenic targets by autoreactive T-cells plays a pathological role in T1D development. Recently, several beta-cell neoantigens have been described, indicating that both neoantigens and known T1D antigens escape central or peripheral tolerance. Several questions regarding the mechanisms by which tolerance is broken in T1D remain unanswered. Further delineating the timing and nature of antigenic responses could allow their use as biomarkers to improve staging, as targets for therapeutic intervention, and lead to a better understanding of the mechanisms leading to loss of tolerance. Multiple factors that contribute to cellular stress may result in the generation of beta-cell derived neoepitopes and contribute to autoimmunity. Understanding the cellular mechanisms that induce beta-cells to produce neoantigens has direct implications on development of therapies to intercept T1D disease progression. In this perspective, we will discuss evidence for the role of neoantigens in the pathogenesis of T1D, including antigenic responses and cellular mechanisms. We will additionally discuss the pathways leading to neoepitope formation and the cross talk between the immune system and the beta-cells in this regard. Ultimately, delineating the timing of neoepitope generation in T1D pathogenesis will determine their role as biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Munich, Germany
| | - James D. Johnson
- Diabetes Research Group, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Lut Overbergh
- Laboratory Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Jessica L. Dunne
- Janssen Research and Development, LLC, Raritan, NJ, United States
| |
Collapse
|
6
|
Christoffersson G, von Herrath M. Regulatory Immune Mechanisms beyond Regulatory T Cells. Trends Immunol 2019; 40:482-491. [DOI: 10.1016/j.it.2019.04.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
|
7
|
Knoop J, Gavrisan A, Kuehn D, Reinhardt J, Heinrich M, Hippich M, Eugster A, Ockert C, Ziegler AG, Bonifacio E. GM-CSF producing autoreactive CD4 + T cells in type 1 diabetes. Clin Immunol 2017; 188:23-30. [PMID: 29229565 DOI: 10.1016/j.clim.2017.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/16/2017] [Accepted: 12/07/2017] [Indexed: 01/11/2023]
Abstract
The phenotype of autoreactive T cells in type 1 diabetes is described as Th1, Th17 and/or Th21, but is largely uncharacterized. We combined multi-parameter cytokine profiling and proliferation, and identified GM-CSF producing cells as a component of the response to beta cell autoantigens proinsulin and GAD65. Overall cytokine profiles of CD4+ T cell were not altered in type 1 diabetes. In contrast, patients with recent onset type 1 diabetes had increased frequencies of proinsulin-responsive CD4+CD45RA- T cells producing GM-CSF (p=0.002), IFNγ (p=0.004), IL-17A (p=0.008), IL-21 (p=0.011), and IL-22 (p=0.007), and GAD65-responsive CD4+CD45RA- T cells producing IL-21 (p=0.039). CD4+ T cells with a GM-CSF+IFNγ-IL-17A-IL-21-IL-22- phenotype were increased in patients for responses to both proinsulin (p=0.006) and GAD65 (p=0.037). GM-CSF producing T cells are a novel phenotype in the repertoire of T helper cells in type 1 diabetes and consolidate a Th1/Th17 pro-inflammatory pathogenesis in the disease.
Collapse
Affiliation(s)
- Jan Knoop
- Institute of Diabetes Research, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Anita Gavrisan
- Institute of Diabetes Research, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Denise Kuehn
- CRTD-DFG Center for Regenerative Therapies Dresden, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden 01307, Germany
| | - Julia Reinhardt
- CRTD-DFG Center for Regenerative Therapies Dresden, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden 01307, Germany
| | - Melanie Heinrich
- Institute of Diabetes Research, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Markus Hippich
- Institute of Diabetes Research, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Anne Eugster
- CRTD-DFG Center for Regenerative Therapies Dresden, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden 01307, Germany
| | | | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Neuherberg 85764, Germany; Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Ezio Bonifacio
- CRTD-DFG Center for Regenerative Therapies Dresden, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden 01307, Germany; Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg 85764, Germany.
| |
Collapse
|
8
|
Kent SC, Mannering SI, Michels AW, Babon JAB. Deciphering the Pathogenesis of Human Type 1 Diabetes (T1D) by Interrogating T Cells from the "Scene of the Crime". Curr Diab Rep 2017; 17:95. [PMID: 28864875 PMCID: PMC5600889 DOI: 10.1007/s11892-017-0915-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Autoimmune-mediated destruction of insulin-producing β-cells within the pancreas results in type 1 diabetes (T1D), which is not yet preventable or curable. Previously, our understanding of the β-cell specific T cell repertoire was based on studies of autoreactive T cell responses in the peripheral blood of patients at risk for, or with, T1D; more recently, investigations have included immunohistochemical analysis of some T cell specificities in the pancreas from organ donors with T1D. Now, we are able to examine live, islet-infiltrating T cells from donors with T1D. RECENT FINDINGS Analysis of the T cell repertoire isolated directly from the pancreatic islets of donors with T1D revealed pro-inflammatory T cells with targets of known autoantigens, including proinsulin and glutamic acid decarboxylase, as well as modified autoantigens. We have assayed the islet-infiltrating T cell repertoire for autoreactivity and function directly from the inflamed islets of T1D organ donors. Design of durable treatments for prevention of or therapy for T1D requires understanding this repertoire.
Collapse
Affiliation(s)
- Sally C Kent
- Department of Medicine, Division of Diabetes, Diabetes Center of Excellence, ASC7-2041, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria, 3065, Australia
- Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria, 3065, Australia
| | - Aaron W Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jenny Aurielle B Babon
- Department of Medicine, Division of Diabetes, Diabetes Center of Excellence, ASC7-2041, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
9
|
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease that causes severe loss of pancreatic β cells. Autoreactive T cells are key mediators of β cell destruction. Studies of organ donors with T1D that have examined T cells in pancreas, the diabetogenic insulitis lesion, and lymphoid tissues have revealed a broad repertoire of target antigens and T cell receptor (TCR) usage, with initial evidence of public TCR sequences that are shared by individuals with T1D. Neoepitopes derived from post-translational modifications of native antigens are emerging as novel targets that are more likely to evade self-tolerance. Further studies will determine whether T cell responses to neoepitopes are major disease drivers that could impact prediction, prevention, and therapy. This Review provides an overview of recent progress in our knowledge of autoreactive T cells that has emerged from experimental and clinical research as well as pathology investigations.
Collapse
|
10
|
Hamari S, Kirveskoski T, Glumoff V, Kulmala P, Simell O, Knip M, Ilonen J, Veijola R. CD4⁺ T-cell proliferation responses to wheat polypeptide stimulation in children at different stages of type 1 diabetes autoimmunity. Pediatr Diabetes 2015; 16:177-88. [PMID: 25643742 DOI: 10.1111/pedi.12256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/29/2014] [Accepted: 12/29/2014] [Indexed: 12/22/2022] Open
Abstract
AIMS Our aim was to study whether immune responses to wheat-based proteins are related to the development of type 1 diabetes. METHODS We analysed proliferative T-cell responses after in vitro gliadin, gluten, whole wheat, and tetanus toxoid stimulation with a carboxyfluorescein succinimidyl ester (CFSE) based T-cell proliferation assay in children at various phases of type 1 diabetes autoimmunity and in healthy autoantibody-negative control children. RESULTS At an early stage of beta cell autoimmunity the strength and frequencies of positive proliferation responses to gliadin, gluten, and whole wheat did not differ between newly seroconverted children positive for one islet autoantibody and the controls. However, in prediabetic children with at least two islet autoantibodies and also in children with newly diagnosed type 1 diabetes positive T-cell responses to gliadin were significantly less frequent and the strength of gliadin responses was reduced when compared to the controls. No differences were seen in T-cell responses to wheat-based antigens when comparing children with long-lasting type 1 diabetes with healthy controls. CONCLUSIONS/INTERPRETATION Decreased in vitro T-cell responses to wheat-based antigens were observed in children with multiple islet autoantibodies and in those with newly diagnosed type 1 diabetes, probably reflecting a generally aberrant immune response during the development of type 1 diabetes.
Collapse
Affiliation(s)
- Susanna Hamari
- Department of Pediatrics, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Medical Microbiology and Immunology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Necula A, Chand R, Albatat B, Mannering SI. Extraction of tissue antigens for functional assays. J Vis Exp 2012:4230. [PMID: 22986305 DOI: 10.3791/4230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Many of the antigen targets of adaptive immune response, recognized by B and T cells, have not been defined (1). This is particularly true in autoimmune diseases and cancer(2). Our aim is to investigate the antigens recognized by human T cells in the autoimmune disease type 1 diabetes (1,3,4,5). To analyze human T-cell responses against tissue where the antigens recognized by T cells are not identified we developed a method to extract protein antigens from human tissue in a format that is compatible with functional assays (6). Previously, T-cell responses to unpurified tissue extracts could not be measured because the extraction methods yield a lysate that contained detergents that were toxic to human peripheral blood mononuclear cells. Here we describe a protocol for extracting proteins from human tissues in a format that is not toxic to human T cells. The tissue is homogenized in a mixture of butan-1-ol, acetonitrile and water (BAW). The protein concentration in the tissue extract is measured and a known mass of protein is aliquoted into tubes. After extraction, the organic solvents are removed by lyophilization. Lyophilized tissue extracts can be stored until required. For use in assays of immune function, a suspension of immune cells, in appropriate culture media, can be added directly to the lyophilized extract. Cytokine production and proliferation by PBMC, in response to extracts prepared using this method, were readily measured. Hence, our method allows the rapid preparation of human tissue lysates that can be used as a source of antigens in the analysis of T-cell responses. We suggest that this method will facilitate the analysis of adaptive immune responses to tissues in transplantation, cancer and autoimmunity.
Collapse
Affiliation(s)
- Andra Necula
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research
| | | | | | | |
Collapse
|
12
|
Kanatsuna N, Papadopoulos GK, Moustakas AK, Lenmark Å. Etiopathogenesis of insulin autoimmunity. ANATOMY RESEARCH INTERNATIONAL 2012; 2012:457546. [PMID: 22567309 PMCID: PMC3335545 DOI: 10.1155/2012/457546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/12/2012] [Indexed: 12/12/2022]
Abstract
Autoimmunity against pancreatic islet beta cells is strongly associated with proinsulin, insulin, or both. The insulin autoreactivity is particularly pronounced in children with young age at onset of type 1 diabetes. Possible mechanisms for (pro)insulin autoimmunity may involve beta-cell destruction resulting in proinsulin peptide presentation on HLA-DR-DQ Class II molecules in pancreatic draining lymphnodes. Recent data on proinsulin peptide binding to type 1 diabetes-associated HLA-DQ2 and -DQ8 is reviewed and illustrated by molecular modeling. The importance of the cellular immune reaction involving cytotoxic CD8-positive T cells to kill beta cells through Class I MHC is discussed along with speculations of the possible role of B lymphocytes in presenting the proinsulin autoantigen over and over again through insulin-carrying insulin autoantibodies. In contrast to autoantibodies against other islet autoantigens such as GAD65, IA-2, and ZnT8 transporters, it has not been possible yet to standardize the insulin autoantibody test. As islet autoantibodies predict type 1 diabetes, it is imperative to clarify the mechanisms of insulin autoimmunity.
Collapse
Affiliation(s)
- Norio Kanatsuna
- Department of Clinical Sciences, Skåne University Hospital (SUS), Lund University, CRC Ing 72 Building 91:10, 205 02 Malmö, Sweden
| | - George K. Papadopoulos
- Laboratory of Biochemistry and Biophysics, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, 47100 Arta, Greece
| | - Antonis K. Moustakas
- Department of Organic Farming, Technological Educational Institute of Ionian Islands, 27100 Argostoli, Greece
| | - Åke Lenmark
- Department of Clinical Sciences, Skåne University Hospital (SUS), Lund University, CRC Ing 72 Building 91:10, 205 02 Malmö, Sweden
| |
Collapse
|
13
|
Ciantar JP, Mannering SI. An improved method for growing and analysing human antigen-specific CD4+ T-cell clones. Diabetes Metab Res Rev 2011; 27:906-12. [PMID: 22069283 DOI: 10.1002/dmrr.1271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND T-cell clones are valuable tools for investigating T-cell specificity in type 1 diabetes. Efficient methods for isolating T-cell clones have been developed, but growing enough cells to undertake a detailed analysis remains a challenge. METHODS We optimized the conditions for isolating and growing antigen-specific human CD4+ effector T-cell clones. T-cell clones were isolated by FACS sorting antigen-responsive cells identified by carboxylfluorescein diacetate succinimidyl ester (CFSE) dilution. The cloning efficiency was compared between T cells cloned in the presence of 21 different combinations of cytokines. Following cloning, the growth of cloned T cells in the presence of seven different combinations of cytokines was compared. Finally, we sought a quicker and more sensitive assay to measure cloned T cells' responses to antigen. RESULTS IL-2+IL-4 were optimal for cloning antigen-specific CD4+ T cells. Following cloning, the most antigen-specific CD4+ T-cell clones grew in the presence of IL-15+IL-21. Antigen recognition by T cells cloned and grown under these conditions was readily detected by the increase in the expression of CD25. Induction of CD25 was a more sensitive measure of antigen recognition than 3H-thymidine incorporation assays. These findings were confirmed with two proinsulin-specific CD4+ T-cell clones isolated from an individual with type 1 diabetes. CONCLUSION The optimal cytokines for isolating, and growing, proinsulin-specific human, CD4+ T-cell clones are IL-2+IL-4 and IL-15+IL-21, respectively. Antigen recognition, by clones isolated and grown under these conditions is best detected by the induction of CD25.
Collapse
Affiliation(s)
- Joseph P Ciantar
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | | |
Collapse
|
14
|
Monti P, Heninger AK, Bonifacio E. Differentiation, expansion, and homeostasis of autoreactive T cells in type 1 diabetes mellitus. Curr Diab Rep 2009; 9:113-8. [PMID: 19323955 DOI: 10.1007/s11892-009-0020-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Autoreactive T cells play a major role in the pathogenesis of type 1 diabetes mellitus (T1DM) and are considered a major target of immunomodulatory strategies aimed at preventing or delaying the disease onset. However, the T-cell response against insulin-producing beta cells is still poorly understood. T cells potentially able to recognize and destroy beta cells are present in most individuals, but only in a few do they differentiate into pathogenic effectors. Recent and novel findings in T-cell biology on the dynamics of T-cell activation and memory maintenance are shedding new light on the general mechanisms of the T-cell response. In this article, we discuss how new discoveries about T-cell differentiation, expansion, and homeostasis could help to clarify mechanisms of autoimmunity that lead to T1DM.
Collapse
Affiliation(s)
- Paolo Monti
- Laboratory for Pre-clinical Approaches to Stem Cell Therapy, Center for Regenerative Therapies Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
| | | | | |
Collapse
|
15
|
Chang HW, Chow YH, Chong P, Sia C. The cross-regulatory relationship between human dendritic and regulatory T cells and its role in type 1 diabetes mellitus. Rev Diabet Stud 2007; 4:68-76. [PMID: 17823690 PMCID: PMC2036261 DOI: 10.1900/rds.2007.4.68] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dendritic cells (DCs) and T regulatory (Treg) cells play a crucial role in maintaining the tolerance needed to prevent the onset of autoimmunity that leads to the development of type 1 diabetes mellitus (T1DM). Various experimental studies have shown that human DC subsets are involved in the induction of anergy in T cells and in the differentiation of conventional CD4(+) and CD8(+) lymphocytes into the respective subtypes of Treg cells. Treg cells, in turn, have been shown to modulate the function of DCs to exhibit tolerogenic properties. To evaluate whether T1DM development is related to abnormalities in DCs and Treg cells, many attempts have been made to characterize these cell types in diabetic individuals and in subjects at risk of developing the disease. This review aims to supply an update on the progress made in these aspects of T1DM research.
Collapse
Affiliation(s)
| | | | | | - Charles Sia
- Address correspondence to: Charles Sia, e-mail:
| |
Collapse
|
16
|
Brusko T, Wasserfall C, McGrail K, Schatz R, Viener HL, Schatz D, Haller M, Rockell J, Gottlieb P, Clare-Salzler M, Atkinson M. No alterations in the frequency of FOXP3+ regulatory T-cells in type 1 diabetes. Diabetes 2007; 56:604-12. [PMID: 17327427 DOI: 10.2337/db06-1248] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Regulatory T-cells (Tregs) play a critical role in maintaining dominant peripheral tolerance. Previous characterizations of Tregs in type 1 diabetes have used antibodies against CD4 and alpha-chain of the interleukin-2 receptor complex (CD25). This report extends those investigations by the addition of a more lineage-specific marker for Tregs, transcription factor forkhead box P3 (FOXP3), in subjects with type 1 diabetes, their first-degree relatives, and healthy control subjects. With inclusion of this marker, two predominant populations of CD4(+)CD25(+) T-cells were identified: CD4(+)CD25(+)FOXP3(+) as well as CD4(+)FOXP3(-) T-cells expressing low levels of CD25 (CD4(+)CD25(LOW)FOXP3(-)). In all study groups, the frequency of CD4(+)CD25(+)FOXP3(+) cells was age independent, whereas CD4(+)CD25(LOW)FOXP3(-) cell frequencies strongly associated with age. In terms of additional markers for delineating cells of Treg lineage, FOXP3(+) cells were CD127(-) to CD127(LOW) whereas CD25(+) cells were less restricted in their expression of this marker, with CD127 expressed across a continuum of levels. Importantly, no differences were observed in the frequency of CD4(+)CD25(+)FOXP3(+) T-cells in individuals with or at varying degrees of risk for type 1 diabetes. These investigations suggest that altered peripheral blood frequencies of Tregs, as defined by the expression of FOXP3, are not specifically associated with type 1 diabetes and continue to highlight age as an important variable in analysis of immune regulation.
Collapse
Affiliation(s)
- Todd Brusko
- Department of Pathology, College of Medicine, University of Florida, 1600 SW Archer Rd., Gainesville, FL 32610-0275, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fousteri G, Bresson D, von Herrath M. Rational development of antigen-specific therapies for type 1 diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 601:313-9. [PMID: 17713020 DOI: 10.1007/978-0-387-72005-0_34] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Administration of autoantigens, especially via the mucosal route, can induce tolerance under certain circumstances. In autoimmune diabetes, mucosal vaccination with autoantigens was frequently effective in restoring tolerance in mice but has not yet succeeded in humans. Furthermore, in some instances, autoimmunity can be precipitated upon autoantigen administration. We will here briefly discuss the underlying reasons and delineate which efforts should be made in the future to rationally translate antigen-specific immunotherapy, for example, by establishing better assays to reduce the risk for possible adverse events in humans.
Collapse
Affiliation(s)
- Georgia Fousteri
- La Jolla Institute for Allergy and Immunology, Department of Developmental Immunology, La Jolla, CA, USA
| | | | | |
Collapse
|