1
|
Gambari R, Finotti A. Therapeutic Relevance of Inducing Autophagy in β-Thalassemia. Cells 2024; 13:918. [PMID: 38891049 PMCID: PMC11171814 DOI: 10.3390/cells13110918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The β-thalassemias are inherited genetic disorders affecting the hematopoietic system. In β-thalassemias, more than 350 mutations of the adult β-globin gene cause the low or absent production of adult hemoglobin (HbA). A clinical parameter affecting the physiology of erythroid cells is the excess of free α-globin. Possible experimental strategies for a reduction in excess free α-globin chains in β-thalassemia are CRISPR-Cas9-based genome editing of the β-globin gene, forcing "de novo" HbA production and fetal hemoglobin (HbF) induction. In addition, a reduction in excess free α-globin chains in β-thalassemia can be achieved by induction of the autophagic process. This process is regulated by the Unc-51-like kinase 1 (Ulk1) gene. The interplay with the PI3K/Akt/TOR pathway, with the activity of the α-globin stabilizing protein (AHSP) and the involvement of microRNAs in autophagy and Ulk1 gene expression, is presented and discussed in the context of identifying novel biomarkers and potential therapeutic targets for β-thalassemia.
Collapse
Affiliation(s)
| | - Alessia Finotti
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
2
|
Traeger-Synodinos J, Vrettou C, Sofocleous C, Zurlo M, Finotti A, Gambari R. Impact of α-Globin Gene Expression and α-Globin Modifiers on the Phenotype of β-Thalassemia and Other Hemoglobinopathies: Implications for Patient Management. Int J Mol Sci 2024; 25:3400. [PMID: 38542374 PMCID: PMC10969871 DOI: 10.3390/ijms25063400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 11/03/2024] Open
Abstract
In this short review, we presented and discussed studies on the expression of globin genes in β-thalassemia, focusing on the impact of α-globin gene expression and α-globin modifiers on the phenotype and clinical severity of β-thalassemia. We first discussed the impact of the excess of free α-globin on the phenotype of β-thalassemia. We then reviewed studies focusing on the expression of α-globin-stabilizing protein (AHSP), as a potential strategy of counteracting the effects of the excess of free α-globin on erythroid cells. Alternative processes controlling α-globin excess were also considered, including the activation of autophagy by β-thalassemia erythroid cells. Altogether, the studies reviewed herein are expected to have a potential impact on the management of patients with β-thalassemia and other hemoglobinopathies for which reduction in α-globin excess is clinically beneficial.
Collapse
Affiliation(s)
- Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (C.V.); (C.S.)
| | - Christina Vrettou
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (C.V.); (C.S.)
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (C.V.); (C.S.)
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, 40124 Ferrara, Italy; (M.Z.); (A.F.)
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, 40124 Ferrara, Italy; (M.Z.); (A.F.)
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Li H, Zeng J, Zhao Y, Xu X. MZF1 regulates α-globin gene transcription via long-range interactions in erythroid differentiation. Blood Cells Mol Dis 2020; 87:102533. [PMID: 33352376 DOI: 10.1016/j.bcmd.2020.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
Precise spatiotemporal gene expression regulation is crucial for human erythropoiesis. However, dramatic changes in the chromatin structure and transcriptome involved in α-globin gene expression during erythropoiesis still not fully understand. To identify candidate regulators for α-globin gene regulation, we carried out an integrated approach by integrating publicly available transcriptomic and epigenomic data. We computed active enhancers by overlapping enriched regions marked with H3K4me1 and H3K27ac and correlated their activity with mRNA expression. Next, we cataloged potential transcription factors via de novo motif analysis. We highlighted the discovery of potential novel transcription factor MZF1 of the α-globin gene in erythroid differentiation. To validate the role of MZF1, we quantified the expression level of MZF1 and α-globin gene in HSPCs, early erythroid progenitors and late erythroid precursors cells. Both the mRNA and protein expression patterns of MZF1 were consistent with the α-globin gene. Also, the qPCR result showed that the expression of the α-globin gene was significantly increased by the MZF1 overexpression. To further investigate the role of MZF1 regulating α-globin gene transcriptional activity during erythroid differentiation, we performed ChIP-qPCR at the α-globin locus. Our results showed that MZF1 recruitment both at 4 upstream HS sites and α-globin gene promoter in erythroid precursor cells. To determine the importance of the MZF1 to enhancer-promoter interaction at the α-globin locus, we compared interaction frequency before and after knockdown of MZF1 by chromosome conformation capture (3C) assay. Upon MZF1 depletion, both the expression of the α-globin gene and all 3C signals were significantly decreased. Taken together, MZF1 plays an important role in regulating α-globin gene expression by binding to long-region enhancers and α-globin gene promoter and facilitates the organization of specific 3D chromatin architecture in erythroid differentiation.
Collapse
Affiliation(s)
- Haoli Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Jingjing Zeng
- The Central Laboratory, The Second People's Hospital of Shenzhen, Shenzhen 518035, People's Republic of China
| | - Yongzhong Zhao
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiangmin Xu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.
| |
Collapse
|
4
|
Manning JM, Manning LR, Dumoulin A, Padovan JC, Chait B. Embryonic and Fetal Human Hemoglobins: Structures, Oxygen Binding, and Physiological Roles. Subcell Biochem 2020; 94:275-296. [PMID: 32189304 DOI: 10.1007/978-3-030-41769-7_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During the past two decades, significant advances have been made in our understanding of the human fetal and embryonic hemoglobins made possible by the availability of pure, highly characterized materials and novel methods, e.g., nano gel filtration, to study their properties and to correct some misconceptions. For example, whereas the structures of the human adult, fetal, and embryonic hemoglobins are very similar, it has generally been assumed that functional differences between them are due to primary sequence effects. However, more recent studies indicate that the strengths of the interactions between their subunits are very different leading to changes in their oxygen binding properties compared to adult hemoglobin. Fetal hemoglobin in the oxy conformation is a much stronger tetramer than adult hemoglobin and dissociates to dimers 70-times less than adult hemoglobin. This property may form the basis for its protective effect against malaria. A major source of the increased strength of fetal hemoglobin resides within the A-helix of its gamma subunit as demonstrated in studies with the hybrid hemoglobin Felix and related hybrids. Re-activating fetal hemoglobin synthesis in vivo is currently a major focus of clinical efforts designed to treat sickle cell anemia since it inhibits the aggregation of sickle hemoglobin. The mechanisms for both the increased oxygen affinity of fetal hemoglobin and its decreased response to DPG have been clarified. Acetylated fetal hemoglobin, which makes up 10-20% of total fetal hemoglobin, has a significantly weakened tetramer structure suggesting a similar role for other kinds of protein acetylation. Embryonic hemoglobins have the weakest tetramer and dimer structures. In general, the progressively increasing strength of the subunit interfaces of the hemoglobin family during development from the embryonic to the fetal and ultimately to the adult types correlates with their temporal appearance and disappearance in vivo, i.e., ontogeny.
Collapse
Affiliation(s)
- James M Manning
- Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| | - Lois R Manning
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Antoine Dumoulin
- Department of Developability, Pierre Fabre Research Centre, Castres, 81106, France
| | - Julio C Padovan
- Laboratory of Gaseous Ion Chemistry, Rockefeller University, New York, NY, 10065, USA
| | - Brian Chait
- Laboratory of Gaseous Ion Chemistry, Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
5
|
Havrilla JM, Pedersen BS, Layer RM, Quinlan AR. A map of constrained coding regions in the human genome. Nat Genet 2018; 51:88-95. [PMID: 30531870 DOI: 10.1038/s41588-018-0294-6] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
Deep catalogs of genetic variation from thousands of humans enable the detection of intraspecies constraint by identifying coding regions with a scarcity of variation. While existing techniques summarize constraint for entire genes, single gene-wide metrics conceal regional constraint variability within each gene. Therefore, we have created a detailed map of constrained coding regions (CCRs) by leveraging variation observed among 123,136 humans from the Genome Aggregation Database. The most constrained CCRs are enriched for pathogenic variants in ClinVar and mutations underlying developmental disorders. CCRs highlight protein domain families under high constraint and suggest unannotated or incomplete protein domains. The highest-percentile CCRs complement existing variant prioritization methods when evaluating de novo mutations in studies of autosomal dominant disease. Finally, we identify highly constrained CCRs within genes lacking known disease associations. This observation suggests that CCRs may identify regions under strong purifying selection that, when mutated, cause severe developmental phenotypes or embryonic lethality.
Collapse
Affiliation(s)
- James M Havrilla
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.,USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Brent S Pedersen
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.,USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Ryan M Layer
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA.,Department of Computer Science, University of Colorado, Boulder, CO, USA
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA. .,USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA. .,Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
|
7
|
Farashi S, Harteveld CL. Molecular basis of α-thalassemia. Blood Cells Mol Dis 2017; 70:43-53. [PMID: 29032940 DOI: 10.1016/j.bcmd.2017.09.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 02/05/2023]
Abstract
α-Thalassemia is an inherited, autosomal recessive, disorder characterized by a microcytic hypochromic anemia. It is one of the most common monogenic gene disorders in the world population. The clinical severity varies from almost asymptomatic, to mild microcytic hypochromic, and to a lethal hemolytic condition, called Hb Bart's Hydrops Foetalis Syndrome. The molecular basis are usually deletions and less frequently, point mutations affecting the expression of one or more of the duplicated α-genes. The clinical variation and increase in disease severity is directly related to the decreased expression of one, two, three or four copies of the α-globin genes. Deletions and point mutations in the α-globin genes and their regulatory elements have been studied extensively in carriers and patients and these studies have given insight into the α-globin genes are regulated. By looking at naturally occurring deletions and point mutations, our knowledge of globin-gene regulation and expression will continue to increase and will lead to new targets of therapy.
Collapse
Affiliation(s)
- Samaneh Farashi
- Dept. of Clinical Genetics, Hemoglobinopathy Expert Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis L Harteveld
- Dept. of Clinical Genetics, Hemoglobinopathy Expert Center, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
8
|
PKR activation and eIF2α phosphorylation mediate human globin mRNA splicing at spliceosome assembly. Cell Res 2017; 27:688-704. [PMID: 28374749 DOI: 10.1038/cr.2017.39] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/20/2016] [Accepted: 12/30/2016] [Indexed: 02/01/2023] Open
Abstract
Short elements in mammalian mRNA can control gene expression by activating the RNA-dependent protein kinase PKR that attenuates translation by phosphorylating cytoplasmic eukaryotic initiation factor 2α (eIF2α). We demonstrate a novel, positive role for PKR activation and eIF2α phosphorylation in human globin mRNA splicing. PKR localizes in splicing complexes and associates with splicing factor SC35. Splicing and early-stage spliceosome assembly on β-globin pre-mRNA depend strictly on activation of PKR by a codon-containing RNA fragment within exon 1 and on phosphorylation of nuclear eIF2α on Serine 51. Nonphosphorylatable mutant eIF2αS51A blocked β-globin mRNA splicing in cells and nuclear extract. Mutations of the β-globin RNA activator abrogated PKR activation and profoundly affected mRNA splicing efficiency. PKR depletion abrogated splicing and spliceosome assembly; recombinant PKR effectively restored splicing. Excision of the first intron of β-globin induces strand displacement within the RNA activator of PKR by a sequence from exon 2, a structural rearrangement that silences the ability of spliced β-globin mRNA to activate PKR. Thus, the ability to activate PKR is transient, serving solely to enable splicing. α-Globin pre-mRNA splicing is controlled likewise but positions of PKR activator and silencer are reversed, demonstrating evolutionary flexibility in how PKR activation regulates globin mRNA splicing through eIF2α phosphorylation.
Collapse
|
9
|
Tripathi AK, Singh N. Prion Protein-Hemin Interaction Upregulates Hemoglobin Synthesis: Implications for Cerebral Hemorrhage and Sporadic Creutzfeldt-Jakob Disease. J Alzheimers Dis 2016; 51:107-21. [PMID: 26836195 DOI: 10.3233/jad-151039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hemin is known to induce endocytosis of prion-protein (PrP(C)) from the neuronal plasma membrane, potentially limiting propagation of the disease causing PrP-scrapie (PrP(Sc)) isoform. Hemin is therefore an attractive disease-modifying option for sporadic Creutzfeldt-Jakob disease (sCJD), a human prion disorder with no effective treatment. The hemin-PrP(C) interaction is also of interest in cerebral-hemorrhage (CH), a condition where potentially toxic hemin molecules come in contact with neuronal PrP(C). Interestingly, PrP(C) is upregulated in penumbric neurons surrounding CH and is known to confer neuroprotection in a dose-dependent manner. The underlying mechanism, however, is not clear. Here, we report that hemin binds PrP(C) on diverse cell lines, resulting in its aggregation or degradation in a cell-type specific manner. Surprisingly, the hemin-PrP(C) interaction upregulates Hb synthesis in hematopoietic cells, a response reversed by deleting the hemin-binding octa-peptide repeat region of PrP(C). A similar response is noted in brain organotypic cultures where exposure to hemin induces significantly more α-globin in wild-type (PrP(+/+)) relative to PrP-knock-out (PrP(-/-)) samples. Furthermore, red blood cells and brain tissue from PrP(-/-) mice show significantly less α-globin relative to PrP(+/+) controls, indicating a positive effect of PrP(C) on Hb synthesis under physiological conditions as well. Surprisingly, levels of α-globin are significantly higher in sCJD brain tissue relative to controls, suggesting compensatory upregulation of Hb synthesis by surviving neurons or misregulation in diseased brains. These observations reveal a unique function of PrP(C) that is likely to impact the therapeutic management of CH and sCJD.
Collapse
|
10
|
Mettananda S, Fisher CA, Sloane-Stanley JA, Taylor S, Oppermann U, Gibbons RJ, Higgs DR. Selective silencing of α-globin by the histone demethylase inhibitor IOX1: a potentially new pathway for treatment of β-thalassemia. Haematologica 2016; 102:e80-e84. [PMID: 27810991 DOI: 10.3324/haematol.2016.155655] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Sachith Mettananda
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK.,Department of Paediatrics, Faculty of Medicine, University of Kelaniya, Sri Lanka
| | - Christopher A Fisher
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | | | - Stephen Taylor
- Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Udo Oppermann
- Structural Genomics Consortium, University of Oxford, UK.,The Botnar Research Centre, NIHR BRU Oxford, University of Oxford, UK
| | - Richard J Gibbons
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Douglas R Higgs
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK .,Oxford National Institute for Health Research Biomedical Research Centre, Blood Theme, Oxford University Hospital, UK
| |
Collapse
|
11
|
Mettananda S, Gibbons RJ, Higgs DR. Understanding α-globin gene regulation and implications for the treatment of β-thalassemia. Ann N Y Acad Sci 2015; 1368:16-24. [PMID: 26695885 DOI: 10.1111/nyas.12988] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the past three decades, a vast amount of new information has been uncovered describing how the globin genes are regulated. This knowledge has provided significant insights into the general understanding of the regulation of human genes. It is now known that molecular defects within and around the α- and β-globin genes, as well as in the distant regulatory elements, can cause thalassemia. Unbalanced production of globin chains owing to defective synthesis of one, and the continued unopposed synthesis of another, is the central causative factor in the cellular pathology and pathophysiology of thalassemia. A large body of clinical, genetic, and experimental evidence suggests that altering globin chain imbalance by reducing the production of α-globin synthesis ameliorates the disease severity in patients with β-thalassemia. With the development of new genetic-based therapeutic tools that have a potential to decrease the expression of a selected gene in a tissue-specific manner, the possibility of decreasing expression of the α-globin gene to improve the clinical severity of β-thalassemia could become a reality.
Collapse
Affiliation(s)
- Sachith Mettananda
- Medical Research Council (MRC) Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Department of Pediatrics, Faculty of Medicine, University of Kelaniya, Sri Lanka
| | - Richard J Gibbons
- Medical Research Council (MRC) Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Douglas R Higgs
- Medical Research Council (MRC) Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Oxford National Institute for Health Research Biomedical Research Centre, Blood Theme, Oxford University Hospital, Oxford, United Kingdom
| |
Collapse
|
12
|
Mohammdai-asl J, Ramezani A, Norozi F, Malehi AS, Asnafi AA, Far MAJ, Mousavi SH, Saki N. MicroRNAs in erythropoiesis and red blood cell disorders. FRONTIERS IN BIOLOGY 2015; 10:321-332. [DOI: 10.1007/s11515-015-1365-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Costa D, Capuano M, Sommese L, Napoli C. Impact of epigenetic mechanisms on therapeutic approaches of hemoglobinopathies. Blood Cells Mol Dis 2015; 55:95-100. [DOI: 10.1016/j.bcmd.2015.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 11/24/2022]
|
14
|
α-Globin as a molecular target in the treatment of β-thalassemia. Blood 2015; 125:3694-701. [PMID: 25869286 DOI: 10.1182/blood-2015-03-633594] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/31/2015] [Indexed: 12/31/2022] Open
Abstract
The thalassemias, together with sickle cell anemia and its variants, are the world's most common form of inherited anemia, and in economically undeveloped countries, they still account for tens of thousands of premature deaths every year. In developed countries, treatment of thalassemia is also still far from ideal, requiring lifelong transfusion or allogeneic bone marrow transplantation. Clinical and molecular genetic studies over the course of the last 50 years have demonstrated how coinheritance of modifier genes, which alter the balance of α-like and β-like globin gene expression, may transform severe, transfusion-dependent thalassemia into relatively mild forms of anemia. Most attention has been paid to pathways that increase γ-globin expression, and hence the production of fetal hemoglobin. Here we review the evidence that reduction of α-globin expression may provide an equally plausible approach to ameliorating clinically severe forms of β-thalassemia, and in particular, the very common subgroup of patients with hemoglobin E β-thalassemia that makes up approximately half of all patients born each year with severe β-thalassemia.
Collapse
|
15
|
Valle-García D, Griffiths LM, Dyer MA, Bernstein E, Recillas-Targa F. The ATRX cDNA is prone to bacterial IS10 element insertions that alter its structure. SPRINGERPLUS 2014; 3:222. [PMID: 24834375 PMCID: PMC4021028 DOI: 10.1186/2193-1801-3-222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/22/2014] [Indexed: 11/10/2022]
Abstract
The SWI/SNF-like chromatin-remodeling protein ATRX has emerged as a key factor in the regulation of α-globin gene expression, incorporation of histone variants into the chromatin template and, more recently, as a frequently mutated gene across a wide spectrum of cancers. Therefore, the availability of a functional ATRX cDNA for expression studies is a valuable tool for the scientific community. We have identified two independent transposon insertions of a bacterial IS10 element into exon 8 of ATRX isoform 2 coding sequence in two different plasmids derived from a single source. We demonstrate that these insertion events are common and there is an insertion hotspot within the ATRX cDNA. Such IS10 insertions produce a truncated form of ATRX, which significantly compromises its nuclear localization. In turn, we describe ways to prevent IS10 insertion during propagation and cloning of ATRX-containing vectors, including optimal growth conditions, bacterial strains, and suggested sequencing strategies. Finally, we have generated an insertion-free plasmid that is available to the community for expression studies of ATRX.
Collapse
Affiliation(s)
- David Valle-García
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Ciudad Universitaria, México DF, México ; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029 USA
| | - Lyra M Griffiths
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN USA ; Howard Hughes Medical Institute, Chevy Chase, MD USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029 USA
| | - Félix Recillas-Targa
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Ciudad Universitaria, México DF, México
| |
Collapse
|
16
|
Leung JWC, Ghosal G, Wang W, Shen X, Wang J, Li L, Chen J. Alpha thalassemia/mental retardation syndrome X-linked gene product ATRX is required for proper replication restart and cellular resistance to replication stress. J Biol Chem 2013; 288:6342-50. [PMID: 23329831 PMCID: PMC3585069 DOI: 10.1074/jbc.m112.411603] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 01/16/2013] [Indexed: 02/05/2023] Open
Abstract
Alpha thalassemia/mental retardation syndrome X-linked (ATRX) is a member of the SWI/SNF protein family of DNA-dependent ATPases. It functions as a chromatin remodeler and is classified as an SNF2-like helicase. Here, we showed somatic knock-out of ATRX displayed perturbed S-phase progression as well as hypersensitivity to replication stress. ATRX is recruited to sites of DNA damage, required for efficient checkpoint activation and faithful replication restart. In addition, we identified ATRX as a binding partner of MRE11-RAD50-NBS1 (MRN) complex. Together, these results suggest a non-canonical function of ATRX in guarding genomic stability.
Collapse
Affiliation(s)
- Justin Wai-Chung Leung
- From the Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Gargi Ghosal
- From the Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Wenqi Wang
- From the Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Xi Shen
- From the Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Jiadong Wang
- From the Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Lei Li
- From the Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Junjie Chen
- From the Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
17
|
Ratnakumar K, Bernstein E. ATRX: the case of a peculiar chromatin remodeler. Epigenetics 2012; 8:3-9. [PMID: 23249563 DOI: 10.4161/epi.23271] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The SWI/SNF-like chromatin remodeler ATRX has recently garnered renewed attention. ATRX mutations were first identified in patients bearing the syndrome after which it is named, alpha thalassemia/mental retardation, X-linked. While ATRX has long been implicated in transcriptional regulation through multiple mechanisms, recent studies have identified a role for ATRX in the regulation of histone variant deposition. In addition, current reports describe ATRX to be mutated at high percentages in multiple tumor types, suggestive of a potential 'driver' role in cancer. Here we discuss the numerous and seemingly diverse roles for ATRX in transcriptional regulation and histone deposition and suggest that ATRX's effects are mediated by its regulation of histones within the chromatin template.
Collapse
Affiliation(s)
- Kajan Ratnakumar
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
18
|
Abstract
Insights into the evolution of hemoglobins and their genes are an abundant source of ideas regarding hemoglobin function and regulation of globin gene expression. This article presents the multiple genes and gene families encoding human globins, summarizes major events in the evolution of the hemoglobin gene clusters, and discusses how these studies provide insights into regulation of globin genes. Although the genes in and around the α-like globin gene complex are relatively stable, the β-like globin gene clusters are more dynamic, showing evidence of transposition to a new locus and frequent lineage-specific expansions and deletions. The cis-regulatory modules controlling levels and timing of gene expression are a mix of conserved and lineage-specific DNA, perhaps reflecting evolutionary constraint on core regulatory functions shared broadly in mammals and adaptive fine-tuning in different orders of mammals.
Collapse
Affiliation(s)
- Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Huck Institute of Genome Sciences, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
19
|
Ganis JJ, Hsia N, Trompouki E, de Jong JLO, DiBiase A, Lambert JS, Jia Z, Sabo PJ, Weaver M, Sandstrom R, Stamatoyannopoulos JA, Zhou Y, Zon LI. Zebrafish globin switching occurs in two developmental stages and is controlled by the LCR. Dev Biol 2012; 366:185-94. [PMID: 22537494 DOI: 10.1016/j.ydbio.2012.03.021] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/20/2012] [Accepted: 03/19/2012] [Indexed: 02/02/2023]
Abstract
Globin gene switching is a complex, highly regulated process allowing expression of distinct globin genes at specific developmental stages. Here, for the first time, we have characterized all of the zebrafish globins based on the completed genomic sequence. Two distinct chromosomal loci, termed major (chromosome 3) and minor (chromosome 12), harbor the globin genes containing α/β pairs in a 5'-3' to 3'-5' orientation. Both these loci share synteny with the mammalian α-globin locus. Zebrafish globin expression was assayed during development and demonstrated two globin switches, similar to human development. A conserved regulatory element, the locus control region (LCR), was revealed by analyzing DNase I hypersensitive sites, H3K4 trimethylation marks and GATA1 binding sites. Surprisingly, the position of these sites with relation to the globin genes is evolutionarily conserved, despite a lack of overall sequence conservation. Motifs within the zebrafish LCR include CACCC, GATA, and NFE2 sites, suggesting functional interactions with known transcription factors but not the same LCR architecture. Functional homology to the mammalian α-LCR MCS-R2 region was confirmed by robust and specific reporter expression in erythrocytes of transgenic zebrafish. Our studies provide a comprehensive characterization of the zebrafish globin loci and clarify the regulation of globin switching.
Collapse
Affiliation(s)
- Jared J Ganis
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, and Harvard Stem Cell Institute, Harvard Medical School, 1 Blackfan Cir., Karp 7, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ratnakumar K, Duarte LF, LeRoy G, Hasson D, Smeets D, Vardabasso C, Bönisch C, Zeng T, Xiang B, Zhang DY, Li H, Wang X, Hake SB, Schermelleh L, Garcia BA, Bernstein E. ATRX-mediated chromatin association of histone variant macroH2A1 regulates α-globin expression. Genes Dev 2012; 26:433-8. [PMID: 22391447 DOI: 10.1101/gad.179416.111] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The histone variant macroH2A generally associates with transcriptionally inert chromatin; however, the factors that regulate its chromatin incorporation remain elusive. Here, we identify the SWI/SNF helicase ATRX (α-thalassemia/MR, X-linked) as a novel macroH2A-interacting protein. Unlike its role in assisting H3.3 chromatin deposition, ATRX acts as a negative regulator of macroH2A's chromatin association. In human erythroleukemic cells deficient for ATRX, macroH2A accumulates at the HBA gene cluster on the subtelomere of chromosome 16, coinciding with the loss of α-globin expression. Collectively, our results implicate deregulation of macroH2A's distribution as a contributing factor to the α-thalassemia phenotype of ATRX syndrome.
Collapse
Affiliation(s)
- Kajan Ratnakumar
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Manning JM, Popowicz AM, Padovan JC, Chait BT, Manning LR. Intrinsic regulation of hemoglobin expression by variable subunit interface strengths. FEBS J 2011; 279:361-9. [PMID: 22129306 DOI: 10.1111/j.1742-4658.2011.08437.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The expression of the six types of human Hb subunits over time is currently considered to be regulated mainly by transcription factors that bind to upstream control regions of the gene (the 'extrinsic' component of regulation). Here, we describe how subunit pairing and further assembly to tetramers in the liganded state is influenced by the affinity of subunits for one another (the 'intrinsic' component of regulation). The adult Hb dimers have the strongest subunit interfaces and the embryonic Hbs the weakest, with fetal Hbs being of intermediate strength, corresponding to the temporal order of their expression. These variable subunit binding strengths and the attenuating effects of acetylation contribute to the differences with which these Hb types form functional O(2) -binding tetramers consistent with gene switching.
Collapse
Affiliation(s)
- James M Manning
- Department of Biology, Northeastern University, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
22
|
Duncan EM, Allis CD. Errors in erasure: links between histone lysine methylation removal and disease. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2011; 67:69-90. [PMID: 21141725 DOI: 10.1007/978-3-7643-8989-5_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Many studies have demonstrated that covalent histone modifications are dynamically regulated to cause both chemical and physical changes to the chromatin template. Such changes in the chromatin template lead to biologically significant consequences, including differential gene expression. Histone lysine methylation, in particular, has been shown to correlate with gene expression both positively and negatively, depending on the specific site and degree (i.e., mono-, di-, or tri-) of methylation within the histone sequence. Although genetic alterations in the proteins that establish, or "write," methyl modifications and their effect in various human pathologies have been documented, connections between the misregulation of proteins that remove, or "erase," histone methylation and disease have emerged more recently. Here we discuss three mechanisms through which histone methylation can be removed from the chromatin template. We describe how these "erasure" mechanisms are linked to pathways that are known to be misregulated in diseases, such as cancer. We further describe how errors in the removal of histone methylation can and do lead to human pathologies, both directly and indirectly.
Collapse
Affiliation(s)
- Elizabeth M Duncan
- Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
23
|
Manning LR, Popowicz AM, Padovan J, Chait BT, Russell JE, Manning JM. Developmental expression of human hemoglobins mediated by maturation of their subunit interfaces. Protein Sci 2010; 19:1595-9. [PMID: 20572018 DOI: 10.1002/pro.441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Different types of human hemoglobins (Hbs) consisting of various combinations of the embryonic, fetal, and adult Hb subunits are present at certain times during development representing a major paradigm of developmental biology that is still not understood and one which we address here. We show that the subunit interfaces of these Hbs have increasing bonding strengths as demonstrated by their distinct distribution of tetramers, dimers, and monomers during gel filtration at very low-Hb concentration. This maturation is mediated by competition between subunits for more favorable partners with stronger subunit interactions. Thus, the protein products of gene expression can themselves have a role in the developmental process due to their intrinsic properties.
Collapse
Affiliation(s)
- Lois R Manning
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
24
|
Thomas AE. 50th Annual Scientific Meeting of the British Society for Haematology. Expert Rev Hematol 2010; 3:393-5. [PMID: 21083029 DOI: 10.1586/ehm.10.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The 50th Annual Scientific Meeting of the British Society for Haematology was notable, not only for its golden anniversary, but also because it coincided with the eruption of the Icelandic volcano, Eyjafjallajökull, and the ensuing travel chaos. In total, 28 speakers from overseas were unable to reach Edinburgh, including a significant number of British speakers who were stranded. However, owing to the superb efforts of the conference organisers and Edinburgh International Conference Centre staff, teleconferencing equipment was installed and all speakers were contacted and able to give their talks on time. The program, consisting of simultaneous sessions and plenary lectures, covered not only recent advances in clinical and laboratory hematology, but also reflected on the contribution of British hematology to the international arena over the past 50 years.
Collapse
Affiliation(s)
- Angela E Thomas
- Department of Haematology, Royal Hospital for Sick Children, Edinburgh EH9 1LF, UK.
| |
Collapse
|
25
|
Taweevisit M, Thorner PS. Hydrops fetalis in the stillborn: a series from the central region of Thailand. Pediatr Dev Pathol 2010; 13:369-74. [PMID: 20233068 DOI: 10.2350/09-12-0771-oa.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purpose of this study was to analyze the cause of hydrops fetalis (HF) among fetal deaths in the central region of Thailand. Autopsy reports diagnosed as HF from 1999 to 2008 at King Chulalongkorn Memorial Hospital were retrieved, and the pathologic findings, clinical information, fetal ultrasonographic studies, and laboratory investigations were reviewed. There were 78 stillborn autopsies during this 10-year period; the mean gestational age was 28 weeks. The causes of fetal hydrops were identified in 88.5%; no cases of immune hydrops were detected. Anemia was the predominant cause of HF (n = 33; 42.2%): related to homozygous α-thalassemia (n = 17; 21.8%), twin-twin transfusion syndrome (n = 8; 10.2%), hemoglobin H (n = 3; 3.8%), lung hemorrhage (n = 1; 1.3%), adrenal hemorrhage (n = 1; 1.3%), and 3 cases of unspecified etiology (3.8%). Other causes of high-output failure included mass lesions resulting in vascular shunting (n = 2; 2.6%) and 1 case each (1.3% each) of maternal diabetes mellitus, intestinal lymphangiectasia, and Beckwith-Wiedemann syndrome. Causes resulting in low-output cardiac failure were congenital heart disease (n = 16; 20.5%) and thoracic space-occupying lesions (n = 7; 9%). The remaining causes included fetal infection (n = 5; 6.4%), congenital abnormalities suggestive of a chromosomal or genetic basis (n = 2; 2.6%), and 1 case (1.3%) of placental vascular thrombosis. Nine cases (11.5%) had no identifiable cause. Thus, the most common cause of HF in this series was homozygous α-thalassemia, reflecting the geographic location of this series.
Collapse
Affiliation(s)
- Mana Taweevisit
- Department of Pathology, Chulalongkorn University, Pathumwan, Bangkok, 10330 Thailand.
| | | |
Collapse
|
26
|
Rosen MD, Woods CR, Goldberg SD, Hack MD, Bounds AD, Yang Y, Wagaman PC, Phuong VK, Ameriks AP, Barrett TD, Kanelakis KC, Chuang JC, Shankley NP, Rabinowitz MH. Discovery of the first known small-molecule inhibitors of heme-regulated eukaryotic initiation factor 2alpha (HRI) kinase. Bioorg Med Chem Lett 2009; 19:6548-51. [PMID: 19854648 DOI: 10.1016/j.bmcl.2009.10.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/06/2009] [Accepted: 10/08/2009] [Indexed: 11/19/2022]
Abstract
A series of indeno[1,2-c]pyrazoles were discovered to be the first known inhibitors of heme-regulated eukaryotic initiation factor 2alpha (HRI) kinase. The synthesis, structure-activity relationship profile, and in-vitro pharmacological characterization of this inaugural series of HRI kinase inhibitors are detailed.
Collapse
Affiliation(s)
- Mark D Rosen
- Johnson & Johnson Pharmaceutical Research and Development, LLC, San Diego, CA 92121, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Abstract
Hemoglobin H (Hb H) disease is the most common form of thalassemia intermedia and has many features that require careful consideration in management. In the majority of cases, Hb H disease results from double heterozygosity for α0-thalassemia due to deletions that remove both linked α-globin genes on chromosome 16, and deletional α+-thalassemia from single α-globin gene deletions (--/−α). However, Hb H disease may occur from interactions between α0-thalassemia with non-deletional mutations (αTα or αT) or with abnormal hemoglobins such as Hb Constant Spring, Hb Paksé, Hb Quong Sze, and Hb Pak Num Po. In a steady state, patients with Hb H diseases have hemoglobin levels around 9 to 10 g/dL; however, during hemolytic crisis, which frequently develops in or after acute infections with high fever, the hemoglobin level may drop significantly and patients can develop shock or renal shutdown. Even though splenectomy leads to significant elevation of hemoglobin levels, it is not recommended because the majority of patients do well with said steady-state hemoglobin levels. Patients with non-deletional Hb H disease are usually more anemic with significant splenomegaly, and some may require regular blood transfusions and be even as severe as “Hb H hydrops fetalis.” However, there is no clear genotype-phenotype correlation associated with this severe clinical syndrome since patients with identical genotypes do not necessary show the same severity. This suggests that other genetic and environmental factors play a role in modifying the degree of clinical severity in patients with non-deletional Hb H disease.
Collapse
|
28
|
Abstract
Much of our understanding of human physiology, and of many aspects of pathology, has its antecedents in laboratory and clinical studies of hemoglobin. Over the last century, knowledge of the genetics, functions, and diseases of the hemoglobin proteins has been refined to the molecular level by analyses of their crystallographic structures and by cloning and sequencing of their genes and surrounding DNA. In the last few decades, research has opened up new paradigms for hemoglobin related to processes such as its role in the transport of nitric oxide and the complex developmental control of the alpha-like and beta-like globin gene clusters. It is noteworthy that this recent work has had implications for understanding and treating the prevalent diseases of hemoglobin, especially the use of hydroxyurea to elevate fetal hemoglobin in sickle cell disease. It is likely that current research will also have significant clinical implications, as well as lessons for other aspects of molecular medicine, the origin of which can be largely traced to this research tradition.
Collapse
|
29
|
Miele A, Dekker J. Long-range chromosomal interactions and gene regulation. MOLECULAR BIOSYSTEMS 2008; 4:1046-57. [PMID: 18931780 PMCID: PMC2653627 DOI: 10.1039/b803580f] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the last few years important new insights into the process of long-range gene regulation have been obtained. Gene regulatory elements are found to engage in direct physical interactions with distant target genes and with loci on other chromosomes to modulate transcription. An overview of recently discovered long-range chromosomal interactions is presented, and a network approach is proposed to unravel gene-element relationships. Gene expression is controlled by regulatory elements that can be located far away along the chromosome or in some cases even on other chromosomes. Genes and regulatory elements physically associate with each other resulting in complex genome-wide networks of chromosomal interactions. Here we describe several well-characterized cases of long-range interactions involved in the activation and repression of transcription. We speculate on how these interactions may affect gene expression and outline possible mechanisms that may facilitate encounters between distant elements. Finally, we propose that a genome-wide network analysis may provide new insights into the logic of long-range gene regulation.
Collapse
Affiliation(s)
- Adriana Miele
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester MA 01605-0103
| | - Job Dekker
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester MA 01605-0103
| |
Collapse
|
30
|
Mir-144 selectively regulates embryonic alpha-hemoglobin synthesis during primitive erythropoiesis. Blood 2008; 113:1340-9. [PMID: 18941117 DOI: 10.1182/blood-2008-08-174854] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Precise transcriptional control of developmental stage-specific expression and switching of alpha- and beta-globin genes is significantly important to understand the general principles controlling gene expression and the pathogenesis of thalassemia. Although transcription factors regulating beta-globin genes have been identified, little is known about the microRNAs and trans-acting mechanism controlling alpha-globin genes transcription. Here, we show that an erythroid lineage-specific microRNA gene, miR-144, expressed at specific developmental stages during zebrafish embryogenesis, negatively regulates the embryonic alpha-globin, but not embryonic beta-globin, gene expression, through physiologically targeting klfd, an erythroid-specific Krüppel-like transcription factor. Klfd selectively binds to the CACCC boxes in the promoters of both alpha-globin and miR-144 genes to activate their transcriptions, thus forming a negative feedback circuitry to fine-tune the expression of embryonic alpha-globin gene. The selective effect of the miR-144-Klfd pathway on globin gene regulation may thereby constitute a novel therapeutic target for improving the clinical outcome of patients with thalassemia.
Collapse
|
31
|
The role of the epigenetic signal, DNA methylation, in gene regulation during erythroid development. Curr Top Dev Biol 2008; 82:85-116. [PMID: 18282518 DOI: 10.1016/s0070-2153(07)00004-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The sequence complexity of the known vertebrate genomes alone is insufficient to account for the diversity between individuals of a species. Although our knowledge of vertebrate biology has evolved substantially with the growing compilation of sequenced genomes, understanding the temporal and spatial regulation of genes remains fundamental to fully exploiting this information. The importance of epigenetic factors in gene regulation was first hypothesized decades ago when biologists posited that methylation of DNA could heritably alter gene expression [Holliday and Pugh, 1975. Science 187(4173), 226-232; Riggs, 1975. Cytogenet. and Cell Genet.14(1), 9-25; Scarano et al., 1967. Proc. Natl. Acad. Sci. USA 57(5), 1394-1400)]. It was subsequently shown that vertebrate DNA methylation, almost exclusively at the 5' position of cytosine in the dinucleotide CpG, played a role in a number of processes including embryonic development, genetic imprinting, cell differentiation, and tumorigenesis. At the time of this writing, a large and growing list of genes is known to exhibit DNA methylation-dependent regulation, and we understand in some detail the mechanisms employed by cells in using methylation as a regulatory modality. In this context, we revisit one of the original systems in which the role of DNA methylation in vertebrate gene regulation during development was described and studied: erythroid cells. We briefly review the recent advances in our understanding of DNA methylation and, in particular, its regulatory role in red blood cells during differentiation and development. We also address DNA methylation as a component of erythroid chromatin architecture, and the interdependence of CpG methylation and histone modification.
Collapse
|
32
|
Razin SV, Ioudinkova ES. Mechanisms controlling activation of the alpha-globin gene domain in chicken erythroid cells. BIOCHEMISTRY (MOSCOW) 2007; 72:467-70. [PMID: 17573699 DOI: 10.1134/s000629790705001x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review we consider the organization of the chicken alpha-globin gene domain and mechanisms regulating the activity of this tissue-specific gene domain located in a potentially active (characterized by an increased sensitivity to nucleases) chromatin configuration in cells of all lineages. Both regulatory mechanisms ensuring repression of alpha-globin genes in non-erythroid cells and mechanisms responsible for activation of transcription of these genes during erythroid cell differentiation are discussed. The analysis of the structure-function organization of the chicken alpha-globin gene domain presented in this review is based mainly on the authors' own results obtained over the last 20 years. On discussing the hypotheses explaining the mechanisms controlling the functional activity of chicken alpha-globin gene domain, data obtained in studies of alpha-globin gene domains of other vertebrates are also analyzed.
Collapse
Affiliation(s)
- S V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| | | |
Collapse
|
33
|
Guerrero G, Delgado-Olguín P, Escamilla-Del-Arenal M, Furlan-Magaril M, Rebollar E, De La Rosa-Velázquez IA, Soto-Reyes E, Rincón-Arano H, Valdes-Quezada C, Valadez-Graham V, Recillas-Targa F. Globin genes transcriptional switching, chromatin structure and linked lessons to epigenetics in cancer: a comparative overview. Comp Biochem Physiol A Mol Integr Physiol 2006; 147:750-760. [PMID: 17188536 DOI: 10.1016/j.cbpa.2006.10.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 09/14/2006] [Accepted: 10/22/2006] [Indexed: 12/28/2022]
Abstract
At the present time research situates differential regulation of gene expression in an increasingly complex scenario based on interplay between genetic and epigenetic information networks, which need to be highly coordinated. Here we describe in a comparative way relevant concepts and models derived from studies on the chicken alpha- and beta-globin group of genes. We discuss models for globin switching and mechanisms for coordinated transcriptional activation. A comparative overview of globin genes chromatin structure, based on their genomic domain organization and epigenetic components is presented. We argue that the results of those studies and their integrative interpretation may contribute to our understanding of epigenetic abnormalities, from beta-thalassemias to human cancer. Finally we discuss the interdependency of genetic-epigenetic components and the need of their mutual consideration in order to visualize the regulation of gene expression in a more natural context and consequently better understand cell differentiation, development and cancer.
Collapse
Affiliation(s)
- Georgina Guerrero
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México, D.F., 04510, Mexico
| | - Paul Delgado-Olguín
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México, D.F., 04510, Mexico
| | - Martín Escamilla-Del-Arenal
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México, D.F., 04510, Mexico
| | - Mayra Furlan-Magaril
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México, D.F., 04510, Mexico
| | - Eria Rebollar
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México, D.F., 04510, Mexico
| | - Inti A De La Rosa-Velázquez
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México, D.F., 04510, Mexico
| | - Ernesto Soto-Reyes
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México, D.F., 04510, Mexico
| | - Héctor Rincón-Arano
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México, D.F., 04510, Mexico
| | - Christian Valdes-Quezada
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México, D.F., 04510, Mexico
| | - Viviana Valadez-Graham
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México, D.F., 04510, Mexico
| | - Félix Recillas-Targa
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México, D.F., 04510, Mexico.
| |
Collapse
|