1
|
Wang K, Fischer A, Maccio U, Hantel C, Beuschlein F, Grossman AB, Pacak K, Nölting S. Pre-clinical phaeochromocytoma and paraganglioma models: Cell lines, animal models, and a human primary culture model. Best Pract Res Clin Endocrinol Metab 2024; 38:101913. [PMID: 38972796 DOI: 10.1016/j.beem.2024.101913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
While the establishment of human phaeochromocytoma and paraganglioma (PPGL) cell lines has proven to be particularly difficult over several decades of research, there are other reliable pre-clinical PPGL models currently available. This review provides a summary of these models, together with our recently established personalised drug screening platform using patient-derived PPGL primary cultures. Such currently available PPGL models include murine and rat PPGL cell lines, of which only one cell line (PC12) is publicly accessible through a cell repository, and PPGL animal models, of which the patient-derived xenograft models are promising but complex to establish. We have developed next-generation implementation of human PPGL primary cultures, enabling reliable and personalised drug screening and an individualised analysis of tumour drug responsivity based on the tumour's unique genetic, biochemical, immunohistochemical and clinical profile. Overall, reliable PPGL models, including patient-derived primary culture models, are essential to advance pre-clinical research in the field of PPGLs.
Collapse
Affiliation(s)
- Katharina Wang
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Alessa Fischer
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland
| | - Umberto Maccio
- Department of Pathology and Molecular Pathology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland; Department of Internal Medicine III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | - Felix Beuschlein
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland; The LOOP Zurich - Medical Research Center, 8044 Zurich, Switzerland
| | - Ashley B Grossman
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; NET Unit, ENETS Centre of Excellence, Royal Free Hospital, London NW3 2QG, UK
| | - Karel Pacak
- Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD 20892, USA
| | - Svenja Nölting
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland.
| |
Collapse
|
2
|
Ullrich M, Liers J, Peitzsch M, Feldmann A, Bergmann R, Sommer U, Richter S, Bornstein SR, Bachmann M, Eisenhofer G, Ziegler CG, Pietzsch J. Strain-specific metastatic phenotypes in pheochromocytoma allograft mice. Endocr Relat Cancer 2018; 25:993-1004. [PMID: 30288966 PMCID: PMC6176113 DOI: 10.1530/erc-18-0136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 11/15/2022]
Abstract
Somatostatin receptor-targeting endoradiotherapy offers potential for treating metastatic pheochromocytomas and paragangliomas, an approach likely to benefit from combination radiosensitization therapy. To provide reliable preclinical in vivo models of metastatic disease, this study characterized the metastatic spread of luciferase-expressing mouse pheochromocytoma (MPC) cells in mouse strains with different immunologic conditions. Bioluminescence imaging showed that, in contrast to subcutaneous non-metastatic engraftment of luciferase-expressing MPC cells in NMRI-nude mice, intravenous cell injection provided only suboptimal metastatic spread in both NMRI-nude mice and hairless SCID (SHO) mice. Treatment of NMRI-nude mice with anti-Asialo GM1 serum enhanced metastatic spread due to substantial depletion of natural killer (NK) cells. However, reproducible metastatic spread was only observed in NK cell-defective SCID/beige mice and in hairless immunocompetent SKH1 mice bearing disseminated or liver metastases, respectively. Liquid chromatography tandem mass spectrometry of urine samples showed that subcutaneous and metastasized tumor models exhibit comparable renal monoamine excretion profiles characterized by increasing urinary dopamine, 3-methoxytyramine, norepinephrine and normetanephrine. Metastases-related epinephrine and metanephrine were only detectable in SCID/beige mice. Positron emission tomography and immunohistochemistry revealed that all metastases maintained somatostatin receptor-specific radiotracer uptake and immunoreactivity, respectively. In conclusion, we demonstrate that intravenous injection of luciferase-expressing MPC cells into SCID/beige and SKH1 mice provides reproducible and clinically relevant spread of catecholamine-producing and somatostatin receptor-positive metastases. These standardized preclinical models allow for precise monitoring of disease progression and should facilitate further investigations on theranostic approaches against metastatic pheochromocytomas and paragangliomas.
Collapse
Affiliation(s)
- Martin Ullrich
- Department of Radiopharmaceutical and Chemical BiologyHelmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Josephine Liers
- Department of Radiopharmaceutical and Chemical BiologyHelmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Technische Universität DresdenSchool of Medicine, Faculty of Medicine Carl Gustav Carus, Dresden, Germany
| | - Mirko Peitzsch
- Technische Universität DresdenUniversity Hospital Carl Gustav Carus, Institute of Clinical Chemistry and Laboratory Medicine, Dresden, Germany
| | - Anja Feldmann
- Department of RadioimmunologyHelmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Ralf Bergmann
- Department of Radiopharmaceutical and Chemical BiologyHelmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Ulrich Sommer
- Technische Universität DresdenUniversity Hospital Carl Gustav Carus, Institute of Pathology, Dresden, Germany
| | - Susan Richter
- Technische Universität DresdenSchool of Medicine, Faculty of Medicine Carl Gustav Carus, Dresden, Germany
- Technische Universität DresdenUniversity Hospital Carl Gustav Carus, Institute of Clinical Chemistry and Laboratory Medicine, Dresden, Germany
| | - Stefan R Bornstein
- Technische Universität DresdenSchool of Medicine, Faculty of Medicine Carl Gustav Carus, Dresden, Germany
- Department of Internal Medicine IIITechnische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Michael Bachmann
- Technische Universität DresdenSchool of Medicine, Faculty of Medicine Carl Gustav Carus, Dresden, Germany
- Department of RadioimmunologyHelmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Technische Universität DresdenUniversity Hospital Carl Gustav Carus, Universitäts Krebs Centrum (UCC), Tumorimmunology, Dresden, Germany
- Technische Universität DresdenNational Center for Tumor Diseases (NCT), Dresden, Germany
| | - Graeme Eisenhofer
- Technische Universität DresdenSchool of Medicine, Faculty of Medicine Carl Gustav Carus, Dresden, Germany
- Technische Universität DresdenUniversity Hospital Carl Gustav Carus, Institute of Clinical Chemistry and Laboratory Medicine, Dresden, Germany
- Department of Internal Medicine IIITechnische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Christian G Ziegler
- Department of Internal Medicine IIITechnische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical BiologyHelmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Technische Universität DresdenSchool of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
- Correspondence should be addressed to J Pietzsch:
| |
Collapse
|
3
|
Ullrich M, Bergmann R, Peitzsch M, Cartellieri M, Qin N, Ehrhart-Bornstein M, Block NL, Schally AV, Pietzsch J, Eisenhofer G, Bornstein SR, Ziegler CG. In vivo fluorescence imaging and urinary monoamines as surrogate biomarkers of disease progression in a mouse model of pheochromocytoma. Endocrinology 2014; 155:4149-56. [PMID: 25137029 PMCID: PMC4256828 DOI: 10.1210/en.2014-1431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pheochromocytoma (PHEO) is a rare but potentially lethal neuroendocrine tumor arising from catecholamine-producing chromaffin cells. Especially for metastatic PHEO, the availability of animal models is essential for developing novel therapies. For evaluating therapeutic outcome in rodent PHEO models, reliable quantification of multiple organ lesions depends on dedicated small-animal in vivo imaging, which is still challenging and only available at specialized research facilities. Here, we investigated whether whole-body fluorescence imaging and monitoring of urinary free monoamines provide suitable parameters for measuring tumor progression in a murine allograft model of PHEO. We generated an mCherry-expressing mouse PHEO cell line by lentiviral gene transfer. These cells were injected subcutaneously into nude mice to perform whole-body fluorescence imaging of tumor development. Urinary free monoamines were measured by liquid chromatography with tandem mass spectrometry. Tumor fluorescence intensity and urinary outputs of monoamines showed tumor growth-dependent increases (P < .001) over the 30 days of monitoring post-tumor engraftment. Concomitantly, systolic blood pressure was increased significantly during tumor growth. Tumor volume correlated significantly (P < .001) and strongly with tumor fluorescence intensity (rs = 0.946), and urinary outputs of dopamine (rs = 0.952), methoxytyramine (rs = 0.947), norepinephrine (rs = 0.756), and normetanephrine (rs = 0.949). Dopamine and methoxytyramine outputs allowed for detection of lesions at diameters below 2.3 mm. Our results demonstrate that mouse pheochromocytoma (MPC)-mCherry cell tumors are functionally similar to human PHEO. Both tumor fluorescence intensity and urinary outputs of free monoamines provide precise parameters of tumor progression in this sc mouse model of PHEO. This animal model will allow for testing new treatment strategies for chromaffin cell tumors.
Collapse
Affiliation(s)
- Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology (M.U., R.B., J.P.), Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Medicine III (M.U., N.Q., M.E.-B., G.E., S.R.B., C.G.Z.), University Hospital Carl Gustav Carus, 01307 Dresden, Germany; Institute for Clinical Chemistry and Laboratory Medicine (M.P., N.Q., G.E.), Technische Universität Dresden, Germany; Department of Radioimmunology (M.C.), Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; Department of Chemistry and Food Chemistry (J.P.), Technische Universität Dresden, Dresden, Germany; and VA Medical Center Miami FL and Department of Pathology and Medicine (N.L.B., A.V.S.), Division of Endocrinology and Hematology-Oncology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ziegler CG, Ullrich M, Schally AV, Bergmann R, Pietzsch J, Gebauer L, Gondek K, Qin N, Pacak K, Ehrhart-Bornstein M, Eisenhofer G, Bornstein SR. Anti-tumor effects of peptide analogs targeting neuropeptide hormone receptors on mouse pheochromocytoma cells. Mol Cell Endocrinol 2013; 371:189-94. [PMID: 23267837 PMCID: PMC3690370 DOI: 10.1016/j.mce.2012.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 01/31/2023]
Abstract
Pheochromocytoma is a rare but potentially lethal chromaffin cell tumor with currently no effective treatment. Peptide hormone receptors are frequently overexpressed on endocrine tumor cells and can be specifically targeted by various anti-tumor peptide analogs. The present study carried out on mouse pheochromocytoma cells (MPCs) and a more aggressive mouse tumor tissue-derived (MTT) cell line revealed that these cells are characterized by pronounced expression of the somatostatin receptor 2 (sst2), growth hormone-releasing hormone (GHRH) receptor and the luteinizing hormone-releasing hormone (LHRH) receptor. We further demonstrated significant anti-tumor effects mediated by cytotoxic somatostatin analogs, AN-162 and AN-238, by LHRH antagonist, Cetrorelix, by the cytotoxic LHRH analog, AN-152, and by recently developed GHRH antagonist, MIA-602, on MPC and for AN-152 and MIA-602 on MTT cells. Studies of novel anti-tumor compounds on these mouse cell lines serve as an important basis for mouse models of metastatic pheochromocytoma, which we are currently establishing.
Collapse
MESH Headings
- 2-Hydroxyphenethylamine/analogs & derivatives
- 2-Hydroxyphenethylamine/pharmacology
- Adrenal Gland Neoplasms/drug therapy
- Aniline Compounds/pharmacology
- Animals
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Doxorubicin/analogs & derivatives
- Doxorubicin/pharmacology
- Gonadotropin-Releasing Hormone/analogs & derivatives
- Gonadotropin-Releasing Hormone/antagonists & inhibitors
- Gonadotropin-Releasing Hormone/pharmacology
- Growth Hormone-Releasing Hormone/antagonists & inhibitors
- Mice
- Pheochromocytoma/drug therapy
- Pyrroles/pharmacology
- Receptors, LHRH/biosynthesis
- Receptors, LHRH/drug effects
- Receptors, LHRH/metabolism
- Receptors, Neuropeptide/biosynthesis
- Receptors, Neuropeptide/drug effects
- Receptors, Neuropeptide/metabolism
- Receptors, Pituitary Hormone-Regulating Hormone/biosynthesis
- Receptors, Pituitary Hormone-Regulating Hormone/drug effects
- Receptors, Pituitary Hormone-Regulating Hormone/metabolism
- Receptors, Somatostatin/biosynthesis
- Receptors, Somatostatin/drug effects
- Receptors, Somatostatin/metabolism
- Sermorelin/analogs & derivatives
- Sermorelin/pharmacology
- Somatostatin/analogs & derivatives
Collapse
Affiliation(s)
- C G Ziegler
- University Hospital Carl Gustav Carus, Department of Medicine III, Dresden, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Fernández MC, Venara M, Nowicki S, Chemes HE, Barontini M, Pennisi PA. Igf-I regulates pheochromocytoma cell proliferation and survival in vitro and in vivo. Endocrinology 2012; 153:3724-34. [PMID: 22653556 DOI: 10.1210/en.2012-1107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGFs are involved in malignant transformation and growth of several tissues, including the adrenal medulla. The present study was designed to evaluate the impact of IGF-I on pheochromocytoma development. We used a murine pheochromocytoma (MPC) cell line (MPC4/30) and an animal model with a reduction of 75% in circulating IGF-I levels [liver-IGF-I-deficient (LID) mice] to perform studies in vitro and in vivo. We found that, in culture, IGF-I stimulation increases proliferation, migration, and anchorage-independent growth, whereas it inhibits apoptosis of MPC cells. When injected to control and to LID mice, MPC cells grow and form tumors with features of pheochromocytoma. Six weeks after cell inoculation, all control mice developed sc tumors. In contrast, in 73% of LID mice, tumor development was delayed to 7-12 wk, and the remaining 27% did not develop tumors up to 12 wk after inoculation. LID mice harboring MPC cells and treated with recombinant human IGF-I (LID+) developed tumors as controls. Tumors developed in control, LID, and LID+ mice had similar histology and were similarly positive for IGF-I receptor expression. The apoptotic index was higher in tumors from LID mice compared with those from control mice, whereas vascular density was decreased. In summary, our work demonstrates that IGF-I has a critical role in maintaining tumor phenotype and survival of already transformed pheochromocytoma cells and is required for the initial establishment of these tumors, providing encouragement to carry on research studies to address the IGF-I/IGF-I receptor system as a target of therapeutic strategies for pheochromocytoma treatment in the future.
Collapse
Affiliation(s)
- María Celia Fernández
- Centro de Investigaciones Endocrinológicas Consejo Nacional de Investigaciones Científicas y Técnicas, Hospital de Niños Dr. Ricardo Gutiérrez, Gallo 1360, C1425EFD Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
6
|
Martiniova L, Kotys MS, Thomasson D, Schimel D, Lai EW, Bernardo M, Merino MJ, Powers JF, Ruzicka J, Kvetnansky R, Choyke PL, Pacak K. Noninvasive monitoring of a murine model of metastatic pheochromocytoma: a comparison of contrast-enhanced microCT and nonenhanced MRI. J Magn Reson Imaging 2009; 29:685-91. [PMID: 19243052 DOI: 10.1002/jmri.21654] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To compare contrast-enhanced micro-computed tomography (microCT) and nonenhanced respiratory-triggered magnetic resonance imaging (MRI) in an animal model of metastatic pheochromocytoma. Animal models are becoming important in the study of cancer treatment and imaging is useful in minimizing the number of animals needed and reducing costs associated with autopsies. However, the choice of imaging modality is still evolving. MATERIALS AND METHODS Adult female nude mice were injected by tail vein with a mouse pheochromocytoma (MPC) cell line (MPC 4/30PRR) to create a metastatic model. After optimizing imaging techniques, eight mice were imaged with both respiratory triggered MRI and microCT and the findings were verified histologically. RESULTS MicroCT and MRI were approximately equal in their ability to detect hepatic metastases at a size threshold of 350 microm. In the lungs, MRI was more sensitive than microCT, detecting lesions 0.6 mm in diameter versus 1 mm for microCT. Additionally, MRI was more sensitive for lesions in the kidneys, bone, ovaries, and adrenal glands. MRI demonstrated a higher contrast-to-noise ratio (CNR) than microCT. CONCLUSION In addition to the advantage of not exposing the animal to ionizing radiation, MRI provided a more complete assessment of the extent of metastases in this model compared to microCT.
Collapse
Affiliation(s)
- Lucia Martiniova
- Reproductive and Adult Endocrinology Program, National Institutes of Child Health and Human Development, Bethesda, Maryland 20892-1109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mobine HR, Baker AB, Wang L, Wakimoto H, Jacobsen KC, Seidman CE, Seidman JG, Edelman ER. Pheochromocytoma-induced cardiomyopathy is modulated by the synergistic effects of cell-secreted factors. Circ Heart Fail 2009; 2:121-8. [PMID: 19808327 DOI: 10.1161/circheartfailure.108.813261] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pheochromocytomas are rare tumors derived from the chromaffin cells of the adrenal medulla. Although these tumors have long been postulated to induce hypertension and cardiomyopathy through the hypersecretion of catecholamines, catecholamines alone may not fully explain the profound myocardial remodeling induced by these tumors. We sought to determine whether changes in myocardial function in pheochromocytoma-induced cardiomyopathy result solely from catecholamines secretion or from multiple pheochromocytoma-derived factors. METHODS AND RESULTS Isolated cardiomyocytes incubated with pheochromocytoma-conditioned growth media contracted at a higher frequency than cardiomyocytes incubated with norepinephrine (NE) only. Sprague-Dawley rats and black-6 mice were implanted with agarose-encapsulated pheochromocytoma (PC12) cells, dihydroxyphenylalanine decarboxylase knock-out PC12 cells deficient in NE (PC12-KO), or NE-secreting pumps. PC12 cell implantation increased left ventricular dilation by 35+/-6% and 9.6+/-1.4% and reduced left ventricular fractional shortening by 20+/-3% and 28+/-4% in rats and mice compared with animals dosed only with NE, respectively. Elimination of NE secretion in PC12-KO cells induced neither cardiac dilation (3.9%+/-1.8% increase versus control) nor changes in (1.9%+/-0.4% reduction) fractional shortening compared to controls. CONCLUSIONS Pheochromocytomas induce a greater degree of cardiomyopathy than equivalent doses of NE, suggesting pheochromocytoma-induced cardiomyopathy is not solely mediated by NE, rather pheochromocytoma secretory factors in combination with catecholamines act synergistically to induce greater cardiac damage than catecholamines alone.
Collapse
Affiliation(s)
- Hector R Mobine
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-442, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | |
Collapse
|