1
|
Zhang L, Li P, Li Y, Qu W, Shi Y, Zhang T, Chen Y. The role of immunoglobins in atherosclerosis development; friends or foe? Mol Cell Biochem 2025; 480:2737-2747. [PMID: 39592554 DOI: 10.1007/s11010-024-05158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Coronary artery disease, atherosclerosis, and its life-threatening sequels impose the hugest burden on the healthcare systems throughout the world. The intricate process of atherosclerosis is considered as an inflammatory-based disorder, and therefore, the components of the immune system are involved in different stages from formation of coronary plaques to its development. One of the major effectors in this way are the antibody producing entities, the B cells. These cells, which play a significant and unique role in responding to different stress, injuries, and infections, contribute differently to the development of atherosclerosis, either inhibitory or promoting, depending on the type of subsets. B cells implicate in both systemic and local immune responses of an atherosclerotic artery by cell-cell contact, cytokine production, and antigen presentation. In particular, natural antibodies bind to oxidized lipoproteins and cellular debris, which are abundant during plaque growth. Logically, any defects in B cells and consequent impairment in antibody production may greatly affect the shaping of the plaque and its clinical outcome. In this comprehensive review, we scrutinize the role of B cells and different classes of antibodies in atherosclerosis progression besides current novel B-cell-based therapeutic approaches that aim to resolve this affliction of mankind.
Collapse
Affiliation(s)
- Linlin Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Peize Li
- Department of Orthopedics, Changchun Chinese Medicine Hospital, Changchun, 130022, China
| | - Yuhui Li
- Department of Cardiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Wantong Qu
- Department of Cardiology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanyu Shi
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Tianyang Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ying Chen
- Department of Cardiology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
2
|
Deroissart J, Binder CJ, Porsch F. Role of Antibodies and Their Specificities in Atherosclerotic Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2024; 44:2154-2168. [PMID: 39114917 DOI: 10.1161/atvbaha.124.319843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease that is modulated by innate and adaptive immunity including humoral immunity. Importantly, antibody alterations achieved by genetic means or active and passive immunization strategies in preclinical studies can improve or aggravate atherosclerosis. Additionally, a wide range of epidemiological data demonstrate not only an association between the total levels of different antibody isotypes but also levels of antibodies targeting specific antigens with atherosclerotic cardiovascular disease. Here, we discuss the potential role of atherogenic dyslipidemia on the antibody repertoire and review potential antibody-mediated effector mechanisms involved in atherosclerosis development highlighting the major atherosclerosis-associated antigens that trigger antibody responses.
Collapse
Affiliation(s)
- Justine Deroissart
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| |
Collapse
|
3
|
Wang S, Chen Y, Zhou D, Zhang J, Guo G, Chen Y. Pathogenic Autoimmunity in Atherosclerosis Evolves from HSP60-Reactive CD4 + T Cells. J Cardiovasc Transl Res 2024; 17:1172-1180. [PMID: 38767798 DOI: 10.1007/s12265-024-10516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
Clinical evidence suggests anti-Hsp60 antibodies could contribute to atherosclerosis (AS) development, with unclear mechanisms. This study aims to explore the role of anti-HSP60-mediated autoimmunity in AS progression. HSP60-MHC tetramers were used to characterize HSP60-specific CD4 + T cells and assess TCR responses in mice. These cells were transplanted into AS mice to examine immune cell differentiation and infiltration in plaques and blood. Mice were injected with recombinant HSP60 or anti-HSP60 sera to evaluate effects on plaque progression and macrophage activity. Experiments with muMT-/-Apoe-/- mice examined humoral immunity's role in this autoimmunity. HSP60-reactive CD4 + T cells in AS mice differentiated into follicular helper cells, not Th1/Th17. Anti-HSP60 treatments increased macrophage infiltration and M1 polarization, indicating an anti-HSP60-driven inflammatory progression, dependent on humoral immunity. Anti-HSP60 influences macrophage infiltration, polarization, and plaque formation via humoral immunity, shedding light on its potential role in AS progression.
Collapse
MESH Headings
- Animals
- Chaperonin 60/immunology
- Chaperonin 60/genetics
- Autoimmunity
- Atherosclerosis/immunology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/blood
- Disease Models, Animal
- Macrophages/immunology
- Macrophages/metabolism
- Plaque, Atherosclerotic
- Mice, Knockout, ApoE
- Immunity, Humoral
- Mice, Inbred C57BL
- Cell Differentiation
- Phenotype
- T Follicular Helper Cells/immunology
- Adoptive Transfer
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/immunology
- Mitochondrial Proteins/metabolism
- Autoantibodies/blood
- Aortic Diseases/immunology
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Cells, Cultured
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Disease Progression
- Macrophage Activation
- Male
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Shixiang Wang
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, 510150, China
| | - Yongquan Chen
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, 510150, China
| | - Danyan Zhou
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, 510150, China
| | - Jiawei Zhang
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, 510150, China
| | - Guofeng Guo
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, 510150, China
| | - Youquan Chen
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, 510150, China.
| |
Collapse
|
4
|
Shirsath K, Joshi A, Vohra A, Devkar R. HSP60 knockdown exerts differential response in endothelial cells and monocyte derived macrophages during atherogenic transformation. Sci Rep 2021; 11:1086. [PMID: 33441791 PMCID: PMC7807046 DOI: 10.1038/s41598-020-79927-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
Ectopic expression of HSP60 in vascular cells is known to activate auto-immune response that is critical to atherogenic initiation. However, the pathogenic relevance of the aberrant HSP60 upregulation in intracellular signaling pathways associated with atherogenic consequences in vascular cells remains unclear. The aim of the present study was to determine the role of endogenous HSP60 in atherogenic transformation of endothelial cells and macrophages. After generating primary evidence of oxidized low density lipoprotein (OxLDL) induced HSP60 upregulation in human umbilical vein endothelial cells (HUVEC), its physiological relevance in high fat high fructose (HFHF) induced early atherogenic remodelling was investigated in C57BL/6J mice. Prominent HSP60 expression was recorded in tunica intima and media of thoracic aorta that showed hypertrophy, lumen dilation, elastin fragmentation and collagen deposition. Further, HSP60 overexpression was found to be prerequisite for its surface localization and secretion in HUVEC. eNOS downregulation and MCP-1, VCAM-1 and ICAM-1 upregulation with subsequent macrophage accumulation provided compelling evidences on HFHF induced endothelial dysfunction and activation that were also observed in OxLDL treated- and HSP60 overexpressing-HUVEC. OxLDL induced concomitant reduction in NO production and monocyte adhesion were prevented by HSP60 knockdown, implying towards HSP60 mediated possible regulation of the said genes. OxLDL induced HSP60 upregulation and secretion was also recorded in THP-1 derived macrophages (TDMs). HSP60 knockdown in TDMs accounted for higher OxLDL accumulation that correlated with altered scavenger receptors (SR-A1, CD36 and SR-B1) expression further culminating in M1 polarization. Collectively, the results highlight HSP60 upregulation as a critical vascular alteration that exerts differential regulatory role in atherogenic transformation of endothelial cells and macrophages.
Collapse
Affiliation(s)
- Kavita Shirsath
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Apeksha Joshi
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Aliasgar Vohra
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Ranjitsinh Devkar
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India.
| |
Collapse
|
5
|
|
6
|
Litwin M, Feber J, Niemirska A, Michałkiewicz J. Primary hypertension is a disease of premature vascular aging associated with neuro-immuno-metabolic abnormalities. Pediatr Nephrol 2016; 31:185-94. [PMID: 25724169 PMCID: PMC4689752 DOI: 10.1007/s00467-015-3065-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/19/2015] [Accepted: 02/03/2015] [Indexed: 02/07/2023]
Abstract
There is an increasing amount of data indicating that primary hypertension (PH) is not only a hemodynamic phenomenon but also a complex syndrome involving abnormal fat tissue distribution, over-activity of the sympathetic nervous system (SNS), metabolic abnormalities, and activation of the immune system. In children, PH usually presents with a typical phenotype of disturbed body composition, accelerated biological maturity, and subtle immunological and metabolic abnormalities. This stage of the disease is potentially reversible. However, long-lasting over-activity of the SNS and immuno-metabolic alterations usually lead to an irreversible stage of cardiovascular disease. We describe an intermediate phenotype of children with PH, showing that PH is associated with accelerated development, i.e., early premature aging of the immune, metabolic, and vascular systems. The associations and determinants of hypertensive organ damage, the principles of treatment, and the possibility of rejuvenation of the cardiovascular system are discussed.
Collapse
Affiliation(s)
- Mieczysław Litwin
- Department of Nephrology and Arterial Hypertension, The Children's Memorial Health Institute, Warsaw, Poland.
| | - Janusz Feber
- Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Canada
| | - Anna Niemirska
- Department of Nephrology and Arterial Hypertension, The Children's Memorial Health Institute, Warsaw, Poland
| | - Jacek Michałkiewicz
- Department of Microbiology and Immunology, The Children's Memorial Health Institute, Warsaw, Poland
- Department of Immunology, Medical University, Bydgoszcz, Poland
| |
Collapse
|
7
|
Heat shock protein 70 and antibodies to heat shock protein 60 are associated with cerebrovascular atherosclerosis. Clin Biochem 2016; 49:66-9. [DOI: 10.1016/j.clinbiochem.2015.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 10/05/2015] [Accepted: 10/17/2015] [Indexed: 11/24/2022]
|
8
|
Barrera G, Pizzimenti S, Ciamporcero ES, Daga M, Ullio C, Arcaro A, Cetrangolo GP, Ferretti C, Dianzani C, Lepore A, Gentile F. Role of 4-hydroxynonenal-protein adducts in human diseases. Antioxid Redox Signal 2015; 22:1681-702. [PMID: 25365742 DOI: 10.1089/ars.2014.6166] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Oxidative stress provokes the peroxidation of polyunsaturated fatty acids in cellular membranes, leading to the formation of aldheydes that, due to their high chemical reactivity, are considered to act as second messengers of oxidative stress. Among the aldehydes formed during lipid peroxidation (LPO), 4-hydroxy-2-nonenal (HNE) is produced at a high level and easily reacts with both low-molecular-weight compounds and macromolecules, such as proteins and DNA. In particular, HNE-protein adducts have been extensively investigated in diseases characterized by the pathogenic contribution of oxidative stress, such as cancer, neurodegenerative, chronic inflammatory, and autoimmune diseases. RECENT ADVANCES In this review, we describe and discuss recent insights regarding the role played by covalent adducts of HNE with proteins in the development and evolution of those among the earlier mentioned disease conditions in which the functional consequences of their formation have been characterized. CRITICAL ISSUES Results obtained in recent years have shown that the generation of HNE-protein adducts can play important pathogenic roles in several diseases. However, in some cases, the generation of HNE-protein adducts can represent a contrast to the progression of disease or can promote adaptive cell responses, demonstrating that HNE is not only a toxic product of LPO but also a regulatory molecule that is involved in several biochemical pathways. FUTURE DIRECTIONS In the next few years, the refinement of proteomical techniques, allowing the individuation of novel cellular targets of HNE, will lead to a better understanding the role of HNE in human diseases.
Collapse
Affiliation(s)
- Giuseppina Barrera
- 1Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino, Italy
| | - Stefania Pizzimenti
- 1Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino, Italy
| | | | - Martina Daga
- 1Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino, Italy
| | - Chiara Ullio
- 1Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino, Italy
| | - Alessia Arcaro
- 2Dipartimento di Medicina e Scienze della Salute, Università del Molise, Campobasso, Italy
| | | | - Carlo Ferretti
- 4Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | - Chiara Dianzani
- 4Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | - Alessio Lepore
- 5Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Fabrizio Gentile
- 2Dipartimento di Medicina e Scienze della Salute, Università del Molise, Campobasso, Italy
| |
Collapse
|
9
|
Jang EJ, Jung KY, Hwang E, Jang YJ. Characterization of human anti-heat shock protein 60 monoclonal autoantibody Fab fragments in atherosclerosis: Genetic and functional analysis. Mol Immunol 2013; 54:338-46. [DOI: 10.1016/j.molimm.2012.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/13/2012] [Accepted: 12/15/2012] [Indexed: 01/08/2023]
|
10
|
Rizzo M, Cappello F, Marfil R, Nibali L, Marino Gammazza A, Rappa F, Bonaventura G, Galindo-Moreno P, O'Valle F, Zummo G, Conway de Macario E, Macario AJL, Mesa F. Heat-shock protein 60 kDa and atherogenic dyslipidemia in patients with untreated mild periodontitis: a pilot study. Cell Stress Chaperones 2012; 17:399-407. [PMID: 22215516 PMCID: PMC3312963 DOI: 10.1007/s12192-011-0315-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/02/2011] [Accepted: 12/02/2011] [Indexed: 12/21/2022] Open
Abstract
Identification of predictors of cardiovascular risk can help in the prevention of pathologic episodes and the management of patients at all stages of illness. Here, we investigated the relationships between serum levels of Hsp60 and dyslipidemia in patients with periodontitis by performing a cross-sectional study of 22 patients with mild periodontitis without any prior treatment for it (i.e., drug naïve) and 22 healthy controls, matched for age and body mass index (BMI). All subjects were evaluated for periodontal status, gingival inflammation, and oral hygiene. Levels of circulating Hsp60, C-reactive protein (CRP), and plasma lipids were measured, and small, dense low-density lipoproteins (LDL) were indirectly assessed by determining the triglycerides/high-density lipoproteins (HDL) cholesterol ratio. We also assessed by immunohistochemistry Hsp60 levels in oral mucosa of patients and controls. No difference was found in CRP levels or plasma lipids between the two groups, but subjects with periodontitis showed, in comparison to controls, higher levels of small, dense LDL (p = 0.0355) and circulating Hsp60 concentrations (p < 0.0001). However, levels of mucosal Hsp60 did not change significantly between groups. Correlation analysis revealed that circulating Hsp60 inversely correlated with HDL-cholesterol (r = -0.589, p = 0.0039), and positively with triglycerides (r = +0.877, p < 0.0001), and small, dense LDL (r = +0.925, p < 0.0001). Serum Hsp60 significantly correlated with the degree of periodontal disease (r = +0.403, p = 0.0434). In brief, untreated patients with mild periodontitis had increased small, dense LDL and serum Hsp60 concentrations, in comparison to age- and BMI-matched controls and both parameters showed a strong positive correlation. Our data indicate that atherogenic dyslipidemia and elevated circulating Hsp60 tend to be linked and associated to periodontal pathology. Thus, the road is open to investigate the potential value of elevated levels of circulating Hsp60 as predictor of risk for cardiovascular disease when associated to dyslipidemia in periodontitis patients.
Collapse
Affiliation(s)
- Manfredi Rizzo
- Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Toma I, McCaffrey TA. Transforming growth factor-β and atherosclerosis: interwoven atherogenic and atheroprotective aspects. Cell Tissue Res 2012; 347:155-75. [PMID: 21626289 PMCID: PMC4915479 DOI: 10.1007/s00441-011-1189-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/06/2011] [Indexed: 12/15/2022]
Abstract
Age-related progression of cardiovascular disease is by far the largest health problem in the US and involves vascular damage, progressive vascular fibrosis and the accumulation of lipid-rich atherosclerotic lesions. Advanced lesions can restrict flow to key organs and can trigger occlusive thrombosis resulting in a stroke or myocardial infarction. Transforming growth factor-beta (TGF-β) is a major orchestrator of the fibroproliferative response to tissue damage. In the early stages of repair, TGF-β is released from platelets and activated from matrix reservoirs; it then stimulates the chemotaxis of repair cells, modulates immunity and inflammation and induces matrix production. At later stages, it negatively regulates fibrosis through its strong antiproliferative and apoptotic effects on fibrotic cells. In advanced lesions, TGF-β might be important in arterial calcification, commonly referred to as "hardening of the arteries". Because TGF-β can signal through multiple pathways, namely the SMADs, a MAPK pathway and the Rho/ROCK pathways, selective defects in TGF-β signaling can disrupt otherwise coordinated pathways of tissue regeneration. TGF-β is known to control cell proliferation, cell migration, matrix synthesis, wound contraction, calcification and the immune response, all being major components of the atherosclerotic process. However, many of the effects of TGF-β are essential to normal tissue repair and thus, TGF-β is often thought to be "atheroprotective". The present review attempts to parse systematically the known effects of TGF-β on both the major risk factors for atherosclerosis and to isolate the role of TGF-β in the many component pathways involved in atherogenesis.
Collapse
Affiliation(s)
- Ian Toma
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, 2300 I Street NW. Ross Hall 443, Washington DC 20037, USA
| | - Timothy A. McCaffrey
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, 2300 I Street NW. Ross Hall 443, Washington DC 20037, USA
| |
Collapse
|
12
|
Azizi-Semrad U, Grillari J, Grubeck-Loebenstein B, Pietschmann P. Biogerontology in Austria. Biogerontology 2011; 12:3-10. [PMID: 20195756 DOI: 10.1007/s10522-010-9267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
Abstract
In Austria significant progress in the field of biogerontology has been achieved in the past years. Biogerontological research is performed in academic and extramural institutions. The Institute for Biomedical Aging Research of the Austrian Academy of Science at Innsbruck is the largest institution dealing with biogerontology in Austria. Moreover, gerontologic research is performed at the Universities of Salzburg and Graz, the Medical Universities of Vienna, Innsbruck and Graz, the University of Veterinary Medicine (Vienna) and the University of Natural Resources and Applied Life Sciences (Vienna). This article describes the work of selected research groups involved in biogerontology in a geographic arrangement.
Collapse
Affiliation(s)
- Ursula Azizi-Semrad
- Department of Pathophysiology, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
13
|
The role of a group leader in a surgical research laboratory and his environment – a personal view. Eur Surg 2010. [DOI: 10.1007/s10353-010-0535-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Yong L, Yunxiao S, Qiyan X, Yu Z, Jing H, Mekoo DJL, Fan Z, Xiangbing H, Yanjun M, Jingjing L, Taiming L. Immunization with P277 induces vascular leak syndrome in C57BL/6 mice via endothelial damage. Autoimmunity 2010; 43:654-63. [DOI: 10.3109/08916931003674683] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
|
16
|
Knoflach M, Kiechl S, Mayrl B, Kind M, Gaston JSH, van der Zee R, Faggionato A, Mayr A, Willeit J, Wick G. T-cell reactivity against HSP60 relates to early but not advanced atherosclerosis. Atherosclerosis 2006; 195:333-8. [PMID: 17070529 DOI: 10.1016/j.atherosclerosis.2006.09.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 09/15/2006] [Accepted: 09/27/2006] [Indexed: 11/22/2022]
Abstract
BACKGROUND Anti-heat-shock protein 60 (HSP60) antibody-levels have been linked to carotid atherosclerosis and cardiovascular risk in a variety of studies. The potential role of cellular immune reactions against HSP60 has so far attracted little attention in epidemiological research. METHODS AND RESULTS In vitro T-cell reactivity to various HSP60s and tuberculin was assessed in blood samples from a elderly subpopulation of the Bruneck study (100 men, 50-69 years) and the young participants of the ARMY study (141 men, 17-18 years), and analyzed for a potential association with common carotoid artery intima-media thickness (IMT). In vivo skin reaction against tuberculin was recorded in subjects of the Bruneck study and correlated with the in vitro proliferative response to tuberculin (P=0.004). T-cells isolated from peripheral blood of all individuals proliferated upon stimulation with HSP60s. In multivariate linear regression analysis adjusted for standard risk factors, T-cell stimulation was significantly related to IMT in the ARMY (P=0.005 for human HSP60 and P=0.064 for mycobacterial HSP60) but not in the Bruneck study. CONCLUSIONS T-cell reactivity against HSP60s correlated with IMT in male youngsters but not in men aged 50 and over, indicating a more prominent role of specific cellular immunity to HSP60s in the young and very early stages of atherosclerosis.
Collapse
Affiliation(s)
- M Knoflach
- Department of Clinical Neurology, Innsbruck Medical University, Anichstr. 35, A-6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|