1
|
El-Bana MA, El-Daly SM, Omara EA, Morsy SM, El-Naggar ME, Medhat D. Preparation of pumpkin oil-based nanoemulsion as a potential estrogen replacement therapy to alleviate neural-immune interactions in an experimental postmenopausal model. Prostaglandins Other Lipid Mediat 2023; 166:106730. [PMID: 36931593 DOI: 10.1016/j.prostaglandins.2023.106730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
As estrogen production decreases during menopause; the brain's metabolism tends to stall and become less effective. Estrogen most likely protects against neurodegeneration. Consequently, a comprehensive study of the benefits of hormone replacement therapy as a neuroprotective effect is urgently required. This study was designed to fabricate pumpkin seed oil nanoparticles (PSO) in nanoemulsion form (PSO-NE) and investigate their potential role in attenuating the neural-immune interactions in an experimental postmenopausal model.Sixty female white albino rats were divided into six groups: control, sham, ovariectomized (OVX), and three OVX groups treated with 17β-estradiol, PSO, and PSO-NE respectively. Transmission Electron Microscopy (TEM), and particle size analyzer were performed for nanoemulsion evaluation. Serum levels of estrogen, brain amyloid precursor protein (APP), serum levels of nuclear factor kappa B (NF-κβ), interleukin 6 (IL-6), transthyretin (TTR), and synaptophysin (SYP) were evaluated. The expression of estrogen receptors (ER-α, β) in the brain tissue was estimated. The findings revealed that the approached PSO-NE system was able to reduce the interfacial tension, enhance the dispersion entropy, lower the system free energy to an extremely small value, and augment the interfacial area. PSO-NE, showed a significant increase in the levels of estrogen, brain APP, SYP, and TTR accompanied with a significant increased in the expression of brain ER-α, β compared to the OVX group. In conclusion, the phytoestrogen content of PSO exhibited a significant prophylactic effect on neuro-inflammatory interactions, ameliorating both estrogen levels and the inflammatory cascades.
Collapse
Affiliation(s)
- Mona A El-Bana
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute National Research Centre, Dokki, Giza, Egypt
| | - Sherien M El-Daly
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute National Research Centre, Dokki, Giza, Egypt; Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Enayat A Omara
- Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Safaa M Morsy
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute National Research Centre, Dokki, Giza, Egypt
| | - Mehrez E El-Naggar
- Institute of Textile Research and Technology, National Research Centre, Dokki, Giza, Egypt
| | - Dalia Medhat
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute National Research Centre, Dokki, Giza, Egypt.
| |
Collapse
|
2
|
Jie F, Yang X, Yang B, Liu Y, Wu L, Lu B. Stigmasterol attenuates inflammatory response of microglia via NF-κB and NLRP3 signaling by AMPK activation. Biomed Pharmacother 2022; 153:113317. [DOI: 10.1016/j.biopha.2022.113317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/02/2022] Open
|
3
|
Kumar R, Kumar R, Sharma N, Khurana N, Singh SK, Satija S, Mehta M, Vyas M. Pharmacological evaluation of bromelain in mouse model of Alzheimer's disease. Neurotoxicology 2022; 90:19-34. [PMID: 35219781 DOI: 10.1016/j.neuro.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2022]
Abstract
The current study elucidates pharmacological evaluation of bromelain as a bioactive compound obtain from pineapple stem belongs to family Bromeliaceae in AlCl3 and D - galactose induced mice. In mice, co-administration of AlCl3 at dose 5 mg/kg b.w., via the oral route, and D - galactose at dose 60 mg/kg b.w., via intraperitoneal route for 90 days resulted in cognitive impairment, spatial learning, and memory deficits, as well as neurotoxicity. However, 30 consecutive days, treatments via an intraperitoneal route with bromelain low dose (Brm L) at dose 10 mg/kg b.w., bromelain high dose (Brm H) at dose 20 mg/kg b.w., donepezil (Dnpz) at dose 2 mg/kg b.w., and Brm L + Dnpz at doses 10, 2 mg/kg b.w. were considerably reversed the effect of AlCl3 and D - galactose induced AD mice. Consequences of behavioral parameters (Morris water maze, elevated plus maze and locomotor), biochemical estimation (MDA, GSH, SOD, CAT, Nitrite and AChE), and ELISA tests (mouse BACE, Aβ1 - 42, TNF-α, IL-6, and BDNF) confirmed significant (p < 0.05) neuroprotective effect of treatments in AlCl3 and D - galactose induced mice. Additionally, hematoxylin and eosin staining of the cerebral cortex and the hippocampus exposed eosinophilic lesions and hyperchromatic nuclei in AD mice, but these neurodegenerative effects were eliminated by Brm L, Brm H, Dnpz, and Brm L + Dnpz treatments. Thus, bromelain alone and in combination with donepezil prevent AlCl3 and D - galactose induced spatial learning and memory deficits, as well as cognitive impairment, by increasing cholinergic activity and synaptic plasticity, as well as reducing oxidative damage, neuroinflammation, Aβ 1-42 aggregations, and histopathological damage, according to our findings. The present study consequences indicate that bromelain alone and in combination with donepezil appears to have neuroprotective properties. Henceforward, this may be a promising treatment option for Alzheimer's disease.
Collapse
Affiliation(s)
- Rakesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| |
Collapse
|
4
|
Saponaro F, Kim JH, Chiellini G. Transthyretin Stabilization: An Emerging Strategy for the Treatment of Alzheimer's Disease? Int J Mol Sci 2020; 21:ijms21228672. [PMID: 33212973 PMCID: PMC7698513 DOI: 10.3390/ijms21228672] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 12/27/2022] Open
Abstract
Transthyretin (TTR), previously named prealbumin is a plasma protein secreted mainly by the liver and choroid plexus (CP) that is a carrier for thyroid hormones (THs) and retinol (vitamin A). The structure of TTR, with four monomers rich in β-chains in a globular tetrameric protein, accounts for the predisposition of the protein to aggregate in fibrils, leading to a rare and severe disease, namely transthyretin amyloidosis (ATTR). Much effort has been made and still is required to find new therapeutic compounds that can stabilize TTR ("kinetic stabilization") and prevent the amyloid genetic process. Moreover, TTR is an interesting therapeutic target for neurodegenerative diseases due to its recognized neuroprotective properties in the cognitive impairment context and interestingly in Alzheimer's disease (AD). Much evidence has been collected regarding the neuroprotective effects in AD, including through in vitro and in vivo studies as well as a wide range of clinical series. Despite this supported hypothesis of neuroprotection for TTR, the mechanisms are still not completely clear. The aim of this review is to highlight the most relevant findings on the neuroprotective role of TTR, and to summarize the recent progress on the development of TTR tetramer stabilizers.
Collapse
Affiliation(s)
| | - Jin Hae Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea;
| | - Grazia Chiellini
- Department of Pathology, University of Pisa, 56100 Pisa, Italy;
- Correspondence:
| |
Collapse
|
5
|
Harding SD, Faccenda E, Southan C, Pawson AJ, Maffia P, Alexander SPH, Davenport AP, Fabbro D, Levi‐Schaffer F, Spedding M, Davies JA. The IUPHAR Guide to Immunopharmacology: connecting immunology and pharmacology. Immunology 2020; 160:10-23. [PMID: 32020584 PMCID: PMC7160657 DOI: 10.1111/imm.13175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Given the critical role that the immune system plays in a multitude of diseases, having a clear understanding of the pharmacology of the immune system is crucial to new drug discovery and development. Here we describe the International Union of Basic and Clinical Pharmacology (IUPHAR) Guide to Immunopharmacology (GtoImmuPdb), which connects expert-curated pharmacology with key immunological concepts and aims to put pharmacological data into the hands of immunologists. In the pursuit of new therapeutics, pharmacological databases are a vital resource to researchers through providing accurate information on the fundamental science underlying drug action. This extension to the existing IUPHAR/British Pharmacological Society Guide to Pharmacology supports research into the development of drugs targeted at modulating immune, inflammatory or infectious components of disease. To provide a deeper context for how the resource can support research we show data in GtoImmuPdb relating to a case study on the targeting of vascular inflammation.
Collapse
Affiliation(s)
- Simon D. Harding
- Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Elena Faccenda
- Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Christopher Southan
- Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
- Present address:
TW2Informatics LtdGöteborg42166Sweden
| | - Adam J. Pawson
- Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Pasquale Maffia
- Centre for ImmunobiologyInstitute of Infection, Immunity and InflammationCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Institute of Cardiovascular and Medical SciencesCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | | | | | - Doriano Fabbro
- Cellestia Biotech SABaselSwitzerland
- TargImmune Therapeutics AGBaselSwitzerland
| | | | | | - Jamie A. Davies
- Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
6
|
Undiscovered Roles for Transthyretin: From a Transporter Protein to a New Therapeutic Target for Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21062075. [PMID: 32197355 PMCID: PMC7139926 DOI: 10.3390/ijms21062075] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
Transthyretin (TTR), an homotetrameric protein mainly synthesized by the liver and the choroid plexus, and secreted into the blood and the cerebrospinal fluid, respectively, has been specially acknowledged for its functions as a transporter protein of thyroxine and retinol (the latter through binding to the retinol-binding protein), in these fluids. Still, this protein has managed to stay in the spotlight as it has been assigned new and varied functions. In this review, we cover knowledge on novel TTR functions and the cellular pathways involved, spanning from neuroprotection to vascular events, while emphasizing its involvement in Alzheimer’s disease (AD). We describe details of TTR as an amyloid binding protein and discuss its interaction with the amyloid Aβ peptides, and the proposed mechanisms underlying TTR neuroprotection in AD. We also present the importance of translating advances in the knowledge of the TTR neuroprotective role into drug discovery strategies focused on TTR as a new target in AD therapeutics.
Collapse
|
7
|
Martin E, Amar M, Dalle C, Youssef I, Boucher C, Le Duigou C, Brückner M, Prigent A, Sazdovitch V, Halle A, Kanellopoulos JM, Fontaine B, Delatour B, Delarasse C. New role of P2X7 receptor in an Alzheimer's disease mouse model. Mol Psychiatry 2019; 24:108-125. [PMID: 29934546 PMCID: PMC6756107 DOI: 10.1038/s41380-018-0108-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 01/05/2023]
Abstract
Extracellular aggregates of amyloid β (Aβ) peptides, which are characteristic of Alzheimer's disease (AD), act as an essential trigger for glial cell activation and the release of ATP, leading to the stimulation of purinergic receptors, especially the P2X7 receptor (P2X7R). However, the involvement of P2X7R in the development of AD is still ill-defined regarding the dual properties of this receptor. Particularly, P2X7R activates the NLRP3 inflammasome leading to the release of the pro-inflammatory cytokine, IL-1β; however, P2X7R also induces cleavage of the amyloid precursor protein generating Aβ peptides or the neuroprotective fragment sAPPα. We thus explored in detail the functions of P2X7R in AD transgenic mice. Here, we show that P2X7R deficiency reduced Aβ lesions, rescued cognitive deficits and improved synaptic plasticity in AD mice. However, the lack of P2X7R did not significantly affect the release of IL-1β or the levels of non-amyloidogenic fragment, sAPPα, in AD mice. Instead, our results show that P2X7R plays a critical role in Aβ peptide-mediated release of chemokines, particularly CCL3, which is associated with pathogenic CD8+ T cell recruitment. In conclusion, our study highlights a novel detrimental function of P2X7R in chemokine release and supports the notion that P2X7R may be a promising therapeutic target for AD.
Collapse
Affiliation(s)
- Elodie Martin
- Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Majid Amar
- Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Carine Dalle
- Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Ihsen Youssef
- Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Céline Boucher
- Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Caroline Le Duigou
- Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Matthias Brückner
- 0000 0004 0550 9586grid.438114.bCenter of Advanced European Studies and Research (caesar), Max Planck research group Neuroimmunology, 53175 Bonn, Germany
| | - Annick Prigent
- Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Véronique Sazdovitch
- Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France ,0000 0001 2150 9058grid.411439.aAP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France
| | - Annett Halle
- 0000 0004 0550 9586grid.438114.bCenter of Advanced European Studies and Research (caesar), Max Planck research group Neuroimmunology, 53175 Bonn, Germany ,0000 0004 0438 0426grid.424247.3Present Address: German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
| | - Jean M. Kanellopoulos
- 0000 0001 2171 2558grid.5842.bInstitut de Biologie Intégrative, I2BC-CNRS 9198, Department of Biochemistry Biophysics and Structural Biology, Université Paris-Sud, 91405 Orsay, France
| | - Bertrand Fontaine
- Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France ,0000 0001 2150 9058grid.411439.aAP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France
| | - Benoît Delatour
- Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Cécile Delarasse
- Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.
| |
Collapse
|
8
|
Licochalcone A Prevents the Loss of Dopaminergic Neurons by Inhibiting Microglial Activation in Lipopolysaccharide (LPS)-Induced Parkinson's Disease Models. Int J Mol Sci 2017; 18:ijms18102043. [PMID: 28937602 PMCID: PMC5666725 DOI: 10.3390/ijms18102043] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 01/12/2023] Open
Abstract
The neuroprotective effects of Licochalcone A (Lico.A), a flavonoid isolated from the herb licorice, in Parkinson's disease (PD) have not been elucidated. The prominent pathological feature of PD is the loss of dopaminergic neurons. The crucial role of neuroinflammation induced by activated microglia in dopaminergic neurodegeneration has been validated. In this study, we explore the therapeutic effects of Lico.A in lipopolysaccharide (LPS)-induced PD models in vivo and in vitro. We find that Lico.A significantly inhibits LPS-stimulated production of pro-inflammatory mediators and microglial activation by blocking the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and nuclear factor κB (NF-κB) p65 in BV-2 cells. In addition, through cultured primary mesencephalic neuron-glia cell experiments, we illustrate that Lico.A attenuates the decrease in [³H] dopamine (DA) uptake and the loss of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in LPS-induced PD models in vitro. Furthermore, LPS intoxication in rats results in microglial activation, dopaminergic neurodegeneration and significant behavioral deficits in vivo. Lico.A treatment prevents microglial activation and reduction of dopaminergic neuron and ameliorates PD-like behavioral impairments. Thus, these results demonstrate for the first time that the neuroprotective effects of Lico.A are associated with microglia and anti-inflammatory effects in PD models.
Collapse
|
9
|
Cervellati C, Bergamini CM. Oxidative damage and the pathogenesis of menopause related disturbances and diseases. Clin Chem Lab Med 2017; 54:739-53. [PMID: 26544103 DOI: 10.1515/cclm-2015-0807] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/18/2015] [Indexed: 12/24/2022]
Abstract
The postmenopausal phase of life is frequently associated in women with subjective symptoms (e.g. vasomotor) and real diseases (atherosclerosis with coronary ischemia, osteoporosis, Alzheimer-type neurodegeneration, urogenital dystrophy), which together determine the post-menopausal syndrome. Observations that oxidative damage by reactive oxygen/nitrogen species in experimental models can contribute to the pathogenesis of these disturbances stimulated research on the relationships between menopause, its endocrine deficiency, oxidative balance and the "wellness" in postmenopausal life. The connection among these events is probably due to the loss of protective actions exerted by estrogens during the fertile life. Most recent studies have revealed that estrogens exert an antioxidant action not by direct chemical neutralization of reactants as it was expected until recently but by modulating the expression of antioxidant enzymes that control levels of biological reducing agents. Also nutritional antioxidants apparently act by a similar mechanism. From this perspective it is conceivable that a cumulative control of body oxidant challenges and biological defenses could help in monitoring between "normal" and "pathological" menopause. However, as clinical studies failed to confirm this scenario in vivo, we have decided to review the existing literature to understand the causes of this discrepancy and whether this was due to methodologic reasons or to real failure of the basic hypothesis.
Collapse
|
10
|
Krauthausen M, Kummer MP, Zimmermann J, Reyes-Irisarri E, Terwel D, Bulic B, Heneka MT, Müller M. CXCR3 promotes plaque formation and behavioral deficits in an Alzheimer's disease model. J Clin Invest 2014; 125:365-78. [PMID: 25500888 DOI: 10.1172/jci66771] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/10/2014] [Indexed: 01/28/2023] Open
Abstract
Chemokines are important modulators of neuroinflammation and neurodegeneration. In the brains of Alzheimer's disease (AD) patients and in AD animal models, the chemokine CXCL10 is found in high concentrations, suggesting a pathogenic role for this chemokine and its receptor, CXCR3. Recent studies aimed at addressing the role of CXCR3 in neurological diseases indicate potent, but diverse, functions for CXCR3. Here, we examined the impact of CXCR3 in the amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mouse model of AD. We found that, compared with control APP/PSI animals, plaque burden and Aβ levels were strongly reduced in CXCR3-deficient APP/PS1 mice. Analysis of microglial phagocytosis in vitro and in vivo demonstrated that CXCR3 deficiency increased the microglial uptake of Aβ. Application of a CXCR3 antagonist increased microglial Aβ phagocytosis, which was associated with reduced TNF-α secretion. Moreover, in CXCR3-deficient APP/PS1 mice, microglia exhibited morphological activation and reduced plaque association, and brain tissue from APP/PS1 animals lacking CXCR3 had reduced concentrations of proinflammatory cytokines compared with controls. Further, loss of CXCR3 attenuated the behavioral deficits observed in APP/PS1 mice. Together, our data indicate that CXCR3 signaling mediates development of AD-like pathology in APP/PS1 mice and suggest that CXCR3 has potential as a therapeutic target for AD.
Collapse
|
11
|
Ientile R, Currò M, Caccamo D. Transglutaminase 2 and neuroinflammation. Amino Acids 2014; 47:19-26. [PMID: 25398223 DOI: 10.1007/s00726-014-1864-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/29/2014] [Indexed: 12/28/2022]
Abstract
Neuroinflammatory processes seem to play a pivotal role in various chronic neurodegenerative diseases, characterized also by the pathogenetic accumulation of specific protein aggregates. Several of these proteins have been shown to be substrates of transglutaminases, calcium-dependent enzymes that catalyze protein crosslinking reactions. However, it has recently been demonstrated that transglutaminase 2 (TG2) may also be involved in molecular mechanisms underlying inflammation. In the central nervous system, astrocytes and microglia are the cell types mainly involved in the inflammatory process. This review is focused on the increases of TG2 protein expression and enzyme activity that occur in astroglial, microglial and monocyte cell models in response to inflammatory stimuli. The transcription factor NF-κB is considered the main regulator of inflammation, being activated by a variety of stimuli including calcium influx, oxidative stress and inflammatory cytokines. Under these conditions, the over-expression of TG2 results in the sustained activation of NF-κB. Several findings emphasize the possible role of the TG2/NF-κB activation pathway in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple sclerosis and amyotrophic lateral sclerosis. Although further studies are needed to characterize the TG2/NF-κB cross-talk in monocytes/macrophages/microglia within the central nervous system, some results show that TG2 and NF-κB are co-localized in cell compartments. Together, evidence suggests that TG2 plays a role in neuroinflammation and contributes to the production of compounds that are potentially deleterious to neuronal cells.
Collapse
Affiliation(s)
- Riccardo Ientile
- Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, AOU Policlinico "G. Martino", Via C. Valeria, Messina, Italy,
| | | | | |
Collapse
|
12
|
Naudé PJW, den Boer JA, Comijs HC, Bosker FJ, Zuidersma M, Groenewold NA, De Deyn PP, Luiten PGM, Eisel ULM, Oude Voshaar RC. Sex-specific associations between Neutrophil Gelatinase-Associated Lipocalin (NGAL) and cognitive domains in late-life depression. Psychoneuroendocrinology 2014; 48:169-77. [PMID: 25019974 DOI: 10.1016/j.psyneuen.2014.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 06/02/2014] [Accepted: 06/19/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Although it is well established that late-life depression is associated with both systemic low-graded inflammation and cognitive impairment, the relation between inflammation and cognition in depressed older persons is still equivocal. The objective of this study is to examine the association between plasma Neutrophil Gelatinase-Associated Lipocalin (NGAL) concentrations and cognitive functioning in late-life depression, including the potentially moderating role of sex. METHODS A total of 369 depressed older persons (≥60 years) from The Netherlands study of Depression in Older persons (NESDO) were included. Four cognitive domains, i.e. verbal memory, processing speed, interference control and attention were assessed with three cognitive tests (Stroop test, Wais Digit span test, and Rey's verbal learning test). Multiple linear regression analyses were applied with the four cognitive domains as dependent variables adjusted for confounders. RESULTS The association between NGAL levels and specific cognitive domains were sex-specific. In women, higher NGAL levels were associated with impaired verbal memory and lower processing speed. In men, higher NGAL levels were associated with worse interference control. Higher NGAL levels were not associated with attention. No sex-specific associations of either high sensitivity C-reactive protein (hsCRP) or interleukin-6 (IL-6) with cognitive functioning were found. CONCLUSION This study shows sex-specific association of NGAL with cognitive functioning in late-life depression.
Collapse
Affiliation(s)
- P J W Naudé
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands; University Center of Psychiatry & Interdisciplinary Center of Psychopathology of Emotion Regulation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Neurology and Alzheimer Research Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - J A den Boer
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - H C Comijs
- Department of Psychiatry, EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - F J Bosker
- University Center of Psychiatry & Interdisciplinary Center of Psychopathology of Emotion Regulation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M Zuidersma
- University Center of Psychiatry & Interdisciplinary Center of Psychopathology of Emotion Regulation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - N A Groenewold
- University Center of Psychiatry & Interdisciplinary Center of Psychopathology of Emotion Regulation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - P P De Deyn
- Department of Neurology and Alzheimer Research Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Neurology and Memory Clinic, ZNA and Laboratory of Neurochemistry and Behavior, Reference Center for Biological Markers of Dementia and Biobank Antwerp, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - P G M Luiten
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands; University Center of Psychiatry & Interdisciplinary Center of Psychopathology of Emotion Regulation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - U L M Eisel
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands; University Center of Psychiatry & Interdisciplinary Center of Psychopathology of Emotion Regulation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - R C Oude Voshaar
- University Center of Psychiatry & Interdisciplinary Center of Psychopathology of Emotion Regulation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Paredes J, Jones DP, Wilson ME, Herndon JG. Age-related alterations of plasma glutathione and oxidation of redox potentials in chimpanzee (Pan troglodytes) and rhesus monkey (Macaca mulatta). AGE (DORDRECHT, NETHERLANDS) 2014; 36:719-32. [PMID: 24532367 PMCID: PMC4039255 DOI: 10.1007/s11357-014-9615-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 01/07/2014] [Indexed: 06/03/2023]
Abstract
Chimpanzee (Pan troglodytes) and rhesus macaque (Macaca mulatta) and humans (Homo sapiens) share physiological and genetic characteristics, but have remarkably different life spans, with chimpanzees living 50-60 % and the rhesus living 35-40 % of maximum human survival. Since oxidative processes are associated with aging and longevity, we might expect to see species differences in age-related oxidative processes. Blood and extracellular fluid contain two major thiol redox nodes, glutathione (GSH)/glutathione-disulfide (GSSG) and cysteine (Cys)/cystine (CySS), which are subject to reversible oxidation-reduction reactions and are maintained in a dynamic non-equilibrium state. Disruption of these thiol redox nodes leads to oxidation of their redox potentials (EhGSSG and EhCySS) which affects cellular physiology and is associated with aging and the development of chronic diseases in humans. The purpose of this study was to measure age-related changes in these redox thiols and their corresponding redox potentials (Eh) in chimpanzees and rhesus monkeys. Our results show similar age-related decreases in the concentration of plasma GSH and Total GSH as well as oxidation of the EhGSSG in male and female chimpanzees. Female chimpanzees and female rhesus monkeys also were similar in several outcome measures. For example, similar age-related decreases in the concentration of plasma GSH and Total GSH, as well as age-related oxidation of the EhGSSG were observed. The data collected from chimpanzees and rhesus monkeys corroborates previous reports on oxidative changes in humans and confirms their value as a comparative reference for primate aging.
Collapse
Affiliation(s)
- Jamespaul Paredes
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center of Emory University, 954 Gatewood Drive, Atlanta, GA, 30329, USA,
| | | | | | | |
Collapse
|
14
|
van Assema DME, Lubberink M, Boellaard R, Schuit RC, Windhorst AD, Scheltens P, Lammertsma AA, van Berckel BNM. P-glycoprotein function at the blood-brain barrier: effects of age and gender. Mol Imaging Biol 2013; 14:771-6. [PMID: 22476967 PMCID: PMC3492696 DOI: 10.1007/s11307-012-0556-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE P-glycoprotein (Pgp) is an efflux transporter involved in transport of several compounds across the blood-brain barrier (BBB). Loss of Pgp function with increasing age may be involved in the development of age-related disorders, but this may differ between males and females. Pgp function can be quantified in vivo using (R)-[(11)C]verapamil and positron emission tomography. The purpose of this study was to assess global and regional effects of both age and gender on BBB Pgp function. PROCEDURES Thirty-five healthy men and women in three different age groups were included. Sixty minutes dynamic (R)-[(11)C]verapamil scans with metabolite-corrected arterial plasma input curves were acquired. Grey matter time-activity curves were fitted to a validated constrained two-tissue compartment plasma input model, providing the volume of distribution (V (T)) of (R)-[(11)C]verapamil as outcome measure. RESULTS Increased V (T) of (R)-[(11)C]verapamil with aging was found in several large brain regions in men. Young and elderly women showed comparable V (T) values. Young women had higher V (T) compared with young men. CONCLUSIONS Decreased BBB Pgp is found with aging; however, effects of age on BBB Pgp function differ between men and women.
Collapse
Affiliation(s)
- Daniëlle M E van Assema
- Department of Nuclear Medicine & PET Research, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Isotalo K, Kok EH, Luoto TM, Haikonen S, Haapasalo H, Lehtimäki T, Karhunen PJ. Upstream transcription factor 1 (USF1) polymorphisms associate with Alzheimer's disease-related neuropathological lesions: Tampere Autopsy Study. Brain Pathol 2012; 22:765-75. [PMID: 22390463 DOI: 10.1111/j.1750-3639.2012.00586.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The apolipoprotein E (APOE) gene associates with Alzheimer's disease (AD) and cholesterol levels. Upstream transcription factor 1 (USF1) regulates lipid metabolism genes, including APOE, and the AD Aβ-precursor protein. We investigated associations between 6 haplotype-tagging USF1 single-nucleotide polymorphisms (and haplotypes) and AD-related neuropathological lesions [senile plaques (SP), neurofibrillary tangles (NFT) ] in an autopsy series comprising 603 cases (ages 0-97, mean 62 years, 215 women) that died out-of-hospital. In age- and APOE-adjusted analyses, the minor G-allele of rs2774276, previously linked to elevated cholesterol, associated with late-stage burnt out SP among women and early non-neuritic SP among men. The G-allele of the previously unreported rs10908821 showed significant risk of having SP, especially neuritic and burnt out SP, among women but not men. USF1 haplotype GCGCAC carriers (risk alleles of rs2774276 and rs10908821) associated with SP risk, especially neuritic and late-stage burnt out SP, among women but not men. Younger CCGCAC carriers (risk allele of rs2774276 and protective of rs10908821) were more likely to have non-neuritic and diffuse SP. Conversely, USF1 CCGCAC haplotype carriers had lower NFT prevalence among 65+ year-olds. These results suggest USF1 has an independent but gender- and age-associated effect on AD-related brain lesion development.
Collapse
Affiliation(s)
- Karita Isotalo
- Department of Forensic Medicine, University of Tampere, Tampere, Finland.
| | | | | | | | | | | | | |
Collapse
|
16
|
Regulation of estrogen receptor alpha gene expression in the mouse prefrontal cortex during early postnatal development. Neurogenetics 2012; 13:159-67. [PMID: 22457017 DOI: 10.1007/s10048-012-0323-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/13/2012] [Indexed: 12/13/2022]
Abstract
Estrogens have many functions in the developing rodent brain, and most of these depend on the presence of estrogen receptors. Understanding how expression of these receptors are regulated is crucial for understanding the roles of estradiol in the male and female brain during development In rodents, the prefrontal cortex (PFC) has been shown to be involved in working memory, attention, and behavioral inhibition. Many studies have demonstrated an effect of estradiol on sex difference in these functions attributed to differences in the PFC. We have previously demonstrated that estrogen receptor alpha (ERα) expression decreases in the isocortex across early postnatal development. This decrease corresponds with an increase in methylation of many sites along the ERα promoter. Here we have examined both ERα and ERβ mRNA expression in the PFC to determine if methylation also plays a role in this important brain region. We investigated expression of alternate promoters for ERα and methylation of CpG sites along two of these promoters. We found that the pattern of ERα mRNA expression in PFC was similar to the pattern of ERα expression in the isocortex and that there were no sex differences in the level of expression across development. We did, however, find subtle differences in promoter expression and methylation that may indicate a sex-specific difference in PFC during development resulting in a difference in adult response.
Collapse
|
17
|
Wend K, Wend P, Krum SA. Tissue-Specific Effects of Loss of Estrogen during Menopause and Aging. Front Endocrinol (Lausanne) 2012; 3:19. [PMID: 22654856 PMCID: PMC3356020 DOI: 10.3389/fendo.2012.00019] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 01/23/2012] [Indexed: 12/04/2022] Open
Abstract
The roles of estrogens have been best studied in the breast, breast cancers, and in the female reproductive tract. However, estrogens have important functions in almost every tissue in the body. Recent clinical trials such as the Women's Health Initiative have highlighted both the importance of estrogens and how little we know about the molecular mechanism of estrogens in these other tissues. In this review, we illustrate the diverse functions of estrogens in the bone, adipose tissue, skin, hair, brain, skeletal muscle and cardiovascular system, and how the loss of estrogens during aging affects these tissues. Early transcriptional targets of estrogen are reviewed in each tissue. We also describe the tissue-specific effects of selective estrogen receptor modulators (SERMs) used for the treatment of breast cancers and postmenopausal symptoms.
Collapse
Affiliation(s)
- Korinna Wend
- Orthopaedic Hospital Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California Los AngelesLos Angeles, CA, USA
| | - Peter Wend
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los AngelesLos Angeles, CA, USA
| | - Susan A. Krum
- Orthopaedic Hospital Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California Los AngelesLos Angeles, CA, USA
| |
Collapse
|
18
|
Prat A, Behrendt M, Marcinkiewicz E, Boridy S, Sairam RM, Seidah NG, Maysinger D. A novel mouse model of Alzheimer's disease with chronic estrogen deficiency leads to glial cell activation and hypertrophy. J Aging Res 2011; 2011:251517. [PMID: 21969914 PMCID: PMC3182380 DOI: 10.4061/2011/251517] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 01/28/2023] Open
Abstract
The role of estrogens in Alzheimer's disease (AD) involving β-amyloid (Aβ) generation and plaque formation was mostly tested in ovariectomized mice with or without APP mutations. The aim of the present study was to explore the abnormalities of neural cells in a novel mouse model of AD with chronic estrogen deficiency. These chimeric mice exhibit a total FSH-R knockout (FORKO) and carry two transgenes, one expressing the β-amyloid precursor protein (APPsw, Swedish mutation) and the other expressing presenilin-1 lacking exon 9 (PS1Δ9). The most prominent changes in the cerebral cortex and hippocampus of these hypoestrogenic mice were marked hypertrophy of both cortical neurons and astrocytes and an increased number of activated microglia. There were no significant differences in the number of Aβ plaques although they appeared less compacted and larger than those in APPsw/PS1Δ9 control mice. Similar glia abnormalities were obtained in wild-type primary cortical neural cultures treated with letrozole, an aromatase inhibitor. The concordance of results from APPsw/PS1Δ9 mice with or without FSH-R deletion and those with letrozole treatment in vitro (with and without Aβ treatment) of primary cortical/hippocampal cultures suggests the usefulness of these models to explore molecular mechanisms involved in microglia and astrocyte activation in hypoestrogenic states in the central nervous system.
Collapse
Affiliation(s)
- Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
| | - Maik Behrendt
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1314, McIntyre Medical Sciences Building, Montreal, QC, H3G 1Y6, Canada
| | - Edwige Marcinkiewicz
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
| | - Sebastien Boridy
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1314, McIntyre Medical Sciences Building, Montreal, QC, H3G 1Y6, Canada
| | - Ram M. Sairam
- Molecular Endocrinology Laboratory, Clinical Research Institute of Montreal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
- Department of Medicine, Division of Experimental Medicine, Montreal, QC, Canada
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1314, McIntyre Medical Sciences Building, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
19
|
Pivac N, Nikolac M, Nedic G, Mustapic M, Borovecki F, Hajnsek S, Presecki P, Pavlovic M, Mimica N, Muck Seler D. Brain derived neurotrophic factor Val66Met polymorphism and psychotic symptoms in Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:356-62. [PMID: 21044653 DOI: 10.1016/j.pnpbp.2010.10.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/11/2010] [Accepted: 10/22/2010] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative disorder with a high prevalence. Since behavioral disturbances, such as psychotic symptoms, represent a key feature of AD, genes related to dopamine, serotonin and brain derived neurotrophic factor (BDNF), are considered as candidate genes for AD. BDNF is a neurotrophin that regulates neurodevelopment, neuroplasticity, and neuronal functions. BDNF is involved in the etiopathogenesis of psychiatric and neurodegenerative disorders. A single base pair polymorphism (BDNF Val66Met) was reported to be associated with AD and/or schizophrenia, as well as other psychoses, although some studies failed to replicate these findings. The aim of the study was to evaluate the association between BDNF Val66Met variants and AD, as well as onset of AD or presence of psychotic symptoms in AD. METHOD BDNF Val66Met was analyzed in 211 patients with AD and in 402 aged healthy control subjects. All subjects were ethnically homogenous Caucasians from Croatia, and were subdivided according to the gender, onset of AD, and presence of psychotic symptoms. A χ(2) test, with Bonferroni correction and standardized residuals were used to evaluate the data. RESULTS Distribution of the BDNF Val66Met genotypes differed significantly between male and female AD patients with or without psychotic symptoms. This difference was due to the significant contribution of the Met/Val genotype and the combined Met/Met and Met/Val genotypes between psychotic and non-psychotic symptoms in male, but not in female patients with AD. The frequency of the gene variants of the BDNF Val66Met did not differ significantly among male and female patients with AD and control subjects, or between male and female patients with early or late onset AD. There were significant sex related differences in age, duration of illness and scores of dementia between patients with AD. CONCLUSION Our male patients were younger, had shorter duration of illness, and had less severe dementia and higher cognitive performance than female AD patients. The gene variants of the BDNF Val66Met polymorphism were significantly associated with the presence of psychotic symptoms in male, but not in female patients with AD. The results had adequate statistical power to suggest that BDNF Val66Met was not related to susceptibility to AD or the onset of AD, but that presence of one or two Met alleles of BDNF Val66Met polymorphism might present a risk factor for psychosis in AD.
Collapse
Affiliation(s)
- Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic Institute, Croatia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang WX, Huang Q, Hu Y, Stromberg AJ, Nelson PT. Patterns of microRNA expression in normal and early Alzheimer's disease human temporal cortex: white matter versus gray matter. Acta Neuropathol 2011; 121:193-205. [PMID: 20936480 PMCID: PMC3073518 DOI: 10.1007/s00401-010-0756-0] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 09/26/2010] [Accepted: 09/27/2010] [Indexed: 10/19/2022]
Abstract
MicroRNA (miRNA) expression was assessed in human cerebral cortical gray matter (GM) and white matter (WM) in order to provide the first insights into the difference between GM and WM miRNA repertoires across a range of Alzheimer's disease (AD) pathology. RNA was isolated separately from GM and WM portions of superior and middle temporal cerebral cortex (N = 10 elderly females, postmortem interval < 4 h). miRNA profiling experiments were performed using state-of-the-art Exiqon(©) LNA-microarrays. A subset of miRNAs that appeared to be strongly expressed according to the microarrays did not appear to be conventional miRNAs according to Northern blot analyses. Some well-characterized miRNAs were substantially enriched in WM as expected. However, most of the miRNA expression variability that correlated with the presence of early AD-related pathology was seen in GM. We confirm that downregulation of a set of miRNAs in GM (including several miR-15/107 genes and miR-29 paralogs) correlated strongly with the density of diffuse amyloid plaques detected in adjacent tissue. A few miRNAs were differentially expressed in WM, including miR-212 that is downregulated in AD and miR-424 which is upregulated in AD. The expression of certain miRNAs correlates with other miRNAs across different cases, and particular subsets of miRNAs are coordinately expressed in relation to AD-related pathology. These data support the hypothesis that patterns of miRNA expression in cortical GM may contribute to AD pathogenetically, because the aggregate change in miRNA expression observed early in the disease would be predicted to cause profound changes in gene expression.
Collapse
Affiliation(s)
- Wang-Xia Wang
- Division of Neuropathology, Department of Pathology, Sanders-Brown Center on Aging, Rm 311, Sanders-Brown Center Building, University of Kentucky Medical Center, University of Kentucky, 800 S. Limestone, Lexington, KY 40536-0230, USA
| | - Qingwei Huang
- Division of Neuropathology, Department of Pathology, Sanders-Brown Center on Aging, Rm 311, Sanders-Brown Center Building, University of Kentucky Medical Center, University of Kentucky, 800 S. Limestone, Lexington, KY 40536-0230, USA
| | - Yanling Hu
- Division of Neuropathology, Department of Pathology, Sanders-Brown Center on Aging, Rm 311, Sanders-Brown Center Building, University of Kentucky Medical Center, University of Kentucky, 800 S. Limestone, Lexington, KY 40536-0230, USA
| | - Arnold J. Stromberg
- Division of Neuropathology, Department of Pathology, Sanders-Brown Center on Aging, Rm 311, Sanders-Brown Center Building, University of Kentucky Medical Center, University of Kentucky, 800 S. Limestone, Lexington, KY 40536-0230, USA
| | - Peter T. Nelson
- Division of Neuropathology, Department of Pathology, Sanders-Brown Center on Aging, Rm 311, Sanders-Brown Center Building, University of Kentucky Medical Center, University of Kentucky, 800 S. Limestone, Lexington, KY 40536-0230, USA
| |
Collapse
|
21
|
Abel JM, Witt DM, Rissman EF. Sex differences in the cerebellum and frontal cortex: roles of estrogen receptor alpha and sex chromosome genes. Neuroendocrinology 2011; 93:230-40. [PMID: 21325792 PMCID: PMC3128132 DOI: 10.1159/000324402] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 12/13/2022]
Abstract
Most neurobehavioral diseases are sexually dimorphic in their incidence, and sex differences in the brain may be key for understanding and treating these diseases. Calbindin (Calb) D28K is used as a biomarker for the well-studied sexually dimorphic nucleus, a hypothalamic structure that is larger in males than in females. In the current study weanling C56BL/6J mice were used to examine sex differences in the Calb protein and message focusing on regions outside of the hypothalamus. A robust sex difference was found in Calb in the frontal cortex (FC) and cerebellum (CB; specifically in Purkinje cells); mRNA and protein were higher in females than in males. Using 2 mouse lines, i.e. one with a complete deletion of estrogen receptor alpha (ERα) and the other with uncoupled gonads and sex chromosomes, we probed the mechanisms that underlie sexual dimorphisms. In the FC, deletion of ERα reduced Calb1 mRNA in females compared to males. In addition, females with XY sex chromosomes had levels of Calb1 equal to those of males. Thus, both ERα and the sex chromosome complement regulate Calb1 in the FC. In the CB, ERα knockout mice of both sexes had reduced Calb1 mRNA, yet sex differences were retained. However, the sex chromosome complement, regardless of gonadal sex, dictated Calb1 mRNA levels. Mice with XX chromosomes had significantly greater Calb1 than did XY mice. This is the first study demonstrating that sex chromosome genes are a driving force producing sex differences in the CB and FC, which are neuoranatomical regions involved in many normal functions and in neurobehavioral diseases.
Collapse
Affiliation(s)
| | | | - Emilie F. Rissman
- *Emilie Rissman, Department of Biochemistry and Molecular Biology, University of Virginia, PO Box 800733, Charlottesville, VA 22908 (USA), Tel. +1 434 982 5611, E-Mail
| |
Collapse
|
22
|
Di Domenico F, Casalena G, Sultana R, Cai J, Pierce WM, Perluigi M, Cini C, Baracca A, Solaini G, Lenaz G, Jia J, Dziennis S, Murphy SJ, Alkayed NJ, Butterfield DA. Involvement of Stat3 in mouse brain development and sexual dimorphism: a proteomics approach. Brain Res 2010; 1362:1-12. [PMID: 20875800 PMCID: PMC2975791 DOI: 10.1016/j.brainres.2010.09.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 01/27/2023]
Abstract
Although the role of STAT3 in cell physiology and tissue development has been largely investigated, its involvement in the development and maintenance of nervous tissue and in the mechanisms of neuroprotection is not yet known. The potentially wide range of STAT3 activities raises the question of tissue- and gender-specificity as putative mechanisms of regulation. To explore the function of STAT3 in the brain and the hypothesis of a gender-linked modulation of STAT3, we analyzed a neuron-specific STAT3 knockout mouse model investigating the influence of STAT3 activity in brain protein expression pattern in both males and females in the absence of neurological insult. We performed a proteomic study aimed to reveal the molecular pathways directly or indirectly controlled by STAT3 underscoring its role in brain development and maintenance. We identified several proteins, belonging to different neuronal pathways such as energy metabolism or synaptic transmission, controlled by STAT3 that confirm its crucial role in brain development and maintenance. Moreover, we investigated the different processes that could contribute to the sexual dimorphic behavior observed in the incidence of neurological and mental disease. Interestingly both STAT3 KO and gender factors influence the expression of several mitochondrial proteins conferring to mitochondrial activity high importance in the regulation of brain physiology and conceivable relevance as therapeutic target.
Collapse
Affiliation(s)
- Fabio Di Domenico
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40506-0055
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Gabriella Casalena
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40506-0055
- Department of Biochemistry "G. Moruzzi", University of Bologna, 40126 Bologna, Italy
| | - Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40506-0055
| | - Jian Cai
- Department of Pharmacology, University of Louisville, Louisville, KY
| | - William M. Pierce
- Department of Pharmacology, University of Louisville, Louisville, KY
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Chiara Cini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandra Baracca
- Department of Biochemistry "G. Moruzzi", University of Bologna, 40126 Bologna, Italy
| | - Giancarlo Solaini
- Department of Biochemistry "G. Moruzzi", University of Bologna, 40126 Bologna, Italy
| | - Giorgio Lenaz
- Department of Biochemistry "G. Moruzzi", University of Bologna, 40126 Bologna, Italy
| | - Jia Jia
- Department of Anesthesiology & Peri-Operative Medicine, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - Suzan Dziennis
- Department of Anesthesiology & Peri-Operative Medicine, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - Stephanie J. Murphy
- Department of Anesthesiology & Peri-Operative Medicine, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - Nabil J. Alkayed
- Department of Anesthesiology & Peri-Operative Medicine, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - D. Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40506-0055
| |
Collapse
|
23
|
Yang YH, Li RN, Tzou SC, Wang JY, Lee HP, Wang HC, Chen FM, Wang YH, Hsieh MC, Huang MY, Tseng WL, Lin SR, Cheng TL. Simultaneous detection of multiple single-nucleotide polymorphisms by a simple membrane chip. Genet Test Mol Biomarkers 2010; 14:653-659. [PMID: 20858048 DOI: 10.1089/gtmb.2010.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Technologies that screen multiple single-nucleotide polymorphisms (SNPs) could be very valuable in predicting patients' susceptibilities to diseases or responses to therapeutic interventions. In this study, we developed a chip that can accurately detect four SNPs at same time. This chip is cost-effective and user-friendly because it uses a detection protocol analogous to dot blotting and does not require sophisticated instruments. To establish this chip, we designed and blotted onto a nylon membrane SNP-specific oligonucleotide probes for human angiotensinogen, cholesteryl ester transfer protein, and apolipoprotein E. This chip detected the corresponding SNPs harbored within the angiotensinogen, cholesteryl ester transfer protein, and apolipoprotein E sequences from 20 donors. Importantly, the SNPs detected by our chip matched exactly with the direct sequencing results, thereby highlighting the accuracy of this chip. In conclusion, our chip is a robust tool for multiple SNP screening and holds the potential to future refinement in detecting diseases-associating genes in patients.
Collapse
Affiliation(s)
- Yu-Hsiang Yang
- Graduate Institute of Medical Genetics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Candore G, Balistreri CR, Colonna-Romano G, Lio D, Listì F, Vasto S, Caruso C. Gender-Related Immune-Inflammatory Factors, Age-Related Diseases, and Longevity. Rejuvenation Res 2010; 13:292-7. [DOI: 10.1089/rej.2009.0942] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Giuseppina Candore
- Immunesenescence Unit, Department of Pathobiology and Biomedical Methodology, University of Palermo, Italy
| | - Carmela Rita Balistreri
- Immunesenescence Unit, Department of Pathobiology and Biomedical Methodology, University of Palermo, Italy
| | - Giuseppina Colonna-Romano
- Immunesenescence Unit, Department of Pathobiology and Biomedical Methodology, University of Palermo, Italy
| | - Domenico Lio
- Immunesenescence Unit, Department of Pathobiology and Biomedical Methodology, University of Palermo, Italy
| | - Florinda Listì
- Immunesenescence Unit, Department of Pathobiology and Biomedical Methodology, University of Palermo, Italy
| | - Sonya Vasto
- Immunesenescence Unit, Department of Pathobiology and Biomedical Methodology, University of Palermo, Italy
| | - Calogero Caruso
- Immunesenescence Unit, Department of Pathobiology and Biomedical Methodology, University of Palermo, Italy
| |
Collapse
|
25
|
Dietary trans-fat combined with monosodium glutamate induces dyslipidemia and impairs spatial memory. Physiol Behav 2010; 99:334-42. [DOI: 10.1016/j.physbeh.2009.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 11/16/2009] [Accepted: 11/20/2009] [Indexed: 01/21/2023]
|
26
|
Iemolo F, Duro G, Rizzo C, Castiglia L, Hachinski V, Caruso C. Pathophysiology of vascular dementia. Immun Ageing 2009; 6:13. [PMID: 19895675 PMCID: PMC2784430 DOI: 10.1186/1742-4933-6-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 11/06/2009] [Indexed: 02/05/2023]
Abstract
The concept of Vascular Dementia (VaD) has been recognized for over a century, but its definition and diagnostic criteria remain unclear. Conventional definitions identify the patients too late, miss subjects with cognitive impairment short of dementia, and emphasize consequences rather than causes, the true bases for treatment and prevention. We should throw out current diagnostic categories and describe cognitive impairment clinically and according to commonly agreed instruments that document the demographic data in a standardized manner and undertake a systematic effort to identify the underlying aetiology in each case. Increased effort should be targeted towards the concept of and criteria for Vascular Cognitive Impairment and Post-Stroke Dementia as well as for genetic factors involved, especially as these categories hold promise for early prevention and treatment.
Collapse
Affiliation(s)
- Francesco Iemolo
- Department of Clinical Neurological Sciences University of Western Ontario, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
27
|
Pandiani L, Souêtre A. Latest trends in preventive medicine: highlights of the PreMed 2008 meeting, 6 - 7 June 2008, Monza, Italy. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2009; 3:207-210. [PMID: 23485166 DOI: 10.1517/17530050802704204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND The PreMed symposium is dedicated to presenting the potential contribution of laboratory medicine to preventive medicine and to the prediction of diseases. At the 2008 PreMed meeting, innovative research approaches, new technologies for laboratory medicine, late-breaking news for molecular medicine and new approaches for disease screening were presented by top scientists. OBJECTIVE To reflect on the global state of research in preventive medicine and laboratory medicine, but also constraints such as reliability and cost-effectiveness of preventive and predictive measures, which include genomics and pharmacogenomics, new technologies for personalized medicine, management of cardiovascular diseases and biomarkers of dementia and preeclampsia. METHOD The article presents an overview of some of the hot topics discussed at the PreMed 2008 meeting and recapitulates some lectures focused on new trends and current status of prevention and prediction of the diseases. CONCLUSION This article represents an opportunity for those who did not attend the meeting to highlight challenges related to preventive medicine.
Collapse
Affiliation(s)
- L Pandiani
- Labco Diagnostics, 484 Avenue Louise, B-1050 Brussels, Belgium +32 2 3435557 ; +32 2 7645418 ;
| | | |
Collapse
|
28
|
Vasudevaraju P, Bharathi, Garruto RM, Sambamurti K, Rao KSJ. Role of DNA dynamics in Alzheimer's disease. BRAIN RESEARCH REVIEWS 2008; 58:136-48. [PMID: 18342372 DOI: 10.1016/j.brainresrev.2008.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/14/2008] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
Abstract
DNA is a dynamic molecule, the conformation of which plays a major role in biological function. The non-B-form of DNA conformations are reported in the patho-physiology of diseases like Fragile X-syndrome, Huntington's chorea, Alzheimer's and others. Recently, our laboratory discovered the presence of Z-DNA in the hippocampal region of severely affected Alzheimer's disease (AD) brain samples. Alternate purine-pyrimidine bases, potential sequences adopting Z-DNA, are present in the promoter regions of AD specific genes like amyloid precursor protein (APP), Presenilin and ApoE. Thus, Z-DNA might be involved in the expression of these pathologically important genes. In the present review, we have focused on the possible mechanisms/hypothetical models of Z-DNA transition and its implications in AD. We propose that Z-DNA is formed in the promoter region of the APP, and Presenilin genes and Z-DNA may absorb the negative supercoils at that region. This decreases the supercoil density, altering the domain's native supercoiling state and facilitates the binding of effectors, which positively regulate gene expression of AD-related genes like APP and Presenilin. Further, it is presumed that Z-DNA may be involved in the down regulation of genes involved in Abeta clearance, anti-oxidant and defense mechanisms in AD. The proposed working model is novel and reveals possible triggering factors or precursors, which regulate the modulation of the supercoiling level of DNA involving putative Z-DNA forming sequences and regulatory proteins binding to DNA in AD.
Collapse
Affiliation(s)
- P Vasudevaraju
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore, 570020, India
| | | | | | | | | |
Collapse
|
29
|
Vasto S, Candore G, Listì F, Balistreri CR, Colonna-Romano G, Malavolta M, Lio D, Nuzzo D, Mocchegiani E, Di Bona D, Caruso C. Inflammation, genes and zinc in Alzheimer's disease. ACTA ACUST UNITED AC 2007; 58:96-105. [PMID: 18190968 DOI: 10.1016/j.brainresrev.2007.12.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 11/30/2007] [Accepted: 12/01/2007] [Indexed: 10/22/2022]
Abstract
Alzheimer's disease (AD) is a heterogeneous and progressive neurodegenerative disease which in Western society mainly accounts for clinical dementia. AD has been linked to inflammation and metal biological pathway. Neuro-pathological hallmarks are senile plaques, resulting from the accumulation of several proteins and an inflammatory reaction around deposits of amyloid, a fibrillar protein, Abeta, product of cleavage of a much larger protein, the beta-amyloid precursor protein (APP) and neurofibrillary tangles. Amyloid deposition, due to the accumulation of Abeta peptide, is the main pathogenetic mechanism. Inflammation clearly occurs in pathologically vulnerable regions of AD and several inflammatory factors influencing AD development, i.e. environmental factors (pro-inflammatory phenotype) and/or genetic factors (pro-inflammatory genotype) have been described. At the biochemical level metals such as zinc are known to accelerate the aggregation of the amyloid peptide and play a role in the control of inflammatory responses. In particular, zinc availability may regulate mRNA cytokine expression, so influencing inflammatory network phenotypic expression.
Collapse
Affiliation(s)
- Sonya Vasto
- Department of Pathobiology and Biomedical Methodology, University of Palermo, Corso Tukory, 211, 90134 Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Smalley TL, Chamberlain SD, Mills WY, Musso DL, Randhawa SA, Ray JA, Samano V, Frick L. Synthesis of novel anilinoquinolines as c-fms inhibitors. Bioorg Med Chem Lett 2007; 17:6257-60. [PMID: 17870531 DOI: 10.1016/j.bmcl.2007.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 08/27/2007] [Accepted: 09/04/2007] [Indexed: 11/25/2022]
Abstract
A novel series of potent substituted anilinoquinolines were discovered as c-fms inhibitors. The potency could be manipulated upon modification of the C4 aniline and C7 aryl functionality. Pharmacokinetic analysis identified a metabolically stable analog suitable for further investigative work.
Collapse
Affiliation(s)
- Terrence L Smalley
- GlaxoSmithKline, Inc., Five Moore Drive, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Shirakawa T, Nakano K, Hachiya NS, Kato N, Kaneko K. Temporospatial patterns of COX-2 expression and pyramidal cell degeneration in the rat hippocampus after trimethyltin administration. Neurosci Res 2007; 59:117-23. [PMID: 17651852 DOI: 10.1016/j.neures.2007.06.1468] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 06/07/2007] [Accepted: 06/11/2007] [Indexed: 11/15/2022]
Abstract
The temporospatial profile of cyclooxygenase-2 (COX-2) expression and neuronal degeneration following trimethyltin (TMT) administration was investigated in the rat hippocampus region. In the CA1 region, significant COX-2 expression was detected on day 3 after TMT administration but pyramidal cell degeneration was detected only on day 5 and thereafter. In the CA3 region, on the other hand, the constitutive COX-2 expression remained unchanged, and more severe pyramidal cell degeneration started on day 3. Concomitant with these observations, we observed that the coadministration of a COX-2 inhibitor prevented such neuronal degeneration only in the CA1 region and not in the CA3 region. In addition, COX-2 inhibition did not affect the increase in the plasma corticosterone concentration after TMT administration. Furthermore, the COX-2 inhibitor did not alleviate TMT-induced locomotor hyperactivity in rats, for which inhibitors of corticosterone synthesis are known to be effective. These data suggest that the COX-2-dependent pathway appears to assist TMT-induced degeneration of CA1 pyramidal cells but not CA3 pyramidal cells in a corticosterone-independent manner.
Collapse
Affiliation(s)
- Takafumi Shirakawa
- Drug Discovery Research, Drug Safety Research Labs, Astellas Pharma Inc., 1-1-8 Azusawa, Itabashi-ku, Tokyo 174-8511, Japan.
| | | | | | | | | |
Collapse
|
32
|
Mocchegiani E. Zinc and ageing: third Zincage conference. IMMUNITY & AGEING 2007; 4:5. [PMID: 17883856 PMCID: PMC2042978 DOI: 10.1186/1742-4933-4-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 09/20/2007] [Indexed: 11/29/2022]
Abstract
The importance of Zn for optimal functioning of the immune system and antioxidant stress response is well documented. Zn homeostasis influences development and function of immune cells, activity of stress-related and antioxidant proteins [metallothioneins (MT), chaperones, ApoJ, Poly(ADP-Ribose) polymerase-1 (PARP-1) and Methionione Sulfoxide Reductase (Msr), Superoxide Dismutase (SOD)], and helps to maintain genomic integrity and stability. During ageing, the intake of Zn decreases due to inadequate diet and/or intestinal malabsorption, contributing to frailty, general disability and increased incidence of age-related degenerative diseases (cancer, infections and atherosclerosis). Although many factors contributing to Zn deficiency have been identified, the biochemical markers of Zn deficiency as well as the possibility to achieve relevant health benefits through Zn supplementation in the elderly are still a matter for evaluation. Taking into account that Zn homeostasis is regulated by proteins and enzymes for which polymorphisms have been previously found to be associated with successful/unsuccessful ageing, genetic screening might be of added value in evaluating the individual response to Zn supplementation. Biochemical, immunological, dietary and genetic studies aimed at understanding the impact of Zn in healthy ageing, the effect of Zn supplementation in the elderly and finally formulating a rationale for the promotion of correct Zn supplementation were discussed at the international Zincage conference held in Ancona in January 2007.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Immunolgy Ctr. (Section Nutrition, Immunity and Ageing) Res. Dept. INRCA, Ancona, Italy.
| |
Collapse
|