1
|
Luo L, Wang M, Liu Y, Li J, Bu F, Yuan H, Tang R, Liu C, He G. Sequencing and characterizing human mitochondrial genomes in the biobank-based genomic research paradigm. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2736-7. [PMID: 39843848 DOI: 10.1007/s11427-024-2736-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/18/2024] [Indexed: 01/24/2025]
Abstract
Human mitochondrial DNA (mtDNA) harbors essential mutations linked to aging, neurodegenerative diseases, and complex muscle disorders. Due to its uniparental and haploid inheritance, mtDNA captures matrilineal evolutionary trajectories, playing a crucial role in population and medical genetics. However, critical questions about the genomic diversity patterns, inheritance models, and evolutionary and medical functions of mtDNA remain unresolved or underexplored, particularly in the transition from traditional genotyping to large-scale genomic analyses. This review summarizes recent advancements in data-driven genomic research and technological innovations that address these questions and clarify the biological impact of nuclear-mitochondrial segments (NUMTs) and mtDNA variants on human health, disease, and evolution. We propose a streamlined pipeline to comprehensively identify mtDNA and NUMT genomic diversity using advanced sequencing and computational technologies. Haplotype-resolved mtDNA sequencing and assembly can distinguish authentic mtDNA variants from NUMTs, reduce diagnostic inaccuracies, and provide clearer insights into heteroplasmy patterns and the authenticity of paternal inheritance. This review emphasizes the need for integrative multi-omics approaches and emerging long-read sequencing technologies to gain new insights into mutation mechanisms, the influence of heteroplasmy and paternal inheritance on mtDNA diversity and disease susceptibility, and the detailed functions of NUMTs.
Collapse
Affiliation(s)
- Lintao Luo
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
| | - Yunhui Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Jianbo Li
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Fengxiao Bu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China.
| | - Chao Liu
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
| |
Collapse
|
2
|
Khan A, Ullah F, Alkreathy HM, Ahmed M, Khan RA. Phytochemical screening, antioxidant and anti-Parkinson activities of Berula erecta: A novel medicinal plant. PLoS One 2024; 19:e0305751. [PMID: 39546440 PMCID: PMC11567558 DOI: 10.1371/journal.pone.0305751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/04/2024] [Indexed: 11/17/2024] Open
Abstract
Berula erecta L. is traditionally used for the treatment of various human ailments. The present project was arranged to study the antioxidant and anti-Parkinson efficacy of B. erecta extracts against rotenone-induced Parkinson diseases in rats. Fine powder of the plant was extracted with methanol and then fractionated through various solvents with increasing order of polarity. Phytochemical screenings were done using standard protocols and High-performance liquid chromatography (HPLC) while in-vitro antioxidant activities of plant fractions were evaluated using different free radicals. In-vivo anti-Parkinson and oxidative dysfunction experiments were conducted in rats. Results revealed that various fractions possessed flavonoids, alkaloids, terpenoids saponins, tannin, anthraquinon, and phlobatanine, while terpeniods and alkaloids were absent in aqueous fraction. Chromatographic analysis of methanol fraction showed the presence of various bioactive compounds viz., vitexin, orientin, rutin, catechin and myricetin. In-vitro antioxidant activities of various fractions of Berula erecta (B.erecta) showed that methanol fraction has remarkable scavenging efficacy of 2,2-Diphenyl-1-picrylhydrazyl (DPPH), beta carotene, and superoxide free radicals followed by chloroform fraction. Free radicals produced by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), Hydrogen peroxide (H2O2), and hydroxyl free radicals were considerably scavenged by methanol fraction followed by ethyl acetate fractions. In-vivo study of animal model showed that methanol fraction has significant recovery effects at behavioural, physiological and biochemical level against rotenone induced Parkinson disease. B.erecta has significantly improved rotenone-induced motor and nonmotor deficits (depression and cognitive impairments), increased antioxidant enzyme activity, and reduced neurotransmitter changes. It has been concluded from the present data that B.erecta enhances neurotransmitter levels by alleviating oxidative stress and antioxidant enzyme activity, hence improving motor activity, cognitive functioning, and decreasing depressed behavior. These data suggest that B. erecta may be a promising medicinal agent for reducing the risk and progression of Parkinson's disease.
Collapse
Affiliation(s)
- Asif Khan
- Department of Botany, University of Science & Technology Bannu, Bannu, KPK, Pakistan
| | - Fizan Ullah
- Department of Botany, University of Science & Technology Bannu, Bannu, KPK, Pakistan
| | - Huda Mohammed Alkreathy
- Faculty of Medicine, Department of Pharmacology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mushtaq Ahmed
- Department of Biotechnology, University of Science & Technology Bannu, Bannu, KPK, Pakistan
| | - Rahmat Ali Khan
- Department of Biotechnology, University of Science & Technology Bannu, Bannu, KPK, Pakistan
| |
Collapse
|
3
|
Tamvaka N, Heckman MG, Johnson PW, Soto-Beasley AI, Walton RL, Koga S, Uitti RJ, Parfitt F, Graff-Radford MR, Wszolek ZK, Graff-Radford N, Valentino RR, Ross OA. Associations of mitochondrial genomic variation with successful neurological aging. Mitochondrion 2024; 78:101948. [PMID: 39179138 DOI: 10.1016/j.mito.2024.101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
Mitochondrial health is an integral factor in aging, with mitochondrial dysfunction known to increase with age and contribute to the development of age-related neurodegenerative disorders. Additionally, the mitochondrial genome (mtDNA) has been shown to acquire potentially damaging somatic variation as part of the aging process, while mtDNA single nucleotide polymorphism (SNPs) have been shown to be both protective and detrimental for various neurodegenerative diseases. Yet, little is known about the involvement of mtDNA variation in longevity and successful neurological aging. In this study, we examined the association of mtDNA SNPs, in the form of mitochondrial haplogroups, with successful neurological aging in 1,405 unrelated neurologically healthy subjects. Although not quite significant after correcting for multiple testing (P < 0.0017 considered as significant), we detected a nominally significant association between the I haplogroup (N = 45, 3.2 %) and a younger age (β: -5.00, P = 0.006), indicating that this haplogroup is observed less frequently in older neurologically healthy individuals and may be associated with decreased survival. Replication of this finding in independent neurologically healthy cohorts will be imperative for shaping our understanding of the biological processes underlying healthy neurological aging.
Collapse
Affiliation(s)
- Nicole Tamvaka
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Patrick W Johnson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Francine Parfitt
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Biology, University of North Florida, Jacksonville, FL 32224, USA; Department of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Sena-Dos-Santos C, Moura DD, Epifane-de-Assunção MC, Ribeiro-Dos-Santos Â, Santos-Lobato BL. Mitochondrial DNA variants, haplogroups and risk of Parkinson's disease: A systematic review and meta-analysis. Parkinsonism Relat Disord 2024; 125:107044. [PMID: 38917640 DOI: 10.1016/j.parkreldis.2024.107044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Growing evidence has shown that mitochondrial dysfunction is part of the pathogenesis of Parkinson's disease (PD). However, the role of mitochondrial DNA (mtDNA) variants on PD onset is unclear. OBJECTIVES The present study aims to evaluate the effect of mtDNA variants and haplogroups on risk of developing PD. METHODS Systematic review and meta-analysis of studies investigating associations between PD and mtDNA variants and haplogroups. RESULTS A total of 33 studies were eligible from 957 screened studies. Among 13,640 people with PD and 22,588 control individuals, the association with PD was consistently explored in 13 mtDNA variants in 10 genes and 19 macrohaplogroups. Four mtDNA variants were associated with PD: m.4336C (odds ratio [OR] = 2.99; 95 % confidence interval [CI] = 1.79-5.02), m.7028T (OR = 0.80; 95 % CI = 0.70-0.91), m.10398G (OR = 0.92; 95 % CI = 0.85-0.98), and m.13368A (OR = 0.74; 95 % CI = 0.56-0.98). Four mtDNA macrohaplogroups were associated with PD: R (OR = 2.25; 95 % CI = 1.92-2.65), F (OR = 1.18; 95 % CI = 1.01-1.38), H (OR = 1.12; 95 % CI = 1.06-1.18), and B (OR = 0.77; 95 % CI = 0.65-0.92). CONCLUSIONS Despite most studies may be underpowered by the underrepresentation of people without dominant European- and Asian-ancestry, low use of next-generation sequencing for genotyping and small sample sizes, the identification of mtDNA variants and macrohaplogroups associated with PD strengthens the link between the disease and mitochondrial dysfunction and mtDNA genomic instability.
Collapse
Affiliation(s)
| | - Dafne Dalledone Moura
- Laboratório de Neuropatologia Experimental, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | | | | |
Collapse
|
5
|
Woravatin W, Wongkomonched R, Tassaneeyakul W, Stoneking M, Makarawate P, Kutanan W. Complete mitochondrial genomes of patients from Thailand with cardiovascular diseases. PLoS One 2024; 19:e0307036. [PMID: 38990956 PMCID: PMC11239017 DOI: 10.1371/journal.pone.0307036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
Several previous studies have reported that both variation and haplogroups of mitochondrial (mt) DNA were associated with various kinds of diseases, including cardiovascular diseases, in different populations, but such studies have not been carried out in Thailand. Here, we sequenced complete mtDNA genomes from 82 patients diagnosed with three types of cardiovascular disease, i.e., Hypertrophic Cardiomyopathy (HCM) (n = 26), Long Q-T Syndrome (LQTS) (n = 7) and Brugada Syndrome (BrS) (n = 49) and compared these with 750 previously published mitogenome sequences from interviewed normal individuals as a control group. Both patient and control groups are from the same geographic region of northeastern Thailand. We found 9, 2, and 5 novel mutations that were not both damaging and deleterious in HCM, LQTS, and BrS patients, respectively. Haplogroup R9c was significantly associated with HCM (P = 0.0032; OR = 62.42; 95%CI = 6.892-903.4) while haplogroup M12b was significantly associated with LQTS (P = 0.0039; OR = 32.93; 95% CI = 5.784-199.6). None of the haplogroups was found to be significantly associated with BrS. A significantly higher density of mtDNA variants in the rRNA genes was found in patients with HCM and BrS (P < 0.001) than in those with LQTS or the control group. Effects of detected SNPs in either protein coding or tRNA genes of all the mitogenome sequences were also predicted. Interestingly, three SNPs in two tRNA genes (MT-TA m.5618T>C and m.5631G>A heteroplasmic variants in two BrS patients and MT-TQ m.4392C>T novel homoplasmic variant in a HCM patient) were predicted to alter tRNA secondary structure, possibly leading to abnormal tRNA function.
Collapse
Affiliation(s)
- Wipada Woravatin
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Biométrie et Biologie Évolutive, UMR 5558, CNRS & Université de Lyon, Lyon, France
| | | | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
6
|
Saadullah M, Tariq H, Chauhdary Z, Saleem U, Anwer Bukhari S, Sehar A, Asif M, Sethi A. Biochemical properties and biological potential of Syzygium heyneanum with antiparkinson's activity in paraquat induced rodent model. PLoS One 2024; 19:e0298986. [PMID: 38551975 PMCID: PMC10980224 DOI: 10.1371/journal.pone.0298986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/01/2024] [Indexed: 04/01/2024] Open
Abstract
Syzygium heyneanum is a valuable source of flavonoids and phenols, known for their antioxidant and neuroprotective properties. This research aimed to explore the potential of Syzygium heyneanum ethanol extract (SHE) in countering Parkinson's disease. The presence of phenols and flavonoids results in SHE displaying an IC50 value of 42.13 when assessed in the DPPH scavenging assay. Rats' vital organs (lungs, heart, spleen, liver, and kidney) histopathology reveals little or almost no harmful effect. The study hypothesized that SHE possesses antioxidants that could mitigate Parkinson's symptoms by influencing α-synuclein, acetylcholinesterase (AChE), TNF-α, and IL-1β. Both in silico and in vivo investigations were conducted. The Parkinson's rat model was established using paraquat (1 mg/kg, i.p.), with rats divided into control, disease control, standard, and SHE-treated groups (150, 300, and 600 mg/kg) for 21 days. According to the ELISA statistics, the SHE treated group had lowers levels of IL-6 and TNF-α than the disease control group, which is a sign of neuroprotection. Behavioral and biochemical assessments were performed, alongside mRNA expression analyses using RT-PCR to assess SHE's impact on α-synuclein, AChE, TNF-α, and interleukins in brain homogenates. Behavioral observations demonstrated dose-dependent improvements in rats treated with SHE (600 > 300 > 150 mg/kg). Antioxidant enzyme levels (catalase, superoxide dismutase, glutathione) were significantly restored, particularly at a high dose, with notable reduction in malondialdehyde. The high dose of SHE notably lowered acetylcholinesterase levels. qRT-PCR results indicated reduced mRNA expression of IL-1β, α-synuclein, TNF-α, and AChE in SHE-treated groups compared to disease controls, suggesting neuroprotection. In conclusion, this study highlights Syzygium heyneanum potential to alleviate Parkinson's disease symptoms through its antioxidant and modulatory effects on relevant biomarkers.
Collapse
Affiliation(s)
- Malik Saadullah
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hafsa Tariq
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zunera Chauhdary
- Department of Pharmacology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shazia Anwer Bukhari
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Amna Sehar
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Asif
- Department of Pharmacology, Islamia University Bahawalpur, Bahawalpur, Pakistan
| | - Aisha Sethi
- Department of Pharmaceutics, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
7
|
Hernández CL. Mitochondrial DNA in Human Diversity and Health: From the Golden Age to the Omics Era. Genes (Basel) 2023; 14:1534. [PMID: 37628587 PMCID: PMC10453943 DOI: 10.3390/genes14081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is a small fraction of our hereditary material. However, this molecule has had an overwhelming presence in scientific research for decades until the arrival of high-throughput studies. Several appealing properties justify the application of mtDNA to understand how human populations are-from a genetic perspective-and how individuals exhibit phenotypes of biomedical importance. Here, I review the basics of mitochondrial studies with a focus on the dawn of the field, analysis methods and the connection between two sides of mitochondrial genetics: anthropological and biomedical. The particularities of mtDNA, with respect to inheritance pattern, evolutionary rate and dependence on the nuclear genome, explain the challenges of associating mtDNA composition and diseases. Finally, I consider the relevance of this single locus in the context of omics research. The present work may serve as a tribute to a tool that has provided important insights into the past and present of humankind.
Collapse
Affiliation(s)
- Candela L Hernández
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
8
|
Zhor C, Wafaa L, Ghzaiel I, Kessas K, Zarrouk A, Ksila M, Ghrairi T, Latruffe N, Masmoudi-Kouki O, El Midaoui A, Vervandier-Fasseur D, Hammami M, Lizard G, Vejux A, Kharoubi O. Effects of polyphenols and their metabolites on age-related diseases. Biochem Pharmacol 2023:115674. [PMID: 37414102 DOI: 10.1016/j.bcp.2023.115674] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Aging contributes to the progressive loss of cellular biological functions and increases the risk of age-related diseases. Cardiovascular diseases, some neurological disorders and cancers are generally classified as age-related diseases that affect the lifespan of individuals. These diseases result from the accumulation of cellular damage and reduced activity of protective stress response pathways, which can lead to inflammation and oxidative stress, which play a key role in the aging process. There is now increasing interest in the therapeutic effects of edible plants for the prevention of various diseases, including those associated with aging. It has become clear that the beneficial effects of these foods are due, at least in part, to the high concentration of bioactive phenolic compounds with low side effects. Antioxidants are the most abundant, and their high consumption in the Mediterranean diet has been associated with slower ageing in humans. Extensive human dietary intervention studies strongly suggest that polyphenol supplementation protects against the development of degenerative diseases, especially in the elderly. In this review, we present data on the biological effects of plant polyphenols in the context of their relevance to human health, ageing and the prevention of age-related diseases.
Collapse
Affiliation(s)
- Chouari Zhor
- University Oran 1 ABB: laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences. Oran Algeria.
| | - Lounis Wafaa
- University Oran 1 ABB: laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences. Oran Algeria.
| | - Imen Ghzaiel
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, 21000 Dijon, France; University of Monastir: Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia; University Tunis-El Manar, Faculty of Sciences of Tunis, 2092 Tunis, Tunisia.
| | - Khadidja Kessas
- University Oran 1 ABB: laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences. Oran Algeria.
| | - Amira Zarrouk
- University of Monastir: Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia; University of Sousse: Faculty of Medicine, Sousse, Tunisia.
| | - Mohamed Ksila
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, 21000 Dijon, France; University Tunis-El Manar, Loboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMolecules, LR18ES03, Department of Biology, Faculty of Sciences, 2092 Tunis, Tunisia.
| | - Taoufik Ghrairi
- University Tunis-El Manar, Loboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMolecules, LR18ES03, Department of Biology, Faculty of Sciences, 2092 Tunis, Tunisia.
| | - Norbert Latruffe
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, 21000 Dijon, France.
| | - Olfa Masmoudi-Kouki
- University Tunis-El Manar, Loboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMolecules, LR18ES03, Department of Biology, Faculty of Sciences, 2092 Tunis, Tunisia.
| | - Adil El Midaoui
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Canada.
| | - Dominique Vervandier-Fasseur
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB-UMR CNRS 6302, University Bourgogne Franche-Comté, 9, avenue A. Savary, 21078 Dijon Cedex, France.
| | - Mohamed Hammami
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, 5000 Monastir, Tunisia.
| | - Gérard Lizard
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, 21000 Dijon, France.
| | - Anne Vejux
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, 21000 Dijon, France.
| | - Omar Kharoubi
- University Oran 1 ABB: laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences. Oran Algeria.
| |
Collapse
|
9
|
Andreeva NA, Murakhovskaya YK, Krylova TD, Tsygankova PG, Sheremet NL. [Rare pathogenic nucleotide variants of mitochondrial DNA associated with Leber's hereditary optic neuropathy]. Vestn Oftalmol 2023; 139:166-174. [PMID: 38235644 DOI: 10.17116/oftalma2023139061166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Patients with Leber Hereditary Optic Neuropathy (LHON) in most cases have one of the three most common mutations: m.11778G>A in the ND4 gene, m.3460G>A in the ND1 gene, or m.14484T>C in the ND6 gene. According to the international Mitomap database, in addition to these three most common mutations, there are 16 other primary mutations that are even more rare. There are nucleotide substitutions that are classified as candidate or conditionally pathogenic mutations. Their involvement in the disease development is not proven due to insufficient research. Moreover, in many publications, the authors describe new primary and potential mitochondrial DNA mutations associated with LHON, which are not yet included in the genetic data bases. This makes it possible to expand the diagnostic spectrum during genetic testing in the future. The advancements in genetic diagnostic technologies allow confirmation of the clinical diagnosis of LHON. The importance of genetic verification of the disease is determined by the existing problem of differential diagnosis of hereditary optic neuropathies with optic neuropathies of a different origin.
Collapse
Affiliation(s)
- N A Andreeva
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - Yu K Murakhovskaya
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - T D Krylova
- Research Centre for Medical Genetics, Moscow, Russia
| | | | - N L Sheremet
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| |
Collapse
|
10
|
Al-Kafaji G, Alwehaidah MS, Alsabbagh MM, Alharbi MA, Bakhiet M. Mitochondrial DNA haplogroup analysis in Saudi Arab patients with multiple sclerosis. PLoS One 2022; 17:e0279237. [PMID: 36534684 PMCID: PMC9762579 DOI: 10.1371/journal.pone.0279237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
Previous studies have suggested that mitochondrial DNA (mtDNA) variants are associated with multiple sclerosis (MS), a complex neurodegenerative immune-mediated disease of the central nervous system. Since mtDNA is maternally inherited without recombination, specific mtDNA variants defining genetic background are associated with the susceptibility to human diseases. To assess the contribution of mtDNA haplogroups to the predisposition of MS in an Arab population, we analysed sequencing data of mitochondrial genomes from 47 native Saudi Arab individuals including 23 patients with relapsing-remitting MS (RRMS) and 24 healthy controls. All patients and controls could be classified into ten haplogroups. The European-specific haplogroup U was more prevalent in patients than in the controls (26.1% vs. 4.2%), whereas haplogroup T was only present in patients and haplogroups HV and N were only found in controls. Haplogroup U was significantly association with increased risk of MS (odds ratio = 6.26, p<0.05), although the association did not maintain significance after adjustment for multiple comparisons. Haplotype U was more prevalent in patients with younger age of onset (p = 0.006), but there was no relationship between haplotype U and disease severity, disease duration or EDSS and age-matched carriers and non-carriers of haplogroup U (p>0.05). Definition site of haplogroup U include the variant m.12308A>G in MT-TL2 gene which was found to affect highly conserved position within the variable arm of tRNALeu(CUN) and thus may impact mitochondrial protein synthesis, and two other variants namely m.11467A>G in MT-ND4 gene and m.12372G>A in MT-ND5 gene which were previously linked with mitochondrial function. Despite the small number of subjects, which may limit the statistical power of the study, our results showed for the first time a possible contribution of haplogroup U to the predisposition to MS in an Arab population. These findings warrant further validation in a large cohort to distinguish a genuine effect specific to MS from a chance finding due to small sampling.
Collapse
Affiliation(s)
- Ghada Al-Kafaji
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
- * E-mail:
| | - Materah Salem Alwehaidah
- Department of Medical Laboratory, Faculty of Allied Health, Kuwait University, Kuwait City, Kuwait
| | - Manahel Mahmood Alsabbagh
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Maram A. Alharbi
- College of Forensic Sciences, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Moiz Bakhiet
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
11
|
Al-Kafaji G, Alharbi MA, Alkandari H, Salem AH, Bakhiet M. Analysis of the entire mitochondrial genome reveals Leber's hereditary optic neuropathy mitochondrial DNA mutations in an Arab cohort with multiple sclerosis. Sci Rep 2022; 12:11099. [PMID: 35773337 PMCID: PMC9246974 DOI: 10.1038/s41598-022-15385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
Several mitochondrial DNA (mtDNA) mutations of Leber's hereditary optic neuropathy (LHON) have been reported in patients with multiple sclerosis (MS) from different ethnicities. To further study the involvement of LHON mtDNA mutations in MS in the Arab population, we analyzed sequencing data of the entire mitochondrial genome from 47 unrelated Saudi individuals, 23 patients with relapse-remitting MS (RRMS) and 24 healthy controls. Ten LHON mutations/variants were detected in the patients but were absent in the controls. Of them, the common primary pathogenic mutation m.14484T>C and the rare mutation m.10237T>C were found in one patient, whereas the rare mutation m.9101T>C was found in another patient. The remaining were secondary single nucleotide variants (SNVs) found either in synergy with the primary/rare mutations or individually in other patients. Patients carrying LHON variants also exhibited distinct mtDNA variants throughout the mitochondrial genome, eight were previously reported in patients with LHON. Moreover, five other LHON-related SNVs differed significantly in their prevalence among patients and controls (P < 0.05). This study, the first to investigate LHON mtDNA mutations/variants in a Saudi cohort may suggest a role of these mutations/variants in the pathogenesis or genetic predisposition to MS, a possibility which needs to be explored further in a large-scale.
Collapse
Affiliation(s)
- Ghada Al-Kafaji
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain. .,Department of molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Salmaniya Avenue, Building 293, Road 2904, Block 329, Manama, Kingdom of Bahrain.
| | - Maram A Alharbi
- College of Forensic Sciences, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Hasan Alkandari
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Abdel Halim Salem
- Department of Anatomy, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Moiz Bakhiet
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
12
|
Volpe K, Samuels D, Kallianpur A, Ellis R, Franklin D, Letendre S, Heaton RK, Hulgan T. Mitochondrial DNA haplogroups and domain-specific neurocognitive performance in adults with HIV. J Neurovirol 2021; 27:557-567. [PMID: 34101088 PMCID: PMC8527871 DOI: 10.1007/s13365-021-00989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/14/2021] [Accepted: 05/16/2021] [Indexed: 11/28/2022]
Abstract
Neurocognitive (NC) impairment (NCI) is an important cause of morbidity in persons with HIV (PWH). In the high-energy environment of the central nervous system, mitochondria contribute to neuroinflammation and aging, which may ultimately drive the pathogenesis of neurodegenerative diseases. Mitochondrial DNA (mtDNA) haplogroups are associated with health outcomes in PWH. For example, we previously observed less global NCI in Hispanic ancestry PWH having mtDNA haplogroup B. Another study reported increased NCI among PWH having African subhaplogroup L2a. We therefore analyzed NC domains in relation to these haplogroups in CNS HIV Antiretroviral Therapy Effects Research (CHARTER), a multi-site observational neuro-HIV study. Haplogroups were assigned using mtDNA sequence in 1016 PWH. Outcomes were NCI, defined by domain deficit score and mean T-scores (TS) for seven NC domains. Ancestry-stratified analyses of NC performance included Wilcoxon rank sum, χ2, and Fisher's exact tests. Multivariable regression adjusted for NC comorbidity, antiretroviral therapy use, and nadir CD4+ T cells. Among 98 Hispanic ancestry PWH, executive function, learning, and recall performance were better with haplogroup B (N = 17) than other haplogroups. With adjustment for covariates, haplogroup B remained associated with better executive function (p = 0.04) and recall TS (p = 0.03). PWH with haplogroup B had fewer impaired domains than other haplogroups (p < 0.01). Subhaplogroup L2a (N = 89) was associated with greater NCI in learning, recall, and working memory among 478 PWH of African ancestry, and had more impaired domains than other subhaplogroups (p < 0.01). These findings may inform risk stratification for NCI and studies to define mechanisms by which mtDNA variation may influence NCI in PWH.
Collapse
Affiliation(s)
- Karen Volpe
- Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David Samuels
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Asha Kallianpur
- Cleveland Clinic/Lerner Research Institute, Cleveland, OH, USA
| | - Ronald Ellis
- Univ. of California San Diego, San Diego, CA, USA
| | | | | | | | - Todd Hulgan
- Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
13
|
González MDM, Santos C, Alarcón C, Ramos A, Cos M, Catalano G, Acebes JJ, Aluja MP. Mitochondrial DNA haplogroups J and T increase the risk of glioma. Mitochondrion 2021; 58:95-101. [PMID: 33675980 DOI: 10.1016/j.mito.2021.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022]
Abstract
The presence of different sets of mitochondrial polymorphisms generated by the accumulation of mutations in different maternal lineages has allowed differentiating mitochondrial haplogroups in human populations. These polymorphisms, in turn, may have effects at the phenotypic level, considering a possible contribution of these germinal mutations to the development of certain diseases such as cancer. The main goal of the present study is to establish a possible association between mitochondrial haplogroups and the risk of suffering glioma. Blood samples were obtained from 32 patients from Catalonia (Spain) diagnosed with different grades of glioma (II, III and IV), according to the World Health Organization. The mitochondrial genome was amplified and sequenced using MiSeq 2000 (Illumina). The HaploGrep tool implemented in mtDNA-Server v.1.0.5 was used for the identification of mitochondrial haplogroups. Data obtained in the present study was further pooled with data from previous European studies including glioma patients from Galicia (Spain) and Italy. Results for the Catalonian samples showed an association between individuals with haplogroup J and the increased risk of suffering glioma, with a significant increase of the frequency of individuals with this haplogroup (25%) regarding the general population (7%). Combining different sets of patients with European origin, it appears that individuals with haplogroups J and T have a significantly higher risk of suffering glioma (p < 0.001; OR: 2.407 and p = 0.007; OR: 1.82, respectively). This is the first study that establishes an association between different mitochondrial haplogroups and the risk of suffering glioma, highlighting the role of mitochondrial variants in this disease.
Collapse
Affiliation(s)
- María Del Mar González
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; GREAB - Research Group in Biological Anthropology, Generalitat de Catalunya, Spain
| | - Cristina Santos
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; GREAB - Research Group in Biological Anthropology, Generalitat de Catalunya, Spain
| | - Carlos Alarcón
- Servicio de Neurocirugía, Hospital Universitari Mútua Terrassa, Terrassa, Barcelona, Spain; Servicio de Neurocirugía, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Amanda Ramos
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; GREAB - Research Group in Biological Anthropology, Generalitat de Catalunya, Spain
| | - Mònica Cos
- Sección de Neurorradiología, Institut de Diagnòstic per la Imatge, Centre Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Giulio Catalano
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| | - Juan José Acebes
- Servicio de Neurocirugía, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Maria Pilar Aluja
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; GREAB - Research Group in Biological Anthropology, Generalitat de Catalunya, Spain
| |
Collapse
|
14
|
Karakaidos P, Rampias T. Mitonuclear Interactions in the Maintenance of Mitochondrial Integrity. Life (Basel) 2020; 10:life10090173. [PMID: 32878185 PMCID: PMC7555762 DOI: 10.3390/life10090173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022] Open
Abstract
In eukaryotic cells, mitochondria originated in an α-proteobacterial endosymbiont. Although these organelles harbor their own genome, the large majority of genes, originally encoded in the endosymbiont, were either lost or transferred to the nucleus. As a consequence, mitochondria have become semi-autonomous and most of their processes require the import of nuclear-encoded components to be functional. Therefore, the mitochondrial-specific translation has evolved to be coordinated by mitonuclear interactions to respond to the energetic demands of the cell, acquiring unique and mosaic features. However, mitochondrial-DNA-encoded genes are essential for the assembly of the respiratory chain complexes. Impaired mitochondrial function due to oxidative damage and mutations has been associated with numerous human pathologies, the aging process, and cancer. In this review, we highlight the unique features of mitochondrial protein synthesis and provide a comprehensive insight into the mitonuclear crosstalk and its co-evolution, as well as the vulnerabilities of the animal mitochondrial genome.
Collapse
|
15
|
Screening for deafness-associated mitochondrial 12S rRNA mutations by using a multiplex allele-specific PCR method. Biosci Rep 2020; 40:224124. [PMID: 32400865 PMCID: PMC7263198 DOI: 10.1042/bsr20200778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial 12S rRNA A1555G and C1494T mutations are the major contributors to hearing loss. As patients with these mutations are sensitive to aminoglycosides, mutational screening for 12S rRNA is therefore recommended before the use of aminoglycosides. Most recently, we developed a novel multiplex allele-specific PCR (MAS-PCR) that can be used for detecting A1555G and C1494T mutations. In the present study, we employed this MAS-PCR to screen the 12S rRNA mutations in 500 deaf patients and 300 controls from 5 community hospitals. After PCR and electrophoresis, two patients with A1555G and one patient with C1494T were identified, this was consistent with Sanger sequence results. We further traced the origin of three Chinese pedigrees. Clinical evaluation revealed variable phenotypes of hearing loss including severity, age at onset and audiometric configuration in these patients. Sequence analysis of the mitochondrial genomes from matrilineal relatives suggested the presence of three evolutionarily conserved mutations: tRNACys T5802C, tRNALys A8343G and tRNAThr G15930A, which may result the failure in tRNAs metabolism and lead to mitochondrial dysfunction that was responsible for deafness. However, the lack of any functional variants in GJB2, GJB3, GJB6 and TRMU suggested that nuclear genes may not play active roles in deafness expression. Hence, aminoglycosides and mitochondrial genetic background may contribute to the clinical expression of A1555G/C1494T-induced deafness. Our data indicated that the MAS-PCR was a fast, convenience method for screening the 12S rRNA mutations, which was useful for early detection and prevention of mitochondrial deafness.
Collapse
|
16
|
Monzio Compagnoni G, Di Fonzo A, Corti S, Comi GP, Bresolin N, Masliah E. The Role of Mitochondria in Neurodegenerative Diseases: the Lesson from Alzheimer's Disease and Parkinson's Disease. Mol Neurobiol 2020; 57:2959-2980. [PMID: 32445085 DOI: 10.1007/s12035-020-01926-1] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
Although the pathogenesis of neurodegenerative diseases is still widely unclear, various mechanisms have been proposed and several pieces of evidence are supportive for an important role of mitochondrial dysfunction. The present review provides a comprehensive and up-to-date overview about the role of mitochondria in the two most common neurodegenerative disorders: Alzheimer's disease (AD) and Parkinson's disease (PD). Mitochondrial involvement in AD is supported by clinical features like reduced glucose and oxygen brain metabolism and by numerous microscopic and molecular findings, including altered mitochondrial morphology, impaired respiratory chain function, and altered mitochondrial DNA. Furthermore, amyloid pathology and mitochondrial dysfunction seem to be bi-directionally correlated. Mitochondria have an even more remarkable role in PD. Several hints show that respiratory chain activity, in particular complex I, is impaired in the disease. Mitochondrial DNA alterations, involving deletions, point mutations, depletion, and altered maintenance, have been described. Mutations in genes directly implicated in mitochondrial functioning (like Parkin and PINK1) are responsible for rare genetic forms of the disease. A close connection between alpha-synuclein accumulation and mitochondrial dysfunction has been observed. Finally, mitochondria are involved also in atypical parkinsonisms, in particular multiple system atrophy. The available knowledge is still not sufficient to clearly state whether mitochondrial dysfunction plays a primary role in the very initial stages of these diseases or is secondary to other phenomena. However, the presented data strongly support the hypothesis that whatever the initial cause of neurodegeneration is, mitochondrial impairment has a critical role in maintaining and fostering the neurodegenerative process.
Collapse
Affiliation(s)
- Giacomo Monzio Compagnoni
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy. .,Department of Neurology, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy. .,Department of Neurology, Khurana Laboratory, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Neuroscience Section, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Giacomo P Comi
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Neuroscience Section, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Nereo Bresolin
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Neuroscience Section, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Eliezer Masliah
- Division of Neuroscience and Laboratory of Neurogenetics, National Institute on Aging, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Sukhorukov VS, Voronkova AS, Litvinova NA, Baranich TI, Illarioshkin SN. The Role of Mitochondrial DNA Individuality in the Pathogenesis of Parkinson’s Disease. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420040146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Martín-Jiménez R, Lurette O, Hebert-Chatelain E. Damage in Mitochondrial DNA Associated with Parkinson's Disease. DNA Cell Biol 2020; 39:1421-1430. [PMID: 32397749 DOI: 10.1089/dna.2020.5398] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are the only organelles that contain their own genetic material (mtDNA). Mitochondria are involved in several key physiological functions, including ATP production, Ca2+ homeostasis, and metabolism of neurotransmitters. Since these organelles perform crucial processes to maintain neuronal homeostasis, mitochondrial dysfunctions can lead to various neurodegenerative diseases. Several mitochondrial proteins involved in ATP production are encoded by mtDNA. Thus, any mtDNA alteration can ultimately lead to mitochondrial dysfunction and cell death. Accumulation of mutations, deletions, and rearrangements in mtDNA has been observed in animal models and patients suffering from Parkinson's disease (PD). Also, specific inherited variations associated with mtDNA genetic groups (known as mtDNA haplogroups) are associated with lower or higher risk of developing PD. Consequently, mtDNA alterations should now be considered important hallmarks of this neurodegenerative disease. This review provides an update about the role of mtDNA alterations in the physiopathology of PD.
Collapse
Affiliation(s)
- Rebeca Martín-Jiménez
- Department of Biology and Université de Moncton, Moncton, Canada
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Université de Moncton, Moncton, Canada
| | - Olivier Lurette
- Department of Biology and Université de Moncton, Moncton, Canada
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Université de Moncton, Moncton, Canada
| | - Etienne Hebert-Chatelain
- Department of Biology and Université de Moncton, Moncton, Canada
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Université de Moncton, Moncton, Canada
| |
Collapse
|
19
|
Alvarez-Mora MI, Santos C, Carreño-Gago L, Madrigal I, Tejada MI, Martinez F, Izquierdo-Alvarez S, Garcia-Arumi E, Mila M, Rodriguez-Revenga L. Role of mitochondrial DNA variants in the development of fragile X-associated tremor/ataxia syndrome. Mitochondrion 2020; 52:157-162. [PMID: 32173566 DOI: 10.1016/j.mito.2020.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/08/2020] [Accepted: 03/09/2020] [Indexed: 01/05/2023]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that appears in at least one-third of adult carriers of FMR1 premutation. Several studies have shown that mitochondrial dysfunction may play a role in neurodegenerative disorders. In order to assess whether mitochondrial DNA variants are involved in the risk of developing FXTAS we evaluated the frequency of mitochondrial haplogroups in 132 unrelated Spanish FMR1 premutation carriers. In addition, the entire mitogenome of 26 FMR1 premutation carriers was sequenced using massively parallel sequencing technologies to analyze mitochondrial DNA variants. Statistical analyses reveal a significant difference in the frequency of T haplogroup. Data analysis of mitochondrial DNA sequences evidence an association between FXTAS and the burden of heteroplasmic variants as well as their distribution. Our results suggest that haplogroup T might be a potential protective factor for FXTAS and that FXTAS individuals accumulate higher rates of heteroplasmic variants in compromised regions of the mitochondrial genome. These results may explain, in part, the role of mitochondrial DNA in the development of FXTAS.
Collapse
Affiliation(s)
- Maria Isabel Alvarez-Mora
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER of Rare Diseases, Instiuto de Salud Carlos III, Spain
| | - Cristina Santos
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Lidia Carreño-Gago
- CIBER of Rare Diseases, Instiuto de Salud Carlos III, Spain; Departament de Patología Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irene Madrigal
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER of Rare Diseases, Instiuto de Salud Carlos III, Spain
| | - Maria Isabel Tejada
- CIBER of Rare Diseases, Instiuto de Salud Carlos III, Spain; Biocruces Health Research Institute, Barakaldo-Bizkaia, Spain; Molecular Genetics Laboratory, Genetics Service, Cruces University Hospital, Barakaldo, Spain
| | - Francisco Martinez
- Genetics Unit, Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | - Silvia Izquierdo-Alvarez
- Genetics Department of Clinical Biochemistry Service, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Elena Garcia-Arumi
- CIBER of Rare Diseases, Instiuto de Salud Carlos III, Spain; Departament de Patología Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Àrea de Genètica Clínica i Molecular, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Montserrat Mila
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER of Rare Diseases, Instiuto de Salud Carlos III, Spain
| | - Laia Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER of Rare Diseases, Instiuto de Salud Carlos III, Spain.
| |
Collapse
|
20
|
Biocomplexity and Fractality in the Search of Biomarkers of Aging and Pathology: Mitochondrial DNA Profiling of Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21051758. [PMID: 32143500 PMCID: PMC7084552 DOI: 10.3390/ijms21051758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/26/2020] [Accepted: 03/01/2020] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence implicates mitochondrial dysfunction in the etiology of Parkinson's disease (PD). Mitochondrial DNA (mtDNA) mutations are considered a possible cause and this mechanism might be shared with the aging process and with other age-related neurodegenerative disorders such as Alzheimer's disease (AD). We have recently proposed a computerized method for mutated mtDNA characterization able to discriminate between AD and aging. The present study deals with mtDNA mutation-based profiling of PD. Peripheral blood mtDNA sequences from late-onset PD patients and age-matched controls were analyzed and compared to the revised Cambridge Reference Sequence (rCRS). The chaos game representation (CGR) method, modified to visualize heteroplasmic mutations, was used to display fractal properties of mtDNA sequences and fractal lacunarity analysis was applied to quantitatively characterize PD based on mtDNA mutations. Parameter β, from the hyperbola model function of our lacunarity method, was statistically different between PD and control groups when comparing mtDNA sequence frames corresponding to GenBank np 5713-9713. Our original method, based on CGR and lacunarity analysis, represents a useful tool to analyze mtDNA mutations. Lacunarity parameter β is able to characterize individual mutation profile of mitochondrial genome and could represent a promising index to discriminate between PD and aging.
Collapse
|
21
|
Dolinko AH, Chwa M, Atilano SR, Kenney MC. African and Asian Mitochondrial DNA Haplogroups Confer Resistance Against Diabetic Stresses on Retinal Pigment Epithelial Cybrid Cells In Vitro. Mol Neurobiol 2020; 57:1636-1655. [PMID: 31811564 PMCID: PMC7123578 DOI: 10.1007/s12035-019-01834-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/12/2019] [Indexed: 01/09/2023]
Abstract
Diabetic retinopathy (DR) is the most common cause of blindness for individuals under the age of 65. This loss of vision can be due to ischemia, neovascularization, and/or diabetic macular edema, which are caused by breakdown of the blood-retina barrier at the level of the retinal pigment epithelium (RPE) and inner retinal vasculature. The prevalence of diabetes and its complications differ between Caucasian-Americans and certain minority populations, such as African-Americans and Asian-Americans. Individuals can be classified by their mitochondrial haplogroups, which are collections of single nucleotide polymorphisms (SNPs) in mitochondrial DNA (mtDNA) representing ancient geographic origins of populations. In this study, we compared the responses of diabetic human RPE cybrids, cell lines containing identical nuclei but mitochondria from either European (maternal European) or maternal African or Asian individuals, to hypoxia and high glucose levels. The African and Asian diabetic ([Afr+Asi]/DM) cybrids showed (1) resistance to both hyperglycemic and hypoxic stresses; (2) downregulation of pro-apoptotic indicator BAX; (3) upregulation of DNA methylation genes, such as DNMT3A and DNMT3B; and (4) resistance to DNA demethylation by the methylation inhibitor 5-Aza-2'-deoxycytidine (5-Aza-dC) compared to European diabetic (Euro/DM) cybrids. Our findings suggest that mitochondria from African and Asian diabetic subjects possess a "metabolic memory" that confers resistance against hyperglycemia, hypoxia, and demethylation, and that this "metabolic memory" can be transferred into the RPE cybrid cell lines in vitro.
Collapse
Affiliation(s)
- Andrew H Dolinko
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, 92697, USA
- Department of Ophthalmology Research, Gavin Herbert Eye Institute, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Road, Irvine, CA, 92697, USA
| | - Marilyn Chwa
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Shari R Atilano
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - M Cristina Kenney
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, 92697, USA.
- Department of Ophthalmology Research, Gavin Herbert Eye Institute, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Road, Irvine, CA, 92697, USA.
| |
Collapse
|
22
|
Casoli T, Lisa R, Fabbietti P, Conti F. Analysis of mitochondrial DNA allelic changes in Parkinson's disease: a preliminary study. Aging Clin Exp Res 2020; 32:345-349. [PMID: 30982219 DOI: 10.1007/s40520-019-01197-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/05/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) mutations are considered as a possible primary cause of age-associated neurodegenerative disorders like Parkinson's disease (PD). AIMS To analyze, along the whole mtDNA sequence of PD patients, the presence of non-reference alleles compared to reference alleles, as defined in the revised Cambridge Reference Sequence (rCRS). METHODS mtDNA was extracted from whole blood of PD and control groups, and was sequenced using a chip-based resequencing system. RESULTS 58 nucleotide positions (np) exhibited a different allelic distribution in the two groups; in 81% of them the non-reference alleles were over-represented in PD patients, similar to findings reported in patients with Alzheimer's disease, albeit in reduced proportion. Closer analysis of the 58 np in PD group showed that they were characterized by low-level heteroplasmy, and that the nucleotide substitutions determined an amino acid change in 84% of cases. CONCLUSIONS These results suggest that mtDNA allelic changes are increased in PD and that age-related neurodegenerative diseases could share a common mechanism involving mtDNA.
Collapse
Affiliation(s)
- Tiziana Casoli
- Center for Neurobiology of Aging, IRCCS INRCA, Via Birarelli 8, 60121, Ancona, Italy.
| | | | - Paolo Fabbietti
- Diagnostic Unit of Geriatric Pharmacoepidemiology, IRCCS INRCA, Cosenza, Italy
| | - Fiorenzo Conti
- Center for Neurobiology of Aging, IRCCS INRCA, Via Birarelli 8, 60121, Ancona, Italy
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
| |
Collapse
|
23
|
Wang Y, Mishra A, Brinton RD. Transitions in metabolic and immune systems from pre-menopause to post-menopause: implications for age-associated neurodegenerative diseases. F1000Res 2020; 9. [PMID: 32047612 PMCID: PMC6993821 DOI: 10.12688/f1000research.21599.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
The brain undergoes two aging programs: chronological and endocrinological. This is particularly evident in the female brain, which undergoes programs of aging associated with reproductive competency. Comprehensive understanding of the dynamic metabolic and neuroinflammatory aging process in the female brain can illuminate windows of opportunities to promote healthy brain aging. Bioenergetic crisis and chronic low-grade inflammation are hallmarks of brain aging and menopause and have been implicated as a unifying factor causally connecting genetic risk factors for Alzheimer's disease and other neurodegenerative diseases. In this review, we discuss metabolic phenotypes of pre-menopausal, peri-menopausal, and post-menopausal aging and their consequent impact on the neuroinflammatory profile during each transition state. A critical aspect of the aging process is the dynamic metabolic neuro-inflammatory profiles that emerge during chronological and endocrinological aging. These dynamic systems of biology are relevant to multiple age-associated neurodegenerative diseases and provide a therapeutic framework for prevention and delay of neurodegenerative diseases of aging. While these findings are based on investigations of the female brain, they have a broader fundamental systems of biology strategy for investigating the aging male brain. Molecular characterization of alterations in fuel utilization and neuroinflammatory mechanisms during these neuro-endocrine transition states can inform therapeutic strategies to mitigate the risk of Alzheimer's disease in women. We further discuss a precision hormone replacement therapy approach to target symptom profiles during endocrine and chronological aging to reduce risk for age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Aarti Mishra
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
24
|
Luo J, Mills K, le Cessie S, Noordam R, van Heemst D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res Rev 2020; 57:100982. [PMID: 31733333 DOI: 10.1016/j.arr.2019.100982] [Citation(s) in RCA: 343] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/04/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Among other mechanisms, oxidative stress has been postulated to play an important role in the rate of ageing. Oxidative damage contributes to the hallmarks of ageing and essential components in pathological pathways which are thought to drive multiple age-related diseases. Nonetheless, results from studies testing the hypothesis of oxidative stress in ageing and diseases showed controversial results. While observational studies mainly found detrimental effects of high oxidative stress levels on disease status, randomized clinical trials examining the effect of antioxidant supplementation on disease status generally showed null effects. However, re-evaluations of these counterinitiative observations are required considering the lack of reliability and specificity of traditionally used biomarkers for measuring oxidative stress. To facilitate these re-evaluations, this review summarizes the basic knowledge of oxidative stress and the present findings regarding the role of oxidative damage in ageing and age-related diseases. Meanwhile, two approaches are highlighted, namely proper participants selection, together with the development of reliable biomarkers. We propose that oxidized vitamin E metabolites may be used to accurately monitor individual functional antioxidant level, which might serve as promising key solutions for future elucidating the impact of oxidative stress on ageing and age-related diseases.
Collapse
|
25
|
Starikovskaya E, Shalaurova S, Dryomov S, Nazhmidenova A, Volodko N, Bychkov I, Mazunin I, Sukernik R. Mitochondrial DNA Variation of Leber's Hereditary Optic Neuropathy in Western Siberia. Cells 2019; 8:E1574. [PMID: 31817256 PMCID: PMC6953113 DOI: 10.3390/cells8121574] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 12/24/2022] Open
Abstract
Our data first represent the variety of Leber's hereditary optic neuropathy (LHON) mutations in Western Siberia. LHON is a disorder caused by pathogenic mutations in mitochondrial DNA (mtDNA), inherited maternally and presents mainly in young adults, predominantly males. Clinically, LHON manifests itself as painless central vision loss, resulting in early onset of disability. The epidemiology of LHON has not been fully investigated yet. In this study, we report 44 genetically unrelated families with LHON manifestation. We performed whole mtDNA genome sequencing and provided genealogical and molecular genetic data on mutations and haplogroup background of LHON patients. Known "primary" pathogenic mtDNA mutations (MITOMAP) were found in 32 families: m.11778G>A represents 53.10% (17/32), m.3460G>A-21.90% (7/32), m.14484T>C-18.75% (6/32), and rare m.10663T>C and m.3635G>A represent 6.25% (2/32). We describe potentially pathogenic m.4659G>A in one subject without known pathogenic mutations, and potentially pathogenic m.6261G>A, m.8412T>C, m.8551T>C, m.9444C>T, m.9921G>A, and m.15077G>A in families with known pathogenic mutations confirmed. We suppose these mutations could contribute to the pathogenesis of optic neuropathy development. Our results indicate that haplogroup affiliation and mutational spectrum of the Western Siberian LHON cohort substantially deviate from those of European populations.
Collapse
Affiliation(s)
- Elena Starikovskaya
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, SBRAS, Novosibirsk 630090, Russia (S.D.); (A.N.); (R.S.)
| | - Sofia Shalaurova
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, SBRAS, Novosibirsk 630090, Russia (S.D.); (A.N.); (R.S.)
| | - Stanislav Dryomov
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, SBRAS, Novosibirsk 630090, Russia (S.D.); (A.N.); (R.S.)
| | - Azhar Nazhmidenova
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, SBRAS, Novosibirsk 630090, Russia (S.D.); (A.N.); (R.S.)
| | - Natalia Volodko
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Igor Bychkov
- Novosibirsk Branch of S.N. Fedorov NMRC “MNTK Eye Microsurgery”, Moscow 127486, Russia
| | - Ilia Mazunin
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
| | - Rem Sukernik
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, SBRAS, Novosibirsk 630090, Russia (S.D.); (A.N.); (R.S.)
| |
Collapse
|
26
|
Müller-Nedebock AC, Brennan RR, Venter M, Pienaar IS, van der Westhuizen FH, Elson JL, Ross OA, Bardien S. The unresolved role of mitochondrial DNA in Parkinson's disease: An overview of published studies, their limitations, and future prospects. Neurochem Int 2019; 129:104495. [PMID: 31233840 PMCID: PMC6702091 DOI: 10.1016/j.neuint.2019.104495] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/27/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disorder, has long been associated with mitochondrial dysfunction in both sporadic and familial forms of the disease. Mitochondria are crucial for maintaining cellular homeostasis, and their dysfunction is detrimental to dopaminergic neurons. These neurons are highly dependent on mitochondrial adenosine triphosphate (ATP) and degenerate in PD. Mitochondria contain their own genomes (mtDNA). The role of mtDNA has been investigated in PD on the premise that it encodes vital components of the ATP-generating oxidative phosphorylation (OXPHOS) complexes and accumulates somatic variation with age. However, the association between mtDNA variation and PD remains controversial. Herein, we provide an overview of previously published studies on the role of inherited as well as somatic (acquired) mtDNA changes in PD including point mutations, deletions and depletion. We outline limitations of previous investigations and the difficulties associated with studying mtDNA, which have left its role unresolved in the context of PD. Lastly, we highlight the potential for further research in this field and provide suggestions for future studies. Overall, the mitochondrial genome is indispensable for proper cellular function and its contribution to PD requires further, more extensive investigation.
Collapse
Affiliation(s)
- Amica C Müller-Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | | | - Marianne Venter
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Ilse S Pienaar
- School of Life Sciences, University of Sussex, Falmer, BN1 9PH, United Kingdom; Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, United Kingdom
| | | | - Joanna L Elson
- Human Metabolomics, North-West University, Potchefstroom, South Africa; Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
27
|
Grünewald A, Kumar KR, Sue CM. New insights into the complex role of mitochondria in Parkinson’s disease. Prog Neurobiol 2019; 177:73-93. [DOI: 10.1016/j.pneurobio.2018.09.003] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/09/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
|
28
|
Morava E, Kozicz T, Wallace DC. The phenotype modifier: is the mitochondrial DNA background responsible for individual differences in disease severity. J Inherit Metab Dis 2019; 42:3-4. [PMID: 30740738 DOI: 10.1002/jimd.12050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Eva Morava
- Department of Clinical Genomics, Center of Individualized Medicine, Rochester, Minnesota
| | - Tamas Kozicz
- Department of Clinical Genomics, Center of Individualized Medicine, Rochester, Minnesota
| | - Douglas C Wallace
- Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Abstract
Inherited mitochondrial DNA (mtDNA) diseases were discovered 30 years ago, and their characterization has provided a new perspective on the etiology of the common metabolic and degenerative diseases, cancer, and aging. The maternally inherited mtDNA contains 37 critical bioenergetic genes that are present in hundreds of copies per cell, but the 'mitochondrial genome' encompasses an additional 1,000-2,000 nuclear DNA (nDNA) mitochondrial genes. The interaction between these two mitochondrial genetic systems provides explanations for phenomena such as the non-Mendelian transmission of the common 'complex' diseases, age-related disease risk and progression, variable penetrance and expressivity, and gene-environment interactions. Thus, mtDNA genetics contributes to the quantitative and environmental components of human genetics that cannot be explained by Mendelian genetics. Because mtDNA is maternally inherited and cytoplasmic, it has fostered the first germline gene therapy, nuclear transplantation. However, effective interventions are still lacking for existing patients with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Chinnery PF, Gomez-Duran A. Oldies but Goldies mtDNA Population Variants and Neurodegenerative Diseases. Front Neurosci 2018; 12:682. [PMID: 30369864 PMCID: PMC6194173 DOI: 10.3389/fnins.2018.00682] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022] Open
Abstract
mtDNA is transmitted through the maternal line and its sequence variability, which is population specific, is assumed to be phenotypically neutral. However, several studies have shown associations between the variants defining some genetic backgrounds and the susceptibility to several pathogenic phenotypes, including neurodegenerative diseases. Many of these studies have found that some of these variants impact many of these phenotypes, including the ones defining the Caucasian haplogroups H, J, and Uk, while others, such as the ones defining the T haplogroup, have phenotype specific associations. In this review, we will focus on those that have shown a pleiotropic effect in population studies in neurological diseases. We will also explore their bioenergetic and genomic characteristics in order to provide an insight into the role of these variants in disease. Given the importance of mitochondrial population variants in neurodegenerative diseases a deeper analysis of their effects might unravel new mechanisms of disease and help design new strategies for successful treatments.
Collapse
Affiliation(s)
- Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Medical Research Council-Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Aurora Gomez-Duran
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Medical Research Council-Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
31
|
Ilie IR. Advances in PCOS Pathogenesis and Progression-Mitochondrial Mutations and Dysfunction. Adv Clin Chem 2018; 86:127-155. [PMID: 30144838 DOI: 10.1016/bs.acc.2018.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common female endocrine disorder, which still remains largely unsolved in terms of etiology and pathogenesis despite important advances in our understanding of its genetic, epigenetic, or environmental factor implications. It is a heterogeneous disease, frequently associated with insulin resistance, chronic inflammation, and oxidative stress and probably accompanied with subclinical cardiovascular disease (CVD) and some malignant lesions as well, such as endometrial cancer. Discrepancies in the clinical phenotype and progression of PCOS exist between different population groups, which nuclear genetic studies have so far failed to explain. Over the last years, mitochondrial dysfunction has been increasingly recognized as an important contributor to an array of diseases. Because mitochondria are under the dual genetic control of both the mitochondrial and nuclear genomes, mutations within either DNA molecule may result in deficiency in respiratory chain function that leads to a reduced ability to produce cellular adenosine-5'-triphosphate and to an excessive production of reactive oxygen species. However, the association between variants in mitochondrial genome, mitochondrial dysfunction, and PCOS has been investigated to a lesser extent. May mutations in mitochondrial DNA (mtDNA) become an additional target of investigations on the missing PCOS heritability? Are mutations in mtDNA implicated in the initiation and progression of PCOS complications, e.g., CVDs, diabetes mellitus, cancers?
Collapse
Affiliation(s)
- Ioana R Ilie
- Department of Endocrinology, University of Medicine and Pharmacy 'Iuliu-Hatieganu', Cluj-Napoca, Romania; E-mail:
| |
Collapse
|
32
|
Pei L, Wallace DC. Mitochondrial Etiology of Neuropsychiatric Disorders. Biol Psychiatry 2018; 83:722-730. [PMID: 29290371 PMCID: PMC5891364 DOI: 10.1016/j.biopsych.2017.11.018] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/30/2022]
Abstract
The brain has the highest mitochondrial energy demand of any organ. Therefore, subtle changes in mitochondrial energy production will preferentially affect the brain. Considerable biochemical evidence has accumulated revealing mitochondrial defects associated with neuropsychiatric diseases. Moreover, the mitochondrial genome encompasses over a thousand nuclear DNA genes plus hundreds to thousands of copies of the maternally inherited mitochondrial DNA (mtDNA). Therefore, partial defects in either the nuclear DNA or mtDNA genes or combinations of the two can be sufficient to cause neuropsychiatric disorders. Inherited and acquired mtDNA mutations have recently been associated with autism spectrum disorder, which parallels previous evidence of mtDNA variation in other neurological diseases. Therefore, mitochondrial dysfunction may be central to the etiology of a wide spectrum of neurological diseases. The mitochondria and the nucleus communicate to coordinate energy production and utilization, providing the potential for therapeutics by manipulating nuclear regulation of mitochondrial gene expression.
Collapse
|
33
|
Ding Y, Xia BH, Zhang CJ, Zhuo GC. Mitochondrial tRNA Leu(UUR) C3275T, tRNA Gln T4363C and tRNA Lys A8343G mutations may be associated with PCOS and metabolic syndrome. Gene 2017; 642:299-306. [PMID: 29155328 DOI: 10.1016/j.gene.2017.11.049] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 01/26/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a very prevalent endocrine disease affecting reproductive women. Clinically, patients with this disorder are more vulnerable to develop type 2 diabetes mellitus (T2DM), cardiovascular events, as well as metabolic syndrome (MetS). To date, the molecular mechanism underlying PCOS remains largely unknown. Previously, we showed that mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) mutation was an important cause for PCOS. In the current study, we described the clinical and biochemical features of a three-generation pedigree with maternally transmitted MetS, combined with PCOS. A total of three matrilineal relatives exhibited MetS including obesity, high triglyceride (TG) and Hemoglobin A1c (HbA1c) levels, and hypertension. Whereas one patient from the third generation manifestated PCOS. Mutational analysis of the whole mitochondrial genes from the affected individuals identified a set of genetic variations belonging to East Asia haplogroup B4b1c. Among these variants, the homoplasmic C3275T mutation disrupted a highly evolutionary conserved base-pairing (28A-46C) on the variable region of tRNALeu(UUR), whereas the T4363C mutation created a new base-pairing (31T-37A) in the anticodon stem of tRNAGln, furthermore, the A8343G mutation occurred at the very conserved position of tRNALys and may result the failure in mitochondrial tRNAs (mt-tRNAs) metabolism. Biochemical analysis revealed the deficiency in mitochondrial functions including lower levels of mitochondrial membrane potential (MMP), ATP production and mtDNA copy number, while a significantly increased reactive oxygen species (ROS) generation was observed in polymononuclear leukocytes (PMNs) from the individuals carrying these mt-tRNA mutations, suggesting that these mutations may cause mitochondrial dysfunction that was responsible for the clinical phenotypes. Taken together, our data indicated that mt-tRNA mutations were associated with MetS and PCOS in this family, which shaded additional light into the pathophysiology of PCOS that were manifestated by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yu Ding
- Central Laboratory, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, China.
| | - Bo-Hou Xia
- Department of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Cai-Juan Zhang
- Department of Gynecology and Obstetrics, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China
| | - Guang-Chao Zhuo
- Central Laboratory, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
34
|
Chen Y, Meyer JN, Hill HZ, Lange G, Condon MR, Klein JC, Ndirangu D, Falvo MJ. Role of mitochondrial DNA damage and dysfunction in veterans with Gulf War Illness. PLoS One 2017; 12:e0184832. [PMID: 28910366 PMCID: PMC5599026 DOI: 10.1371/journal.pone.0184832] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/31/2017] [Indexed: 11/22/2022] Open
Abstract
Gulf War Illness (GWI) is a chronic multi-symptom illness not currently diagnosed by standard medical or laboratory test that affects 30% of veterans who served during the 1990-1991 Gulf War. The clinical presentation of GWI is comparable to that of patients with certain mitochondrial disorders-i.e., clinically heterogeneous multisystem symptoms. Therefore, we hypothesized that mitochondrial dysfunction may contribute to both the symptoms of GWI as well as its persistence over time. We recruited 21 cases of GWI (CDC and Kansas criteria) and 7 controls to participate in this study. Peripheral blood samples were obtained in all participants and a quantitative polymerase chain reaction (QPCR) based assay was performed to quantify mitochondrial and nuclear DNA lesion frequency and mitochondrial DNA (mtDNA) copy number (mtDNAcn) from peripheral blood mononuclear cells. Samples were also used to analyze nuclear DNA lesion frequency and enzyme activity for mitochondrial complexes I and IV. Both mtDNA lesion frequency (p = 0.015, d = 1.13) and mtDNAcn (p = 0.001; d = 1.69) were elevated in veterans with GWI relative to controls. Nuclear DNA lesion frequency was also elevated in veterans with GWI (p = 0.344; d = 1.41), but did not reach statistical significance. Complex I and IV activity (p > 0.05) were similar between groups and greater mtDNA lesion frequency was associated with reduced complex I (r2 = -0.35, p = 0.007) and IV (r2 = -0.28, p < 0.01) enzyme activity. In conclusion, veterans with GWI exhibit greater mtDNA damage which is consistent with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yang Chen
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, United States of America
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, United States of America
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Helene Z Hill
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, United States of America
| | - Gudrun Lange
- Pain and Fatigue Study Center, Beth Israel Medical Center and Albert Einstein Medical Center, New York, New York, United States of America
| | - Michael R Condon
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, United States of America
- Surgical Services, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, United States of America
| | - Jacquelyn C Klein
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, United States of America
| | - Duncan Ndirangu
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, United States of America
| | - Michael J Falvo
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, United States of America
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, United States of America
| |
Collapse
|
35
|
Nwanaji-Enwerem JC, Colicino E, Dai L, Cayir A, Sanchez-Guerra M, Laue HE, Nguyen VT, Di Q, Just AC, Hou L, Vokonas P, Coull BA, Weisskopf MG, Baccarelli AA, Schwartz JD. Impacts of the Mitochondrial Genome on the Relationship of Long-Term Ambient Fine Particle Exposure with Blood DNA Methylation Age. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8185-8195. [PMID: 28636816 PMCID: PMC5555236 DOI: 10.1021/acs.est.7b02409] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The mitochondrial genome has long been implicated in age-related disease, but no studies have examined its role in the relationship of long-term fine particle (PM2.5) exposure and DNA methylation age (DNAm-age)-a novel measure of biological age. In this analysis based on 940 observations between 2000 and 2011 from 552 Normative Aging Study participants, we determined the roles of mitochondrial DNA haplogroup variation and mitochondrial genome abundance in the relationship of PM2.5 with DNAm-age. We used the GEOS-chem transport model to estimate address-specific, one-year PM2.5 levels for each participant. DNAm-age and mitochondrial DNA markers were measured from participant blood samples. Nine haplogroups (H, I, J, K, T, U, V, W, and X) were present in the population. In fully adjusted linear mixed-effects models, the association of PM2.5 with DNAm-age (in years) was significantly diminished in carriers of haplogroup V (Pinteraction = 0.01; β = 0.18, 95%CI: -0.41, 0.78) compared to noncarriers (β = 1.25, 95%CI: 0.58, 1.93). Mediation analysis estimated that decreases in mitochondrial DNA copy number, a measure of mitochondrial genome abundance, mediated 12% of the association of PM2.5 with DNAm-age. Our data suggests that the mitochondrial genome plays a role in DNAm-age relationships particularly in the context of long-term PM2.5 exposure.
Collapse
Affiliation(s)
- Jamaji C. Nwanaji-Enwerem
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115
| | - Elena Colicino
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA, 10032
| | - Lingzhen Dai
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115
| | - Akin Cayir
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115
- Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey, 17100
| | - Marco Sanchez-Guerra
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115
- Department of Developmental Neurobiology, National Institute of Perinatology, Mexico City, Mexico, 11000
| | - Hannah E. Laue
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA, 10032
| | - Vy T. Nguyen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115
| | - Qian Di
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115
| | - Allan C. Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Lifang Hou
- Center for Population Epigenetics, Department of Preventive Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - Pantel Vokonas
- VA Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Boston, MA, USA, 02118
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115
| | - Marc G. Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA, 10032
| | - Joel D. Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115
| |
Collapse
|
36
|
Frye RE, Rose S, Wynne R, Bennuri SC, Blossom S, Gilbert KM, Heilbrun L, Palmer RF. Oxidative Stress Challenge Uncovers Trichloroacetaldehyde Hydrate-Induced Mitoplasticity in Autistic and Control Lymphoblastoid Cell Lines. Sci Rep 2017; 7:4478. [PMID: 28667285 PMCID: PMC5493637 DOI: 10.1038/s41598-017-04821-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
Mitoplasticity occurs when mitochondria adapt to tolerate stressors. Previously we hypothesized that a subset of lymphoblastoid cell lines (LCLs) from children with autistic disorder (AD) show mitoplasticity (AD-A), presumably due to previous environmental exposures; another subset of AD LCLs demonstrated normal mitochondrial activity (AD-N). To better understand mitoplasticity in the AD-A LCLs we examined changes in mitochondrial function using the Seahorse XF96 analyzer in AD and Control LCLs after exposure to trichloroacetaldehyde hydrate (TCAH), an in vivo metabolite of the environmental toxicant and common environmental pollutant trichloroethylene. To better understand the role of reactive oxygen species (ROS) in mitoplasticity, TCAH exposure was followed by acute exposure to 2,3-dimethoxy-1,4-napthoquinone (DMNQ), an agent that increases ROS. TCAH exposure by itself resulted in a decline in mitochondrial respiration in all LCL groups. This effect was mitigated when TCAH was followed by acute DMNQ exposure but this varied across LCL groups. DMNQ did not affect AD-N LCLs, while it neutralized the detrimental effect of TCAH in Control LCLs and resulted in a increase in mitochondrial respiration in AD-A LCLs. These data suggest that acute increases in ROS can activate mitochondrial protective pathways and that AD-A LCLs are better able to activate these protective pathways.
Collapse
Affiliation(s)
- Richard Eugene Frye
- Arkansas Children's Research Institute, Little Rock, AR, USA. .,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Shannon Rose
- Arkansas Children's Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rebecca Wynne
- Arkansas Children's Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sirish C Bennuri
- Arkansas Children's Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sarah Blossom
- Arkansas Children's Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kathleen M Gilbert
- Arkansas Children's Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lynne Heilbrun
- Department of Family and Community Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Raymond F Palmer
- Department of Family and Community Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
37
|
Giannoccaro MP, La Morgia C, Rizzo G, Carelli V. Mitochondrial DNA and primary mitochondrial dysfunction in Parkinson's disease. Mov Disord 2017; 32:346-363. [PMID: 28251677 DOI: 10.1002/mds.26966] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/15/2022] Open
Abstract
In 1979, it was observed that parkinsonism could be induced by a toxin inhibiting mitochondrial respiratory complex I. This initiated the long-standing hypothesis that mitochondrial dysfunction may play a key role in the pathogenesis of Parkinson's disease (PD). This hypothesis evolved, with accumulating evidence pointing to complex I dysfunction, which could be caused by environmental or genetic factors. Attention was focused on the mitochondrial DNA, considering the occurrence of mutations, polymorphic haplogroup-specific variants, and defective mitochondrial DNA maintenance with the accumulation of multiple deletions and a reduction of copy number. Genetically determined diseases of mitochondrial DNA maintenance frequently manifest with parkinsonism, but the age-related accumulation of somatic mitochondrial DNA errors also represents a major driving mechanism for PD. Recently, the discovery of the genetic cause of rare inherited forms of PD highlighted an extremely complex homeostatic control over mitochondria, involving their dynamic fission/fusion cycle, the balancing of mitobiogenesis and mitophagy, and consequently the quality control surveillance that corrects faulty mitochondrial DNA maintenance. Many genes came into play, including the PINK1/parkin axis, but also OPA1, as pieces of the same puzzle, together with mitochondrial DNA damage, complex I deficiency and increased oxidative stress. The search for answers will drive future research to reach the understanding necessary to provide therapeutic options directed not only at limiting the clinical evolution of symptoms but also finally addressing the pathogenic mechanisms of neurodegeneration in PD. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Maria Pia Giannoccaro
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Rizzo
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Valerio Carelli
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
38
|
Soini HK, Väisänen A, Kärppä M, Hinttala R, Kytövuori L, Moilanen JS, Uusimaa J, Majamaa K. A novel MTTT mutation m.15933G > A revealed in analysis of mitochondrial DNA in patients with suspected mitochondrial disease. BMC MEDICAL GENETICS 2017; 18:14. [PMID: 28187756 PMCID: PMC5303298 DOI: 10.1186/s12881-017-0377-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/03/2017] [Indexed: 01/25/2023]
Abstract
Background Mitochondrial diseases present with variable multi-organ symptoms. Common disease-causing mutations in mitochondrial DNA (mtDNA) are regularly screened in diagnostic work-up, but novel mutations may remain unnoticed. Methods Patients (N = 66) with a clinical suspicion of mitochondrial disease were screened for their mtDNA coding region using conformation sensitive gel electrophoresis and sequencing. Long-PCR was used to detect deletions followed by POLG1 sequencing in patients with multiple deletions. Results We discovered three novel mtDNA variants that included m.8743G > C, m.11322A > G and m.15933G > A. The novel MTTT variant m.15933G > A is suggested to be pathogenic. Analysis revealed also multiple mtDNA deletions in two patients and five nonsynonymous variants that were putatively pathogenic according to in-silico prediction algorithms. In addition, a rare haplogroup H associated m.7585_7586insT variant was discovered. Conclusions Among patients with a suspected mitochondrial disease, a novel MTTT variant m.15933G > A was discovered and is suggested to be pathogenic. In addition, several putatively pathogenic nonsynonymous variants and rare variants were found. These findings highlight the importance of coding region mtDNA screening among patients with clinical features suggesting a mitochondrial disease, but who lack the common mitochondrial disease mutations.
Collapse
Affiliation(s)
- Heidi K Soini
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland. .,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland. .,Department of Neurology, Oulu University Hospital, P.O. Box 20, FI-90029 OYS, Oulu, Finland. .,PEDEGO Research Unit, Pediatrics, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.
| | - Antti Väisänen
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Neurology, Oulu University Hospital, P.O. Box 20, FI-90029 OYS, Oulu, Finland
| | - Mikko Kärppä
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Neurology, Oulu University Hospital, P.O. Box 20, FI-90029 OYS, Oulu, Finland
| | - Reetta Hinttala
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,PEDEGO Research Unit, Pediatrics, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Pediatrics, Oulu University Hospital, P.O. Box 23, FI-90029 OYS, Oulu, Finland
| | - Laura Kytövuori
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Neurology, Oulu University Hospital, P.O. Box 20, FI-90029 OYS, Oulu, Finland
| | - Jukka S Moilanen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Clinical Genetics, Oulu University Hospital, P.O. Box 23, FI-90029 OYS, Oulu, Finland.,PEDEGO Research Unit, Clinical Genetics, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland
| | - Johanna Uusimaa
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,PEDEGO Research Unit, Pediatrics, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Pediatrics, Oulu University Hospital, P.O. Box 23, FI-90029 OYS, Oulu, Finland
| | - Kari Majamaa
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Neurology, Oulu University Hospital, P.O. Box 20, FI-90029 OYS, Oulu, Finland
| |
Collapse
|
39
|
Mitochondrial-Targeted Catalase: Extended Longevity and the Roles in Various Disease Models. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:203-241. [PMID: 28253986 DOI: 10.1016/bs.pmbts.2016.12.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The free-radical theory of aging was proposed more than 50 years ago. As one of the most popular mechanisms explaining the aging process, it has been extensively studied in several model organisms. However, the results remain controversial. The mitochondrial version of free-radical theory of aging proposes that mitochondria are both the primary sources of reactive oxygen species (ROS) and the primary targets of ROS-induced damage. One critical ROS is hydrogen peroxide, which is naturally degraded by catalase in peroxisomes or glutathione peroxidase within mitochondria. Our laboratory developed mice-overexpressing catalase targeted to mitochondria (mCAT), peroxisomes (pCAT), or the nucleus (nCAT) in order to investigate the role of hydrogen peroxide in different subcellular compartments in aging and age-related diseases. The mCAT mice have demonstrated the largest effects on life span and healthspan extension. This chapter will discuss the mCAT phenotype and review studies using mCAT to investigate the roles of mitochondrial oxidative stresses in various disease models, including metabolic syndrome and atherosclerosis, cardiac aging, heart failure, skeletal muscle pathology, sensory defect, neurodegenerative diseases, and cancer. As ROS has been increasingly recognized as essential signaling molecules that may be beneficial in hormesis, stress response and immunity, the potential pleiotropic, or adverse effects of mCAT are also discussed. Finally, the development of small-molecule mitochondrial-targeted therapeutic approaches is reviewed.
Collapse
|
40
|
Wang Y, Brinton RD. Triad of Risk for Late Onset Alzheimer's: Mitochondrial Haplotype, APOE Genotype and Chromosomal Sex. Front Aging Neurosci 2016; 8:232. [PMID: 27757081 PMCID: PMC5047907 DOI: 10.3389/fnagi.2016.00232] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/20/2016] [Indexed: 01/02/2023] Open
Abstract
Brain is the most energetically demanding organ of the body, and is thus vulnerable to even modest decline in ATP generation. Multiple neurodegenerative diseases are associated with decline in mitochondrial function, e.g., Alzheimer’s, Parkinson’s, multiple sclerosis and multiple neuropathies. Genetic variances in the mitochondrial genome can modify bioenergetic and respiratory phenotypes, at both the cellular and system biology levels. Mitochondrial haplotype can be a key driver of mitochondrial efficiency. Herein, we focus on the association between mitochondrial haplotype and risk of late onset Alzheimer’s disease (LOAD). Evidence for the association of mitochondrial genetic variances/haplotypes and the risk of developing LOAD are explored and discussed. Further, we provide a conceptual framework that suggests an interaction between mitochondrial haplotypes and two demonstrated risk factors for Alzheimer’s disease (AD), apolipoprotein E (APOE) genotype and chromosomal sex. We posit herein that mitochondrial haplotype, and hence respiratory capacity, plays a key role in determining risk of LOAD and other age-associated neurodegenerative diseases. Further, therapeutic design and targeting that involve mitochondrial haplotype would advance precision medicine for AD and other age related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Roberta D Brinton
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
41
|
Ying Z, Zheng J, Cai Z, Liu L, Dai Y, Yao J, Wang H, Gao Y, Zheng B, Tang X, Zhu Y, Guan MX, Chen Y. Mitochondrial haplogroup B increases the risk for hearing loss among the Eastern Asian pedigrees carrying 12S rRNA 1555A>G mutation. Protein Cell 2016; 6:844-8. [PMID: 26361786 PMCID: PMC4624676 DOI: 10.1007/s13238-015-0203-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Zhengbiao Ying
- Department of Otolaryngology, Wenling People's Hospital, Wenzhou Medical University, Wenling, 317500, China
| | - Jing Zheng
- Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhaoyang Cai
- Department of Otolaryngology, Wenling People's Hospital, Wenzhou Medical University, Wenling, 317500, China
| | - Li Liu
- Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yu Dai
- Department of Clinical Laboratory, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Juan Yao
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hui Wang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yinglong Gao
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Binjiao Zheng
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaowen Tang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yi Zhu
- Department of Otolaryngology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Min-Xin Guan
- Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310058, China
| | - Ye Chen
- Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
42
|
Bahreini F, Houshmand M, Modaresi MH, Tonekaboni H, Nafissi S, Nazari F, Akrami SM. Mitochondrial Copy Number and D-Loop Variants in Pompe Patients. CELL JOURNAL 2016; 18:405-15. [PMID: 27602323 PMCID: PMC5011329 DOI: 10.22074/cellj.2016.4569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/24/2016] [Indexed: 02/06/2023]
Abstract
Objective Pompe disease is a rare neuromuscular genetic disorder and is classified
into two forms of early and late-onset. Over the past two decades, mitochondrial abnor-
malities have been recognized as an important contributor to an array of neuromuscular
diseases. We therefore aimed to compare mitochondrial copy number and mitochondrial
displacement-loop sequence variation in infantile and adult Pompe patients.
Materials and Methods In this retrospective study, the mitochondrial D-loop sequence
was analyzed by polymerase chain reaction (PCR) and direct sequencing to detect pos-
sible variation in 28 Pompe patients (17 infants and 11 adults). Results were compared
with 100 healthy controls and sequences of all individuals were compared with the Cam-
bridge reference sequence. Real-time PCR was used to quantify mitochondrial DNA copy
number.
Results Among 59 variants identified, 37(62.71%) were present in the infant group,
14(23.333%) in the adult group and 8(13.333%) in both groups. Mitochondrial copy
number in infant patients was lower than adults (P<0.05). A significant frequency differ-
ence was seen between the two groups for 12 single nucleotide polymorphism (SNP).
A novel insertion (317-318 ins CCC) was observed in patients and six SNPs were iden-
tified as neutral variants in controls. There was an inverse association between mito-
chondrial copy number and D-loop variant number (r=0.54).
Conclusion The 317-318 ins CCC was detected as a new mitochondrial variant in
Pompe patients.
Collapse
Affiliation(s)
- Fatemeh Bahreini
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Houshmand
- Department of Medical Genetic, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Hossein Modaresi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Tonekaboni
- Department of Pediatric Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahriar Nafissi
- Iranian Center for Neurological Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ferdoss Nazari
- Iranian Center for Neurological Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Mitochondria in pluripotent stem cells: stemness regulators and disease targets. Curr Opin Genet Dev 2016; 38:1-7. [PMID: 26953561 DOI: 10.1016/j.gde.2016.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 11/23/2022]
Abstract
Beyond their canonical role in efficient ATP production through oxidative metabolism, mitochondria are increasingly recognized as critical in defining stem cell function and fate. Implicating a fundamental interplay within the epigenetics of eukaryotic cell systems, the integrity of mitochondria is found vital across the developmental/differentiation spectrum from securing pluripotency maintenance to informing organotypic decisions. This overview will discuss recent progress on examining the plasticity of mitochondria in enabling the execution of programming and reprogramming regimens, as well as the application of nuclear reprogramming and somatic cell nuclear transfer as rescue techniques to generate genetically and functionally corrected pluripotent stem cells from patients with mitochondrial DNA-based disease.
Collapse
|
44
|
Litvinov SS, Khusnutdinova EK. Current state of research in ethnogenomics: Genome-wide analysis and uniparental markers. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415040080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Serum- and Glucocorticoid-Inducible Kinase 1 Confers Protection in Cell-Based and in In Vivo Neurotoxin Models via the c-Jun N-Terminal Kinase Signaling Pathway. Mol Cell Biol 2015; 35:1992-2006. [PMID: 25825522 DOI: 10.1128/mcb.01510-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/13/2015] [Indexed: 12/31/2022] Open
Abstract
Serum glucocorticoid kinase 1 (SGK1) has been shown to be protective in models of Parkinson's disease, but the details by which it confers benefit is unknown. The current study was designed to investigate the details by which SGK1 confers neuroprotection. To do this we employed a cellular neurodegeneration model to investigate c-Jun N-terminal kinase (JNK) signaling and endoplasmic reticulum (ER) stress induced by 6-hydroxydopamine. SGK1-expressing adenovirus was created and used to overexpress SGK1 in SH-SY5Y cells, and dexamethasone was used to increase endogenous expression of SGK1. Oxidative stress, mitochondrial dysfunction, and cell death were monitored to test the protective effect of SGK1. To investigate the effect of SGK1 overexpression in vivo, SGK1-expressing adenovirus was injected into the striatum of mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and protection of dopaminergic neurons was quantitatively assessed by tyrosine hydroxylase immunohistochemistry. SGK1 overexpression was found to decrease reactive oxygen species generation, alleviate mitochondrial dysfunction, and rescue cell death in vitro and in vivo by inactivating mitogen-activated protein kinase kinase 4 (MKK4), JNK, and glycogen synthase kinase 3β (GSK3β) and thereby decreasing ER and oxidative stress. These results suggest that therapeutic strategies for activation of SGK1 may have the potential to be neuroprotective by deactivating the JNK and GSK3β pathways.
Collapse
|
46
|
Mitochondria in health, aging and diseases: the epigenetic perspective. Biogerontology 2015; 16:569-85. [DOI: 10.1007/s10522-015-9562-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/19/2015] [Indexed: 01/15/2023]
|
47
|
Jiang H, Zhao H, Xu H, Hu L, Wang W, Wei Y, Wang Y, Peng X, Zhou F. Peripheral blood mitochondrial DNA content, A10398G polymorphism, and risk of breast cancer in a Han Chinese population. Cancer Sci 2014; 105:639-45. [PMID: 24703408 PMCID: PMC4317893 DOI: 10.1111/cas.12412] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/13/2014] [Accepted: 04/03/2014] [Indexed: 01/04/2023] Open
Abstract
It has been reported that quantitative alterations and sequence variations of mtDNA are associated with the onset and progression of particular types of tumor. However, the relationship between mtDNA content, certain mtDNA polymorphisms in peripheral blood leukocytes and breast cancer risk remain obscure. This study was undertaken to investigate whether mtDNA content and the A10398G polymorphism in peripheral blood leukocytes could be used as risk predictors for breast cancer in Han Chinese women. Blood samples were obtained from a total of 506 breast cancer patients and 520 matched healthy controls. The mtDNA content was measured by using quantitative real-time PCR assay; A10398G polymorphism was determined by PCR-RFLP assay. There was no statistically significant difference between cases and controls in terms of peripheral blood mtDNA content or A10398G polymorphism. However, further analysis suggested that the risk of breast cancer was associated with decreased mtDNA content in premenopausal women (P = 0.001; odds ratio = 0.54; 95% confidence interval, 0.38–0.77), with increased mtDNA content in postmenopausal women (P = 0.027; odds ratio = 1.49; 95% confidence interval, 1.05–2.11). In addition, the associations between mtDNA content and several clinicopathological parameters of cases such as age, menopausal status, and number of pregnancies and live births were observed. This case–control study indicated that the peripheral blood mtDNA content might be a potential biomarker to evaluate the risk of breast cancer for selected Chinese women.
Collapse
Affiliation(s)
- Huangang Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China; Hubei Clinical Cancer Study Center, Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bulstrode H, Nicoll JAR, Hudson G, Chinnery PF, Di Pietro V, Belli A. Mitochondrial DNA and traumatic brain injury. Ann Neurol 2014; 75:186-95. [PMID: 24523223 PMCID: PMC4112718 DOI: 10.1002/ana.24116] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 01/08/2023]
Abstract
Objective Traumatic brain injury (TBI) is a multifactorial pathology with great interindividual variability in response to injury and outcome. Mitochondria contain their own DNA (mtDNA) with genomic variants that have different physiological and pathological characteristics, including susceptibility to neurodegeneration. Given the central role of mitochondria in the pathophysiology of neurological injury, we hypothesized that its genomic variants may account for the variability in outcome following TBI. Methods We undertook an analysis of mitochondrial haplogroups in a large, well‐characterized cohort of 1,094 TBI patients. A proportional odds model including age, brain computed tomography characteristics, injury severity, pupillary reactivity, mitochondrial haplogroups, and APOE was applied to Glasgow Outcome Score (GOS) data. Results mtDNA had a significant association with 6‐month GOS (p = 0.008). Haplogroup K was significantly associated with favorable outcome (odds ratio = 1.64, 95% confidence interval = 1.08–2.51, p = 0.02). There was also a significant interaction between mitochondrial genome and age (p = 0.002), with a strong protective effect of both haplogroups T (p = 0.015) and K (p = 0.017) with advancing age. We also found a strong interaction between APOE and mitochondrial haplogroups (p = 0.001), indicating a protective effect of haplogroup K in carriers of the APOE ε4 allele. Interpretation These findings reveal an interplay between mitochondrial DNA, pathophysiology of TBI, and aging. Haplogroups K and T, which share a common maternal ancestor, are shown as protective in TBI. The data also suggest that the APOE pathways interact with genetically regulated mitochondrial functions in the response to acute injury, as previously reported in Alzheimer disease. Ann Neurol 2014;75:186–195
Collapse
|
49
|
Gaweda-Walerych K, Zekanowski C. The impact of mitochondrial DNA and nuclear genes related to mitochondrial functioning on the risk of Parkinson's disease. Curr Genomics 2014; 14:543-59. [PMID: 24532986 PMCID: PMC3924249 DOI: 10.2174/1389202914666131210211033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/30/2013] [Accepted: 08/29/2013] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress are the major factors implicated in Parkinson’s disease (PD)
pathogenesis. The maintenance of healthy mitochondria is a very complex process coordinated bi-genomically. Here, we
review association studies on mitochondrial haplogroups and subhaplogroups, discussing the underlying molecular
mechanisms. We also focus on variation in the nuclear genes (NDUFV2, PGC-1alpha, HSPA9, LRPPRC, MTIF3,
POLG1, and TFAM encoding NADH dehydrogenase (ubiquinone) flavoprotein 2, peroxisome proliferator-activated receptor
gamma coactivator 1-alpha, mortalin, leucine-rich pentatricopeptide repeat containing protein, translation initiation
factor 3, mitochondrial DNA polymerase gamma, and mitochondrial transcription factor A, respectively) primarily linked
to regulation of mitochondrial functioning that recently have been associated with PD risk. Possible interactions between
mitochondrial and nuclear genetic variants and related proteins are discussed.
Collapse
Affiliation(s)
- Katarzyna Gaweda-Walerych
- Laboratory of Neurogenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 str., 02-106 Warszawa, Poland
| | - Cezary Zekanowski
- Laboratory of Neurogenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 str., 02-106 Warszawa, Poland
| |
Collapse
|
50
|
Wallace DC, Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol 2013; 5:a021220. [PMID: 24186072 PMCID: PMC3809581 DOI: 10.1101/cshperspect.a021220] [Citation(s) in RCA: 458] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The unorthodox genetics of the mtDNA is providing new perspectives on the etiology of the common "complex" diseases. The maternally inherited mtDNA codes for essential energy genes, is present in thousands of copies per cell, and has a very high mutation rate. New mtDNA mutations arise among thousands of other mtDNAs. The mechanisms by which these "heteroplasmic" mtDNA mutations come to predominate in the female germline and somatic tissues is poorly understood, but essential for understanding the clinical variability of a range of diseases. Maternal inheritance and heteroplasmy also pose major challengers for the diagnosis and prevention of mtDNA disease.
Collapse
Affiliation(s)
- Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|