1
|
Ferrari PA, Salis CB, Macciò A. Current Evidence Supporting the Role of miRNA as a Biomarker for Lung Cancer Diagnosis Through Exhaled Breath Condensate Collection: A Narrative Review. Life (Basel) 2025; 15:683. [PMID: 40430112 PMCID: PMC12113289 DOI: 10.3390/life15050683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/19/2025] [Accepted: 04/20/2025] [Indexed: 05/29/2025] Open
Abstract
Lung cancer, the leading cause of cancer-related mortality, has brought exhaled breath condensate (EBC) into focus as a promising non-invasive sample for detecting molecular biomarkers, particularly microRNAs, which regulate gene expression and contribute to tumorigenesis. Ten key studies encompassing approximately 866 subjects consistently demonstrated distinct patterns of miRNA dysregulation in lung cancer. Notably, several reported panels achieved diagnostic sensitivity and specificity exceeding 75% through the identification of distinct miRNA signatures in EBC, with oncogenic miRNAs (e.g., miR-21) upregulated and tumor-suppressor miRNAs (e.g., miR-486) downregulated in lung cancer patients. Analytical advancements, including next-generation sequencing (NGS), have improved miRNA detection sensitivity and specificity, addressing prior limitations of low yield and variability. NGS enabled the identification of novel miRNAs and proved especially effective in overcoming the low RNA yield associated with EBC samples. However, challenges persist regarding standardization of collection, sample dilution, and potential contamination. Moreover, the reproducibility of miRNA signatures across diverse patient populations remains a critical issue. Large-scale, multicenter validation studies are needed to establish robust diagnostic algorithms integrating EBC-derived miRNAs with existing clinical tools. The potential of EBC miRNA profiling to support current screening strategies could significantly improve early lung cancer detection and patient outcomes. Nevertheless, its clinical transition requires further methodological optimization and biomarker validation. This review critically evaluates current evidence on miRNA detection in EBC for lung cancer diagnosis.
Collapse
Affiliation(s)
- Paolo Albino Ferrari
- Division of Thoracic Surgery, Oncology Hospital “A. Businco”, Azienda di Rilievo Nazionale ed Alta Specializzazione “G. Brotzu”, Via Jenner Snc, 09121 Cagliari, Italy
| | - Cosimo Bruno Salis
- Department of Medicine, Surgery and Pharmacology, University of Sassari, Viale San Pietro 43a, 07100 Sassari, Italy;
| | - Antonio Macciò
- Department of Surgical Sciences, University of Cagliari, SS. 554, km 4500, 09042 Monserrato, Italy;
| |
Collapse
|
2
|
Sundaresan S, Lavanya SK, Manickam M. Emerging Molecular Technology in Cancer Testing. EJIFCC 2024; 35:142-153. [PMID: 39507577 PMCID: PMC11536271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Affiliation(s)
- Sivapatham Sundaresan
- Department of Medical Research, SRM Medical College Hospital & Research Centre, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - S K Lavanya
- Department of Medical Research, SRM Medical College Hospital & Research Centre, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Monika Manickam
- Department of Biotechnology, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
3
|
Yang J, Lin N, Niu M, Yin B. Circulating tumor DNA mutation analysis: advances in its application for early diagnosis of hepatocellular carcinoma and therapeutic efficacy monitoring. Aging (Albany NY) 2024; 16:11460-11474. [PMID: 39033781 PMCID: PMC11315387 DOI: 10.18632/aging.205980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/21/2024] [Indexed: 07/23/2024]
Abstract
In recent years, the detection and analysis of circulating tumor DNA (ctDNA) have emerged as a new focus in the field of cancer research, particularly in the early diagnosis of hepatocellular carcinoma (HCC) and monitoring of therapeutic efficacy. ctDNA, which refers to cell-free DNA fragments released into the bloodstream from tumor cells upon cell death or shedding, carries tumor-specific genetic and epigenetic alterations, thereby providing a non-invasive approach for cancer diagnosis and prognosis. The concentration of ctDNA in the blood is higher compared to that in healthy individuals or other liquid biopsies from early-stage cancers, which is closely associated with the early diagnosis and comprehensive sequencing studies of HCC. Recent studies have indicated that sequential ctDNA analysis in patients receiving primary or adjuvant therapy for HCC can detect treatment resistance and recurrence before visible morphological changes in the tumor, making it a valuable basis for rapid adjustment of treatment strategies. However, this technology is continuously being optimized and improved. Challenges such as enhancing the accuracy of ctDNA sequencing tests, reducing the burden of high-throughput sequencing on a large number of samples, and controlling variables in the assessment of the relationship between ctDNA concentration and tumor burden, need to be addressed. Overall, despite the existing challenges, the examination and analysis of ctDNA have opened up new avenues for early diagnosis and therapeutic efficacy monitoring in hepatocellular carcinoma, expanding the horizons of this field.
Collapse
Affiliation(s)
- Jing Yang
- Department of Clinical laboratory, Fourth People’s Hospital of Jinan, Jinan 250031, China
| | - Na Lin
- Department of Clinical laboratory, Fourth People’s Hospital of Jinan, Jinan 250031, China
| | - Miaomiao Niu
- Department of Clinical laboratory, Fourth People’s Hospital of Jinan, Jinan 250031, China
| | - Boshu Yin
- Department of Clinical laboratory, Fourth People’s Hospital of Jinan, Jinan 250031, China
| |
Collapse
|
4
|
Liu G. Chromosomal aberration analysis: Novel noninvasive techniques for early-stage cancer screening. Clin Chim Acta 2024; 560:119736. [PMID: 38763468 DOI: 10.1016/j.cca.2024.119736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
OBJECTIVE Chromosome breakage is a catastrophic event that leads to the progressive development and progression of cancer. In order to analyze the changes of peripheral blood microenvironment of tumor patients, to explore the indicators of non-specific non-invasive tumor early screening. This paper presents a new idea of whether the gene sequence near the DNA damage break point is the gene sequence that controls the unrestricted growth of normal cells. METHODS The chromosomal aberrations of peripheral blood lymphocytes were analysed in 60 healthy adult and 49 cancer patients before radiotherapy. RESULTS The detection rate of chromosomal aberrations was high in tumor patients, and "dicentric + translocations" of chromosomes were detected in 36 patients (73.47 %). The chi-square test showed statistically significant differences (P < 0.01), and chromosome adhesion and dissolution were observed. CONCLUSIONS "Dicentric + Translocation" chromosome can be used as a nonspecific early screening indicator for cancer. This is worthy of further study. This index can be used to determine the genetic basis of various cancers at the gene level to modify the base sequence and prevent the occurrence of cancer. It is worthy of further study, and it can provide a new method for gene therapy of tumors.
Collapse
Affiliation(s)
- Gang Liu
- Gansu Provincial Center for Disease Control and Prevention, (Joint Laboratory of Institute of Radiology, Chinese Academy of Medical Sciences), NO.310 Donggang West Road, Lanzhou, Gansu, China.
| |
Collapse
|
5
|
Taghizadeh M, Jafari-Koshki T, Jafarlou V, Raeisi M, Alizadeh L, Roosta Y, Matin S, Jabari R, Sur D, Karimi A. The role of piRNAs in predicting and prognosing in cancer: a focus on piRNA-823 (a systematic review and meta-analysis). BMC Cancer 2024; 24:484. [PMID: 38627675 PMCID: PMC11022431 DOI: 10.1186/s12885-024-12180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
INTRODUCTION This article examines the potential of using liquid biopsy with piRNAs to study cancer survival outcomes. While previous studies have explored the relationship between piRNA expression and cancer patient outcomes, a comprehensive investigation is still lacking. To address this gap, we conducted a systematic review and meta-analysis of existing literature. METHODS We searched major online databases up to February 2024 to identify articles reporting on the role of piRNA in cancer patient survival outcomes. Our meta-analysis used a random-effects model to pool hazard ratios with 95% confidence intervals (CI) and assess the prognostic value of deregulated piRNA-823. For survival analysis, the Kaplan-Meier method and COX analysis were used. RESULTS Out of 6104 articles screened, 20 met our inclusion criteria. Our analysis revealed that dysregulated piRNA expression is associated with cancer patient survival outcomes. Specifically, our meta-analysis found that overexpression of piR-823 is significantly linked with poorer overall survival in patients with colorectal cancer and renal cell cancer (HR: 3.82, 95% CI = [1.81, 8.04], I2 = 70%). CONCLUSION Our findings suggest that various piRNAs may play a role in cancer survival outcomes and that piRNA-823 in particular holds promise as a prognostic biomarker for multiple human cancers. IMPLICATIONS FOR CANCER SURVIVORS Our systematic review and meta-analysis of piRNA-823 has important implications for cancer survivors. Our findings suggest that piRNA-823 can be used as a prognostic biomarker for predicting cancer recurrence and survival rates. This information can help clinicians develop personalized treatment plans for cancer survivors, which can improve their quality of life and reduce the risk of recurrence.
Collapse
Affiliation(s)
- Mohammad Taghizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical School, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Tohid Jafari-Koshki
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Vahid Jafarlou
- Cancer Institute of Imam Khomeini Hospital, Tehran University of Medical Science, Tehran, 1419733141, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Leila Alizadeh
- Gastroenterology and Liver Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Yousef Roosta
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, 5714783734, Iran
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 5714783734, Iran
- Hematology, Immune Cell Therapy, and Stem Cells Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, 5714783734, Iran
| | - Somaieh Matin
- Department of Internal Medicine, School of Medicine, Ardabil University of Medical Sciences, Ardabil, 8599156189, Iran
| | - Rahele Jabari
- Department of Nutrition Science, Faculty of Medical Science, Urmia University of Medical Science, Urmia, 5714783734, Iran
| | - Daniel Sur
- Department of Oncology, The Oncology Institute "Prof. Dr. Ion Chiricu¸tă", Cluj-Napoca, 400015, Romania.
- Department of Medical Oncology, The Oncology Institute "Prof. Dr. Ion Chiricu ̧t ̆a", 400015 Str. Republicii 34-36, Cluj-Napoca, 400006, Romania.
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical School, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran.
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht St., Tabriz, East Azerbaijan, 5166614756, Iran.
| |
Collapse
|
6
|
Trucillo P. Biomaterials for Drug Delivery and Human Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:456. [PMID: 38255624 PMCID: PMC10817481 DOI: 10.3390/ma17020456] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Biomaterials embody a groundbreaking paradigm shift in the field of drug delivery and human applications. Their versatility and adaptability have not only enriched therapeutic outcomes but also significantly reduced the burden of adverse effects. This work serves as a comprehensive overview of biomaterials, with a particular emphasis on their pivotal role in drug delivery, classifying them in terms of their biobased, biodegradable, and biocompatible nature, and highlighting their characteristics and advantages. The examination also delves into the extensive array of applications for biomaterials in drug delivery, encompassing diverse medical fields such as cancer therapy, cardiovascular diseases, neurological disorders, and vaccination. This work also explores the actual challenges within this domain, including potential toxicity and the complexity of manufacturing processes. These challenges emphasize the necessity for thorough research and the continuous development of regulatory frameworks. The second aim of this review is to navigate through the compelling terrain of recent advances and prospects in biomaterials, envisioning a healthcare landscape where they empower precise, targeted, and personalized drug delivery. The potential for biomaterials to transform healthcare is staggering, as they promise treatments tailored to individual patient needs, offering hope for improved therapeutic efficacy, fewer side effects, and a brighter future for medical practice.
Collapse
Affiliation(s)
- Paolo Trucillo
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Piazzale V. Tecchio, 80, 80125 Naples, Italy
| |
Collapse
|
7
|
Galoș D, Gorzo A, Balacescu O, Sur D. Clinical Applications of Liquid Biopsy in Colorectal Cancer Screening: Current Challenges and Future Perspectives. Cells 2022; 11:3493. [PMID: 36359889 PMCID: PMC9657568 DOI: 10.3390/cells11213493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) represents the third most prevalent cancer worldwide and a leading cause of mortality among the population of western countries. However, CRC is frequently a preventable malignancy due to various screening tests being available. While failing to obtain real-time data, current screening methods (either endoscopic or stool-based tests) also require disagreeable preparation protocols and tissue sampling through invasive procedures, rendering adherence to CRC screening programs suboptimal. In this context, the necessity for novel, less invasive biomarkers able to identify and assess cancer at an early stage is evident. Liquid biopsy comes as a promising minimally invasive diagnostic tool, able to provide comprehensive information on tumor heterogeneity and dynamics during carcinogenesis. This review focuses on the potential use of circulating tumor cells (CTCs), circulating nucleic acids (CNAs) and extracellular vesicles as emerging liquid biopsy markers with clinical application in the setting of CRC screening. The review also examines the opportunity to implement liquid biopsy analysis during everyday practice and provides highlights on clinical trials researching blood tests designed for early cancer diagnosis. Additionally, the review explores potential applications of liquid biopsies in the era of immunotherapy.
Collapse
Affiliation(s)
- Diana Galoș
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
| | - Alecsandra Gorzo
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
| | - Daniel Sur
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
- Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Fatima S, Ma Y, Safrachi A, Haider S, Spring KJ, Vafaee F, Scott KF, Roberts TL, Becker TM, de Souza P. Harnessing Liquid Biopsies to Guide Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2022; 14:1669. [PMID: 35406441 PMCID: PMC8997025 DOI: 10.3390/cancers14071669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy (IO), involving the use of immune checkpoint inhibition, achieves improved response-rates and significant disease-free survival for some cancer patients. Despite these beneficial effects, there is poor predictability of response and substantial rates of innate or acquired resistance, resulting in heterogeneous responses among patients. In addition, patients can develop life-threatening adverse events, and while these generally occur in patients that also show a tumor response, these outcomes are not always congruent. Therefore, predicting a response to IO is of paramount importance. Traditionally, tumor tissue analysis has been used for this purpose. However, minimally invasive liquid biopsies that monitor changes in blood or other bodily fluid markers are emerging as a promising cost-effective alternative. Traditional biomarkers have limitations mainly due to difficulty in repeatedly obtaining tumor tissue confounded also by the spatial and temporal heterogeneity of tumours. Liquid biopsy has the potential to circumvent tumor heterogeneity and to help identifying patients who may respond to IO, to monitor the treatment dynamically, as well as to unravel the mechanisms of relapse. We present here a review of the current status of molecular markers for the prediction and monitoring of IO response, focusing on the detection of these markers in liquid biopsies. With the emerging improvements in the field of liquid biopsy, this approach has the capacity to identify IO-eligible patients and provide clinically relevant information to assist with their ongoing disease management.
Collapse
Affiliation(s)
- Shadma Fatima
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2031, Australia; (A.S.); (F.V.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Yafeng Ma
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- South Western Sydney Clinical School, UNSW, Sydney, NSW 2031, Australia
- Centre for Circulating Tumor Cell Diagnosis and Research, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Azadeh Safrachi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2031, Australia; (A.S.); (F.V.)
| | - Sana Haider
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Kevin J. Spring
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2031, Australia; (A.S.); (F.V.)
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW 2031, Australia
| | - Kieran F. Scott
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Tara L. Roberts
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- South Western Sydney Clinical School, UNSW, Sydney, NSW 2031, Australia
| | - Therese M. Becker
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- South Western Sydney Clinical School, UNSW, Sydney, NSW 2031, Australia
- Centre for Circulating Tumor Cell Diagnosis and Research, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Paul de Souza
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- South Western Sydney Clinical School, UNSW, Sydney, NSW 2031, Australia
| |
Collapse
|
9
|
Nakamura IT, Ikegami M, Hasegawa N, Hayashi T, Ueno T, Kawazu M, Yagishita S, Goto Y, Shinno Y, Kojima Y, Takamochi K, Takahashi F, Takahashi K, Mano H, Kohsaka S. Development of an optimal protocol for molecular profiling of tumor cells in pleural effusions at single-cell level. Cancer Sci 2021; 112:2006-2019. [PMID: 33484069 PMCID: PMC8088920 DOI: 10.1111/cas.14821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsy analyzes the current status of primary tumors and their metastatic regions. We aimed to develop an optimized protocol for single-cell sequencing of floating tumor cells (FTCs) in pleural effusion as a laboratory test. FTCs were enriched using a negative selection of white blood cells by a magnetic-activated cell sorting system, and CD45-negative and cytokeratin-positive selection using a microfluidic cell separation system with a dielectrophoretic array. The enriched tumor cells were subjected to whole-genome amplification (WGA) followed by genome sequencing. The FTC analysis detected an EGFR exon 19 deletion in Case 1 (12/19 cells, 63.2%), and EML4-ALK fusion (17/20 cells, 85%) with an alectinib-resistant mutation of ALK (p.G1202R) in Case 2. To eliminate WGA-associated errors and increase the uniformity of the WGA product, the protocol was revised to sequence multiple single FTCs individually. An analytical pipeline, accurate single-cell mutation detector (ASMD), was developed to identify somatic mutations of FTCs. The large numbers of WGA-associated errors were cleaned up, and the somatic mutations detected in FTCs by ASMD were concordant with those found in tissue specimens. This protocol is applicable to circulating tumor cells analysis of peripheral blood and expands the possibility of utilizing molecular profiling of cancers.
Collapse
Affiliation(s)
- Ikuko Takeda Nakamura
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Masachika Ikegami
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Orthopedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuhiko Hasegawa
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Orthopedic Surgery, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Shigehiro Yagishita
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuki Shinno
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuki Kojima
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kazuya Takamochi
- Department of General Thoracic Surgery, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
10
|
Zhao Y, Jiang F, Wang Q, Wang B, Han Y, Yang J, Wang J, Wang K, Ao J, Guo X, Liang X, Ma J. Cytoplasm protein GFAP magnetic beads construction and application as cell separation target for brain tumors. J Nanobiotechnology 2020; 18:169. [PMID: 33208163 PMCID: PMC7673097 DOI: 10.1186/s12951-020-00729-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/05/2020] [Indexed: 01/15/2023] Open
Abstract
Background It is very important to develop a highly efficient cerebrospinal fluid (CSF) detection system with diagnosis and prediction function, for which the detection of circulating tumor cells (CTCs) in CSF is a good choice. In contrast to the past use of epithelial EpCAM as CTCs separation target, a cytoplasm protein of GFAP antibody was first selected to construct highly-sensitive immunomagnetic liposome beads (IMLs). The validation and efficiency of this system in capturing CTCs for brain tumors were measured both in vitro and in vivo. The associations between the numbers of CTCs in patients with their clinical characteristics were further analyzed. Results Our data show that CTCs can be successfully isolated from CSF and blood samples from 32 children with brain tumors. The numbers of CTCs in CSF were significantly higher than those in blood. The level of CTCs in CSF was related to the type and location of the tumor rather than its stage. The higher the CTCs number is, the more possibly the patient will suffer from poor prognosis. Genetic testing in GFAP CTC-DNA by sanger sequencing, q-PCR and NGS methods indicated that the isolated CTCs (GFAP+/EGFR+) are the related tumor cell. For example, the high expression of NPR3 gene in CSF CTCs was consistent with that of tumor tissue. Conclusions The results indicated that GFAP-IML CTCs isolation system, combined with an EGFR immunofluorescence assay of antitumor marker, can serve as a brand-new method for the identification of CTCs for brain tumors. Via lumbar puncture, a minimally invasive procedure, this technique may play a significant role in the clinical diagnosis and drug evaluation of brain tumors.![]()
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Feng Jiang
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qinhua Wang
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Baocheng Wang
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yipeng Han
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jian Yang
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jiajia Wang
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Kai Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln 2200 Xie Tu Road, Shanghai, 200032, China
| | - Junping Ao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln 2200 Xie Tu Road, Shanghai, 200032, China
| | - Xunxiang Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofei Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln 2200 Xie Tu Road, Shanghai, 200032, China. .,Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jie Ma
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
11
|
Dalal S, Petersen J, Jhala D. Liquid Biopsies in a Veteran Patient Population With Advanced Prostate and Lung Non-Small Cell Carcinomas: A New Paradigm and Unique Challenge in Personalized Medicine. Fed Pract 2020; 38:8-14. [PMID: 33574643 DOI: 10.12788/fp.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Introduction Liquid biopsy in solid tumors is a major milestone in the field of precision oncology by analyzing circulating tumor cells in peripheral blood and genomic alterations. DNA damage repair gene (DDR) mutations have been reported in 25 to 40% of prostatic cancers and > 50% of non-small cell lung cancers (NSCLC). Tp53 mutation has been found to be associated with a poor prognosis and increased germline mutations. We herein present a quality assurance study for the utility of liquid biopsies with frequency of DDR, Tp53, and androgen receptor (AR) mutations and the clinical impact in advanced lung and prostate cancers in the veteran patient population; these quality assurance observations are the study endpoints. Methods We reviewed documentation from advanced cancer biomarker tests on liquid biopsies performed at the Corporal Michael J. Crescenz Veteran Affairs Medical Center in Philadelphia, Pennsylvania, from May 2019 to April 15, 2020. Results Mutations were detected in 29 of 31 (93.5%) liquid biopsies, hence, 29 liquid biopsies had sufficient ctDNA for analysis. Notable mutations were found in 23 cases (79.3%), irrespective of the cancer type showed. Of 21 prostate cancers biopsies 4 (19.0%) biomarker test directed the targeted therapy to driver mutations of the AR gene. Gene mutations from the DDR gene family were detected in 8 of 23 (34.7%) advanced prostate and lung cancer liquid biopsies, and in 6 of 21 (28.5%) prostate cancer cases indicating poor outcome and possible resistance to the current therapy. Irrespective of the cancer type, 15 of 23 (65.2%) patients harbored Tp53 mutations, which is much more frequent than is documented in the literature. Of 31 patients, 15 (48.4%) were Vietnam era veterans with the potential of Agent Orange exposure and, 20 of 31 (64.5%) had a smoking history. Seven (46.6%) of the Vietnam era veterans with potential exposure to Agent Orange were positive for Tp53 mutations irrespective of the cancer type. Conclusion The minimally invasive liquid biopsy shows a great promise as a diagnostic and prognostic tool in the personalized clinical management of advanced prostate and NSCLC in veteran patient population with unique demographic characteristics. Difference in frequency of the genetic mutations (DDR, TP53, AR) in this cohort provides valuable information for disease progression, lack of response, mechanism of resistance to the implemented therapy and clinical decision making. Precision oncology can be further tailored for this cohort by focusing on DNA repair genes and Tp53 mutations in future for personalized targeted therapy.
Collapse
Affiliation(s)
- Sharvari Dalal
- and are Staff Pathologists and is Chief, Pathology and Laboratory Medicine, all at Corporal Michael J. Crescenz Veteran Affairs Medical Center in Philadelphia, Pennsylvania. Sharvari Dalal is Adjunct Assistant Professor of Clinical Pathology and Laboratory Medicine, Jeffrey Petersen is Assistant Professor of Clinical Pathology and Laboratory Medicine, and Darshana Jhala is Professor of Clinical Pathology and Laboratory Medicine, all at the University of Pennsylvania Perelman School of Medicine
| | - Jeffrey Petersen
- and are Staff Pathologists and is Chief, Pathology and Laboratory Medicine, all at Corporal Michael J. Crescenz Veteran Affairs Medical Center in Philadelphia, Pennsylvania. Sharvari Dalal is Adjunct Assistant Professor of Clinical Pathology and Laboratory Medicine, Jeffrey Petersen is Assistant Professor of Clinical Pathology and Laboratory Medicine, and Darshana Jhala is Professor of Clinical Pathology and Laboratory Medicine, all at the University of Pennsylvania Perelman School of Medicine
| | - Darshana Jhala
- and are Staff Pathologists and is Chief, Pathology and Laboratory Medicine, all at Corporal Michael J. Crescenz Veteran Affairs Medical Center in Philadelphia, Pennsylvania. Sharvari Dalal is Adjunct Assistant Professor of Clinical Pathology and Laboratory Medicine, Jeffrey Petersen is Assistant Professor of Clinical Pathology and Laboratory Medicine, and Darshana Jhala is Professor of Clinical Pathology and Laboratory Medicine, all at the University of Pennsylvania Perelman School of Medicine
| |
Collapse
|
12
|
Maia J, Batista S, Couto N, Gregório AC, Bodo C, Elzanowska J, Strano Moraes MC, Costa-Silva B. Employing Flow Cytometry to Extracellular Vesicles Sample Microvolume Analysis and Quality Control. Front Cell Dev Biol 2020; 8:593750. [PMID: 33195266 PMCID: PMC7661467 DOI: 10.3389/fcell.2020.593750] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022] Open
Abstract
Extracellular Vesicles (EVs), membrane vesicles released by all cells, are emerging mediators of cell-cell communication. By carrying biomolecules from tissues to biofluids, EVs have attracted attention as non-invasive sources of clinical biomarkers in liquid biopsies. EVs-based liquid biopsies usually require EVs isolation before content analysis, which frequently increases sample volume requirements. We here present a Flow Cytometry (FC) strategy that does not require isolation or concentration of EVs prior to staining. By doing so, it enables population analysis of EVs in samples characterized by challenging small volumes, while reducing overall sample processing time. To illustrate its application, we performed longitudinal non-lethal population analysis of EVs in mouse plasma and in single-animal collections of murine vitreous humor. By quantifying the proportion of vesicular particles in purified and non-purified biological samples, this method also serves as a precious tool to quality control isolates of EVs purified by different protocols. Our FC strategy has an unexplored clinical potential to analyze EVs in biofluids with intrinsically limited volumes and to multiply the number of different analytes in EVs that can be studied from a single collection of biofluid.
Collapse
Affiliation(s)
- Joana Maia
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.,Graduate Program in Areas of Basic and Applied Biology, University of Porto, Porto, Portugal
| | - Silvia Batista
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Nuno Couto
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.,Digestive Unit, Champalimaud Clinical Centre, Lisbon, Portugal
| | - Ana C Gregório
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Cristian Bodo
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Julia Elzanowska
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Bruno Costa-Silva
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
13
|
Definition and Independent Validation of a Proteomic-Classifier in Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12092519. [PMID: 32899818 PMCID: PMC7564837 DOI: 10.3390/cancers12092519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The heterogeneity of epithelial ovarian cancer and its associated molecular biological characteristics are continuously integrated in the development of therapy guidelines. In a next step, future therapy recommendations might also be able to focus on the patient’s systemic status, not only the tumor’s molecular pattern. Therefore, new methods to identify and validate host-related biomarkers need to be established. Using mass spectrometry, we developed and independently validated a blood-based proteomic classifier, stratifying epithelial ovarian cancer patients into good and poor survival groups. We also determined an age dependence of the prognostic performance of this classifier and its association with important biological processes. This work highlights that, just like molecular markers of the tumor itself, the systemic condition of a patient (partly reflected in proteomic patterns) also influences survival and therapy response and could therefore be integrated into future processes of therapy planning. Abstract Mass-spectrometry-based analyses have identified a variety of candidate protein biomarkers that might be crucial for epithelial ovarian cancer (EOC) development and therapy response. Comprehensive validation studies of the biological and clinical implications of proteomics are needed to advance them toward clinical use. Using the Deep MALDI method of mass spectrometry, we developed and independently validated (development cohort: n = 199, validation cohort: n = 135) a blood-based proteomic classifier, stratifying EOC patients into good and poor survival groups. We also determined an age dependency of the prognostic performance of this classifier, and our protein set enrichment analysis showed that the good and poor proteomic phenotypes were associated with, respectively, lower and higher levels of complement activation, inflammatory response, and acute phase reactants. This work highlights that, just like molecular markers of the tumor itself, the systemic condition of a patient (partly reflected in proteomic patterns) also influences survival and therapy response in a subset of ovarian cancer patients and could therefore be integrated into future processes of therapy planning.
Collapse
|
14
|
Zhao X, Ren Y, Lu Z. Potential diagnostic and therapeutic roles of exosomes in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188414. [PMID: 32866530 DOI: 10.1016/j.bbcan.2020.188414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PaCa) is considered an aggressive but still asymptomatic malignancy. Due to the lack of effective diagnostic markers, PaCa is often diagnosed during late metastatic stages. Besides surgical resection, no other treatment appears to be effective during earlier stages of the disease. Exosomes are related to a class of nanovesicles coated by a bilayer lipid membrane and enriched in protein, nucleic acid, and lipid contents. They are widely present in human body fluids, including blood, saliva, and pancreatic duct fluid, with functions in signal transduction and material transport. A large number of studies have suggested for a crucial role for exosomes in PaCa, which may be utilized to improve its future diagnosis and treatment, but the underlying molecular mechanisms as well as their potential clinical applications are largely unknown. By collecting and analyzing the most up-to-date literature, here we summarize the current progress of the clinical applications related to exosomes in PaCa. Therefore, we presently provide some rationale for the potential value of exosomes in PaCa, thereby promoting putative applications in targeted PaCa treatment.
Collapse
Affiliation(s)
- Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Ying Ren
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| |
Collapse
|
15
|
Salvianti F, Gelmini S, Costanza F, Mancini I, Sonnati G, Simi L, Pazzagli M, Pinzani P. The pre-analytical phase of the liquid biopsy. N Biotechnol 2019; 55:19-29. [PMID: 31580920 DOI: 10.1016/j.nbt.2019.09.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 09/11/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
The term 'liquid biopsy', introduced in 2013 in reference to the analysis of circulating tumour cells (CTCs) in cancer patients, was extended to cell-free nucleic acids (cfNAs) circulating in blood and other body fluids. CTCs and cfNAs are now considered diagnostic and prognostic markers, used as surrogate materials for the molecular characterisation of solid tumours, in particular for research on tumour-specific or actionable somatic mutations. Molecular characterisation of cfNAs and CTCs (especially at the single cell level) is technically challenging, requiring highly sensitive and specific methods and/or multi-step processes. The analysis of the liquid biopsy relies on a plethora of methods whose standardisation cannot be accomplished without disclosing criticisms related to the pre-analytical phase. Thus, pre-analytical factors potentially influencing downstream cellular and molecular analyses must be considered in order to translate the liquid biopsy approach into clinical practice. The present review summarises the most recent reports in this field, discussing the main pre-analytical aspects related to CTCs, cfNAs and exosomes in blood samples for liquid biopsy analysis. A short discussion on non-blood liquid biopsy samples is also included.
Collapse
Affiliation(s)
- Francesca Salvianti
- Clinical Biochemistry and Clinical Molecular Biology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini,6, 50139 Florence, Italy
| | - Stefania Gelmini
- Clinical Biochemistry and Clinical Molecular Biology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini,6, 50139 Florence, Italy.
| | - Filomena Costanza
- Clinical Biochemistry and Clinical Molecular Biology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini,6, 50139 Florence, Italy
| | - Irene Mancini
- Clinical Biochemistry and Clinical Molecular Biology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini,6, 50139 Florence, Italy
| | - Gemma Sonnati
- Clinical Biochemistry and Clinical Molecular Biology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini,6, 50139 Florence, Italy
| | - Lisa Simi
- Molecular and Clinical Biochemistry Laboratory, Careggi University Hospital, Viale Pieraccini,6, 50139 Florence, Italy
| | - Mario Pazzagli
- Clinical Biochemistry and Clinical Molecular Biology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini,6, 50139 Florence, Italy
| | - Pamela Pinzani
- Clinical Biochemistry and Clinical Molecular Biology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini,6, 50139 Florence, Italy
| |
Collapse
|
16
|
Campanella A, De Summa S, Tommasi S. Exhaled breath condensate biomarkers for lung cancer. J Breath Res 2019; 13:044002. [PMID: 31282387 DOI: 10.1088/1752-7163/ab2f9f] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lung cancer is the main cause of cancer incidence and mortality worldwide and the identification of clinically useful biomarkers for lung cancer detection at both early and metastatic stage is a pressing medical need. Although many improvements have been made in the treatment and in the early screening of this cancer, most diagnosis are made at a late stage, when a lot of genetic and epigenetic changes have occurred. A promising source of biomarkers reflective of the pathogenesis of lung cancer is exhaled breath condensate (EBC), a biological fluid and a natural matrix of the respiratory tract. Molecules such as DNAs, RNAs, proteins, metabolites and volatile compounds are present in EBC, and their presence/absence or their variation in concentrations can be used as biomarkers. The aims of this review are to briefly describe exhaled breath composition, firstly, and then to document some of the EBC candidate biomarkers for lung cancer by dividing them according to their origin (genome, transcriptome, epigenome, metabolome, proteome and microbiota) in order to demonstrate the potential use of EBC as a helpful tool in cancer diagnostics, molecular profiling, therapy monitoring and screening of high risk individuals.
Collapse
Affiliation(s)
- Annalisa Campanella
- Pharmacogenetics and Molecular Diagnostic Unit, IRCCS Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | | | | |
Collapse
|
17
|
Yu J, Hu Y, Xu Y, Wang J, Kuang J, Zhang W, Shao J, Guo D, Wang Y. LUADpp: an effective prediction model on prognosis of lung adenocarcinomas based on somatic mutational features. BMC Cancer 2019; 19:263. [PMID: 30902072 PMCID: PMC6431052 DOI: 10.1186/s12885-019-5433-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/03/2019] [Indexed: 02/08/2023] Open
Abstract
Background Lung adenocarcinoma is the most common type of lung cancers. Whole-genome sequencing studies disclosed the genomic landscape of lung adenocarcinomas. however, it remains unclear if the genetic alternations could guide prognosis prediction. Effective genetic markers and their based prediction models are also at a lack for prognosis evaluation. Methods We obtained the somatic mutation data and clinical data for 371 lung adenocarcinoma cases from The Cancer Genome Atlas. The cases were classified into two prognostic groups (3-year survival), and a comparison was performed between the groups for the somatic mutation frequencies of genes, followed by development of computational models to discrete the different prognosis. Results Genes were found with higher mutation rates in good (≥ 3-year survival) than in poor (< 3-year survival) prognosis group of lung adenocarcinoma patients. Genes participating in cell-cell adhesion and motility were significantly enriched in the top gene list with mutation rate difference between the good and poor prognosis group. Support Vector Machine models with the gene somatic mutation features could well predict prognosis, and the performance improved as feature size increased. An 85-gene model reached an average cross-validated accuracy of 81% and an Area Under the Curve (AUC) of 0.896 for the Receiver Operating Characteristic (ROC) curves. The model also exhibited good inter-stage prognosis prediction performance, with an average AUC of 0.846 for the ROC curves. Conclusion The prognosis of lung adenocarcinomas is related with somatic gene mutations. The genetic markers could be used for prognosis prediction and furthermore provide guidance for personal medicine. Electronic supplementary material The online version of this article (10.1186/s12885-019-5433-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiaxian Yu
- Department of Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Yueming Hu
- Department of Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Yafei Xu
- Department of Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jue Wang
- State Key Laboratory of Agrobiotechnology and School of Life Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jiajie Kuang
- Department of Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Wei Zhang
- Sehnzhen GenRead Technology Co., Ltd., Shenzhen, 518000, China
| | - Jianlin Shao
- Zhejiang Hospital, 12 Lingyin Rd, Hangzhou, 310003, China
| | - Dianjing Guo
- State Key Laboratory of Agrobiotechnology and School of Life Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Yejun Wang
- Department of Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| |
Collapse
|
18
|
Oz HS. Dirt, Saliva and Leprosy: Anti-Inflammatory and Anti-Infectious Effects. Diseases 2019; 7:diseases7010031. [PMID: 30909425 PMCID: PMC6473777 DOI: 10.3390/diseases7010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 11/17/2022] Open
Abstract
Ancient Egyptians smeared a mixture of dark soil on their eyelids and believed it protected eyes from unknown forces (illness). Recent studies have proven that the dark soil across the Nile River is rich in natural compounds including lead sulfide, which in low levels, promotes the production of nitric oxide (240-fold) by keratinocytes, with strong immune stimulatory and antimicrobial properties. Current investigations reveal anti-inflammatory and anti-infectious activities—including cytokines and chemokines—in saliva, as well as its friendly microbiota, which lines the surface of the oral cavity, its protection against inflammatory and infectious organisms in the stoma and other organs, such as the cardiovascular and central nervous systems. In fact, saliva may soon become a safe and practical surrogate biomarker for genomic/proteomic evaluations and to replace painful blood drawing and its side effects. Another example is leprosy, or Hansen’s disease, a chronic inflammatory syndrome and neglected tropical disease, which affects the skin, and peripheral and trigeminal neurons causing a lack of sensation to heat and cold and loss of extremities. Leprosy has horrified humans for over 2000 years, as lepers were considered unclean sinners and were subsequently drawn out of towns. This communication scrutinizes the past and the present state of saliva and leprosy to encounter possible mystery and/or wisdom in ancient healing as the mixture of “sputum and dirt” as reported in the biblical time.
Collapse
Affiliation(s)
- Helieh S Oz
- Department of Medicine, University of Kentucky Medical Center, Lexington, KY 40536, USA.
| |
Collapse
|