1
|
Nasrollahian S, Moradi F, Hadi N, Ranjbar S, Ranjbar R. An update on alternative therapy for Escherichia coli causing urinary tract infections; a narrative review. Photodiagnosis Photodyn Ther 2024; 46:104075. [PMID: 38574879 DOI: 10.1016/j.pdpdt.2024.104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Urinary tract infections (UTIs) are the most common type of nosocomial infection and severe health issues because of the difficulties and frequent recurrence. Today, alternative methods such as sonodynamic therapy (SDT), photodynamic therapy (PDT) and herbal materials use for treating infections like UTI in many countries. METHOD We conducted searches of the biomedical databases (Google Scholar, Scopus, PubMed, and Web of sciences) to identify related studies from 2008 to 2023. RESULT SDT aims to use ultrasound to activate a sonosensitizer, which causes a biological effect by raising reactive oxygen species (ROS). When bacteria are exposed to ROS, several important effects occur: oxidative damage, DNA damage, protein dysfunction etc. SDT with herbal medicine significantly reduced the number of colony-forming units and bactericidal activity for Klebsiella pneumonia and E. coli. PDT is a promising treatment for cancer and microbial infections, combining a photosensitiser, light and tissue molecular oxygen. It involves a photosensitizer, light source, and oxygen, with variations affecting microbial binding and bactericidal activity. Factors affecting antibacterial properties include plant type, growing conditions, harvesting, and processing. This review highlights the recent advancements in sonodynamic, photodynamic, herbal, and bio-material-based approaches in the treatment of E. coli infections. CONCLUSIONS These alternative therapies offer exciting prospects for addressing UTIs, especially in cases where traditional antibiotic treatments may be less effective. Further research and clinical studies are warranted to fully explore the potential of these innovative treatment modalities in combating UTIs and improving patient outcomes.
Collapse
Affiliation(s)
- Sina Nasrollahian
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Moradi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahal Hadi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Ranjbar
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Sun W, Zhang Q, Wang X, Jin Z, Cheng Y, Wang G. Clinical Practice of Photodynamic Therapy for Non-Small Cell Lung Cancer in Different Scenarios: Who Is the Better Candidate? Respiration 2024; 103:193-204. [PMID: 38354707 PMCID: PMC10997268 DOI: 10.1159/000535270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/05/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a relatively safe and highly selectivity antitumor treatment, which might be increasingly used as a supplement to conventional therapies. A clinical overview and detailed comparison of how to select patients and lesions for PDT in different scenarios are urgently needed to provide a basis for clinical treatment. SUMMARY This review demonstrates the highlights and obstacles of applying PDT for lung cancer and underlines points worth considering when planning to initiate PDT. The aim was to make out the appropriate selection and help PDT develop efficacy and precision through a better understanding of its clinical use. KEY MESSAGES Increasing evidence supports the feasibility and safety of PDT in the treatment of non-small cell lung cancer. It is important to recognize the factors that influence the efficacy of PDT to develop individualized management strategies and implement well-designed procedures. These important issues should be worth considering in the present and further research.
Collapse
Affiliation(s)
- Wen Sun
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China,
| | - Qi Zhang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Xi Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Zhou Jin
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Yuan Cheng
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
3
|
Kim HI, Lee SH, Shin SJ, Park JH, Yu JE, Lee SW, Yang SH, Pires L, Wilson BC. Phonozen-mediated photodynamic therapy comparing two wavelengths in a mouse model of peritoneal carcinomatosis. Photochem Photobiol Sci 2023; 22:2563-2572. [PMID: 37632684 DOI: 10.1007/s43630-023-00470-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND This study assessed the therapeutic efficacy of intraperitoneal photodynamic therapy (PDT) using photosensitizer activation at two different wavelengths, 405 and 664 nm, in a mouse model of peritoneal carcinomatosis. METHODS The dark and light cytotoxicity of chlorin e6-polyvinylpyrrolidone (Phonozen) were measured in vitro under 402 ± 14 and 670 ± 18 nm LED activation in bioluminescent human gastric cancer cells, MKN45-luc. Cell viability was measured at 6 h after irradiation using the PrestoBlue assay. Corresponding in vivo studies were performed in athymic nude mice by intraperitoneal injection of 1 × 106 MKN45-luc cells. PDT was performed 10 d after tumor induction and comprised intraperitoneal injection of Phonozen followed by light irradiation at 3 h, delivered by a diffusing-tip optical fiber placed in the peritoneal cavity and coupled to a 405 or 664 nm diode laser to deliver a total energy of 50 J (20 mice per cohort). Whole-body bioluminescence imaging was used to track the tumor burden after PDT out to 130 days, and 5 mice in each cohort were sacrificed at 4 h post treatment to measure the acute tumor necrosis. RESULTS Photosensitizer dose-dependent photocytotoxicity was higher in vitro at 405 than 664 nm. In vivo, PDT reduced the tumor growth rate at both wavelengths, with no statistically significant difference. There was substantial necrosis, and median survival was significantly prolonged at both wavelengths compared with controls (46 and 46 vs. 34 days). CONCLUSIONS Phonozen-mediated PDT results in significant cytotoxicity in vitro as well as tumor necrosis and prolonged survival in vivo following intraperitoneal light irradiation. Blue light was more photocytotoxic than red in vitro and had marginally higher efficacy in vivo.
Collapse
Affiliation(s)
- Hyoung-Il Kim
- Princess Margaret Cancer Research Tower, University Health Network, 15-314, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
- Division of Upper Gastrointestinal Surgery, Gastric Cancer Center, Yonsei Cancer Center, Seoul, South Korea
- Yonsei-Dongsung Photodynamic Therapy Research Center, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung-Ho Lee
- Yonsei-Dongsung Photodynamic Therapy Research Center, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Su-Jin Shin
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Hyun Park
- Yonsei-Dongsung Photodynamic Therapy Research Center, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea
- Department of Nano-Science and Technology, Graduate School of Convergence Science and Technology of Seoul National University, Seoul, South Korea
| | - Jae Eun Yu
- Yonsei-Dongsung Photodynamic Therapy Research Center, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang Won Lee
- Yonsei-Dongsung Photodynamic Therapy Research Center, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Hee Yang
- Yonsei-Dongsung Photodynamic Therapy Research Center, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Layla Pires
- Princess Margaret Cancer Research Tower, University Health Network, 15-314, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Brian C Wilson
- Princess Margaret Cancer Research Tower, University Health Network, 15-314, 101 College Street, Toronto, ON, M5G 1L7, Canada.
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Claes E, Wener R, Neyrinck AP, Coppens A, Van Schil PE, Janssens A, Lapperre TS, Snoeckx A, Wen W, Voet H, Verleden SE, Hendriks JMH. Innovative Invasive Loco-Regional Techniques for the Treatment of Lung Cancer. Cancers (Basel) 2023; 15:cancers15082244. [PMID: 37190172 DOI: 10.3390/cancers15082244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Surgical resection is still the standard treatment for early-stage lung cancer. A multimodal treatment consisting of chemotherapy, radiotherapy and/or immunotherapy is advised for more advanced disease stages (stages IIb, III and IV). The role of surgery in these stages is limited to very specific indications. Regional treatment techniques are being introduced at a high speed because of improved technology and their possible advantages over traditional surgery. This review includes an overview of established and promising innovative invasive loco-regional techniques stratified based on the route of administration, including endobronchial, endovascular and transthoracic routes, a discussion of the results for each method, and an overview of their implementation and effectiveness.
Collapse
Affiliation(s)
- Erik Claes
- ASTARC (Antwerp Surgical Training, Anatomy and Research Centre), University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Reinier Wener
- Department of Pulmonology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Arne P Neyrinck
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Anesthesia and Algology Unit, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Axelle Coppens
- ASTARC (Antwerp Surgical Training, Anatomy and Research Centre), University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Paul E Van Schil
- ASTARC (Antwerp Surgical Training, Anatomy and Research Centre), University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Annelies Janssens
- Department of Thoracic Oncology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Thérèse S Lapperre
- Department of Pulmonology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- LEMP (Laboratory of Experimental Medicine and Pediatrics), University Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Annemiek Snoeckx
- Faculty of Medicine and Health Sciences, University Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Department of Radiology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Wen Wen
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Hanne Voet
- Department of Pulmonology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- LEMP (Laboratory of Experimental Medicine and Pediatrics), University Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Stijn E Verleden
- ASTARC (Antwerp Surgical Training, Anatomy and Research Centre), University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Pulmonology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Jeroen M H Hendriks
- ASTARC (Antwerp Surgical Training, Anatomy and Research Centre), University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| |
Collapse
|
5
|
Bansal S, Bechara RI, Patel JD, Mehta HJ, Ferguson JS, Witt BL, Murgu SD, Yasufuku K, Casal RF. Safety and Feasibility of Photodynamic Therapy for Ablation of Peripheral Lung Tumors. J Bronchology Interv Pulmonol 2023; 30:135-143. [PMID: 35968968 PMCID: PMC10063184 DOI: 10.1097/lbr.0000000000000889] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/25/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Newer navigational bronchoscopy technologies render peripheral lung lesions accessible for biopsy and potential treatment. We investigated whether photodynamic therapy (PDT) delivered via navigational bronchoscopy is feasible and safe for ablation of peripheral lung tumors. METHODS Two studies evaluated PDT in patients with solid peripheral lung tumors followed by clinical follow-up (nonresection study, N=5) or lobectomy (resection study, N=10). Porfimer sodium injection was administered 40 to 50 hours before navigational bronchoscopy. Lesion location was confirmed by radial probe endobronchial ultrasonography. An optical fiber diffuser was placed within or adjacent to the tumor under fluoroscopic guidance; laser light (630 nm wavelength) was applied at 200 J/cm of diffuser length for 500 seconds. Tumor response was assessed by modified Response Evaluation Criteria in Solid Tumors at 3 and 6 months postprocedure (nonresection study) and pathologically (resection study). RESULTS There were no deaths, discontinuations for adverse events, or serious or grade ≥3 adverse events related to study treatments. Photosensitivity reactions occurred in 8 of 15 patients: 6 mild, 1 moderate, 1 severe (elevated porphyrins noted in blood after treatment). Among 5 patients with clinical follow-up, 1 had complete response, 3 had stable disease, and 1 had progressive disease at 6 months follow-up. Among 10 patients who underwent lobectomy, 1 had no evidence of tumor at resection (complete response), 3 had 40% to 50% tumor cell necrosis, 2 had 20% to 35%, and 4 had 5% to 10%. CONCLUSION PDT for nonthermal ablation of peripheral lung tumors was feasible and safe in this small study. Further study is warranted to evaluate efficacy and corroborate the safety profile.
Collapse
Affiliation(s)
- Sandeep Bansal
- Interventional Pulmonology, The Lung Center, Penn Highlands Healthcare, DuBois, PA
| | - Rabih I. Bechara
- Interventional Pulmonology, Medical College of Georgia School of Medicine, Augusta University, Augusta, GA
| | - Jiten D. Patel
- Pulmonary Medicine, Providence Sacred Heart Medical Center and Children’s Hospital, Spokane, WA
| | - Hiren J. Mehta
- Interventional Pulmonology, University of Florida, Gainesville, FL
| | - J. Scott Ferguson
- Interventional Pulmonology, School of Medicine and Public Health and the Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Benjamin L. Witt
- Association of Regional Utah Pathologists (ARUP) Laboratories, University of Utah, Salt Lake City, UT
| | - Septimiu D. Murgu
- Division of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL
| | - Kazuhiro Yasufuku
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Roberto F. Casal
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
6
|
Zhang X, Yu F, Wang Z, Jiang T, Song X, Yu F. Fluorescence probes for lung carcinoma diagnosis and clinical application. SENSORS & DIAGNOSTICS 2023; 2:1077-1096. [DOI: 10.1039/d3sd00029j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
This review provides an overview of the most recent developments in fluorescence probe technology for the accurate detection and clinical therapy of lung carcinoma.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Department of Pulmonary and Critical Care Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Feifei Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Zhenkai Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Xinyu Song
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medicine University, Guangzhou 510120, China
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
7
|
Groth SS. Commentary: Endobronchial treatment of central airway typical carcinoid tumors: The devil is in the details. JTCVS Tech 2022; 15:165-166. [PMID: 36276665 PMCID: PMC9579704 DOI: 10.1016/j.xjtc.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Shawn S. Groth
- Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| |
Collapse
|
8
|
Lv G, Dong Z, Zhao Y, Ma N, Jiang X, Li J, Wang J, Wang J, Zhang W, Lin X, Hu Z. Precision Killing of Sinoporphyrin Sodium-Mediated Photodynamic Therapy against Malignant Tumor Cells. Int J Mol Sci 2022; 23:10561. [PMID: 36142474 PMCID: PMC9503352 DOI: 10.3390/ijms231810561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Photodynamic therapy (PDT) has significant advantages in the treatment of malignant tumors, such as high efficiency, minimal invasion and less side effects, and it can preserve the integrity and quality of the organs. The power density, irradiation time and photosensitizer (PS) concentration are three main parameters that play important roles in killing tumor cells. However, until now, the underlying relationships among them for PDT outcomes have been unclear. In this study, human malignant glioblastoma U-118MG and melanoma A375 cells were selected, and the product of the power density, irradiation time and PS concentration was defined as the total photodynamic parameter (TPP), in order to investigate the mechanisms of PS sinoporphyrin sodium (DVDMS)-mediated PDT (DVDMS-PDT). The results showed that the survival rates of the U-118MG and A375 cells were negatively correlated with the TPP value in the curve, and the correlation exactly filed an e-exponential function. Moreover, according to the formula, we realized controllable killing effects of the tumor cells by randomly adjusting the three parameters, and we finally verified the accuracy and repeatability of the formula. In conclusion, the establishment and implementation of a newly functional relationship among the PDT parameters are essential for predicting PDT outcomes and providing personalized precise treatment, and they are contributive to the development of PDT dosimetry.
Collapse
Affiliation(s)
- Guixiang Lv
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
| | - Zhihui Dong
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
| | - Yunhan Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
| | - Ning Ma
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
| | - Xiaochen Jiang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
| | - Jia Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
| | - Jinyue Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
| | - Jiaxin Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
| | - Wenxiu Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
| | - Xin Lin
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
| | - Zheng Hu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
- Laboratory of Sono- and Photo-Theranostic Technologies, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
9
|
VİTHANAGE V, C.D. J, M.D.P. DE. C, RAJENDRAM S. Photodynamic Therapy : An Overview and Insights into a Prospective Mainstream Anticancer Therapy. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Photodynamic therapy (PDT) procedure has minimum invasiveness in contrast to conventional anticancer surgical procedures. Although clinically approved a few decades ago, it is not commonly used due to its poor efficacy, mainly due to poor light penetration into deeper tissues. PDT uses a photosensitizer (PS), which is photoactivated on illumination by light of appropriate wavelength and oxygen in the tissue, leading to a series of photochemical reactions producing reactive oxygen species (ROS) triggering various mechanisms resulting in lethal effects on tumor cells. This review looks into the fundamental aspects of PDT, such as photochemistry, photobiological effects, and the current clinical applications in the light of improving PDT to become a mainstream therapeutic procedure against a broad spectrum of cancers and malignant lesions. The side effects of PDT, both early and late-onset, are elaborated on in detail to highlight the available options to minimize side effects without compromising therapeutic efficacy. This paper summarizes the benefits, drawbacks, and limitations of photodynamic therapy along with the recent attempts to achieve improved therapeutic efficacy via monitoring various cellular and molecular processes through fluorescent imagery aided by suitable biomarkers, prospective nanotechnology-based targeted delivery methods, the use of scintillating nanoparticles to deliver light to remote locations and also combining PDT with conventional anticancer therapies have opened up new dimensions for PDT in treating cancers. This review inquires and critically analyses prospective avenues in which a breakthrough would finally enable PDT to be integrated into mainstream anticancer therapy.
Collapse
|
10
|
Tsuchida T, Matsumoto Y, Imabayashi T, Uchimura K, Sasada S. Photodynamic therapy can be safely performed with Talaporfin sodium as a day treatment for central-type early-stage lung cancer. Photodiagnosis Photodyn Ther 2022; 38:102836. [PMID: 35367388 DOI: 10.1016/j.pdpdt.2022.102836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUNDS/AIM Photodynamic therapy (PDT) with Talaporfin sodium (Talaporfin) is an effective and safe treatment for central-type early-stage lung cancer (CELC) that is associated with less skin photosensitivity. However, PDT is mostly performed in hospital for the purpose of light shading management in Japan. It is expected that it will be possible to perform PDT with Talaporfin (Talaporfin-PDT) as a day treatment with ≥14 days of shading management at home. This study aimed to confirm the safety of Talaporfin-PDT as day treatment. METHODS We retrospectively investigated the occurrence of adverse events among consecutive patients who received PDT for CELC in a day treatment setting in the Respiratory Endoscopy Division of our institution between January 2010 and February 2020. RESULTS A total of 12 patients (16 treatments) received day treatment of Talaporfin-PDT. Among the 12 patients, one patient (one treatment) was followed at another hospital. No severe adverse events after treatment were observed among the remaining 11 patients (15 treatments). Mild photosensitivity on a photosensitivity test was observed in 3 (3 treatments) of the 11 patients (15 treatments) but no major photosensitivity was observed. This photosensitivity was a temporary reaction. CONCLUSION Talaporfin-PDT for CELC was safely performed as a day treatment.
Collapse
Affiliation(s)
- Takaaki Tsuchida
- Department of Endoscopy, Respiratory Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Yuji Matsumoto
- Department of Endoscopy, Respiratory Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tatsuya Imabayashi
- Department of Endoscopy, Respiratory Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Keigo Uchimura
- Department of Endoscopy, Respiratory Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Shinji Sasada
- Department of Endoscopy, Respiratory Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Pulmonology, The Fraternity Memorial Hospital, Japan
| |
Collapse
|
11
|
Chhatre S, Murgu S, Vachani A, Jayadevappa R. Photodynamic therapy for stage I and II non-small cell lung cancer: A SEER-Medicare analysis 2000-2016. Medicine (Baltimore) 2022; 101:e29053. [PMID: 35356921 PMCID: PMC10684201 DOI: 10.1097/md.0000000000029053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/17/2022] [Indexed: 12/25/2022] Open
Abstract
ABSTRACT We analyzed mortality (all-cause and lung cancer-specific) and time to follow-up treatment in stage I and II non-small cell lung cancer (NSCLC) patients treated with photodynamic therapy (PDT) compared with ablation therapy and radiation therapy.From Surveillance, Epidemiology, and End Results-Medicare linked data, patients diagnosed with stage I and II NSCLC between 2000 and 2015 were identified. Outcomes were mortality (overall and lung cancer-specific) and time to follow-up treatment. We analyzed mortality using Cox proportional hazard models. We used generalized linear model to assess time to follow-up treatment (PDT and ablation groups). Models were adjusted for inverse probability weighted propensity score.Of 495,441 NSCLC patients, 56 with stage I and II disease received PDT (mono or multi-modal), 477 received ablation (mono or multi-modal), and 14,178 received radiation therapy alone. None from PDT group had metastatic disease (M0) and 70% had no nodal involvement (N0). Compared with radiation therapy alone, PDT therapy was associated with lower hazard of overall (hazard ratio = 0.56, 95% CI = 0.39-0.80), and lung cancer-specific mortality (hazard ratio = 0.64, 95% CI = 0.43-0.97). Unadjusted mean time to follow-up treatment was 70days (standard deviation = 146) for PDT group and 67 days (standard deviation = 174) for ablation group. Compared with ablation, PDT was associated with an average increase of 125days to follow-up treatment (P = .11).Among stage I and II NSCLC patients, PDT was associated with improved survival, compared with radiation alone; and longer time to follow-up treatment compared with ablation. Currently, PDT is offered in various combinations with surgery and radiation. Larger studies can investigate the efficacy and effectiveness of these combinations.
Collapse
Affiliation(s)
- Sumedha Chhatre
- Correspondence: Sumedha Chhatre, 3535 Market Street, Suite 4051,Philadelphia, PA 19104 (e-mail: ).
| | | | | | | |
Collapse
|
12
|
Combinatorial Therapeutic Approaches with Nanomaterial-Based Photodynamic Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14010120. [PMID: 35057015 PMCID: PMC8780767 DOI: 10.3390/pharmaceutics14010120] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/11/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
Photodynamic therapy (PDT), in which a light source is used in combination with a photosensitizer to induce local cell death, has shown great promise in therapeutically targeting primary tumors with negligible toxicity and minimal invasiveness. However, numerous studies have shown that noninvasive PDT alone is not sufficient to completely ablate tumors in deep tissues, due to its inherent shortcomings. Therefore, depending on the characteristics and type of tumor, PDT can be combined with surgery, radiotherapy, immunomodulators, chemotherapy, and/or targeted therapy, preferably in a patient-tailored manner. Nanoparticles are attractive delivery vehicles that can overcome the shortcomings of traditional photosensitizers, as well as enable the codelivery of multiple therapeutic drugs in a spatiotemporally controlled manner. Nanotechnology-based combination strategies have provided inspiration to improve the anticancer effects of PDT. Here, we briefly introduce the mechanism of PDT and summarize the photosensitizers that have been tested preclinically for various cancer types and clinically approved for cancer treatment. Moreover, we discuss the current challenges facing the combination of PDT and multiple cancer treatment options, and we highlight the opportunities of nanoparticle-based PDT in cancer therapies.
Collapse
|
13
|
Sajjad F, Han Y, Bao L, Yan Y, O Shea D, Wang L, Chen Z. The improvement of biocompatibility by incorporating porphyrins into carbon dots with photodynamic effects and pH sensitivities. J Biomater Appl 2021; 36:1378-1389. [PMID: 34968148 DOI: 10.1177/08853282211050449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Photodynamic therapy (PDT) is a promising new treatment for cancer; however, the hydrophobic interactions and poor solubility in water of photosensitizers limit the use in clinic. Nanoparticles especially carbon dots have attracted the attention of the world's scientists because of their unique properties such as good solubility and biocompatibility. In this paper, we integrated carbon dots with different porphyrins to improve the properties of porphyrins and evaluated their efficacy as PDT drugs. The spectroscopic characteristics of porphyrins nano-conjugates were studied. Singlet oxygen generation rate and the light- and dark-induced toxicity of the conjugates were studied. Our results showed that the covalent interaction between CDs and porphyrins has improved the biocompatibility. The synthesized conjugates also inherit the pH sensitivity of the carbon dots, while the conjugation also decreases the hemolysis ratio making them a promising candidate for PDT. The incorporation of carbon dots into porphyrins improved their biocompatibility by reducing toxicity.
Collapse
Affiliation(s)
| | - Yiping Han
- Shanghai Changhai Hospital, Shanghai, China
| | - Leilei Bao
- Shanghai Changhai Hospital, Shanghai, China
| | - Yijia Yan
- Shanghai Xianhui Pharmaceutical Co., Ltd, Shanghai, China
| | - Donal O Shea
- Shanghai Xianhui Pharmaceutical Co., Ltd, Shanghai, China
| | | | | |
Collapse
|
14
|
Kramer T, Annema JT. Advanced bronchoscopic techniques for the diagnosis and treatment of peripheral lung cancer. Lung Cancer 2021; 161:152-162. [PMID: 34600406 DOI: 10.1016/j.lungcan.2021.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 12/14/2022]
Abstract
Lung cancer is the leading cause of cancer related deaths worldwide. As a result of the increasing use of chest CT scans and lung cancer screening initiatives, there is a rapidly increasing need for lung lesion analysis and - in case of confirmed cancer - treatment. A desirable future concept is the one-stop outpatient bronchoscopic approach including navigation to the tumor, malignancy confirmation and immediate treatment. Several novel bronchoscopic diagnostic and treatment concepts are currently under evaluation contributing to this concept. As the majority of suspected malignant lung lesions develop in the periphery of the lungs, improved bronchoscopic navigation to the target lesion is of key importance. Fortunately, the field of interventional pulmonology is evolving rapidly and several advanced bronchoscopic navigation techniques are clinically available, allowing an increasingly accurate tissue diagnosis of peripheral lung lesions. Additionally, multiple bronchoscopic treatment modalities are currently under investigation. This review will provide a concise overview of advanced bronchoscopic techniques to diagnose and treat peripheral lung cancer by describing their working mechanisms, strengths and weaknesses, identifying knowledge gaps and indicating future developments. The desired one-step concept of bronchoscopic 'diagnose and treat' peripheral lung cancer is on the horizon.
Collapse
Affiliation(s)
- Tess Kramer
- Department of Respiratory Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jouke T Annema
- Department of Respiratory Medicine, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer-A Review of the Current Clinical Status. Front Chem 2021; 9:686303. [PMID: 34409014 PMCID: PMC8365093 DOI: 10.3389/fchem.2021.686303] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Photodynamic therapy (PDT) has been used as an anti-tumor treatment method for a long time and photosensitizers (PS) can be used in various types of tumors. Originally, light is an effective tool that has been used in the treatment of diseases for ages. The effects of combination of specific dyes with light illumination was demonstrated at the beginning of 20th century and novel PDT approaches have been developed ever since. Main strategies of current studies are to reduce off-target effects and improve pharmacokinetic properties. Given the high interest and vast literature about the topic, approval of PDT as the first drug/device combination by the FDA should come as no surprise. PDT consists of two stages of treatment, combining light energy with a PS in order to destruct tumor cells after activation by light. In general, PDT has fewer side effects and toxicity than chemotherapy and/or radiotherapy. In addition to the purpose of treatment, several types of PSs can be used for diagnostic purposes for tumors. Such approaches are called photodynamic diagnosis (PDD). In this Review, we provide a general overview of the clinical applications of PDT in cancer, including the diagnostic and therapeutic approaches. Assessment of PDT therapeutic efficacy in the clinic will be discussed, since identifying predictors to determine the response to treatment is crucial. In addition, examples of PDT in various types of tumors will be discussed. Furthermore, combination of PDT with other therapy modalities such as chemotherapy, radiotherapy, surgery and immunotherapy will be emphasized, since such approaches seem to be promising in terms of enhancing effectiveness against tumor. The combination of PDT with other treatments may yield better results than by single treatments. Moreover, the utilization of lower doses in a combination therapy setting may cause less side effects and better results than single therapy. A better understanding of the effectiveness of PDT in a combination setting in the clinic as well as the optimization of such complex multimodal treatments may expand the clinical applications of PDT.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - M. Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Seylan Ayan
- Department of Chemistry, Bilkent University, Ankara, Turkey
| |
Collapse
|
16
|
Huang L, Asghar S, Zhu T, Ye P, Hu Z, Chen Z, Xiao Y. Advances in chlorin-based photodynamic therapy with nanoparticle delivery system for cancer treatment. Expert Opin Drug Deliv 2021; 18:1473-1500. [PMID: 34253129 DOI: 10.1080/17425247.2021.1950685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: The treatment of tumors is one of the most difficult problems in the medical field at present. Patients often use a comprehensive therapy that combines surgery, radiotherapy, and chemotherapy. Photodynamic therapy (PDT) has prominent potential for eradicating various cancers. Chlorin-based photosensitizers (PSs), as one of the most utilized photosensitizers, have many advantages over conventional photosensitizers; however, a successful chlorin-based PDT needs multi-functional nano-carriers for selective photosensitizer delivery. The number of researches about nanoparticles designed for improved chlorin-based PSs is increasing in the current era. In this article, we give a brief review focused on the recent research progress in design of chlorin-based nanoparticles for the treatment of malignant tumors with photodynamic therapy.Areas covered: This review focuses on the current nanoparticle platforms for PDT, and describes different strategies to achieve controllable PDT by chlorin-nano-delivery systems. The challenges and prospects of PDT in clinical applications are also discussed.Expert opinions: The requirement for PDT to eradicate cancers has increased exponentially in recent years. The major clinically used photosensitizers are hydrophobic. The main obstacles in effective delivery of PSs are associated with this intrinsic nature. The design of nano-delivery systems to load PSs is pivotal for PSs' widespread use.
Collapse
Affiliation(s)
- Lin Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| | - Sajid Asghar
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ting Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| | - Panting Ye
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| | - Ziyi Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| | - Zhipeng Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China.,Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanyu Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| |
Collapse
|
17
|
Wang X, Luo D, Basilion JP. Photodynamic Therapy: Targeting Cancer Biomarkers for the Treatment of Cancers. Cancers (Basel) 2021; 13:cancers13122992. [PMID: 34203805 PMCID: PMC8232794 DOI: 10.3390/cancers13122992] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Photodynamic therapy (PDT) is a minimally invasive treatment option that can kill cancerous cells by subjecting them to light irradiation at a specific wavelength. The main problem related to most photosensitizers is the lack of tumor selectivity, which leads to undesired uptake in normal tissues resulting in side effects. Passive targeting and active targeting are the two strategies to improve uptake in tumor tissues. This review focused on active targeting and summarizes recent active targeting approaches in which highly potent photosensitizers are rendered tumor-specific by means of an appended targeting moiety that interacts with a protein unique to, or at least significantly more abundant on, tumor cell surfaces compared to normal cells. Abstract Photodynamic therapy (PDT) is a well-documented therapy that has emerged as an effective treatment modality of cancers. PDT utilizes harmless light to activate non- or minimally toxic photosensitizers to generate cytotoxic species for malignant cell eradication. Compared with conventional chemotherapy and radiotherapy, PDT is appealing by virtue of the minimal invasiveness, its safety, as well as its selectivity, and the fact that it can induce an immune response. Although local illumination of the cancer lesions renders intrinsic selectivity of PDT, most photosensitizers used in PDT do not display significant tumor tissue selectivity. There is a need for targeted delivery of photosensitizers. The molecular identification of cancer antigens has opened new possibilities for the development of effective targeted therapy for cancer patients. This review provides a brief overview of recent achievements of targeted delivery of photosensitizers to cancer cells by targeting well-established cancer biomarkers. Overall, targeted PDT offers enhanced intracellular accumulation of the photosensitizer, leading to improved PDT efficacy and reduced toxicity to normal tissues.
Collapse
Affiliation(s)
- Xinning Wang
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH 44106, USA
- Correspondence: (X.W.); (J.P.B.); Tel.: +216-844-4848 (X.W.); +216-983-3246 (J.P.B.); Fax: +216-844-4987 (X.W. & J.P.B.)
| | - Dong Luo
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-44, Cleveland, OH 44106, USA;
| | - James P. Basilion
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH 44106, USA
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-44, Cleveland, OH 44106, USA;
- Correspondence: (X.W.); (J.P.B.); Tel.: +216-844-4848 (X.W.); +216-983-3246 (J.P.B.); Fax: +216-844-4987 (X.W. & J.P.B.)
| |
Collapse
|
18
|
Sonokawa T, Matsumoto M, Takegahara K, Inoue T, Enomoto Y, Usuda J. Usefulness of simultaneous type image-enhanced endoscope system in photodynamic therapy for centrally located lung cancer. Photodiagnosis Photodyn Ther 2021; 35:102345. [PMID: 34033936 DOI: 10.1016/j.pdpdt.2021.102345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is established as one of the standard treatment options for centrally located early lung cancer. In order to improve the effectiveness of PDT, it is very important to accurately diagnose the extent of the tumor and focus the laser irradiation accurately. With the use of the conventional video-endoscope system, which adopts the frame-sequential (RGB-based) display method, mainly used in Japan, for PDT laser irradiation, the system only recognizes the strong white light, and color information is lost. Therefore, it is difficult to irradiate the lesion while simultaneously observing the lesion. In this study, we investigated the usefulness of a new type of video-endoscope system during PDT. METHODS We used ELUXEO 7000® (FUJIFILM, Japan), which is a simultaneous-type video-endoscope system that has been in use at Nippon Medical School Hospital since October 2018. We analyzed the clinical usefulness of the ELUXEO® system for PDT as compared to other endoscope systems, such as EVIS LUCERA ELITE® (Olympus, Japan), an autofluorescence imaging (AFI) system. RESULTS After the administration of talaporfin sodium for PDT, the tumor lesion was not visualized in magenta color with AFI, yielding false-negative results. On the other hand, no false-negative results after the administration of talaporfin sodium were obtained with the use of ELUXEO®. Using the ELUXEO® system in the blue light imaging (BLI) mode, we were able to deliver a red laser light while observing the extent of the tumor. Missed laser exposure was avoided and the accuracy of PDT was improved with the use of this system. CONCLUSIONS ELUXEO® is useful for accurate evaluation of the extent of centrally located lung cancer and therefore, for accurate laser irradiation of the tumor lesion.
Collapse
Affiliation(s)
- Takumi Sonokawa
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Mitsuo Matsumoto
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Kyoshiro Takegahara
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Tatsuya Inoue
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Yutaka Enomoto
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Jitsuo Usuda
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan.
| |
Collapse
|
19
|
Martins WK, Belotto R, Silva MN, Grasso D, Suriani MD, Lavor TS, Itri R, Baptista MS, Tsubone TM. Autophagy Regulation and Photodynamic Therapy: Insights to Improve Outcomes of Cancer Treatment. Front Oncol 2021; 10:610472. [PMID: 33552982 PMCID: PMC7855851 DOI: 10.3389/fonc.2020.610472] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is considered an age-related disease that, over the next 10 years, will become the most prevalent health problem worldwide. Although cancer therapy has remarkably improved in the last few decades, novel treatment concepts are needed to defeat this disease. Photodynamic Therapy (PDT) signalize a pathway to treat and manage several types of cancer. Over the past three decades, new light sources and photosensitizers (PS) have been developed to be applied in PDT. Nevertheless, there is a lack of knowledge to explain the main biochemical routes needed to trigger regulated cell death mechanisms, affecting, considerably, the scope of the PDT. Although autophagy modulation is being raised as an interesting strategy to be used in cancer therapy, the main aspects referring to the autophagy role over cell succumbing PDT-photoinduced damage remain elusive. Several reports emphasize cytoprotective autophagy, as an ultimate attempt of cells to cope with the photo-induced stress and to survive. Moreover, other underlying molecular mechanisms that evoke PDT-resistance of tumor cells were considered. We reviewed the paradigm about the PDT-regulated cell death mechanisms that involve autophagic impairment or boosted activation. To comprise the autophagy-targeted PDT-protocols to treat cancer, it was underlined those that alleviate or intensify PDT-resistance of tumor cells. Thereby, this review provides insights into the mechanisms by which PDT can be used to modulate autophagy and emphasizes how this field represents a promising therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Waleska K Martins
- Laboratory of Cell and Membrane, Anhanguera University of São Paulo, São Paulo, Brazil
| | - Renata Belotto
- Perola Byington Hospital Gynecology - Lasertherapy Clinical Research Department, São Paulo, Brazil
| | - Maryana N Silva
- Laboratory of Cell and Membrane, Anhanguera University of São Paulo, São Paulo, Brazil
| | - Daniel Grasso
- CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maynne D Suriani
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Tayná S Lavor
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo, Brazil
| | | | - Tayana M Tsubone
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
20
|
Wang Q, Suo Y, Wang X, Wang Y, Tian X, Gao Y, Liu N, Liu R. Study on the mechanism of photodynamic therapy mediated by 5-aminoketovalerate in human ovarian cancer cell line. Lasers Med Sci 2021; 36:1873-1881. [PMID: 33392781 DOI: 10.1007/s10103-020-03226-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/16/2020] [Indexed: 12/29/2022]
Abstract
We aimed to investigate the mechanism and effect of photodynamic treatment mediated by 5-aminoketovalerate (5-ALA-PDT) on human ovarian cancer cells (OVCAR3 cells) and to provide a theoretical basis for the subsequent experimental step in vivo. Human ovarian cancer OVCAR3 cells were randomly divided into four groups: control group, laser irradiation alone group, photosensitizer alone group, and photodynamic treatment group. Alterations in cell morphology were observed with an inverted light microscope; cell viability was examined by CCK-8 assays. The ROS content and apoptosis rate were examined by flow cytometry analysis. Western blot was used to detect the expression of apoptosis-related proteins, such as caspase-3, Bax, and Bcl-2, and the expression of cleaved caspase-3 in live cells was detected by a cleaved caspase-3 assay kit. Inverted light microscopy showed alterations in cell morphology in different stages. Comparison with the three other groups indicated that tumor cell proliferation was significantly decreased in the photodynamic treatment group (P < 0.05). Flow cytometry analysis revealed that the content of ROS was higher in the photodynamic group than in the other three groups, and the apoptosis rate was higher in the photodynamic treatment group. The difference compared with the other three groups was statistically significant (P < 0.001). The western blot results indicated that the protein expression of Bcl-2 and caspase-3 was decreased in the photodynamic treatment group, and the protein expression level of Bax was increased (P < 0.05). The expression of cleaved caspase-3 was increased in the photodynamic treatment group compared with the other groups according to the data obtained with a microplate reader. Thus, our results demonstrated that the apoptosis and viability of OVCAR3 cells are altered in response to 5-ALA-PDT; however, no remarkable effects were observed in ovarian cancer cells treated with laser irradiation or photosensitizer alone. 5-ALA-PDT can significantly inhibit the growth of human ovarian cancer cells, and the mechanism of this effect is related to the tumor cell apoptosis mediated by the downregulation of Bcl-2 and caspase-3 and upregulation of Bax protein expression.
Collapse
Affiliation(s)
- Qian Wang
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yuping Suo
- Department of Gynaecology and Obstetrics, Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, China.
| | - Xiaoni Wang
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yulan Wang
- Department of Gynaecology and Obstetrics, Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, China
| | - Xiaojuan Tian
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanxia Gao
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Nannan Liu
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Rui Liu
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
21
|
Wang K, Yu B, Pathak JL. An update in clinical utilization of photodynamic therapy for lung cancer. J Cancer 2021; 12:1154-1160. [PMID: 33442413 PMCID: PMC7797657 DOI: 10.7150/jca.51537] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-related death worldwide, with nearly 1.8 million-diagnosis and 1.59 million deaths. Surgery, radiotherapy, and chemotherapy in individual or combination are commonly used to treat lung cancers. Photodynamic therapy (PDT) is a highly selective method for the destruction of cancer cells by exerting cytotoxic activity on malignant cells. PDT has been the subject of numerous clinical studies and has proven to be an effective strategy for cancer therapy. Clinical studies revealed that PDT could prolong survival in patients with inoperable cancers and significantly improve quality of life. For inoperable lung cancer cases, PDT could be an effective therapy. Despite the clinical success reported, PDT is still currently underutilized to treat lung cancer and other tumors. PTD is still a new treatment approach for lung cancer mainly due to the lack of enough clinical research evaluating its' effectiveness and side effects. In this review, we discuss the current prospects and future potentials of PDT in lung cancer treatment.
Collapse
Affiliation(s)
- Kai Wang
- International Medicine Center, Tianjin Hospital, 406 south of JieFang road, HeXi District, Tianjin, China
| | - Boxin Yu
- International Medicine Center, Tianjin Hospital, 406 south of JieFang road, HeXi District, Tianjin, China
| | - Janak L. Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| |
Collapse
|
22
|
Kalinke L, Thakrar R, Janes SM. The promises and challenges of early non-small cell lung cancer detection: patient perceptions, low-dose CT screening, bronchoscopy and biomarkers. Mol Oncol 2020; 15:2544-2564. [PMID: 33252175 PMCID: PMC8486568 DOI: 10.1002/1878-0261.12864] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/04/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Lung cancer survival statistics are sobering with survival ranking among the poorest of all cancers despite the addition of targeted therapies and immunotherapies. However, improvements in tools for early detection hold promise. The Nederlands–Leuvens Longkanker Screenings Onderzoek (NELSON) trial recently corroborated the findings from the previous National Lung Screening Trial low‐dose Computerised Tomography (NLST) screening trial in reducing lung cancer mortality. Biomarker research and development is increasing at pace as the molecular life histories of lung cancers become further unravelled. Low‐dose CT screening (LDCT) is effective but targets only those at the highest risk and is burdensome on healthcare. An optimally designed CT screening programme at best will only detect a low proportion of overall lung cancers as only those at very high‐risk meet screening criteria. Biomarkers that help risk stratify suitable patients for LDCT screening, and those that assist in determining which LDCT detected nodules are likely to represent malignant disease are needed. Some biomarkers have been proposed as standalone lung cancer diagnosis tools. Bronchoscopy technology is improving, with better capacity to identify and obtain samples from early lung cancers. Clinicians need to be aware of each early lung cancer detection method’s inherent limitations. We anticipate that the future of early lung cancer diagnosis will involve a synergistic, multimodal approach, combining several early detection methods.
Collapse
Affiliation(s)
- Lukas Kalinke
- Lungs for Living Research Centre, University College London, UK
| | - Ricky Thakrar
- Lungs for Living Research Centre, University College London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, University College London, UK
| |
Collapse
|
23
|
De Silva P, Saad MA, Thomsen HC, Bano S, Ashraf S, Hasan T. Photodynamic therapy, priming and optical imaging: Potential co-conspirators in treatment design and optimization - a Thomas Dougherty Award for Excellence in PDT paper. J PORPHYR PHTHALOCYA 2020; 24:1320-1360. [PMID: 37425217 PMCID: PMC10327884 DOI: 10.1142/s1088424620300098] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Photodynamic therapy is a photochemistry-based approach, approved for the treatment of several malignant and non-malignant pathologies. It relies on the use of a non-toxic, light activatable chemical, photosensitizer, which preferentially accumulates in tissues/cells and, upon irradiation with the appropriate wavelength of light, confers cytotoxicity by generation of reactive molecular species. The preferential accumulation however is not universal and, depending on the anatomical site, the ratio of tumor to normal tissue may be reversed in favor of normal tissue. Under such circumstances, control of the volume of light illumination provides a second handle of selectivity. Singlet oxygen is the putative favorite reactive molecular species although other entities such as nitric oxide have been credibly implicated. Typically, most photosensitizers in current clinical use have a finite quantum yield of fluorescence which is exploited for surgery guidance and can also be incorporated for monitoring and treatment design. In addition, the photodynamic process alters the cellular, stromal, and/or vascular microenvironment transiently in a process termed photodynamic priming, making it more receptive to subsequent additional therapies including chemo- and immunotherapy. Thus, photodynamic priming may be considered as an enabling technology for the more commonly used frontline treatments. Recently, there has been an increase in the exploitation of the theranostic potential of photodynamic therapy in different preclinical and clinical settings with the use of new photosensitizer formulations and combinatorial therapeutic options. The emergence of nanomedicine has further added to the repertoire of photodynamic therapy's potential and the convergence and co-evolution of these two exciting tools is expected to push the barriers of smart therapies, where such optical approaches might have a special niche. This review provides a perspective on current status of photodynamic therapy in anti-cancer and anti-microbial therapies and it suggests how evolving technologies combined with photochemically-initiated molecular processes may be exploited to become co-conspirators in optimization of treatment outcomes. We also project, at least for the short term, the direction that this modality may be taking in the near future.
Collapse
Affiliation(s)
- Pushpamali De Silva
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mohammad A. Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hanna C. Thomsen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
24
|
Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 2020; 17:657-674. [DOI: 10.1038/s41571-020-0410-2] [Citation(s) in RCA: 723] [Impact Index Per Article: 144.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
|
25
|
Steinfort DP, Herth FJF. Bronchoscopic treatments for early-stage peripheral lung cancer: Are we ready for prime time? Respirology 2020; 25:944-952. [PMID: 32643221 DOI: 10.1111/resp.13903] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/29/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide and surgical lobectomy remains the preferred therapy for patients with early-stage NSCLC. Medical comorbidities and advanced age preclude resection in many patients and minimally invasive ablative therapies are needed for treatment. Stereotactic ablative radiation is established as an effective modality in this patient group, although may be contraindicated in some patients with prior radiation exposure, comorbidities or centrally positioned tumours. Percutaneous ablative methods are available, although are frequently associated with significant complications. Numerous endoscopic ablative techniques are under evaluation. With a more favourable safety profile and the ability to provide diagnosis and staging information potentially within a single procedure, there is a strong rationale for development of bronchoscopic ablative modalities. In the following article, the authors aim to explore the role bronchoscopic ablation may play in treatment of peripheral lung tumours, and to describe a pathway to establishing these modalities as part of routine care. The current status of several bronchoscopic ablative options is discussed in detail.
Collapse
Affiliation(s)
- Daniel P Steinfort
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Felix J F Herth
- Department of Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRCH), German Center for Lung Research, Heidelberg, Germany
| |
Collapse
|
26
|
Usuda J, Inoue T, Tsuchida T, Ohtani K, Maehara S, Ikeda N, Ohsaki Y, Sasaki T, Oka K. Clinical trial of photodynamic therapy for peripheral-type lung cancers using a new laser device in a pilot study. Photodiagnosis Photodyn Ther 2020; 30:101698. [PMID: 32198020 DOI: 10.1016/j.pdpdt.2020.101698] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION/AIM Photodynamic therapy (PDT) involves the use of a tumor-specific photosensitizer and laser irradiation, and is one of the treatment options recommended for early centrally located lung cancers, but not yet for peripheral-type lung cancers. We developed a new laser probe, the composite-type optical fiberscope (COF), which allows accurate laser irradiation of a cancer lesion with simultaneous visualization of the lesion. In this study, we attempted a new endobronchial PDT technique using the new laser probe, and evaluated the effectiveness and feasibility of this novel PDT technique for peripheral lung cancers. METHODS This phase I study was conducted in 7 patients with peripheral lung cancers (primary tumor ≤20 mm in diameter). We performed endobronchial PDT for these patients using the new laser probe and talaporfin sodium as the photosensitizer. RESULTS We performed PDT for 3 patients with peripheral lung cancer using a laser dose of 50 J/cm2 at 120 mW, and confirmed the feasibility of using this dose. Then, we escalated the laser dose to 100 J/cm2 in 4 additional patients. A total of 7 patients met our inclusion criteria. Evaluation at 2 weeks and 3 months after the PDT revealed no complication such as pneumonia or pneumothorax. At the evaluation conducted 6 months later, we found CR in 3 cases and SD in the remaining 4 cases. CONCLUSION PDT was found to be a feasible and non-invasive treatment modality for early peripheral-type lung cancer. In the future, PDT could become a standard treatment option for peripheral-type lung cancer.
Collapse
Affiliation(s)
- Jitsuo Usuda
- Department of Thoracic Surgery, Nippon Medical School, Tokyo, Japan.
| | - Tatsuya Inoue
- Department of Thoracic Surgery, Nippon Medical School, Tokyo, Japan
| | - Takaaki Tsuchida
- Department of Respiratory Endoscopy, National Cancer Center Hospital, Tokyo, Japan
| | - Keishi Ohtani
- Department of Thoracic Surgery, Tokyo Medical University Hospital, Tokyo, Japan
| | - Sachio Maehara
- Department of Thoracic Surgery, Tokyo Medical University Hospital, Tokyo, Japan
| | - Norihiko Ikeda
- Department of Thoracic Surgery, Tokyo Medical University Hospital, Tokyo, Japan
| | - Yoshinobu Ohsaki
- Respiratory Center, Asahikawa Medical University Hospital, Asahikawa, Japan
| | - Takaaki Sasaki
- Respiratory Center, Asahikawa Medical University Hospital, Asahikawa, Japan
| | - Kiyoshi Oka
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kyoto, Japan
| |
Collapse
|
27
|
Ikeda N, Usuda J, Maehara S. Photodynamic therapy for central-type early-stage lung cancer. Gen Thorac Cardiovasc Surg 2019; 68:679-683. [DOI: 10.1007/s11748-019-01240-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/22/2019] [Indexed: 11/30/2022]
|
28
|
Gupta A, Harris K, Dhillon SS. Role of bronchoscopy in management of central squamous cell lung carcinoma in situ. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:354. [PMID: 31516900 DOI: 10.21037/atm.2019.04.36] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Squamous cell carcinoma in situ (SCIS) is the pre-invasive stage of squamous cell carcinoma. Early detection and management of SCIS can prevent further progression. Although surgery and external beam radiation therapy are treatment options for SCIS, smaller lesions can be easily managed by bronchoscopic modalities like photodynamic therapy (PDT), cryotherapy, mechanical debulking with biopsy forceps, electrocautery and argon plasma coagulation (APC). Endobronchial brachytherapy (EBBT) and lasers may be judiciously utilized in selected cases. Although, previous studies of treatment modalities may have inadvertently included cases of invasive carcinomas, the advent of new technologies like radial probe endobronchial ultrasound (RP-EBUS) and optical coherence tomography (OCT) can help accurately determine the of depth of invasion. Superficial extent can also be better demarcated with techniques like auto-fluorescence bronchoscopy and narrow band imaging (NBI). New drugs for PDT with deeper penetration and less phototoxicity are being developed. These advances hopefully will allow us to perform superior clinical trials in future and improve our understanding of diagnosis and management of SCIS.
Collapse
Affiliation(s)
- Ankit Gupta
- Division of Pulmonary and Critical Care Medicine, Hartford Healthcare, Norwich, CT, USA
| | - Kassem Harris
- Interventional Pulmonology Section, Pulmonary Critical Care Division, Department of Medicine, Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | - Samjot Singh Dhillon
- Pulmonary Critical Care and Sleep Medicine, Interventional Pulmonary, The Permanente Medical Group, Roseville and Sacramento, CA, USA
| |
Collapse
|
29
|
Sakamaki Y, Ozdemir J, Heidrick Z, Watson O, Shahsavari HR, Fereidoonnezhad M, Khosropour AR, Beyzavi MH. Metal–Organic Frameworks and Covalent Organic Frameworks as Platforms for Photodynamic Therapy. COMMENT INORG CHEM 2019. [DOI: 10.1080/02603594.2018.1542597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yoshie Sakamaki
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - John Ozdemir
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Zachary Heidrick
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Olivia Watson
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Hamid R. Shahsavari
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Masood Fereidoonnezhad
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad R. Khosropour
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - M. Hassan Beyzavi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
30
|
Zhao ZR, Lau RWH, Ng CSH. Catheter-based alternative treatment for early-stage lung cancer with a high-risk for morbidity. J Thorac Dis 2018; 10:S1864-S1870. [PMID: 30026973 DOI: 10.21037/jtd.2018.03.151] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The mainstream treatment modality for early stage non-small cell lung cancer (NSCLC) is surgery; however, many patients are deemed inoperable and warrant alternative therapeutic options. Several minimally invasive catheter-based therapies are emerging as viable alternatives. In this review, we evaluate the outcomes from radiofrequency ablation (RFA), microwave ablation (MWA), cryoablation (CRA) and photodynamic therapy (PDT) for early-stage lung cancer. Novel technical developments have allowed for endobronchial thermal ablation to be conducted in a hybrid theatre setting, which may optimize treatment outcomes and minimise treatment-related complications.
Collapse
Affiliation(s)
- Ze-Rui Zhao
- Division of Cardiothoracic Surgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Rainbow W H Lau
- Division of Cardiothoracic Surgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Calvin S H Ng
- Division of Cardiothoracic Surgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| |
Collapse
|
31
|
Shi R, Lin X, Zhang J, Jin H, Wang A, Wei J. Safety evaluation of repeated intravenous infusion of sinoporphyrin with and without PDT in rats. Photochem Photobiol Sci 2018; 15:1366-1376. [PMID: 27714312 DOI: 10.1039/c6pp00276e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy (PDT) is a promising antineoplastic modality in the oncology field. We assessed the safety of repeated intravenous administrations of sinoporphyrin, a porphyrin derivative, with and without illumination in rats. Toxicokinetic studies of single and multiple administrations of sinoporphyrin were also carried out. Sprague-Dawley rats were randomly assigned to the dark-toxicity and PDT groups. Animals in the dark toxicity group received an i.v. infusion of sinoporphyrin at 3 doses: 2 mg kg-1, 6 mg kg-1, and 18 mg kg-1. The PDT group included 2 doses of sinoporphyrin (2 mg kg-1 and 18 mg kg-1), and the rats received 60 J of 630 nm laser illumination 24 h after photosensitizer infusion. The treatments were repeated every 7 days for 5 cycles and were followed by a 14-day recovery period. Systematic analyses were conducted at the end of treatment and recovery periods. Blood samples were obtained 5 min, 30 min, 2 h, 8 h, 24 h, 48 h, 72 h, and 96 h after the first and fifth treatments for toxicokinetic studies. Sinoporphyrin-PDT led to the death of one out of 270 rats; the dead animal had been treated with 18 mg kg-1 sinoporphyrin and died at the end of the fifth PDT treatment. Liver injury, the primary toxicity observed in the study, was identified using biochemical tests, necropsy, and histopathology. Elevated white blood cell and neutrophil counts were found in the rats in both the dark toxicity and PDT groups. Skin lesions at the illumination site were obvious in the PDT group. Pigment deposits were detected in multiple organs such as the liver, spleen, lymph nodes, and ovaries in the 6 mg kg-1 and 18 mg kg-1 groups. No other abnormalities were observed. The toxicokinetic parameters of single and multiple sinoporphyrin administrations were calculated and compared. Repeated sinoporphyrin administrations both alone and in combination with laser illumination were tolerable, and all toxicities were transient. The no observed adverse effect level (NOAEL) for repeated sinoporphyrin administration and sinoporphyrin-PDT was 6 mg kg-1 and 2 mg kg-1, respectively. Further studies are warranted.
Collapse
Affiliation(s)
- Rui Shi
- New Drug Safety Evaluation Centre, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Xiaoqi Lin
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd, Beijing, China.
| | - Jingxuan Zhang
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd, Beijing, China.
| | - Hongtao Jin
- New Drug Safety Evaluation Centre, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Aiping Wang
- New Drug Safety Evaluation Centre, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, China and Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd, Beijing, China.
| | - Jinfeng Wei
- New Drug Safety Evaluation Centre, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, China and Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd, Beijing, China.
| |
Collapse
|
32
|
Nomoto Y, Ii N, Murashima S, Yamashita Y, Ochiai S, Takada A, Toyomasu Y, Kawamura T, Sakuma H. Endobronchial brachytherapy with curative intent: the impact of reference points setting according to the bronchial diameter. JOURNAL OF RADIATION RESEARCH 2017; 58:849-853. [PMID: 29106573 PMCID: PMC5710514 DOI: 10.1093/jrr/rrx031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/04/2017] [Indexed: 06/07/2023]
Abstract
Endobronchial brachytherapy (EBB) is an effective treatment for endobronchial tumors. However, bronchial toxicity caused by over-irradiation remains problematic. To decrease bronchial toxicity, we developed a source-centralizing applicator for EBB. The purpose of the present study was to assess the efficacy and safety of EBB with varying reference dose points according to the bronchial diameter, using a source-centralizing applicator. We reviewed 15 patients with endobronchial carcinoma who were treated with curative intent using a combination of external beam radiotherapy (EBRT) and high-dose-rate EBB between 2005 and 2014. During each EBB session, we used a source-centralizing applicator that maintained the source-delivering catheter in the center of the bronchial lumen. Reference dose points were 5-7 mm from the source axis, depending on the bronchial diameter. The median radiation doses of EBRT and EBB were 40 Gy in 20 fractions and 18 Gy in 3 fractions, respectively. The median observation period was 36 months. The 3-year overall survival, progression-free survival and local control rates were 79%, 77% and 100%, respectively. Grade 2 radiation pneumonitis was observed in two cases. Bronchial toxicities, such as hemoptysis or the symptoms of chronic bronchitis, were not observed. EBB with varying reference dose points according to bronchial diameter, using a source-centralizing applicator, is a promising procedure that may be effective for tumor elimination and reducing toxicity to the bronchial wall.
Collapse
Affiliation(s)
- Yoshihito Nomoto
- Department of Radiation Oncology, Graduate School of Medicine, Mie University, 2–174 Edobashi, Tsu, Mie 514-8507, Japan
- Department of Radiation Oncology, Mie University Hospital, 2–174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Noriko Ii
- Department of Radiation Oncology, Mie University Hospital, 2–174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Shuichi Murashima
- Department of Radiology, Matsusaka Central Hospital, 102 Kobou Kawai-machi, Matsusaka, Mie, 515-8566, Japan
| | - Yasufumi Yamashita
- Department of Radiology, Matsusaka Central Hospital, 102 Kobou Kawai-machi, Matsusaka, Mie, 515-8566, Japan
| | - Satoru Ochiai
- Department of Radiology, Matsusaka Central Hospital, 102 Kobou Kawai-machi, Matsusaka, Mie, 515-8566, Japan
| | - Akinori Takada
- Department of Radiation Oncology, Mie University Hospital, 2–174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Yutaka Toyomasu
- Department of Radiation Oncology, Mie University Hospital, 2–174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Tomoko Kawamura
- Department of Radiation Oncology, Mie University Hospital, 2–174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hajime Sakuma
- Department of Radiology, Graduate School of Medicine, Mie University, 2–174 Edobashi, Tsu, Mie 514-8507, Japan
| |
Collapse
|
33
|
Harris K, Oakley E, Bellnier D, Shafirstein G. Endobronchial ultrasound-guidance for interstitial photodynamic therapy of locally advanced lung cancer-a new interventional concept. J Thorac Dis 2017; 9:2613-2618. [PMID: 28932569 DOI: 10.21037/jtd.2017.07.45] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent advances in interventional pulmonology led to a significant expansion of the diagnostic and therapeutic role of endobronchial ultrasound. In this paper, we describe a new concept for using endobronchial ultrasound to guide interstitial photodynamic therapy (PDT). For this purpose, we conducted in vitro and in vivo experiments using a phantom and animal models, respectively. A new 0.5 mm optical fiber, with cylindrical diffuser end, was used to deliver the therapeutic light through the 21-gauge endobronchial ultrasound needle. The animal experiments were performed under real-time ultrasonography guidance in mice and rabbits' tumor models. Safe and effective fiber placements and tumor illumination was accomplished. In addition, computer simulation of light propagation suggests that locally advanced lung cancer tumor can be illuminated. This study demonstrates the potential feasibility of this new therapeutic modality approach, justifying further investigation in the treatment of locally advanced lung cancers.
Collapse
Affiliation(s)
- Kassem Harris
- Westchester Medical Center, Department of Medicine, Interventional Pulmonary Section, Valhalla, NY, USA.,Department of Medicine, Interventional Pulmonary, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Emily Oakley
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - David Bellnier
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Gal Shafirstein
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
34
|
Zuchowska A, Jastrzebska E, Chudy M, Dybko A, Brzozka Z. 3D lung spheroid cultures for evaluation of photodynamic therapy (PDT) procedures in microfluidic Lab-on-a-Chip system. Anal Chim Acta 2017; 990:110-120. [PMID: 29029734 DOI: 10.1016/j.aca.2017.07.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/28/2017] [Accepted: 07/06/2017] [Indexed: 01/09/2023]
Abstract
The purpose of this paper is to present a fully integrated microchip for the evaluation of PDT procedures efficiency on 3D lung spheroid cultures. Human lung carcinoma A549 and non-malignant MRC-5 spheroids were utilized as culture models. Spheroid viability was evaluated 24 h after PDT treatment, in which 5-aminolevulinic acid (ALA) had been used as a precursor of a photosensitizer (protoporphyrin IX - PpIX). Moreover, spheroid viability over a long-term (10-day) culture was also examined. We showed that the proposed PDT treatment was toxic only for cancer spheroids. This could be because of a much-favoured enzymatic conversion of ALA to PpIX in cancer as opposed normal cells. Moreover, we showed that to obtain high effectiveness of ALA-PDT on lung cancer spheroids additional time of spheroid after light exposure was required. It was found that PDT had been effective 5 days after PDT treatment with 3 mM ALA. To the best of our knowledge this has been the first presentation of such research performed on a 3D lung spheroids culture in a microfluidic system.
Collapse
Affiliation(s)
- Agnieszka Zuchowska
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Poland
| | - Elzbieta Jastrzebska
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Poland.
| | - Michal Chudy
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Poland
| | - Artur Dybko
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Poland
| | - Zbigniew Brzozka
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Poland
| |
Collapse
|
35
|
Preinvasive disease of the airway. Cancer Treat Rev 2017; 58:77-90. [DOI: 10.1016/j.ctrv.2017.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/23/2017] [Accepted: 05/27/2017] [Indexed: 01/20/2023]
|
36
|
Photodynamic Therapy of Non-Small Cell Lung Cancer. Narrative Review and Future Directions. Ann Am Thorac Soc 2016; 13:265-75. [PMID: 26646726 DOI: 10.1513/annalsats.201509-650fr] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Photodynamic therapy (PDT) is an established treatment modality for non-small cell lung cancer. Phototoxicity, the primary adverse event, is expected to be minimized with the introduction of new photosensitizers that have shown promising results in phase I and II clinical studies. Early-stage and superficial endobronchial lesions less than 1 cm in thickness can be effectively treated with external light sources. Thicker lesions and peripheral lesions may be amenable to interstitial PDT, where the light is delivered intratumorally. The addition of PDT to standard-of-care surgery and chemotherapy can improve survival and outcomes in patients with pleural disease. Intraoperative PDT has shown promise in the treatment of non-small cell lung cancer with pleural spread. Recent preclinical and clinical data suggest that PDT can increase antitumor immunity. Crosslinking of signal transducer and activator of transcription-3 molecules is a reliable biomarker to quantify the photoreaction induced by PDT. Randomized studies are required to test the prognosis value of this biomarker, obtain approval for the new photosensitizers, and test the potential efficacy of interstitial and intraoperative PDT in the treatment of patients with non-small cell lung cancer.
Collapse
|
37
|
Liu H, Zhao M, Wang J, Pang M, Wu Z, Zhao L, Yin Z, Hong Z. Photodynamic therapy of tumors with pyropheophorbide- a-loaded polyethylene glycol-poly(lactic- co-glycolic acid) nanoparticles. Int J Nanomedicine 2016; 11:4905-4918. [PMID: 27729788 PMCID: PMC5045903 DOI: 10.2147/ijn.s112541] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Photodynamic therapy (PDT) has many advantages in treating cancers, but the lack of ideal photosensitizers continues to be a major limitation restricting the clinical utility of PDT. This study aimed to overcome this obstacle by generating pyropheophorbide-a-loaded polyethylene glycol–poly(lactic-co-glycolic acid) nanoparticles (NPs) for efficient tumor-targeted PDT. The fabricated NPs were efficiently internalized in the mitochondrion by cancer cells, and they efficiently killed cancer cells in a dose-dependent manner when activated with light. Systemically delivered NPs were highly enriched in tumor sites, and completely ablated the tumors in a xenograft KB tumor mouse model when illuminated with 680 nm light (156 mW/cm2, 10 minutes). The results suggested that this tumor-specific NP-delivery system for pyropheophorbide-a has the potential to be used in tumor-targeted PDT.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin
| | - Mei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin
| | - Jin Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin
| | - Mingpei Pang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin
| | - Zhenzhou Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin
| | - Liqing Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin
| | - Zhinan Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin; Biomedical Translational Research Institute, International Immunology Center, Jinan University, Guangzhou, People's Republic of China
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin
| |
Collapse
|
38
|
Restoration of Patency to Central Airways Occluded by Malignant Endobronchial Tumors Using Intratumoral Injection of Cisplatin. Ann Am Thorac Soc 2016; 12:1345-50. [PMID: 26072968 DOI: 10.1513/annalsats.201503-131oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Malignant airway obstruction is commonly found in patients with lung cancer and is associated with significant morbidity and mortality. Relieving malignant obstruction may improve symptoms, quality of life, and life expectancy. OBJECTIVES The objective of this study was to analyze our experience with bronchoscopic endobronchial intratumoral injection of cisplatin for malignant airway obstruction. METHODS We conducted a retrospective analysis of patients with malignant airway obstruction treated with bronchoscopic intratumoral injection of cisplatin. Patient characteristics, histology, degree of airway obstruction, procedural methods, treatment cycles, performance status, and therapeutic outcomes were evaluated. Tumor response was analyzed based on bronchoscopic measurements performed on completion the of final treatment session. Adverse events and overall survival were abstracted. MEASUREMENTS AND MAIN RESULTS Between January 2009 and September 2014, 22 patients (10 men, 12 women; mean age ± SD, 64.4 ± 9.5 yr) were treated with one to four injections of 40 mg of cisplatin mixed in 40 ml of 0.9% NaCl. Treatments were completed 1 week apart. The primary etiologies of airway obstruction included squamous cell carcinoma (n = 11), adenocarcinoma (n = 6), small cell carcinoma (n = 2), large cell undifferentiated carcinoma (n = 1), and metastatic endobronchial cancer (n = 2). Twenty-one of 22 patients were evaluable for response. The majority of patients (15/21, 71.4%) responded to therapy, defined as greater than 50% relative reduction in obstruction from baseline. Treatment response was obtained regardless of tumor histology, concurrent systemic therapy, number of treatment cycles administered, performance status, or use of additional ablative interventions. Responders had significantly improved overall survival as compared with nonresponders, although the difference was small. Severe treatment-related side effects or complications were not observed. CONCLUSIONS Subject to the limitations of a single-center retrospective study and a subjective primary outcome measure, we have demonstrated the feasibility of improving the patency of central airways that are largely or completely occluded by endobronchial malignant tumor using intraluminal injection of cisplatin. Additional longer-term, larger-scale safety and comparative effectiveness studies of this palliative treatment modality are warranted.
Collapse
|
39
|
Hayashida Y, Ikeda Y, Sawada K, Kawai K, Kato T, Kakehi Y, Araki N. Invention of a novel photodynamic therapy for tumors using a photosensitizing PI3K inhibitor. Int J Cancer 2016; 139:700-11. [PMID: 26989815 DOI: 10.1002/ijc.30097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 01/23/2023]
Abstract
XL147 (SAR245408, pilaralisib), an ATP-competitive pan-class I phosphoinositide 3-kinase (PI3K) inhibitor, is a promising new anticancer drug. We examined the effect of the PI3K inhibitor on PC3 prostate cancer cells under a fluorescence microscope and found that XL147-treated cancer cells are rapidly injured by blue wavelength (430 nm) light irradiation. During the irradiation, the cancer cells treated with 0.2-2 μM XL147 showed cell surface blebbing and cytoplasmic vacuolation and died within 15 min. The extent of cell injury/death was dependent on the dose of XL147 and the light power of the irradiation. These findings suggest that XL147 might act as a photosensitizing reagent in photodynamic therapy (PDT) for cancer. Moreover, the cytotoxic effect of photosensitized XL147 was reduced by pretreatment with other ATP-competitive PI3K inhibitors such as LY294002, suggesting that the cytotoxic effect of photosensitized XL147 is facilitated by binding to PI3K in cells. In a single-cell illumination analysis using a fluorescent probe to identify reactive oxygen species (ROS), significantly increased ROS production was observed in the XL147-treated cells when the cell was illuminated with blue light. Taken together, it is conceivable that XL147, which is preferentially accumulated in cancer cells, could be photosensitized by blue light to produce ROS to kill cancer cells. This study will open up new possibilities for PDT using anticancer drugs.
Collapse
Affiliation(s)
- Yushi Hayashida
- Department of Urology, School of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Yuka Ikeda
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Koichi Sawada
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Katsuhisa Kawai
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Takuma Kato
- Department of Urology, School of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Yoshiyuki Kakehi
- Department of Urology, School of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa, Japan
| |
Collapse
|
40
|
Ahn PH, Quon H, O'Malley BW, Weinstein G, Chalian A, Malloy K, Atkins JH, Sollecito T, Greenberg M, McNulty S, Lin A, Zhu TC, Finlay JC, Cengel K, Livolsi V, Feldman M, Mick R, Busch TM. Toxicities and early outcomes in a phase 1 trial of photodynamic therapy for premalignant and early stage head and neck tumors. Oral Oncol 2016; 55:37-42. [PMID: 26865261 DOI: 10.1016/j.oraloncology.2016.01.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/17/2016] [Accepted: 01/20/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Management of early superficial lesions in the head and neck remains complex. We performed a phase 1 trial for high-grade premalignant and early superficial lesions of the head and neck using photodynamic therapy (PDT) with Levulan (ALA). MATERIALS AND METHODS Thirty-five subjects with high grade dysplasia, carcinoma in situ, or microinvasive (⩽1.5mm depth) squamous cell carcinoma were enrolled. Cohorts of 3-6 patients were given escalating intraoperative light doses of 50-200J/cm(2) 4-6h after oral administration of 60mg/kg ALA. Light at 629-635nm was delivered in a continuous (unfractionated) or fractionated (two-part) schema. RESULTS PDT was delivered to 30/35 subjects, with 29 evaluable. There was one death possibly due to the treatment. The regimen was otherwise tolerable, with a 52% rate of grade 3 mucositis which healed within several weeks. Other toxicities were generally grade 1 or 2, including odynophagia (one grade 4), voice alteration (one grade 3), and photosensitivity reactions. One patient developed grade 5 sepsis. With a median follow-up of 42months, 10 patients (34%) developed local recurrence; 4 of these received 50J/cm(2) and two each received 100, 150, and 200J/cm(2). Ten (34%) patients developed recurrence adjacent to the treated field. There was a 69% complete response rate at 3months. CONCLUSIONS ALA-PDT is well tolerated. Maximum Tolerated Dose appears to be higher than the highest dose used in this study. Longer followup is required to analyze effect of light dose on local recurrence. High marginal recurrence rates suggest use of larger treatment fields.
Collapse
Affiliation(s)
- Peter H Ahn
- Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States.
| | - Harry Quon
- Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States; Department of Radiation Oncology, Johns Hopkins University, 401 N. Broadway, Baltimore, MA 21231, United States
| | - Bert W O'Malley
- Department of Otolaryngology-Head and Neck Surgery, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, United States
| | - Gregory Weinstein
- Department of Otolaryngology-Head and Neck Surgery, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, United States
| | - Ara Chalian
- Department of Otolaryngology-Head and Neck Surgery, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, United States
| | - Kelly Malloy
- Department of Otolaryngology-Head and Neck Surgery, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, United States; Department of Otolaryngology, University of Michigan, 1500 E. Medical Center Dr, Ann Arbor, MI 48109, United States
| | - Joshua H Atkins
- Department of Anesthesiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, United States
| | - Thomas Sollecito
- Department of Oral Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Martin Greenberg
- Department of Oral Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Sally McNulty
- Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Alexander Lin
- Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Timothy C Zhu
- Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Jarod C Finlay
- Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Keith Cengel
- Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Virginia Livolsi
- Department of Pathology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, United States
| | - Michael Feldman
- Department of Pathology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, United States
| | - Rosemarie Mick
- Department of Biostatistics and Epidemiology, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA 19104, United States
| | - Theresa M Busch
- Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| |
Collapse
|
41
|
Photodynamic Therapy in Non-Gastrointestinal Thoracic Malignancies. Int J Mol Sci 2016; 17:ijms17010135. [PMID: 26805818 PMCID: PMC4730374 DOI: 10.3390/ijms17010135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 11/26/2022] Open
Abstract
Photodynamic therapy has a role in the management of early and late thoracic malignancies. It can be used to facilitate minimally-invasive treatment of early endobronchial tumours and also to palliate obstructive and bleeding effects of advanced endobronchial tumours. Photodynamic therapy has been used as a means of downsizing tumours to allow for resection, as well as reducing the extent of resection necessary. It has also been used successfully for minimally-invasive management of local recurrences, which is especially valuable for patients who are not eligible for radiation therapy. Photodynamic therapy has also shown promising results in mesothelioma and pleural-based metastatic disease. As new generation photosensitizers are being developed and tested and methodological issues continue to be addressed, the role of photodynamic therapy in thoracic malignancies continues to evolve.
Collapse
|
42
|
Dhillon SS, Demmy TL, Yendamuri S, Loewen G, Nwogu C, Cooper M, Henderson BW. A Phase I Study of Light Dose for Photodynamic Therapy Using 2-[1-Hexyloxyethyl]-2 Devinyl Pyropheophorbide-a for the Treatment of Non-Small Cell Carcinoma In Situ or Non-Small Cell Microinvasive Bronchogenic Carcinoma: A Dose Ranging Study. J Thorac Oncol 2015; 11:234-41. [PMID: 26718878 DOI: 10.1016/j.jtho.2015.10.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/21/2015] [Accepted: 10/26/2015] [Indexed: 01/16/2023]
Abstract
INTRODUCTION We report a phase I trial of photodynamic therapy (PDT) of carcinoma in situ (CIS) and microinvasive cancer (MIC) of the central airways with the photosensitizer (PS) 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH). HPPH has the advantage of minimal general phototoxicity over the commonly used photosensitizer porfimer sodium (Photofrin; Pinnacle Biologics, Chicago, IL). METHODS The objectives of this study were (1) to determine the maximally tolerated light dose at a fixed photosensitizer dose and (2) to gain initial insight into the effectiveness of this treatment approach. Seventeen patients with 21 CIS/MIC lesions were treated with HPPH with light dose escalation starting from 75 J/cm2 and increasing to 85, 95,125, and 150 J/cm2 respectively. Follow-up bronchoscopy for response assessment was performed at 1 and 6 months, respectively. RESULTS The rate of pathological complete response (CR) was 82.4% (14 of 17 evaluable lesions; 14 patients) at 1 month and 72.7% (8/11 evaluable lesions; 8 patients) at 6 months. Only four patients developed mild skin erythema. One of the three patients in the 150 J/cm2 light dose group experienced a serious adverse event. This patient had respiratory distress caused by mucus plugging, which precipitated cardiac ischemia. Two additional patients treated subsequently at this light dose had no adverse events. The sixth patient in this dose group was not recruited and the study was terminated because of delays in HPPH supply. However, given the observed serious adverse event, it is recommended that the light dose does not exceed 125 J/cm2. CONCLUSIONS PDT with HPPH can be safely used for the treatment of CIS/MIC of the airways, with potential effectiveness comparable to that reported for porfimer sodium in earlier studies.
Collapse
Affiliation(s)
- Samjot Singh Dhillon
- Department of Medicine-Pulmonary Medicine/Thoracic Oncology, Roswell Park Cancer Institute, Buffalo, NY.
| | - Todd L Demmy
- Sections of Thoracic Oncology and Thoracic Surgery, Department of Surgery, Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Cancer Institute, Buffalo, NY
| | | | - Chukwumere Nwogu
- Department of Thoracic Surgery, Roswell Park Cancer Institute, Buffalo, NY
| | - Michele Cooper
- Department of Photodynamic Therapy, Roswell Park Cancer Institute, Buffalo, NY
| | - Barbara W Henderson
- Department of Photodynamic Therapy, Roswell Park Cancer Institute, Buffalo, NY
| |
Collapse
|
43
|
Sroufe R, Kong FM(S. Triaging early-stage lung cancer patients into non-surgical pathways: who, when, and what? Transl Lung Cancer Res 2015; 4:438-47. [PMID: 26380185 PMCID: PMC4549472 DOI: 10.3978/j.issn.2218-6751.2015.07.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 07/25/2015] [Indexed: 12/25/2022]
Abstract
More lung cancer patients are being diagnosed at an earlier stage due to improved diagnostic imaging techniques, a trend that is expected to accelerate with the dissemination of lung cancer screening. Surgical resection has always been considered the standard treatment for patients with early-stage non-small cell lung cancer (NSCLC). However, non-surgical treatment options for patients with early-stage NSCLC have evolved significantly over the past decade with many new and exciting alternative treatments now available. These alternative treatments include radiofrequency ablation (RFA), microwave ablation (MWA), percutaneous cryoablation therapy (PCT), photodynamic therapy (PDT) and external beam radiation therapy (EBRT), including stereotactic body radiation therapy (SBRT) and accelerated hypofractionated radiation therapy. We describe the established alternatives to surgical resection, their advantages and disadvantages, potential complications and efficacy. We then describe the optimal treatment approach for patients with early-stage NSCLC based on tumor operability, size and location. Finally, we discuss future directions and whether any alternative therapies will challenge surgical resection as the treatment of choice for patients with operable early-stage lung cancer.
Collapse
|
44
|
Jones GC, Kehrer JD, Kahn J, Koneru BN, Narayan R, Thomas TO, Camphausen K, Mehta MP, Kaushal A. Primary Treatment Options for High-Risk/Medically Inoperable Early Stage NSCLC Patients. Clin Lung Cancer 2015; 16:413-30. [PMID: 26027433 DOI: 10.1016/j.cllc.2015.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 04/08/2015] [Accepted: 04/14/2015] [Indexed: 12/25/2022]
Abstract
Lung cancer is among the most common cancers worldwide and is the leading cause of cancer death in both men and women. For patients with early stage (American Joint Committee on Cancer T1-2, N0) non-small-cell lung cancer, the current standard of care is lobectomy with systematic lymph node evaluation. Unfortunately, patients with lung cancer often have medical comorbities, which may preclude the option of surgical resection. In such cases, a number of minimally invasive to noninvasive treatment options have gained popularity in the treatment of these high-risk patients. These modalities provide significant advantages, including patient convenience, treatment in an outpatient setting, and acceptable toxicities, including reduced impact on lung function and a modest risk of postprocedure chest wall pain. We provide a comprehensive review of the literature, including reported outcomes, complications, and limitations of sublobar resection with or without intraoperative brachytherapy, radiofrequency ablation, microwave ablation, percutaneous cryoablation, photodynamic therapy, and stereotactic body radiotherapy.
Collapse
|
45
|
Idris NM, Jayakumar MKG, Bansal A, Zhang Y. Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem Soc Rev 2015; 44:1449-1478. [DOI: 10.1039/c4cs00158c] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Upconversion nanoparticles enable use of near infrared light for spatially and temporally controlled activation of therapeutic compounds in deeper tissues.
Collapse
Affiliation(s)
- Niagara Muhammad Idris
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore
| | | | - Akshaya Bansal
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore
- NUS Graduate School for Integrative Sciences & Engineering
| | - Yong Zhang
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore
- NUS Graduate School for Integrative Sciences & Engineering
| |
Collapse
|
46
|
Abstract
Photodynamic therapy (PDT) is a form of non-ionizing radiation therapy that uses a drug, called a photosensitizer, combined with light to produce singlet oxygen ((1)O2) that can exert anti-cancer activity through apoptotic, necrotic, or autophagic tumor cell death. PDT is increasingly being used to treat thoracic malignancies. For early-stage non-small cell lung cancer (NSCLC), PDT is primarily employed as an endobronchial therapy to definitively treat endobronchial or roentgenographically occult tumors. Similarly, patients with multiple primary lung cancers may be definitively treated with PDT. For advanced or metastatic NSCLC and small cell lung cancer (SCLC), PDT is primarily employed to palliate symptoms from obstructing endobronchial lesions causing airway compromise or hemoptysis. PDT can be used in advanced NSCLC to attempt to increase operability or to reduce the extent of operation intervention required, and selectively to treat pleural dissemination intraoperatively following macroscopically complete surgical resection. Intraoperative PDT can be safely combined with macroscopically complete surgical resection and other treatment modalities for malignant pleural mesothelioma (MPM) to improve local control and prolong survival. This report reviews the mechanism of and rationale for using PDT to treat thoracic malignancies, details prospective and major retrospectives studies of PDT to treat NSCLC, SCLC, and MPM, and describes improvements in and future roles and directions of PDT.
Collapse
Affiliation(s)
- Charles B Simone
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA..
| | - Keith A Cengel
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
47
|
Khan A, Pipkin M, Mozayyan S, Hwang D, Yasufuku K. Severe acute airway obstruction and respiratory failure with fibrous plug following photodynamic therapy (PDT). Photodiagnosis Photodyn Ther 2014; 11:254-8. [DOI: 10.1016/j.pdpdt.2014.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 02/01/2014] [Accepted: 02/08/2014] [Indexed: 11/29/2022]
|
48
|
Guardado-Alvarez TM, Devi LS, Vabre JM, Pecorelli T, Schwartz BJ, Durand JO, Mongin O, Blanchard-Desce M, Zink JI. Photo-redox activated drug delivery systems operating under two photon excitation in the near-IR. NANOSCALE 2014; 6:4652-8. [PMID: 24647752 PMCID: PMC4305343 DOI: 10.1039/c3nr06155h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We report the design and synthesis of a nano-container consisting of mesoporous silica nanoparticles with the pore openings covered by "snap-top" caps that are opened by near-IR light. A photo transducer molecule that is a reducing agent in an excited electronic state is covalently attached to the system. Near IR two-photon excitation causes inter-molecular electron transfer that reduces a disulfide bond holding the cap in place, thus allowing the cargo molecules to escape. We describe the operation of the "snap-top" release mechanism by both one- and two-photon activation. This system presents a proof of concept of a near-IR photoredox-induced nanoparticle delivery system that may lead to a new type of photodynamic drug release therapy.
Collapse
Affiliation(s)
- Tania M. Guardado-Alvarez
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, California 90095-1569
| | - Lekshmi Sudha Devi
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, California 90095-1569
| | - Jean-Marie Vabre
- Chimie et Photonique Moléculaires, CNRS UMR 6510, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France)
| | - Travis Pecorelli
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, California 90095-1569
| | - Benjamin J. Schwartz
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, California 90095-1569
| | - Jean-Olivier Durand
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM2-ENSCM-UM1, CC1701 Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Olivier Mongin
- Chimie et Photonique Moléculaires, CNRS UMR 6510, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France)
- Institut des Sciences Chimiques de Rennes, CNRS UMR 6226, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Mireille Blanchard-Desce
- Chimie et Photonique Moléculaires, CNRS UMR 6510, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France)
- Univ. Bordeaux, Institut des Sciences Moléculaires, CNRS UMR 5255, 351 Cours de la Libération, F-33405 Talence Cedex, France
| | - Jeffrey I. Zink
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, California 90095-1569
| |
Collapse
|
49
|
Lazarus DR, Eapen GA. Bronchoscopic Interventions for Lung Cancer. Lung Cancer 2014. [DOI: 10.1002/9781118468791.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
|