1
|
Gao H, Ma Z, Zhu Z, Yang Z, Chen B, Wu X, Jakobsson V, Deng Y, Wang H, Zhang W, Zhang J. Comparative study of [ 18F]AlF-NOTA-FAPI-RGD and [ 18F]FDG/[ 18F]AlF-NOTA-FAPI-04 PET/CT in renal cell carcinoma. Theranostics 2025; 15:5790-5800. [PMID: 40365277 PMCID: PMC12068302 DOI: 10.7150/thno.113070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 04/05/2025] [Indexed: 05/15/2025] Open
Abstract
Renal cell carcinoma (RCC) is a significant global health concern, and the early diagnosis and accurate staging of clear cell renal cell carcinoma (ccRCC) remain major challenges. [18F]FDG PET/CT is not ideal for diagnosing ccRCC due to the low glucose metabolism potential of cancer cells. Both fibroblast activation protein (FAP) and the angiogenic integrin αvβ3 receptor are closely linked to the pathogenesis and progression of ccRCC. The aim of this study is to evaluate a novel radiopharmaceutical [18F]AlF-NOTA-FAPI-RGD (denoted as [18F]AlF-LNC1007), a dual-targeting heterodimer tracer targeting both FAP and integrin αvβ3, and to compare the diagnostic value of [18F]AlF-LNC1007 with [18F]FDG and [18F]AlF-NOTA-FAPI-04 PET/CT in RCC. Materials and Methods: A total of 35 participants, highly suspected to have RCC, were recruited. [18F]AlF-LNC1007 and [18F]AlF-NOTA-FAPI-04/[18F]FDG scans were performed at least one day apart, and both were completed within one week. The Wilcoxon signed-rank test or paired t-test was used to assess differences in tumor uptake and TBR (tumor-to-background ratio) between [18F]AlF-LNC1007 and the other two imaging agents. The Spearman correlation coefficient was used to evaluate the correlation between tumor uptake and the expression of FAP and αvβ3. Results: The detection rate, sensitivity, and positive predictive value (PPV) of [18F]AlF-LNC1007 for RCC primary lesions were significantly higher than those of [18F]FDG, at 91% vs. 76%, 100% vs. 85%, and 91% vs. 87%, respectively. Obvious advantages were also seen in metastatic lesions at 94% vs. 34%, 94% vs. 29%, and 100% vs. 100%. Compared to [18F]AlF-NOTA-FAPI-04, the corresponding detection rate, sensitivity, and PPV were 98% vs. 90%, 100% vs. 92%, and 98% vs. 98% for primary lesions, and 89% vs. 78%, 89% vs. 93%, and 100% vs. 82% for metastatic lesions. The uptake and TBR of [18F]AlF-LNC1007 in both primary and metastatic lesions were significantly higher than those of [18F]FDG (all P < 0.001). The uptake of [18F]AlF-LNC1007 showed a moderate to high positive correlation with the expression levels of αvβ3 and the combined expression of FAP and αvβ3 (r = 0.756, P = 0.0003; r = 0.678, P = 0.0002) and a low positive correlation with FAP expression alone (r = 0.389, P = 0.014). The uptake of [18F]AlF-NOTA-FAPI-04 showed a low to moderate positive correlation with FAP expression and the combined expression of FAP and αvβ3 (r = 0.570, P = 0.0002; r = 0.408, P = 0.010), and no correlation with αvβ3 expression alone (r = 0.262, P = 0.107). Conclusion: [18F]AlF-LNC1007 demonstrated significantly higher diagnostic efficacies and uptake in primary and metastatic renal cell carcinoma (RCC) compared to FDG PET/CT. Additionally, [18F]AlF-LNC1007 exhibited higher diagnostic efficacies and uptake in primary RCC than [18F]AlF-NOTA-FAPI-04 PET/CT. While these findings suggest potential diagnostic advantages, further studies are needed to fully evaluate its diagnostic efficacy compared to the standard of treatment.
Collapse
Affiliation(s)
- Haiyan Gao
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zhiwei Ma
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Ziyang Zhu
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zhichuan Yang
- Department of Emergency Surgery, The Affiliated Chengdu 363 Hospital of Southwest Medical University, Chengdu 610041, China
| | - Bo Chen
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xiaoming Wu
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China
| | - Vivianne Jakobsson
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yujiao Deng
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hao Wang
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Wei Zhang
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
2
|
Lan X, Li W, Zhao K, Wang J, Li S, Zhao H. Revisiting the role of cancer-associated fibroblasts in tumor microenvironment. Front Immunol 2025; 16:1582532. [PMID: 40313969 PMCID: PMC12043473 DOI: 10.3389/fimmu.2025.1582532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are integral components of the tumor microenvironment playing key roles in tumor progression, metastasis, and therapeutic resistance. However, challenges persist in understanding their heterogeneity, origin, and functional diversity. One major obstacle is the lack of standardized naming conventions for CAF subpopulations, with current systems failing to capture their full complexity. Additionally, the identification of CAFs is hindered by the absence of specific biomarkers, limiting the precision of diagnostic and therapeutic strategies. In vitro culture conditions often fail to maintain the in vivo characteristics of CAFs, which complicates their study and the translation of findings to clinical practice. Although current detection methods, such as antibodies, mRNA probes, and single-cell transcriptomics, offer insights into CAF biology, they lack standardization and fail to provide reliable quantitative measures. Furthermore, the dynamic interactions between CAFs, tumor cells, and immune cells within the TME remain insufficiently understood, and the role of CAFs in immune evasion and therapy resistance is an area of ongoing research. Understanding how CAFs influence drug resistance and the immune response is essential for developing more effective cancer therapies. This review aims to provide an in-depth analysis of the challenges in CAF research, propose future research directions, and emphasize the need for improved CAF-targeted therapeutic strategies. By addressing these gaps, it seeks to highlight the potential of CAFs as targets for overcoming therapeutic resistance and enhancing the efficacy of cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | | | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Fu H, Huang J, Zhao L, Chen Y, Xu W, Cai J, Yu L, Pang Y, Guo W, Su B, Sun L, Wu H, Zhang J, Chen X, Chen H. 177Lu-LNC1004 Radioligand Therapy in Patients with End-stage Metastatic Cancers: A Single-Center, Single-Arm, Phase II Study. Clin Cancer Res 2025; 31:1415-1426. [PMID: 40084923 PMCID: PMC11995002 DOI: 10.1158/1078-0432.ccr-24-3918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/28/2024] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
PURPOSE Fibroblast activation protein (FAP) is highly expressed in cancer-associated fibroblasts and certain tumor cells, making it a promising therapeutic target for various malignancies. This study evaluated the efficacy and safety of 177Lu-Evans blue-FAP inhibitor (177Lu-LNC1004) radioligand therapy (RLT) for treating end-stage metastatic tumors. PATIENTS AND METHODS This single-arm, single-center, phase II trial included 28 patients with progressive metastatic malignancies (11 types) and high FAP expression (defined as a maximum standardized uptake value ≥10 in >50% of tumors) who had exhausted all approved therapies, screened between June 2022 and April 2024. Patients were scheduled to receive four 177Lu-LNC1004 RLT cycles at 3.33 GBq/cycle every 6 weeks. The primary endpoint was post-RLT radiologic response. The secondary endpoints were progression-free survival (PFS), overall survival (OS), dosimetry, and safety. RESULTS Eastern Cooperative Oncology Group scores >2 were observed in 68% of patients. Overall, 63 177Lu-LNC1004 RLT cycles were performed, with 19 (68%) patients undergoing ≥2 cycles. Disease control was achieved in 13 (13/28, 46%) patients, with 4 and 9 patients demonstrating partial response and stable disease, respectively, and associated with improved PFS and OS (P < 0.001). The mean absorbed dose in tumors was 4.69 ± 3.83 Gy/GBq (1.18-25.03 Gy/GBq). Treatment-related grade 3/4 hematotoxicity was observed in six (21%) patients, with thrombocytopenia, leukopenia, and neutropenia most prevalent. No grade 3/4 hepatotoxicity or nephrotoxicity was observed. CONCLUSIONS FAP-directed RLT using 177Lu-LNC1004 at 3.33 GBq/cycle was well tolerated with an acceptable toxicity profile. Nearly half of patients achieved disease control, which was associated with prolonged PFS and OS.
Collapse
Affiliation(s)
- Hao Fu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jingxiong Huang
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Liang Zhao
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhang Chen
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Weizhi Xu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiayu Cai
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lingyu Yu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yizhen Pang
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Guo
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bishan Su
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Long Sun
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hua Wu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jingjing Zhang
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaoyuan Chen
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Haojun Chen
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Ruan Q, Diao L, Li Z, Ding D, Han P, Jiang Y, Yin G, Feng J, Wang Q, Jiang J, Zhang J. Design and preclinical evaluation of 99mTc-Labeled dimer FAPI-46 derivatives as potential tumor radiotracers. Eur J Med Chem 2025; 287:117343. [PMID: 39908795 DOI: 10.1016/j.ejmech.2025.117343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Fibroblast activation protein (FAP) is a crucial target for tumor diagnosis and treatment. FAP inhibitors (FAPIs) can selectively bind to FAP, and ligands with multiple targeting groups are anticipated to improve tumor-specific uptake. A dimeric FAPI ligand (L2) with high affinity for FAP was selected. Four hydrophilic 99mTc-labeled complexes ([99mTc]Tc-L2-TPPTS, [99mTc]Tc-L2-TPPMS, [99mTc]Tc-L2-PDA, and [99mTc]Tc-L2-NIC) were successfully prepared and exhibited good stability in vitro. Among them, [99mTc]Tc-L2-TPPTS and [99mTc]Tc-L2-PDA showed superior cellular uptake and specific binding to FAP. They displayed minimal nontarget uptake in normal mice and exhibited significant tumor uptake (22.01 ± 1.38 % ID/g and 26.58 ± 2.17 % ID/g at 1 h post-injection) with high specificity for FAP in U87MG tumor-bearing mice. SPECT/CT imaging experiments revealed specific accumulation of both complexes at the U87MG, PANC-1, and HT-1080-FAP tumor sites, suggesting their excellent specificity for FAP. In particular, [99mTc]Tc-L2-TPPTS has lower nontarget uptake in various tumor models and accelerated blood clearance. Additionally, an L2-TPPTS kit was successfully prepared providing convenient conditions for subsequent clinical transformation research.
Collapse
Affiliation(s)
- Qing Ruan
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China; Key Laboratory of Beam Technology of the Ministry of Education, School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, PR China
| | - Lina Diao
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Zuojie Li
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Dajie Ding
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Peiwen Han
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Guangxing Yin
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Junhong Feng
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Qianna Wang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Jianyong Jiang
- Key Laboratory of Beam Technology of the Ministry of Education, School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, PR China.
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
5
|
Hu M, Zhang C, Fan D, Yang R, Bai Y, Shi H. Advances in Preclinical Research of Theranostic Radiopharmaceuticals in Nuclear Medicine. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4337-4353. [PMID: 39800975 DOI: 10.1021/acsami.4c20602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Theranostics of nuclear medicine refers to the combination of radionuclide imaging and internal irradiation therapy, which is currently a research hotspot and an important direction for the future development of nuclear medicine. Radiopharmaceutical is a vital component of nuclear medicine and serves as one of the fundamental pillars of molecular imaging and precision medicine. At present, a variety of radiopharmaceuticals have been developed for various targets such as fibroblast activation protein (FAP), prostate-specific membrane antigen (PSMA), somatostatin receptor 2 (SSTR2), C-X-C motif chemokine receptor 4 (CXCR4), human epidermal growth factor-2 (HER2), and integrin αvβ3, and some of them have been successfully applied in clinical practice. The radiopharmaceutical with theranostic function plays an important role in the diagnosis, treatment, efficacy evaluation, and prognosis prediction of cancers and is the key to realize the personalized treatment of tumors. This Review summarizes the preclinical research progress of theranostic radiopharmaceuticals toward the above targets in the field of nuclear medicine and discusses the prospects and development directions of radiopharmaceuticals in the future.
Collapse
Affiliation(s)
- Mei Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Chenshuo Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Dandan Fan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Ru Yang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Yongxiang Bai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
6
|
Tian H, Wang W, Liang S, Ding J, Hua D. From darkness to light: Targeting CAFs as a new potential strategy for cancer treatment. Int Immunopharmacol 2024; 143:113482. [PMID: 39476569 DOI: 10.1016/j.intimp.2024.113482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
Cancer-associated fibroblasts (CAFs), which are the most frequent stromal cells in the tumor microenvironment (TME), play a key role in the metastasis of tumor cells. Generally speaking, CAFs in cooperation with tumor cells can secrete various cytokines, proteins, growth factors, and metabolites to promote angiogenesis, mediate immune escape of tumor cells, enhance endothelial-to-mesenchymal transition, stimulate extracellular matrix remodeling, and preserve tumor cell stemness. These activities of CAFs provide a favorable exogenous pathway for tumor progression and metastasis, and a microenvironment that allows rapid growth of tumor cells, which always lead to poor prognosis for patients. More importantly, it seems that targeting CAFs is also a potential precision therapeutic strategy in clinical practice. Hence, this review outlines the origin of CAFs, the relationship between CAFs and cancer metastasis, and targeting CAFs as a potential strategy for cancer patients, which could give some inspirations for cancer treatment in clinic.
Collapse
Affiliation(s)
- Haixia Tian
- Department of Oncology, The Affliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Weijing Wang
- Department of Oncology, The Affliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Shuai Liang
- Department of Oncology, The Affliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Junli Ding
- Department of Oncology, The Affliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| | - Dong Hua
- Department of Oncology, The Affliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
7
|
Thapa P, Debnath S, Bedi A, Parashar M, Gonzalez P, Reus J, Hammers H, Sun X. Monovalent and Divalent Designs of Copper Radiotheranostics Targeting Fibroblast Activation Protein in Cancer. Cancers (Basel) 2024; 16:4180. [PMID: 39766079 PMCID: PMC11675001 DOI: 10.3390/cancers16244180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Fibroblast activation protein (FAP)-targeted theranostic radiopharmaceuticals have shown desired tumor-to-background organ selectivity due to the ubiquitous presence of FAP within the tumor microenvironment. However, suboptimal tumor retention and fast clearance have hindered their use to deliver effective cancer therapies. With well-documented FAP-targeting moieties and linkers appending them to optimal chelators, the development of copper radiopharmaceuticals has attracted considerable interest, given the fact that an ideal theranostic pair of copper radionuclides (64Cu: t1/2 = 12.7 h; 17.4% β+; Eβ+max = 653 keV and 67Cu: t1/2 = 2.58 d; 100% β-; Eβ-max = 562 keV) are available. Herein, we report our design, synthesis, and comparative evaluation of monovalent and divalent FAP-targeted theranostic conjugates constructed from our previously reported bifunctional chelator scaffold (BFS) based on 1,4,8,11-tetraaza-bicyclo [6.6.2]hexadecane-4,11-diacetic acid (CB-TE2A), which forms the most stable complex with Cu(II). Methods: After synthesis and characterization, the monovalent and divalent conjugates were radiolabeled with 64Cu for in vitro cell assays, followed by in vivo positron emission tomography (PET) imaging evaluation in relevant mouse models. Results: Both 64Cu-labeled conjugates showed high in vitro stability and anticipated FAP-mediated cell binding and internalization. The divalent one showed significantly higher FAP-specific tumor uptake than its monovalent counterpart. Conclusions: Our results demonstrate that the BFS-based multivalent approach can be practically used to generate FAP-targeted radiotheranostic agents for effective cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Pawan Thapa
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (P.T.); (S.D.); (A.B.); (P.G.)
| | - Sashi Debnath
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (P.T.); (S.D.); (A.B.); (P.G.)
| | - Anjan Bedi
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (P.T.); (S.D.); (A.B.); (P.G.)
| | - Madhuri Parashar
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (M.P.); (J.R.); (H.H.)
| | - Paulina Gonzalez
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (P.T.); (S.D.); (A.B.); (P.G.)
| | - Joshua Reus
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (M.P.); (J.R.); (H.H.)
| | - Hans Hammers
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (M.P.); (J.R.); (H.H.)
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (P.T.); (S.D.); (A.B.); (P.G.)
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Yu Z, Jiang Z, Cheng X, Yuan L, Chen H, Ai L, Wu Z. Development of fibroblast activation protein-α radiopharmaceuticals: Recent advances and perspectives. Eur J Med Chem 2024; 277:116787. [PMID: 39197253 DOI: 10.1016/j.ejmech.2024.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Fibroblast activation protein-α (FAP) has emerged as a promising target in the field of radiopharmaceuticals due to its selective expression in cancer-associated fibroblasts (CAFs) and other pathological conditions involving fibrosis and inflammation. Recent advancements have focused on developing FAP-specific radioligands for diagnostic imaging and targeted radionuclide therapy. This perspective summarized the latest progress in FAP radiopharmaceutical development, highlighting novel radioligands, preclinical evaluations, and potential clinical applications. Additionally, we analyzed the advantages and existing problems of targeted FAP radiopharmaceuticals, and discussed the key breakthrough directions of this target, so as to improve the development and conversion of FAP-targeted radiopharmaceuticals.
Collapse
Affiliation(s)
- Ziyue Yu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Zeng Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Leilei Yuan
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Zehui Wu
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
9
|
Haberkorn U, Altmann A, Giesel FL, Kratochwil C. 1,090 Publications and 5 Years Later: Is FAP-Targeted Theranostics Really Happening? J Nucl Med 2024; 65:1518-1520. [PMID: 39168520 DOI: 10.2967/jnumed.124.267923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Affiliation(s)
- Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany;
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Annette Altmann
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Frederik L Giesel
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Duesseldorf, Germany; and
- Institute for Radiation Sciences, Osaka University, Toyonaka, Japan
| | - Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Taylor CA, Glover M, Maher J. CAR-T cell technologies that interact with the tumour microenvironment in solid tumours. Expert Rev Clin Immunol 2024; 20:849-871. [PMID: 39021098 DOI: 10.1080/1744666x.2024.2380894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
INTRODUCTION Chimeric antigen receptor (CAR) T-cells have emerged as a ground-breaking therapy for the treatment of hematological malignancies due to their capacity for rapid tumor-specific killing and long-lasting tumor immunity. However, the same success has not been observed in patients with solid tumors. Largely, this is due to the additional challenges imposed by safe and uniform target selection, inefficient CAR T-cell access to sites of disease and the presence of a hostile immunosuppressive tumor microenvironment. AREAS COVERED Literature was reviewed on the PubMed database from the first description of a CAR by Kuwana, Kurosawa and colleagues in December 1987 through to the present day. This literature indicates that in order to tackle solid tumors, CAR T-cells can be further engineered with additional armoring strategies that facilitate trafficking to and infiltration of malignant lesions together with reversal of suppressive immune checkpoints that operate within solid tumor lesions. EXPERT OPINION In this review, we describe a number of recent advances in CAR T-cell technology that set out to combat the problems imposed by solid tumors including tumor recruitment, infiltration, immunosuppression, metabolic compromise, and hypoxia.
Collapse
Affiliation(s)
| | | | - John Maher
- Leucid Bio Ltd, Guy's Hospital, London, UK
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK
- Department of Immunology, Eastbourne Hospital, Eastbourne, East Sussex, UK
| |
Collapse
|
11
|
Chen Y, Liang Z, Lai M. Targeting the devil: Strategies against cancer-associated fibroblasts in colorectal cancer. Transl Res 2024; 270:81-93. [PMID: 38614213 DOI: 10.1016/j.trsl.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Cancer-associated fibroblasts (CAFs), as significant constituents of the tumor microenvironment (TME), play a pivotal role in the progression of cancers, including colorectal cancer (CRC). In this comprehensive review, we presented the origins and activation mechanisms of CAFs in CRC, elaborating on how CAFs drive tumor progression through their interactions with CRC cells, immune cells, vascular endothelial cells, and the extracellular matrix within the TME. We systematically outline the intricate web of interactions among CAFs, tumor cells, and other TME components, and based on this complex interplay, we summarize various therapeutic strategies designed to target CAFs in CRC. It is also essential to recognize that CAFs represent a highly heterogeneous group, encompassing various subtypes such as myofibroblastic CAF (myCAF), inflammatory CAF (iCAF), antigen-presenting CAF (apCAF), vessel-associated CAF (vCAF). Herein, we provide a summary of studies investigating the heterogeneity of CAFs in CRC and the characteristic expression patterns of each subtype. While the majority of CAFs contribute to the exacerbation of CRC malignancy, recent findings have revealed specific subtypes that exert inhibitory effects on CRC progression. Nevertheless, the comprehensive landscape of CAF heterogeneity still awaits exploration. We also highlight pivotal unanswered questions that need to be addressed before CAFs can be recognized as feasible targets for cancer treatment. In conclusion, the aim of our review is to elucidate the significance and challenges of advancing in-depth research on CAFs, while outlining the pathway to uncover the complex roles of CAFs in CRC and underscore their significant potential as therapeutic targets.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Pathology, and Department of Pathology of Sir Run Run Shaw Hospital, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhiyong Liang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Maode Lai
- Department of Pathology, and Department of Pathology of Sir Run Run Shaw Hospital, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou, 310058, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
12
|
Lindeman SD, Booth OC, Tudi P, Schleinkofer TC, Moss JN, Kearney NB, Mukkamala R, Thompson LK, Modany MA, Srinivasarao M, Low PS. FAP Radioligand Linker Optimization Improves Tumor Dose and Tumor-to-Healthy Organ Ratios in 4T1 Syngeneic Model. J Med Chem 2024; 67:11827-11840. [PMID: 39013156 DOI: 10.1021/acs.jmedchem.4c00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Fibroblast activation protein (FAP) has attracted considerable attention as a possible target for the radiotherapy of solid tumors. Unfortunately, initial efforts to treat solid tumors with FAP-targeted radionuclides have yielded only modest clinical responses, suggesting that further improvements in the molecular design of FAP-targeted radiopharmaceutical therapies (RPT) are warranted. In this study, we report several advances on the previously described FAP6 radioligand that increase tumor retention and accelerate healthy tissue clearance. Seven FAP6 derivatives with different linkers or albumin binders were synthesized, radiolabeled, and investigated for their effects on binding and cellular uptake. The radioligands were then characterized in 4T1 tumor-bearing Balb/c mice using both single-photon emission computed tomography (SPECT) and ex vivo biodistribution analyses to identify the conjugate with the best tumor retention and tumor-to-healthy organ ratios. The results reveal an optimized FAP6 radioligand that exhibits efficacy and safety properties that potentially justify its translation into the clinic.
Collapse
Affiliation(s)
- Spencer D Lindeman
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- MorphImmune, Inc., 1281 Win Hentschel Blvd, West Lafayette, Indiana 47906, United States
| | - Owen C Booth
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pooja Tudi
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Taylor C Schleinkofer
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jackson N Moss
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicholas B Kearney
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ramesh Mukkamala
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lauren K Thompson
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mollie A Modany
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Madduri Srinivasarao
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Philip S Low
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- MorphImmune, Inc., 1281 Win Hentschel Blvd, West Lafayette, Indiana 47906, United States
| |
Collapse
|
13
|
Chen H, Fang S, Zhu X, Liu H. Cancer-associated fibroblasts and prostate cancer stem cells: crosstalk mechanisms and implications for disease progression. Front Cell Dev Biol 2024; 12:1412337. [PMID: 39092186 PMCID: PMC11291335 DOI: 10.3389/fcell.2024.1412337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
The functional heterogeneity and ecological niche of prostate cancer stem cells (PCSCs), which are major drivers of prostate cancer development and treatment resistance, have attracted considerable research attention. Cancer-associated fibroblasts (CAFs), which are crucial components of the tumor microenvironment (TME), substantially affect PCSC stemness. Additionally, CAFs promote PCSC growth and survival by releasing signaling molecules and modifying the surrounding environment. Conversely, PCSCs may affect the characteristics and behavior of CAFs by producing various molecules. This crosstalk mechanism is potentially crucial for prostate cancer progression and the development of treatment resistance. Using organoids to model the TME enables an in-depth study of CAF-PCSC interactions, providing a valuable preclinical tool to accurately evaluate potential target genes and design novel treatment strategies for prostate cancer. The objective of this review is to discuss the current research on the multilevel and multitarget regulatory mechanisms underlying CAF-PCSC interactions and crosstalk, aiming to inform therapeutic approaches that address challenges in prostate cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Hao Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Zhang J, Wu Y, Lu W, Xiao Y, Liu S, Yu J. Carborane-FAPI conjugate: A potential FAP-targeted boron agent with improved boron content. Appl Radiat Isot 2024; 209:111330. [PMID: 38657372 DOI: 10.1016/j.apradiso.2024.111330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/22/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Boron neutron capture therapy (BNCT) has received extensive attention as an advanced binary radiotherapy method. However, BNCT still faces poor selectivity of boron agent and is insufficient boron content in tumor tissues. To improve the tumor-targeted ability and boron content, this research aims to design, synthesize and preliminary evaluate a new borane agent Carborane-FAPI, which coupling the o-carborane to the compound skeleton of a mature fibroblast activating protein (FAP) inhibitor (FAPI). FAP is a tumor-associated antigen. FAP expressed lowly in normal organs and highly expressed in tumors, so it is a potential target for diagnosis and treatment. Boronophenylalanine (BPA) is the most widely investigated BNCT drug in present. Compared with BPA, the boron content of a single molecule is increased and drug targeting is enhanced. The results show that Carboaren-FAPI has low toxicity to normal cells, and selective enrichment in tumor tissues. It is a promising boron drug that has the potential to be used in BNCT.
Collapse
Affiliation(s)
- Juan Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Yanyan Wu
- Department of Radiology, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, PR China
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Yi Xiao
- Department of Radiology, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, PR China
| | - Shiyuan Liu
- Department of Radiology, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, PR China.
| | - Jiahui Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China.
| |
Collapse
|
15
|
Baum RP, Novruzov E, Zhao T, Greifenstein L, Jakobsson V, Perrone E, Mishra A, Eismant A, Ghai K, Klein O, Jaeschke B, Benz-Zils D, Cardinale J, Mori Y, Giesel FL, Zhang J. Radiomolecular Theranostics With Fibroblast-Activation-Protein Inhibitors and Peptides. Semin Nucl Med 2024; 54:537-556. [PMID: 39019653 DOI: 10.1053/j.semnuclmed.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 07/19/2024]
Abstract
The advancement of theranostics, which combines therapeutic and diagnostic capabilities in oncology, has significantly impacted cancer management. This review explores fibroblast activation protein (FAP) expression in the tumor microenvironment (TME) and its association with various malignancies, highlighting its potential as a theranostic marker for PET/CT imaging using FAP-targeted tracers and for FAP-targeted radiopharmaceutical therapy. We examine the development and clinical applications of FAP inhibitors (FAPIs) and peptides, providing insights into their diagnostic accuracy, initial therapeutic efficacy, and clinical impact across diverse cancer types, as well as the synthesis of novel FAP-targeted ligands. This review aims to showcase the promising outcomes and challenges in integrating FAP-targeted approaches into cancer management.
Collapse
Affiliation(s)
- Richard P Baum
- Curanosticum Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Department of Nuclear Medicine, DKD HELIOS Klinik, Wiesbaden, Germany.
| | - Emil Novruzov
- Department of Nuclear Medicine, Medical Faculty, Heinrich-Heine-University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Tianzhi Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lukas Greifenstein
- Curanosticum Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Department of Nuclear Medicine, DKD HELIOS Klinik, Wiesbaden, Germany
| | - Vivianne Jakobsson
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elisabetta Perrone
- Institute of Nuclear Medicine, Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Aditi Mishra
- Curanosticum Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Department of Nuclear Medicine, DKD HELIOS Klinik, Wiesbaden, Germany
| | - Aleksandr Eismant
- Curanosticum Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Department of Nuclear Medicine, DKD HELIOS Klinik, Wiesbaden, Germany
| | - Kriti Ghai
- Curanosticum Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Department of Nuclear Medicine, DKD HELIOS Klinik, Wiesbaden, Germany
| | - Ortwin Klein
- Department of Oncology (MVZ), Helios DKD Klinik, Wiesbaden, Germany
| | - Bastian Jaeschke
- Department of Oncology (MVZ), Helios DKD Klinik, Wiesbaden, Germany
| | - Daniel Benz-Zils
- Curanosticum Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Department of Nuclear Medicine, DKD HELIOS Klinik, Wiesbaden, Germany
| | - Jens Cardinale
- Department of Nuclear Medicine, Medical Faculty, Heinrich-Heine-University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Yuriko Mori
- Department of Nuclear Medicine, Medical Faculty, Heinrich-Heine-University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Frederik L Giesel
- Department of Nuclear Medicine, Medical Faculty, Heinrich-Heine-University, University Hospital Düsseldorf, Düsseldorf, Germany; Institute for Radiation Sciences, Osaka University, Osaka, Japan
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Sun X, Wu Y, Wang X, Gao X, Zhang S, Sun Z, Liu R, Hu K. Beyond Small Molecules: Antibodies and Peptides for Fibroblast Activation Protein Targeting Radiopharmaceuticals. Pharmaceutics 2024; 16:345. [PMID: 38543239 PMCID: PMC10974899 DOI: 10.3390/pharmaceutics16030345] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2025] Open
Abstract
Fibroblast activation protein (FAP) is a serine protease characterized by its high expression in cancer-associated fibroblasts (CAFs) and near absence in adult normal tissues and benign lesions. This unique expression pattern positions FAP as a prospective biomarker for targeted tumor radiodiagnosis and therapy. The advent of FAP-based radiotheranostics is anticipated to revolutionize cancer management. Among various types of FAP ligands, peptides and antibodies have shown advantages over small molecules, exemplifying prolonged tumor retention in human volunteers. Within its scope, this review summarizes the recent research progress of the FAP radiopharmaceuticals based on antibodies and peptides in tumor imaging and therapy. Additionally, it incorporates insights from recent studies, providing valuable perspectives on the clinical utility of FAP-targeted radiopharmaceuticals.
Collapse
Affiliation(s)
- Xiaona Sun
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China; (X.S.); (Y.W.); (Z.S.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| | - Yuxuan Wu
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China; (X.S.); (Y.W.); (Z.S.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| | - Zhicheng Sun
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China; (X.S.); (Y.W.); (Z.S.)
| | - Ruping Liu
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China; (X.S.); (Y.W.); (Z.S.)
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| |
Collapse
|
17
|
Ruan Q, Ding D, Diao L, Feng J, Yin G, Jiang Y, Wang Q, Han P, Jiang J, Zhang J. Synthesis and Preclinical Evaluation of Novel 99mTc-Labeled FAPI-46 Derivatives with Significant Tumor Uptake and Improved Tumor-to-Nontarget Ratios. J Med Chem 2024; 67:3190-3202. [PMID: 38320123 DOI: 10.1021/acs.jmedchem.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Fibroblast activation protein (FAP), which is expressed on the cell membranes of fibroblasts in most solid tumors, has become an important target for tumor diagnosis and treatment. However, previously reported 99mTc-labeled FAPI-04 complexes have high blood uptake, limiting their use in the clinic. In this work, six 99mTc-labeled FAPI-46 derivatives with different linkers (different amino acids, peptides, or polyethylene glycol) were prepared and evaluated. They had good in vitro stability, hydrophilicity, and good specificity for FAP. The biodistribution and MicroSPECT images revealed that they all had high specific tumor uptake for FAP, and their blood uptake was significantly decreased. Among them, [99mTc]Tc-6-1 exhibited the highest target-to-nontarget ratios (tumor/blood: 6.06 ± 1.19; tumor/muscle: 10.26 ± 0.44) and good tumor uptake (16.15 ± 0.83%ID/g), which also had significantly high affinity for FAP, good in vivo stability, and safety. Therefore, [99mTc]Tc-6-1 holds great potential as a promising molecular tracer for FAP tumor imaging.
Collapse
Affiliation(s)
- Qing Ruan
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Key Laboratory of Beam Technology of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P. R. China
| | - Dajie Ding
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Lina Diao
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Junhong Feng
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Guangxing Yin
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qianna Wang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Peiwen Han
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jianyong Jiang
- Key Laboratory of Beam Technology of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P. R. China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
18
|
Gehris J, Ervin C, Hawkins C, Womack S, Churillo AM, Doyle J, Sinusas AJ, Spinale FG. Fibroblast activation protein: Pivoting cancer/chemotherapeutic insight towards heart failure. Biochem Pharmacol 2024; 219:115914. [PMID: 37956895 PMCID: PMC10824141 DOI: 10.1016/j.bcp.2023.115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
An important mechanism for cancer progression is degradation of the extracellular matrix (ECM) which is accompanied by the emergence and proliferation of an activated fibroblast, termed the cancer associated fibroblast (CAF). More specifically, an enzyme pathway identified to be amplified with local cancer progression and proliferation of the CAF, is fibroblast activation protein (FAP). The development and progression of heart failure (HF) irrespective of the etiology is associated with left ventricular (LV) remodeling and changes in ECM structure and function. As with cancer, HF progression is associated with a change in LV myocardial fibroblast growth and function, and expresses a protein signature not dissimilar to the CAF. The overall goal of this review is to put forward the postulate that scientific discoveries regarding FAP in cancer as well as the development of specific chemotherapeutics could be pivoted to target the emergence of FAP in the activated fibroblast subtype and thus hold translationally relevant diagnostic and therapeutic targets in HF.
Collapse
Affiliation(s)
- John Gehris
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlie Ervin
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlotte Hawkins
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Sydney Womack
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Amelia M Churillo
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Jonathan Doyle
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Albert J Sinusas
- Yale University Cardiovascular Imaging Center, New Haven CT, United States
| | - Francis G Spinale
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States.
| |
Collapse
|
19
|
Xu J, Li S, Xu S, Dai J, Luo Z, Cui J, Cai F, Geng C, Wang Z, Tang X. Screening and Preclinical Evaluation of Novel Radiolabeled Anti-Fibroblast Activation Protein-α Recombinant Antibodies. Cancer Biother Radiopharm 2023; 38:726-737. [PMID: 35612467 DOI: 10.1089/cbr.2021.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Fibroblast activation protein-α (FAPα) is selectively overexpressed in tumor-associated fibroblasts in more than 90% of epithelial tumors, and may be a good target for anticancer treatment, for example, using an anti-FAPα recombinant antibody (rAb) labeled with radionuclides. In the present report, the radiolabeling and preclinical evaluation of novel anti-FAPα rAbs were investigated. Materials and Methods: Two novel anti-FAPα VHHs (AMS002-1 and AMS002-2) with high binding affinity to FAPα were selected from an antibody phage library. The anti-FAPα VHHs were then fused with the Fc fragment of human IgG4 to create two VHH-Fc rAbs. The VHH-Fc rAbs were radiolabeled with 89Zr and 177Lu. The radiolabeled products were evaluated by radioligand-binding assays using FAPα-expressing cells. The biodistribution and tumor-targeting properties were investigated by small-animal PET/CT. AMS002-1-Fc, which showed promising tumor-targeting properties in 89Zr-microPET imaging, was radiolabeled with 177Lu for efficacy study on HT1080 tumor-bearing mice and monitored with SPECT/CT imaging. Results: The two VHH-Fc rAbs with good affinity with KD values in low nanomolar range were identified. Both PET/CT imaging with 89Zr-AMS002-1-Fc rAb and SPECT/CT imaging with 177Lu-AMS002-1-Fc rAb demonstrated highest tumor uptakes at 72 h p.i. and long tumor retention in the preclinical models. Furthermore, ex vivo biodistribution analysis revealed high tumor uptake of 89Zr-AMS002-1-Fc at 48 h p.i. with the value of 6.91% ± 2.08% ID/g. Finally, radioimmunotherapy with 177Lu-AMS002-1-Fc rAb delayed the tumor growth without significant weight loss in mice with HT1080 xenografts. The tumor size of untreated control group was 2.59 times larger compared with the treatment group with 177Lu-AMS002-1-Fc at day 29. Conclusion: 89Zr/177Lu-AMS002-1-Fc represent a pair of promising radiopharmaceuticals for theranostics on FAPα-expressing tumors.
Collapse
Affiliation(s)
- Jianfeng Xu
- Department of Nuclear Sciences and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- JYAMS PET Research and Development Limited, Nanjing, People's Republic of China
| | - Shenghua Li
- College of Life Sciences & Health, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Beijing Novabody Biotechnological Ltd., Beijing, People's Republic of China
| | - Shasha Xu
- Beijing Novabody Biotechnological Ltd., Beijing, People's Republic of China
| | - Juan Dai
- JYAMS PET Research and Development Limited, Nanjing, People's Republic of China
| | - Zhigang Luo
- JYAMS PET Research and Development Limited, Nanjing, People's Republic of China
| | - Jingjing Cui
- JYAMS PET Research and Development Limited, Nanjing, People's Republic of China
| | - Fei Cai
- Department of Nuclear Sciences and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- JYAMS PET Research and Development Limited, Nanjing, People's Republic of China
| | - Changran Geng
- Department of Nuclear Sciences and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Zheng Wang
- JYAMS PET Research and Development Limited, Nanjing, People's Republic of China
| | - Xiaobin Tang
- Department of Nuclear Sciences and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| |
Collapse
|
20
|
Fu H, Huang J, Zhao T, Wang H, Chen Y, Xu W, Pang Y, Guo W, Sun L, Wu H, Xu P, Su B, Zhang J, Chen X, Chen H. Fibroblast Activation Protein-Targeted Radioligand Therapy with 177Lu-EB-FAPI for Metastatic Radioiodine-Refractory Thyroid Cancer: First-in-Human, Dose-Escalation Study. Clin Cancer Res 2023; 29:4740-4750. [PMID: 37801296 PMCID: PMC10690094 DOI: 10.1158/1078-0432.ccr-23-1983] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/20/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE Fibroblast activation protein (FAP) is a promising target for tumor treatment. In this study, we aimed to investigate the safety and efficacy of the albumin binder-conjugated FAP-targeted radiopharmaceutical, 177Lu-EB-FAPI (177Lu-LNC1004), in patients with metastatic radioiodine-refractory thyroid cancer (mRAIR-TC). PATIENTS AND METHODS This open-label, non-randomized, first-in-human, dose-escalation, investigator-initiated trial had a 3+3 design and involved a 6-week 177Lu-LNC1004 treatment cycle in patients with mRAIR-TC at 2.22 GBq initially, with subsequent cohorts receiving an incremental 50% dose increase until dose-limiting toxicity (DLT) was observed. RESULTS 177Lu-LNC1004 administration was well tolerated, with no life-threatening adverse events observed. No patients experienced DLT in Group A (2.22 GBq/cycle). One patient experienced grade 4 thrombocytopenia in Group B (3.33 GBq/cycle); hence, another three patients were enrolled, none of whom experienced DLT. Two patients experienced grade 3 and 4 hematotoxicity in Group C (4.99 GBq/cycle). The mean whole-body effective dose was 0.17 ± 0.04 mSv/MBq. Intense 177Lu-LNC1004 uptake and prolonged tumor retention resulted in high mean absorbed tumor doses (8.50 ± 12.36 Gy/GBq). The mean effective half-lives for the whole-body and tumor lesions were 90.20 ± 7.68 and 92.46 ± 9.66 hours, respectively. According to RECIST, partial response, stable disease, and progressive disease were observed in 3 (25%), 7 (58%), and 2 (17%) patients, respectively. The objective response and disease control rates were 25% and 83%, respectively. CONCLUSIONS FAP-targeted radioligand therapy with 177Lu-LNC1004 at 3.33 GBq/cycle was well tolerated in patients with advanced mRAIR-TC, with high radiation dose delivery to the tumor lesions, encouraging therapeutic efficacy, and acceptable side effects.
Collapse
Affiliation(s)
- Hao Fu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jingxiong Huang
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Tianzhi Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Department of Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hongjian Wang
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Yuhang Chen
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Weizhi Xu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yizhen Pang
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Guo
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Long Sun
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hua Wu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Pengfei Xu
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Department of Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bishan Su
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Department of Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Department of Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Haojun Chen
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
21
|
Wu X, Lu W, Zhang W, Zhang D, Mei H, Zhang M, Cui Y, Zhuo Z. Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels the heterogeneity of cancer-associated fibroblasts in TNBC. Aging (Albany NY) 2023; 15:12674-12697. [PMID: 37963845 PMCID: PMC10683606 DOI: 10.18632/aging.205205] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND The treatment of triple-negative breast cancer (TNBC) is one of the main focuses and key difficulties because of its heterogeneity, and the source of this heterogeneity is unclear. METHODS Single-cell RNA (scRNA) and transcriptomics data of TNBC and normal breast samples were retrieved from Gene Expression Omnibus (GEO) database and TCGA-BRCA database. These cells were clustered using the t-SNE and UMAP method, and the marker genes for each cluster were found. We annotated the clusters using the published literature, CellMarker database and "SingleR" R package. RESULTS A total of 1535 cells and 21785 genes from 6 TNBC patients and 2068 cells and 15868 genes from 3 normal breast tissues were used for downstream analyses. The scRNA data were divided into 14 clusters labeled into 8 cell types, including epithelial cells, immunocytes, CAFs/fibroblasts and etc. In the TNBC samples, CAFs were divided into three clusters and labelled as prCAFs, myCAFs and emCAFs, and the marker genes were DCN, FAP and RGS5, respectively. The prCAF subgroup is functionally characterized by promoting proliferation and multi drug resistance; myCAF subgroup is involved in constituting the extracellular matrix and collagen production, matrix composition and collagen production, and the emCAF functionally characterized by energy metabolism. CONCLUSIONS TNBC has inter- and intra-tumor heterogeneity, and CAF is one of the sources of this heterogeneity. CD74, SASH3, CD2, TAGAP and CCR7 served as significant marker genes with prognostic and therapeutic value.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Wenping Lu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Weixuan Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Dongni Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Heting Mei
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Mengfan Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Yongjia Cui
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Zhili Zhuo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| |
Collapse
|
22
|
Yu Z, Huang Y, Chen H, Jiang Z, Li C, Xie Y, Li Z, Cheng X, Liu Y, Li S, Liang Y, Wu Z. Design, Synthesis, and Evaluation of 18F-Labeled Tracers Targeting Fibroblast Activation Protein for Brain Imaging. ACS Pharmacol Transl Sci 2023; 6:1745-1757. [PMID: 37974629 PMCID: PMC10644484 DOI: 10.1021/acsptsci.3c00187] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
Fibroblast activation protein (FAP) is closely related to central nervous system diseases such as stroke and brain tumors, but PET tracers that can be used for brain imaging have not been reported. Here, we designed, synthesized, and evaluated 18F-labeled UAMC1110 derivatives suitable for brain imaging targeting FAP. By substituting the F atom for the H atom on the aromatic ring of compound UAMC1110, 1a-c were designed and prepared. 1a-c were confirmed to have a high affinity for FAP through molecular docking and enzyme assay. [18F]1a-c were successfully prepared and confirmed to have high affinity. The stability in vivo indicates that no obvious metabolites of [18F]1a,b were found in the plasma 1 h after injection, which is beneficial for brain imaging. In vitro cell uptake experiments showed that [18F]1a,b and [68Ga]FAPI04 exhibited similar uptake and internalization rates. PET imaging of U87MG subcutaneous tumor showed that [18F]1a,b could penetrate the blood-brain barrier with higher uptake and longer retention time than [68Ga]FAPI04 (uptake at 62.5 min, 1.06 ± 0.23, 1.09 ± 0.25% ID/g vs 0.21 ± 0.10% ID/g, respectively). The brain-to-blood ratios of [18F]1a,b were better than [68Ga]FAPI04. Biodistribution and PET imaging showed that [18F]1a had better uptake on tumors and a higher tumor-to-muscle ratio than [18F]1b and [68Ga]FAPI04. Further imaging of U87MG intracranial glioma showed that [18F]1a outlined high-contrast gliomas in a short period of time compared to [18F]1b. Therefore, [18F]1a is expected to be useful in the diagnosis of FAP-related brain diseases.
Collapse
Affiliation(s)
- Ziyue Yu
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Yong Huang
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Hualong Chen
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Zeng Jiang
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Chengze Li
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Yi Xie
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Zhongjing Li
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Xuebo Cheng
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Yajing Liu
- School
of Pharmaceutical Science, Capital Medical
University, Beijing 100069, China
| | - Shengli Li
- Department
of Laboratory Animal Science, Capital Medical
University, Beijing 100069, China
| | - Ying Liang
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Zehui Wu
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
23
|
Hartmann KP, van Gogh M, Freitag PC, Kast F, Nagy-Davidescu G, Borsig L, Plückthun A. FAP-retargeted Ad5 enables in vivo gene delivery to stromal cells in the tumor microenvironment. Mol Ther 2023; 31:2914-2928. [PMID: 37641405 PMCID: PMC10556229 DOI: 10.1016/j.ymthe.2023.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/19/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Fibroblast activation protein (FAP) is a cell surface serine protease that is highly expressed on reactive stromal fibroblasts, such as cancer-associated fibroblasts (CAFs), and generally absent in healthy adult tissues. FAP expression in the tumor stroma has been detected in more than 90% of all carcinomas, rendering CAFs excellent target cells for a tumor site-specific adenoviral delivery of cancer therapeutics. Here, we present a tropism-modified human adenovirus 5 (Ad5) vector that targets FAP through trivalent, designed ankyrin repeat protein-based retargeting adapters. We describe the development and validation of these adapters via cell-based screening assays and demonstrate adapter-mediated Ad5 retargeting to FAP+ fibroblasts in vitro and in vivo. We further show efficient in vivo delivery and in situ production of a therapeutic payload by CAFs in the tumor microenvironment (TME), resulting in attenuated tumor growth. We thus propose using our FAP-Ad5 vector to convert CAFs into a "biofactory," secreting encoded cancer therapeutics into the TME to enable a safe and effective cancer treatment.
Collapse
Affiliation(s)
- K Patricia Hartmann
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Merel van Gogh
- Department of Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Patrick C Freitag
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Florian Kast
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Gabriela Nagy-Davidescu
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Lubor Borsig
- Department of Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
24
|
Cui Y, Wang Y, Wang S, Du B, Li X, Li Y. Highlighting Fibroblasts Activation in Fibrosis: The State-of-The-Art Fibroblast Activation Protein Inhibitor PET Imaging in Cardiovascular Diseases. J Clin Med 2023; 12:6033. [PMID: 37762974 PMCID: PMC10531835 DOI: 10.3390/jcm12186033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Fibrosis is a common healing process that occurs during stress and injury in cardiovascular diseases. The evolution of fibrosis is associated with cardiovascular disease states and causes adverse effects. Fibroblast activation is responsible for the formation and progression of fibrosis. The incipient detection of activated fibroblasts is important for patient management and prognosis. Fibroblast activation protein (FAP), a membrane-bound serine protease, is almost specifically expressed in activated fibroblasts. The development of targeted FAP-inhibitor (FAPI) positron emission tomography (PET) imaging enabled the visualisation of FAP, that is, incipient fibrosis. Recently, research on FAPI PET imaging in cardiovascular diseases increased and is highly sought. Hence, we comprehensively reviewed the application of FAPI PET imaging in cardiovascular diseases based on the state-of-the-art published research. These studies provided some insights into the value of FAPI PET imaging in the early detection of cardiovascular fibrosis, risk stratification, response evaluation, and prediction of the evolution of left ventricular function. Future studies should be conducted with larger populations and multicentre patterns, especially for response evaluation and outcome prediction.
Collapse
Affiliation(s)
| | | | | | | | - Xuena Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang 110001, China; (Y.C.); (Y.W.); (S.W.); (B.D.)
| | - Yaming Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang 110001, China; (Y.C.); (Y.W.); (S.W.); (B.D.)
| |
Collapse
|
25
|
Arçay Öztürk A, Flamen P. FAP-targeted PET imaging in gastrointestinal malignancies: a comprehensive review. Cancer Imaging 2023; 23:79. [PMID: 37608378 PMCID: PMC10463504 DOI: 10.1186/s40644-023-00598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023] Open
Abstract
F18-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) plays a crucial role in tumour diagnosis, staging, and therapy response evaluation of various cancer types and has been a standard imaging modality used in clinical oncology practice for many years. However, it has certain limitations in evaluating some particular gastrointestinal cancer types due to low FDG-avidity or interphering physiological background activity. Fibroblast activation protein (FAP), a protein of the tumour microenvironment, is overexpressed in a wide range of cancers which makes it an attractive target for both tumour imaging and therapy. Recently, FAP-targeted radiopharmaceuticals are widely used in clinical research and achieved great results in tumour imaging. Considering the limitations of FDG PET/CT and the lack of physiological FAP-targeted tracer uptake in liver and intestinal loops, gastrointestinal cancers are among the most promising indications of FAP-targeted imaging. Herein, we present a comprehensive review of FAP-targeted imaging in gastrointestinal cancers in order to clarify the current and potential future role of this class of molecules in gastrointestinal oncology.
Collapse
Affiliation(s)
- Ayça Arçay Öztürk
- Department of Nuclear Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| | - Patrick Flamen
- Department of Nuclear Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
26
|
Kalaei Z, Manafi-Farid R, Rashidi B, Kiani FK, Zarei A, Fathi M, Jadidi-Niaragh F. The Prognostic and therapeutic value and clinical implications of fibroblast activation protein-α as a novel biomarker in colorectal cancer. Cell Commun Signal 2023; 21:139. [PMID: 37316886 DOI: 10.1186/s12964-023-01151-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
The identification of contributing factors leading to the development of Colorectal Cancer (CRC), as the third fatal malignancy, is crucial. Today, the tumor microenvironment has been shown to play a key role in CRC progression. Fibroblast-Activation Protein-α (FAP) is a type II transmembrane cell surface proteinase expressed on the surface of cancer-associated fibroblasts in tumor stroma. As an enzyme, FAP has di- and endoprolylpeptidase, endoprotease, and gelatinase/collagenase activities in the Tumor Microenvironment (TME). According to recent reports, FAP overexpression in CRC contributes to adverse clinical outcomes such as increased lymph node metastasis, tumor recurrence, and angiogenesis, as well as decreased overall survival. In this review, studies about the expression level of FAP and its associations with CRC patients' prognosis are reviewed. High expression levels of FAP and its association with clinicopathological factors have made as a potential target. In many studies, FAP has been evaluated as a therapeutic target and diagnostic factor into which the current review tries to provide a comprehensive insight. Video Abstract.
Collapse
Affiliation(s)
- Zahra Kalaei
- Department of Biology, Faculty of Natural Sciences, Tabriz University, Tabriz, Iran
| | - Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bentolhoda Rashidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Karoon Kiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asieh Zarei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Fathi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Chandekar KR, Prashanth A, Vinjamuri S, Kumar R. FAPI PET/CT Imaging-An Updated Review. Diagnostics (Basel) 2023; 13:2018. [PMID: 37370912 PMCID: PMC10297281 DOI: 10.3390/diagnostics13122018] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Despite revolutionizing the field of oncological imaging, Positron Emission Tomography (PET) with [18F]Fluorodeoxyglucose (FDG) as its workhorse is limited by a lack of specificity and low sensitivity in certain tumor subtypes. Fibroblast activation protein (FAP), a type II transmembrane glycoprotein, is expressed by cancer-associated fibroblasts (CAFs) that form a major component of the tumor stroma. FAP holds the promise to be a pan-cancer target, owing to its selective over-expression in a vast majority of neoplasms, particularly epithelial cancers. Several radiolabeled FAP inhibitors (FAPI) have been developed for molecular imaging and potential theranostic applications. Preliminary data on FAPI PET/CT remains encouraging, with extensive multi-disciplinary clinical research currently underway. This review summarizes the existing literature on FAPI PET/CT imaging with an emphasis on diagnostic applications, comparison with FDG, pitfalls, and future directions.
Collapse
Affiliation(s)
- Kunal Ramesh Chandekar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Arun Prashanth
- Department of Nuclear Medicine, MIOT International Hospital, Chennai 600089, India;
| | - Sobhan Vinjamuri
- Department of Nuclear Medicine, Royal Liverpool and Broadgreen University Hospital, Liverpool L7-8YE, UK;
| | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110029, India;
| |
Collapse
|
28
|
Privé BM, Boussihmad MA, Timmermans B, van Gemert WA, Peters SMB, Derks YHW, van Lith SAM, Mehra N, Nagarajah J, Heskamp S, Westdorp H. Fibroblast activation protein-targeted radionuclide therapy: background, opportunities, and challenges of first (pre)clinical studies. Eur J Nucl Med Mol Imaging 2023; 50:1906-1918. [PMID: 36813980 PMCID: PMC10199876 DOI: 10.1007/s00259-023-06144-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
INTRODUCTION Fibroblast activation protein (FAP) is highly overexpressed in stromal tissue of various cancers. While FAP has been recognized as a potential diagnostic or therapeutic cancer target for decades, the surge of radiolabeled FAP-targeting molecules has the potential to revolutionize its perspective. It is presently hypothesized that FAP targeted radioligand therapy (TRT) may become a novel treatment for various types of cancer. To date, several preclinical and case series have been reported on FAP TRT using varying compounds and showing effective and tolerant results in advanced cancer patients. Here, we review the current (pre)clinical data on FAP TRT and discuss its perspective towards broader clinical implementation. METHODS: A PubMed search was performed to identify all FAP tracers used for TRT. Both preclinical and clinical studies were included if they reported on dosimetry, treatment response or adverse events. The last search was performed on July 22 2022. In addition, a database search was performed on clinical trial registries (date 15th of July 2022) to search for prospective trials on FAP TRT. RESULTS In total, 35 papers were identified that were related to FAP TRT. This resulted in the inclusion of the following tracers for review: FAPI-04, FAPI-46, FAP-2286, SA.FAP, ND-bisFAPI, PNT6555, TEFAPI-06/07, FAPI-C12/C16, and FSDD. CONCLUSION To date, data was reported on more than 100 patients that were treated with different FAP targeted radionuclide therapies such as [177Lu]Lu-FAPI-04, [90Y]Y-FAPI-46, [177Lu]Lu-FAP-2286, [177Lu]Lu-DOTA.SA.FAPI and [177Lu]Lu-DOTAGA.(SA.FAPi)2. In these studies, FAP targeted radionuclide therapy has resulted in objective responses in difficult to treat end stage cancer patients with manageable adverse events. Although no prospective data is yet available, these early data encourages further research.
Collapse
Affiliation(s)
- Bastiaan M Privé
- Department of Radiology and Nuclear Medicine, PO Box 9101, Radboudumc, 6500 HB, Nijmegen, The Netherlands.
- Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands.
| | - Mohamed A Boussihmad
- Department of Radiology and Nuclear Medicine, PO Box 9101, Radboudumc, 6500 HB, Nijmegen, The Netherlands
| | - Bart Timmermans
- Department of Radiology and Nuclear Medicine, PO Box 9101, Radboudumc, 6500 HB, Nijmegen, The Netherlands
| | - Willemijn A van Gemert
- Department of Radiology and Nuclear Medicine, PO Box 9101, Radboudumc, 6500 HB, Nijmegen, The Netherlands
| | - Steffie M B Peters
- Department of Radiology and Nuclear Medicine, PO Box 9101, Radboudumc, 6500 HB, Nijmegen, The Netherlands
| | - Yvonne H W Derks
- Department of Radiology and Nuclear Medicine, PO Box 9101, Radboudumc, 6500 HB, Nijmegen, The Netherlands
| | - Sanne A M van Lith
- Department of Radiology and Nuclear Medicine, PO Box 9101, Radboudumc, 6500 HB, Nijmegen, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Radboudumc, Nijmegen, The Netherlands
| | - James Nagarajah
- Department of Radiology and Nuclear Medicine, PO Box 9101, Radboudumc, 6500 HB, Nijmegen, The Netherlands
| | - Sandra Heskamp
- Department of Radiology and Nuclear Medicine, PO Box 9101, Radboudumc, 6500 HB, Nijmegen, The Netherlands
| | - Harm Westdorp
- Department of Radiology and Nuclear Medicine, PO Box 9101, Radboudumc, 6500 HB, Nijmegen, The Netherlands
- Department of Medical Oncology, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Mayola MF, Thackeray JT. The Potential of Fibroblast Activation Protein-Targeted Imaging as a Biomarker of Cardiac Remodeling and Injury. Curr Cardiol Rep 2023; 25:515-523. [PMID: 37126137 PMCID: PMC10188581 DOI: 10.1007/s11886-023-01869-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE OF REVIEW Cardiovascular disease features adverse fibrotic processes within the myocardium, leading to contractile dysfunction. Activated cardiac fibroblasts play a pivotal role in the remodeling and progression of heart failure, but conventional diagnostics struggle to identify early changes in cardiac fibroblast dynamics. Emerging imaging methods visualize fibroblast activation protein (FAP) as a marker of activated fibroblasts, enabling non-invasive quantitative measurement of early cardiac remodeling. RECENT FINDINGS Retrospective analysis of oncology patient cohorts has identified cardiac uptake of FAP radioligands in response to various cardiovascular conditions. Small scale studies in dedicated cardiac populations have revealed FAP upregulation in injured myocardium, wherein the area of upregulation predicts subsequent ventricle dysfunction. Recent studies have demonstrated that silencing of FAP-expressing fibroblasts can reverse cardiac fibrosis in disease models. The parallel growth of FAP-targeted imaging and therapy provides the opportunity for imaging-based monitoring and refinement of treatments targeting cardiac fibroblast activation.
Collapse
Affiliation(s)
- Maday Fernandez Mayola
- Department of Nuclear Medicine, Hannover Medical School, Translational Cardiovascular Molecular Imaging, Carl Neuberg Str 1, 30625, Hannover, Germany
| | - James T Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Translational Cardiovascular Molecular Imaging, Carl Neuberg Str 1, 30625, Hannover, Germany.
| |
Collapse
|
30
|
Bendre S, Kuo HT, Merkens H, Zhang Z, Wong AAWL, Bénard F, Lin KS. Synthesis and Preclinical Evaluation of Novel 68Ga-Labeled ( R)-Pyrrolidin-2-yl-boronic Acid-Based PET Tracers for Fibroblast Activation Protein-Targeted Cancer Imaging. Pharmaceuticals (Basel) 2023; 16:798. [PMID: 37375746 DOI: 10.3390/ph16060798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Fibroblast activation protein (FAP) is a membrane-tethered serine protease overexpressed in the reactive stromal fibroblasts of >90% human carcinomas, which makes it a promising target for developing radiopharmaceuticals for the imaging and therapy of carcinomas. Here, we synthesized two novel (R)-pyrrolidin-2-yl-boronic acid-based FAP-targeted ligands: SB02055 (DOTA-conjugated (R)-(1-((6-(3-(piperazin-1-yl)propoxy)quinoline-4-carbonyl)glycyl)pyrrolidin-2-yl)boronic acid) and SB04028 (DOTA-conjugated ((R)-1-((6-(3-(piperazin-1-yl)propoxy)quinoline-4-carbonyl)-D-alanyl)pyrrolidin-2-yl)boronic acid). natGa- and 68Ga-complexes of both ligands were evaluated in preclinical studies and compared to previously reported natGa/68Ga-complexed PNT6555. Enzymatic assays showed that FAP binding affinities (IC50) of natGa-SB02055, natGa-SB04028 and natGa-PNT6555 were 0.41 ± 0.06, 13.9 ± 1.29 and 78.1 ± 4.59 nM, respectively. PET imaging and biodistribution studies in HEK293T:hFAP tumor-bearing mice showed that while [68Ga]Ga-SB02055 presented with a nominal tumor uptake (1.08 ± 0.37 %ID/g), [68Ga]Ga-SB04028 demonstrated clear tumor visualization with ~1.5-fold higher tumor uptake (10.1 ± 0.42 %ID/g) compared to [68Ga]Ga-PNT6555 (6.38 ± 0.45 %ID/g). High accumulation in the bladder indicated renal excretion of all three tracers. [68Ga]Ga-SB04028 displayed a low background level uptake in most normal organs, and comparable to [68Ga]Ga-PNT6555. However, since its tumor uptake was considerably higher than [68Ga]Ga-PNT6555, the corresponding tumor-to-organ uptake ratios for [68Ga]Ga-SB04028 were also significantly greater than [68Ga]Ga-PNT6555. Our data demonstrate that (R)-(((quinoline-4-carbonyl)-d-alanyl)pyrrolidin-2-yl)boronic acid is a promising pharmacophore for the design of FAP-targeted radiopharmaceuticals for cancer imaging and radioligand therapy.
Collapse
Affiliation(s)
- Shreya Bendre
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Antonio A W L Wong
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Functional Imaging, BC Cancer Research Institute, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Functional Imaging, BC Cancer Research Institute, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
31
|
Melero I, Tanos T, Bustamante M, Sanmamed MF, Calvo E, Moreno I, Moreno V, Hernandez T, Martinez Garcia M, Rodriguez-Vida A, Tabernero J, Azaro A, Ponz-Sarvisé M, Spanggaard I, Rohrberg K, Guarin E, Nüesch E, Davydov II, Ooi C, Duarte J, Chesne E, McIntyre C, Ceppi M, Cañamero M, Krieter O. A first-in-human study of the fibroblast activation protein-targeted, 4-1BB agonist RO7122290 in patients with advanced solid tumors. Sci Transl Med 2023; 15:eabp9229. [PMID: 37163618 DOI: 10.1126/scitranslmed.abp9229] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This first-in-human study evaluated RO7122290, a bispecific fusion protein carrying a split trimeric 4-1BB (CD137) ligand and a fibroblast activation protein α (FAP) binding site that costimulates T cells for improved tumor cell killing in FAP-expressing tumors. Patients with advanced or metastatic solid tumors received escalating weekly intravenous doses of RO7122290 as a single agent (n = 65) or in combination with a 1200-milligram fixed dose of the anti-programmed death-ligand 1 (anti-PD-L1) antibody atezolizumab given every 3 weeks (n = 50), across a tested RO7122290 dose range of 5 to 2000 milligrams and 45 to 2000 milligrams, respectively. Three dose-limiting toxicities were reported, two at different RO7122290 single-agent doses (grade 3 febrile neutropenia and grade 3 cytokine release syndrome) and one for the combination (grade 3 pneumonitis). No maximum tolerated dose was identified. The pharmacokinetic profile of RO7122290 suggested nonlinearity in elimination. The observed changes in peripheral and tissue pharmacodynamic (PD) biomarkers were consistent with the postulated mechanism of action. Treatment-induced PD changes included an increase in proliferating and activated T cells in peripheral blood both in the single-agent and combination arms. Increased infiltration of intratumoral CD8+ and Ki67+CD8+ T cells was observed for both treatment regimens, accompanied by the up-regulation of T cell activation genes and gene signatures. Eleven patients experienced a complete or partial response, six of whom were confirmed to be immune checkpoint inhibitor naive. These results support further evaluation of RO7122290 in combination with atezolizumab or other immune-oncology agents for the treatment of solid tumors.
Collapse
Affiliation(s)
- Ignacio Melero
- Department of Immunology and Immunotherapy, Clinica Universidad de Navarra and CIMA, 31008 Pamplona, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Tamara Tanos
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Mariana Bustamante
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Miguel F Sanmamed
- Department of Immunology and Immunotherapy, Clinica Universidad de Navarra and CIMA, 31008 Pamplona, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medical Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Emiliano Calvo
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, 28050 Madrid, Spain
| | - Irene Moreno
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, 28050 Madrid, Spain
| | - Victor Moreno
- START Madrid-FJD, Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Tatiana Hernandez
- START Madrid-FJD, Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain
| | | | - Alejo Rodriguez-Vida
- Department of Medical Oncology, Hospital del Mar-CIBERONC, 08003 Barcelona, Spain
| | - Josep Tabernero
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Analia Azaro
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Mariano Ponz-Sarvisé
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medical Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Iben Spanggaard
- Department of Oncology, Rigshospitalet University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Kristoffer Rohrberg
- Department of Oncology, Rigshospitalet University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Ernesto Guarin
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Eveline Nüesch
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Iakov I Davydov
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Chiahuey Ooi
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - José Duarte
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Evelyne Chesne
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Christine McIntyre
- Roche Pharma Research and Early Development, Roche Innovation Center Welwyn, AL7 1TW Welwyn Garden City, UK
| | - Maurizio Ceppi
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Marta Cañamero
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Oliver Krieter
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| |
Collapse
|
32
|
Zhao Z, Li T, Yuan Y, Zhu Y. What is new in cancer-associated fibroblast biomarkers? Cell Commun Signal 2023; 21:96. [PMID: 37143134 PMCID: PMC10158035 DOI: 10.1186/s12964-023-01125-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
The tumor microenvironment is one of the important drivers of tumor development. Cancer-associated fibroblasts (CAFs) are a major component of the tumor stroma and actively participate in tumor development, invasion, metastasis, drug resistance, and other biological behaviors. CAFs are a highly heterogeneous group of cells, a reflection of the diversity of their origin, biomarkers, and functions. The diversity of CAF origin determines the complexity of CAF biomarkers, and CAF subpopulations expressing different biomarkers may play contrasting roles in tumor progression. In this review, we provide an overview of these emerging CAF biomarkers and the biological functions that they suggest, which may give a better understanding of the relationship between CAFs and tumor cells and be of great significance for breakthroughs in precision targeted therapy for tumors. Video Abstract.
Collapse
Affiliation(s)
- Zehua Zhao
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Tianming Li
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, No. 155 of Nanjing Road, Heping District, Shenyang, 110001, China.
| | - Yanmei Zhu
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
33
|
DiMagno SG, Babich JW. Advanced Fibroblast Activation Protein-Ligand Developments: FAP Imaging Agents: A Review of the Structural Requirements. PET Clin 2023:S1556-8598(23)00028-7. [PMID: 37117123 DOI: 10.1016/j.cpet.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Fibroblast activation protein-α (FAP) has attracted increasing attention as a selective marker of cancer-associated fibroblasts (CAFs) and more broadly, of activated fibroblasts in tissues undergoing remodeling of their ECM due to chronic inflammation, fibrosis, or wound healing. Since FAP is critical to the initiation of metastatic growth, its expression will serve as a molecular marker to detect tumors at an earlier stage of development compared to currently available methods. The design of high affinity small molecule FAP inhibitor will allow for noninvasive imaging of activated fibroblast in cancer patients. Small molecule inhibitors of FAP are being developed for targeted radiotherapy of tumors.
Collapse
Affiliation(s)
- Stephen G DiMagno
- Ratio Therapeutics, Inc., One Design Center Place, Suite# 19-601, Boston, MA 02210, USA
| | - John W Babich
- Ratio Therapeutics, Inc., One Design Center Place, Suite# 19-601, Boston, MA 02210, USA.
| |
Collapse
|
34
|
Bendre S, Zhang Z, Colpo N, Zeisler J, Wong AAWL, Bénard F, Lin KS. Synthesis and Evaluation of 68Ga-Labeled (2 S,4 S)-4-Fluoropyrrolidine-2-Carbonitrile and (4 R)-Thiazolidine-4-Carbonitrile Derivatives as Novel Fibroblast Activation Protein-Targeted PET Tracers for Cancer Imaging. Molecules 2023; 28:molecules28083481. [PMID: 37110717 PMCID: PMC10145249 DOI: 10.3390/molecules28083481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Fibroblast activation protein α (FAP-α) is a cell-surface protein overexpressed on cancer-associated fibroblasts that constitute a substantial component of tumor stroma and drive tumorigenesis. FAP is minimally expressed by most healthy tissues, including normal fibroblasts. This makes it a promising pan-cancer diagnostic and therapeutic target. In the present study, we synthesized two novel tracers, [68Ga]Ga-SB03045 and [68Ga]Ga-SB03058, bearing a (2S,4S)-4-fluoropyrrolidine-2-carbonitrile or a (4R)-thiazolidine-4-carbonitrile pharmacophore, respectively. [68Ga]Ga-SB03045 and [68Ga]Ga-SB03058 were evaluated for their FAP-targeting capabilities using substrate-based in vitro binding assays, and in PET/CT imaging and ex vivo biodistribution studies in an HEK293T:hFAP tumor xenograft mouse model. The IC50 values of natGa-SB03045 (1.59 ± 0.45 nM) and natGa-SB03058 (0.68 ± 0.09 nM) were found to be lower than those of the clinically validated natGa-FAPI-04 (4.11 ± 1.42 nM). Contrary to the results obtained in the FAP-binding assay, [68Ga]Ga-SB03058 demonstrated a ~1.5 fold lower tumor uptake than that of [68Ga]Ga-FAPI-04 (7.93 ± 1.33 vs. 11.90 ± 2.17 %ID/g), whereas [68Ga]Ga-SB03045 (11.8 ± 2.35 %ID/g) exhibited a tumor uptake comparable to that of [68Ga]Ga-FAPI-04. Thus, our data suggest that the (2S,4S)-4-fluoropyrrolidine-2-carbonitrile scaffold holds potential as a promising pharmacophore for the design of FAP-targeted radioligands for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Shreya Bendre
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Nadine Colpo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Jutta Zeisler
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Antonio A W L Wong
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Functional Imaging, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Functional Imaging, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
35
|
Zhong X, Guo J, Han X, Wu W, Yang R, Zhang J, Shao G. Synthesis and Preclinical Evaluation of a Novel FAPI-04 Dimer for Cancer Theranostics. Mol Pharm 2023; 20:2402-2414. [PMID: 37015025 DOI: 10.1021/acs.molpharmaceut.2c00965] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Overexpression of fibroblast activation protein (FAP) in cancer-associated fibroblasts in a wide variety of tumors enables a highly selective targeting strategy using FAP inhibitors (FAPIs). Quinoline-based FAPIs labeled with radionuclides have been widely developed for tumor-targeted nuclear medicine imaging. However, the short retention time of FAPIs at the tumor site limits their application in radionuclide therapy. In this study, a novel FAPI-04 dimer was synthesized and labeled with radionuclides to prolong the retention time in tumors for imaging and therapy. To prepare the FAPI-04 dimer complex, DOTA-Suc-Lys-(FAPI-04)2, we used Fmoc-Lys(Boc)-OH as the linker to conjugate two FAPI-04 structures by an amide reaction. The resulting product was further modified by DOTA groups to allow for conjugation with radioactive metals. Both [68Ga]Ga-(FAPI-04)2 and [177Lu]Lu-(FAPI-04)2 showed a radiochemical purity of >99% and remained stable in vitro. In vivo, micro-PET images of SKOV3, A431, and H1299 xenografts revealed that the tumor uptake of [68Ga]Ga-(FAPI-04)2 was about twice that of [68Ga]Ga-FAPI-04 and that the accumulation of [68Ga]Ga-(FAPI-04)2 at the tumor site did not significantly decrease even 3h after injection. The tumor-abdomen ratio of [68Ga]Ga-(FAPI-04)2 images was significantly higher than that of [18F]F-FDG images. For radionuclide therapy, [177Lu]Lu-(FAPI-04)2 effectively retarded tumor growth and displayed good tolerance. In conclusion, the DOTA-Suc-Lys-(FAPI-04)2 design enhanced its uptake in FAP-expressing tumors, improved its retention time at the tumor site, and produced high-contrast imaging in xenografts after radionuclide labeling. Furthermore, it showed a noticeable antitumor effect. DOTA-Suc-Lys-(FAPI-04)2 provides a new approach for applying FAPI derivatives in tumor theranostics.
Collapse
Affiliation(s)
- Xuan Zhong
- Nanjing University of Chinese Medicine, Nanjing 210046, China
- Department of Nuclear Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Jingru Guo
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Xiuping Han
- Department of Nuclear Medicine, Nanjing Medical University Affiliated Nanjing Hospital, Nanjing 210029, China
| | - Wenyu Wu
- Department of Nuclear Medicine, Nanjing Medical University Affiliated Nanjing Hospital, Nanjing 210029, China
| | - Rui Yang
- Department of Nuclear Medicine, Nanjing Medical University Affiliated Nanjing Hospital, Nanjing 210029, China
| | - Jun Zhang
- Nanjing University of Chinese Medicine, Nanjing 210046, China
- Department of Nuclear Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing Medical University Affiliated Nanjing Hospital, Nanjing 210029, China
| |
Collapse
|
36
|
Zhang N, Pan F, Pan L, Diao W, Su F, Huang R, Yang B, Li Y, Qi Z, Zhang W, Wu X. Synthesis, radiolabeling, and evaluation of a (4-quinolinoyl)glycyl-2-cyanopyrrolidine analogue for fibroblast activation protein (FAP) PET imaging. Front Bioeng Biotechnol 2023; 11:1167329. [PMID: 37057133 PMCID: PMC10086185 DOI: 10.3389/fbioe.2023.1167329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Fibroblast activation protein (FAP) is regarded as a promising target for the diagnosis and treatment of tumors as it was overexpressed in cancer-associated fibroblasts. FAP inhibitors bearing a quinoline scaffold have been proven to show high affinity against FAP in vitro and in vivo, and the scaffold has been radio-labeled for the imaging and treatment of FAP-positive tumors. However, currently available FAP imaging agents both contain chelator groups to enable radio-metal labeling, making those tracers more hydrophilic and not suitable for the imaging of lesions in the brain. Herein, we report the synthesis, radio-labeling, and evaluation of a 18F-labeled quinoline analogue ([18F]3) as a potential FAP-targeted PET tracer, which holds the potential to be blood–brain barrier-permeable. [18F]3 was obtained by one-step radio-synthesis via a copper-mediated SNAR reaction from a corresponding boronic ester precursor. [18F]3 showed moderate lipophilicity with a log D7.4 value of 1.11. In cell experiments, [18F]3 showed selective accumulation in A549-FAP and U87 cell lines and can be effectively blocked by the pre-treatment of a cold reference standard. Biodistribution studies indicated that [18F]3 was mainly excreted by hepatic clearance and urinary excretion, and it may be due to its moderate lipophilicity. In vivo PET imaging studies indicated [18F]3 showed selective accumulation in FAP-positive tumors, and specific binding was confirmed by blocking studies. However, low brain uptake was observed in biodistribution and PET imaging studies. Although our preliminary data indicated that [18F]3 holds the potential to be developed as a blood–brain barrier penetrable FAP-targeted PET tracer, its low brain uptake limits its application in the detection of brain lesions. Herein, we report the synthesis and evaluation of [18F]3 as a novel small-molecule FAPI-targeted PET tracer, and our results suggest further structural optimizations would be needed to develop a BBB-permeable PET tracer with this scaffold.
Collapse
Affiliation(s)
- Ni Zhang
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| | - Fei Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Diao
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feijing Su
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Rui Huang
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Bo Yang
- Department of Pharmacy, The Seventh People’s Hospital of Chengdu, Chengdu, China
- Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Yunchun Li
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhongzhi Qi
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Zhongzhi Qi, ; Wenjie Zhang,
| | - Wenjie Zhang
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Zhongzhi Qi, ; Wenjie Zhang,
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
37
|
Hamacher R, Lanzafame H, Mavroeidi IA, Pabst KM, Kessler L, Cheung PF, Bauer S, Herrmann K, Schildhaus HU, Siveke JT, Fendler WP. Fibroblast Activation Protein Inhibitor Theranostics. PET Clin 2023:S1556-8598(23)00021-4. [PMID: 36997366 DOI: 10.1016/j.cpet.2023.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The theranostic use of fibroblast activation protein inhibitors (FAPIs) is a novel approach in oncology. Sarcomas are a heterogenous group of rare malignant tumors. Prognosis remains poor in advanced/metastatic disease due to limited therapeutic options. Sarcoma frequently demonstrate high expression of fibroblast activation protein alpha on the tumor cells themselves, in contrast to other solid tumors, where it is mainly expressed on cancer-associated fibroblasts. Consequently, high in vivo uptake of FAPI in PET is observed in sarcoma. Moreover, retrospective case reports and series demonstrated feasibility of FAPI radioligand therapy with signs of tumor response.
Collapse
|
38
|
Fibroblast Activation Protein Inhibitor (FAPI)-Based Theranostics-Where We Are at and Where We Are Heading: A Systematic Review. Int J Mol Sci 2023; 24:ijms24043863. [PMID: 36835275 PMCID: PMC9965519 DOI: 10.3390/ijms24043863] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Cancer is the leading cause of death around the globe, followed by heart disease and stroke, with the highest mortality to this day. We have reached great levels of understanding of how these various types of cancer operate at a cellular level and this has brought us to what we call "precision medicine" where every diagnostic examination and the therapeutic procedure is tailored to the patient. FAPI is among the new tracers that can be used to assess and treat many types of cancer. The aim of this review was to gather all the known literature on FAPI theranostics. A MEDLINE search was conducted on four web libraries, PUBMED, Cochrane, Scopus, and Web of Sciences. All of the available articles that included both diagnoses and therapy with FAPI tracers were collected and put through the CASP (Critical Appraisal Skills Programme) questionnaire for systematic reviewing. A total of 8 records were deemed suitable for CASP review, ranging from 2018 to November 2022. These studies were put through the CASP diagnostic checklist, in order to assess the goal of the study, diagnostic and reference tests, results, descriptions of the patient sample, and future applications. Sample sizes were heterogeneous, both for size as well as for tumor type. Only one author studied a single type of cancer with FAPI tracers. Progression of disease was the most common outcome, and no relevant collateral effects were noted. Although FAPI theranostics is still in its infancy and lacks solid grounds to be brought into clinical practice, it does not show any collateral effects that prohibit administration to patients, thus far, and has good tolerability profiles.
Collapse
|
39
|
FAPI PET/CT in Diagnostic and Treatment Management of Colorectal Cancer: Review of Current Research Status. J Clin Med 2023; 12:jcm12020577. [PMID: 36675506 PMCID: PMC9865114 DOI: 10.3390/jcm12020577] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
FAPI PET/CT is a novel imaging tool targeting fibroblast activation protein (FAP), with high tumor uptake rate and low background noise. Therefore, the appearance of FAPI PET/CT provides a good tumor-to-background ratio between tumor and non-tumor tissues, which is beneficial to staging, tumor description and detection. Colorectal cancer has the biological characteristics of high expression of FAP, which provides the foundation for targeted FAP imaging. FAPI PET/CT may have a potential role in changing the staging and re-staging of colorectal cancer, monitoring recurrence and treatment management, and improving the prognosis of patients. This review will summarize the application status of FAPI PET/CT in colorectal cancer and provide directions for further application research.
Collapse
|
40
|
Gu L, Liao P, Liu H. Cancer-associated fibroblasts in acute leukemia. Front Oncol 2022; 12:1022979. [PMID: 36601484 PMCID: PMC9806275 DOI: 10.3389/fonc.2022.1022979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Although the prognosis for acute leukemia has greatly improved, treatment of relapsed/refractory acute leukemia (R/R AL) remains challenging. Recently, increasing evidence indicates that the bone marrow microenvironment (BMM) plays a crucial role in leukemogenesis and therapeutic resistance; therefore, BMM-targeted strategies should be a potent protocol for treating R/R AL. The targeting of cancer-associated fibroblasts (CAFs) in solid tumors has received much attention and has achieved some progress, as CAFs might act as an organizer in the tumor microenvironment. Additionally, over the last 10 years, attention has been drawn to the role of CAFs in the BMM. In spite of certain successes in preclinical and clinical studies, the heterogeneity and plasticity of CAFs mean targeting them is a big challenge. Herein, we review the heterogeneity and roles of CAFs in the BMM and highlight the challenges and opportunities associated with acute leukemia therapies that involve the targeting of CAFs.
Collapse
Affiliation(s)
- Ling Gu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore, Singapore,Academic & Clinical Development, Duke-NUS Medical School, Singapore, Singapore,Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| | - Hanmin Liu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China,Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| |
Collapse
|
41
|
Weber WA, Varasteh Z, Fritschle K, Morath V. A Theranostic Approach for CAR-T Cell Therapy. Clin Cancer Res 2022; 28:5241-5243. [PMID: 36250927 DOI: 10.1158/1078-0432.ccr-22-2565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023]
Abstract
Fibroblast activation protein (FAP) is frequently expressed in the tumor stroma, whereas expression by normal organs is highly restricted. Despite these promising features, FAP-targeted therapies have shown limited success so far. FAP imaging offers new opportunities to select patients for FAP-targeted therapies and monitor tumor response. See related article by Lee et al., p. 5330.
Collapse
Affiliation(s)
- Wolfgang A Weber
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Zohreh Varasteh
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany.,Department of Nuclear Medicine, University of Essen, Essen, Germany
| | - Katja Fritschle
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Volker Morath
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
42
|
Miao Y, Deng Y, Liu J, Wang J, Hu B, Hao S, Wang H, Zhang Z, Jin Z, Zhang Y, Li C, Zhang P, Wan H, Zhang S, Feng J, Ji N. Anti-cancer effect of targeting fibroblast activation protein alpha in glioblastoma through remodeling macrophage phenotype and suppressing tumor progression. CNS Neurosci Ther 2022; 29:878-892. [PMID: 36382346 PMCID: PMC9928553 DOI: 10.1111/cns.14024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Glioblastoma (GBM) is the most malignant form of glioma and has a poor median survival time. Fibroblast activation protein alpha (FAP) is a dual-specificity serine protease that is strongly associated with the development and progression of human carcinomas. However, relatively little is known about the function of FAP and its potential as a therapeutic target in GBMs. AIMS In this study, we aimed to explore the role of FAP in GBM through a series of experiments and to evaluate the therapeutic effect of PT100, a small molecule inhibitor of FAP, on GBM. RESULTS Increased FAP expression was associated with poor survival in glioma. In vitro, FAP knockdown inhibited the process of EMT and caused a decrease in the number of M2 macrophages. In vivo, PT100 was confirmed to suppress the progression of GBMs significantly. CONCLUSIONS FAP could serve as a biomarker and novel therapeutic target for the treatment of GBM and that PT100 is a promising drug for the treatment of GBM.
Collapse
Affiliation(s)
- Yazhou Miao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,National Clinical Research Center for Neurological Diseases (China)BeijingChina
| | - Yuxuan Deng
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,National Clinical Research Center for Neurological Diseases (China)BeijingChina
| | - Jinqiu Liu
- Beijing Neurosurgical InstituteCapital Medical UniversityFengtai, BeijingChina
| | - Jing Wang
- Beijing Neurosurgical InstituteCapital Medical UniversityFengtai, BeijingChina
| | - Boyi Hu
- Beijing Neurosurgical InstituteCapital Medical UniversityFengtai, BeijingChina
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,National Clinical Research Center for Neurological Diseases (China)BeijingChina
| | - Herui Wang
- Neuro‐Oncology Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Zhe Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,National Clinical Research Center for Neurological Diseases (China)BeijingChina
| | - Zeping Jin
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,National Clinical Research Center for Neurological Diseases (China)BeijingChina
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,National Clinical Research Center for Neurological Diseases (China)BeijingChina
| | - Chunzhao Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,National Clinical Research Center for Neurological Diseases (China)BeijingChina
| | - Peng Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,National Clinical Research Center for Neurological Diseases (China)BeijingChina
| | - Hong Wan
- Beijing Neurosurgical InstituteCapital Medical UniversityFengtai, BeijingChina
| | - Shaodong Zhang
- Beijing Neurosurgical InstituteCapital Medical UniversityFengtai, BeijingChina
| | - Jie Feng
- Beijing Neurosurgical InstituteCapital Medical UniversityFengtai, BeijingChina,Beijing Cancer Institute, Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,National Clinical Research Center for Neurological Diseases (China)BeijingChina,Beijing Advanced Innovation Center for Big Data‐Based Precision Medicine, School of Engineering MedicineBeihang UniversityBeijingChina
| |
Collapse
|
43
|
Yamamoto Y, Kasashima H, Fukui Y, Tsujio G, Yashiro M, Maeda K. The heterogeneity of cancer-associated fibroblast subpopulations: Their origins, biomarkers, and roles in the tumor microenvironment. Cancer Sci 2022; 114:16-24. [PMID: 36197901 PMCID: PMC9807521 DOI: 10.1111/cas.15609] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 01/07/2023] Open
Abstract
The prognosis for patients with cancers known for a highly activated stromal reaction, including diffuse-type (scirrhous) gastric cancer, consensus molecular subtype 4 (CMS4) colorectal cancer, and pancreatic ductal adenocarcinoma, is extremely poor. To explore the resistance of conventional therapy for those refractory cancers, detailed classification and investigation of the different subsets of cancer-associated fibroblasts (CAFs) involved are needed. Recent studies with a single-cell transcriptomics strategy (single-cell RNA-seq) have demonstrated that CAF subpopulations contain different origins and marker proteins with the capacity to either promote or suppress cancer progression. Through multiple signaling pathways, CAFs can promote tumor growth, metastasis, and angiogenesis with extracellular matrix (ECM) remodeling; they can also interact with tumor-infiltrating immune cells and modulate the antitumor immunological state in the tumor microenvironment (TME). Here, we review the recent literature on the various subpopulations of CAFs to improve our understanding of the cell-cell interactions in the TME and highlight future avenues for CAF-targeted therapy.
Collapse
Affiliation(s)
- Yurie Yamamoto
- Molecular Oncology and TherapeuticsOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Hiroaki Kasashima
- Molecular Oncology and TherapeuticsOsaka Metropolitan University Graduate School of MedicineOsakaJapan,Department of Gastroenterological SurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Yasuhiro Fukui
- Department of Gastroenterological SurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Gen Tsujio
- Molecular Oncology and TherapeuticsOsaka Metropolitan University Graduate School of MedicineOsakaJapan,Department of Gastroenterological SurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Masakazu Yashiro
- Molecular Oncology and TherapeuticsOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Kiyoshi Maeda
- Department of Gastroenterological SurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| |
Collapse
|
44
|
Cheng CS, Yang PW, Sun Y, Song SL, Chen Z. Fibroblast activation protein-based theranostics in pancreatic cancer. Front Oncol 2022; 12:969731. [PMID: 36263225 PMCID: PMC9574192 DOI: 10.3389/fonc.2022.969731] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Fibroblast activation protein-α (FAP) is a type II transmembrane serine protease that has specific endopeptidase activity. Given its well-established selective expression in the activated stromal fibroblasts of epithelial cancers, although not in quiescent fibroblasts, FAP has received substantial research attention as a diagnostic marker and therapeutic target. Pancreatic cancer is characterized by an abundant fibrotic or desmoplastic stroma, leading to rapid progression, therapeutic resistance, and poor clinical outcomes. Numerous studies have revealed that the abundant expression of FAP in cancer cells, circulating tumor cells, stromal cells, and cancer-associated fibroblasts (CAFs) of pancreatic adenocarcinoma is implicated in diverse cancer-related signaling pathways, contributing to cancer progression, invasion, migration, metastasis, immunosuppression, and resistance to treatment. In this article, we aim to systematically review the recent advances in research on FAP in pancreatic adenocarcinoma, including its utility as a diagnostic marker, therapeutic potential, and correlation with prognosis. We also describe the functional role of FAP-overexpressing stromal cells, particulary CAFs, in tumor immuno- and metabolic microenvironments, and summarize the mechanisms underlying the contribution of FAP-overexpressing CAFs in pancreatic cancer progression and treatment resistance. Furthermore, we discuss whether targeting FAP-overexpressing CAFs could represent a potential therapeutic strategy and describe the development of FAP-targeted probes for diagnostic imaging. Finally, we assess the emerging basic and clinical studies regarding the bench-to-bedside translation of FAP in pancreatic cancer.
Collapse
Affiliation(s)
- Chien-shan Cheng
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Pei-wen Yang
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yun Sun
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Shao-li Song
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Nuclear Medicine Department, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Zhen Chen
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Zhen Chen,
| |
Collapse
|
45
|
Bartoli F, Elsinga P, Nazario LR, Zana A, Galbiati A, Millul J, Migliorini F, Cazzamalli S, Neri D, Slart RHJA, Erba PA. Automated Radiosynthesis, Preliminary In Vitro/In Vivo Characterization of OncoFAP-Based Radiopharmaceuticals for Cancer Imaging and Therapy. Pharmaceuticals (Basel) 2022; 15:ph15080958. [PMID: 36015106 PMCID: PMC9416253 DOI: 10.3390/ph15080958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
FAP-targeted radiopharmaceuticals represent a breakthrough in cancer imaging and a viable option for therapeutic applications. OncoFAP is an ultra-high-affinity ligand of FAP with a dissociation constant of 680 pM. OncoFAP has been recently discovered and clinically validated for PET imaging procedures in patients with solid malignancies. While more and more clinical validation is becoming available, the need for scalable and robust procedures for the preparation of this new class of radiopharmaceuticals continues to increase. In this article, we present the development of automated radiolabeling procedures for the preparation of OncoFAP-based radiopharmaceuticals for cancer imaging and therapy. A new series of [68Ga]Ga-OncoFAP, [177Lu]Lu-OncoFAP and [18F]AlF-OncoFAP was produced with high radiochemical yields. Chemical and biochemical characterization after radiolabeling confirmed its excellent stability, retention of high affinity for FAP and absence of radiolysis by-products. The in vivo biodistribution of [18F]AlF-NOTA-OncoFAP, a candidate for PET imaging procedures in patients, was assessed in mice bearing FAP-positive solid tumors. The product showed rapid accumulation in solid tumors, with an average of 6.6% ID/g one hour after systemic administration and excellent tumor-to-healthy organs ratio. We have developed simple, quick, safe and robust synthetic procedures for the preparation of theranostic OncoFAP-compounds based on Gallium-68, Lutetium-177 and Fluorine-18 using the commercially available FASTlab synthesis module.
Collapse
Affiliation(s)
- Francesco Bartoli
- Nuclear Medicine, Department of Translational Research and Advanced Technologies in Medicine and Surgery, University of Pisa and Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy;
| | - Philip Elsinga
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands; (P.E.); (L.R.N.); (R.H.J.A.S.)
| | - Luiza Reali Nazario
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands; (P.E.); (L.R.N.); (R.H.J.A.S.)
| | - Aureliano Zana
- Philochem AG, R&D Department, Libernstrasse 3, CH-8112 Otelfingen, Switzerland; (A.Z.); (A.G.); (J.M.); (F.M.); (S.C.)
| | - Andrea Galbiati
- Philochem AG, R&D Department, Libernstrasse 3, CH-8112 Otelfingen, Switzerland; (A.Z.); (A.G.); (J.M.); (F.M.); (S.C.)
| | - Jacopo Millul
- Philochem AG, R&D Department, Libernstrasse 3, CH-8112 Otelfingen, Switzerland; (A.Z.); (A.G.); (J.M.); (F.M.); (S.C.)
| | - Francesca Migliorini
- Philochem AG, R&D Department, Libernstrasse 3, CH-8112 Otelfingen, Switzerland; (A.Z.); (A.G.); (J.M.); (F.M.); (S.C.)
| | - Samuele Cazzamalli
- Philochem AG, R&D Department, Libernstrasse 3, CH-8112 Otelfingen, Switzerland; (A.Z.); (A.G.); (J.M.); (F.M.); (S.C.)
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland;
- Philogen S.p.A., 53100 Siena, Italy
| | - Riemer H. J. A. Slart
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands; (P.E.); (L.R.N.); (R.H.J.A.S.)
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Paola Anna Erba
- Nuclear Medicine, Department of Translational Research and Advanced Technologies in Medicine and Surgery, University of Pisa and Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy;
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands; (P.E.); (L.R.N.); (R.H.J.A.S.)
- Correspondence:
| |
Collapse
|
46
|
Huang J, Chen X, Jiang Y, Zhang C, He S, Wang H, Pu K. Renal clearable polyfluorophore nanosensors for early diagnosis of cancer and allograft rejection. NATURE MATERIALS 2022; 21:598-607. [PMID: 35422505 DOI: 10.1038/s41563-022-01224-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Optical nanoparticles are promising diagnostic tools; however, their shallow optical imaging depth and slow clearance from the body have impeded their use for in vivo disease detection. To address these limitations, we develop activatable polyfluorophore nanosensors with biomarker-triggered nanoparticle-to-molecule pharmacokinetic conversion and near-infrared fluorogenic turn-on response. Activatable polyfluorophore nanosensors can accumulate at the disease site and react with disease-associated proteases to undergo in situ enzyme-catalysed depolymerization. This disease-specific interaction liberates renal-clearable fluorogenic fragments from activatable polyfluorophore nanosensors for non-invasive longitudinal urinalysis and outperforms the gold standard blood and urine assays, providing a level of sensitivity and specificity comparable to those of invasive biopsy and flow cytometry analysis. In rodent models, activatable polyfluorophore nanosensors enable ultrasensitive detection of tumours (1.6 mm diameter) and early diagnosis of acute liver allograft rejection. We anticipate that our modular nanosensor platform may be applied for early diagnosis of a range of diseases via a simple urine test.
Collapse
Affiliation(s)
- Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xiaona Chen
- The First Affiliated Hospital, Zhejiang University School of Medicine; NHC Key Laboratory of Combined Multi-Organ Transplantation; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, P. R. China
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chi Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Shasha He
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Hangxiang Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine; NHC Key Laboratory of Combined Multi-Organ Transplantation; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
47
|
Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, Zhuo W, Hu Y, Chen C, Chen L, Zhou J, Wang L. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond) 2022; 42:401-434. [PMID: 35481621 PMCID: PMC9118050 DOI: 10.1002/cac2.12291] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/06/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment is proposed to contribute substantially to the progression of cancers, including breast cancer. Cancer-associated fibroblasts (CAFs) are the most abundant components of the tumor microenvironment. Studies have revealed that CAFs in breast cancer originate from several types of cells and promote breast cancer malignancy by secreting factors, generating exosomes, releasing nutrients, reshaping the extracellular matrix, and suppressing the function of immune cells. CAFs are also becoming therapeutic targets for breast cancer due to their specific distribution in tumors and their unique biomarkers. Agents interrupting the effect of CAFs on surrounding cells have been developed and applied in clinical trials. Here, we reviewed studies examining the heterogeneity of CAFs in breast cancer and expression patterns of CAF markers in different subtypes of breast cancer. We hope that summarizing CAF-related studies from a historical perspective will help to accelerate the development of CAF-targeted therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Dengdi Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Zhaoqing Li
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Bin Zheng
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Xixi Lin
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yuehong Pan
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Peirong Gong
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Wenying Zhuo
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China.,Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yujie Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Cong Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Lini Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Jichun Zhou
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Linbo Wang
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| |
Collapse
|
48
|
Bête Noire of Chemotherapy and Targeted Therapy: CAF-Mediated Resistance. Cancers (Basel) 2022; 14:cancers14061519. [PMID: 35326670 PMCID: PMC8946545 DOI: 10.3390/cancers14061519] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Tumor cells struggle to survive following treatment. The struggle ends in either of two ways. The drug combination used for the treatment blocks the proliferation of tumor cells and initiates apoptosis of cells, which is a win for the patient, or tumor cells resist the effect of the drug combination used for the treatment and continue to evade the effect of anti-tumor drugs, which is a bête noire of therapy. Cancer-associated fibroblasts are the most abundant non-transformed element of the microenvironment in solid tumors. Tumor cells play a direct role in establishing the cancer-associated fibroblasts’ population in its microenvironment. Since cancer-associated fibroblasts are activated by tumor cells, cancer-associated fibroblasts show unconditional servitude to tumor cells in their effort to resist treatment. Thus, cancer-associated fibroblasts, as the critical or indispensable component of resistance to the treatment, are one of the most logical targets within tumors that eventually progress despite therapy. We evaluate the participatory role of cancer-associated fibroblasts in the development of drug resistance in solid tumors. In the future, we will establish the specific mode of action of cancer-associated fibroblasts in solid tumors, paving the way for cancer-associated-fibroblast-inclusive personalized therapy. Abstract In tumor cells’ struggle for survival following therapy, they resist treatment. Resistance to therapy is the outcome of well-planned, highly efficient adaptive strategies initiated and utilized by these transformed tumor cells. Cancer cells undergo several reprogramming events towards adapting this opportunistic behavior, leading them to gain specific survival advantages. The strategy involves changes within the transformed tumors cells as well as in their neighboring non-transformed extra-tumoral support system, the tumor microenvironment (TME). Cancer-Associated Fibroblasts (CAFs) are one of the components of the TME that is used by tumor cells to achieve resistance to therapy. CAFs are diverse in origin and are the most abundant non-transformed element of the microenvironment in solid tumors. Cells of an established tumor initially play a direct role in the establishment of the CAF population for its own microenvironment. Like their origin, CAFs are also diverse in their functions in catering to the pro-tumor microenvironment. Once instituted, CAFs interact in unison with both tumor cells and all other components of the TME towards the progression of the disease and the worst outcome. One of the many functions of CAFs in influencing the outcome of the disease is their participation in the development of resistance to treatment. CAFs resist therapy in solid tumors. A tumor–CAF relationship is initiated by tumor cells to exploit host stroma in favor of tumor progression. CAFs in concert with tumor cells and other components of the TME are abettors of resistance to treatment. Thus, this liaison between CAFs and tumor cells is a bête noire of therapy. Here, we portray a comprehensive picture of the modes and functions of CAFs in conjunction with their role in orchestrating the development of resistance to different chemotherapies and targeted therapies in solid tumors. We investigate the various functions of CAFs in various solid tumors in light of their dialogue with tumor cells and the two components of the TME, the immune component, and the vascular component. Acknowledgment of the irrefutable role of CAFs in the development of treatment resistance will impact our future strategies and ability to design improved therapies inclusive of CAFs. Finally, we discuss the future implications of this understanding from a therapeutic standpoint and in light of currently ongoing and completed CAF-based NIH clinical trials.
Collapse
|
49
|
Tagirasa R, Yoo E. Role of Serine Proteases at the Tumor-Stroma Interface. Front Immunol 2022; 13:832418. [PMID: 35222418 PMCID: PMC8873516 DOI: 10.3389/fimmu.2022.832418] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 01/19/2023] Open
Abstract
During tumor development, invasion and metastasis, the intimate interaction between tumor and stroma shapes the tumor microenvironment and dictates the fate of tumor cells. Stromal cells can also influence anti-tumor immunity and response to immunotherapy. Understanding the molecular mechanisms that govern this complex and dynamic interplay, thus is important for cancer diagnosis and therapy. Proteolytic enzymes that are expressed and secreted by both cancer and stromal cells play important roles in modulating tumor-stromal interaction. Among, several serine proteases such as fibroblast activation protein, urokinase-type plasminogen activator, kallikrein-related peptidases, and granzymes have attracted great attention owing to their elevated expression and dysregulated activity in the tumor microenvironment. This review highlights the role of serine proteases that are mainly derived from stromal cells in tumor progression and associated theranostic applications.
Collapse
|
50
|
Clinical summary of fibroblast activation protein inhibitor-based radiopharmaceuticals: cancer and beyond. Eur J Nucl Med Mol Imaging 2022; 49:2844-2868. [DOI: 10.1007/s00259-022-05706-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/23/2022] [Indexed: 02/06/2023]
|