1
|
Ziegler J, Cawley J, Istvan S, Press S, Stewart S, Khanna C, Fenger J. Tolerability Assessment of Orally Administered Paclitaxel With Encequidar in Dogs With Spontaneous Malignancy. Vet Comp Oncol 2025; 23:197-204. [PMID: 40010801 DOI: 10.1111/vco.13045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
Paclitaxel is an antimitotic agent that targets elements of the cancer phenotype, including cell proliferation, DNA repair, and apoptosis, predicting its broad activity in a spectrum of cancers. An oral paclitaxel formulation has been developed to overcome challenges associated with parenteral administration of this drug, notably the development of Cremophor-induced acute hypersensitivity reactions, which are particularly problematic in dogs. The aim of this open-label, dose-escalating study was to evaluate the tolerability and determine the maximum tolerated dosage (MTD) and dose-limiting toxicity (DLT) of oral paclitaxel when co-administered with the P-glycoprotein pump inhibitor, encequidar, in dogs with cancer. Paclitaxel was administered as a 3-consecutive-day course starting at 90 mg/m2 with encequidar weekly for 3 weeks, using escalation of 30 mg/m2 increments. MTD was established using a rolling-six dose escalation study design, based on the number of dogs experiencing any DLT assessed after each dosing cycle and during a 28-day post-treatment monitoring period. Nineteen client-owned dogs were enrolled. MTD was established at 90 mg/m2 and the most frequent adverse events (AEs) were gastrointestinal, followed by hematologic, with the majority being self-resolving and low grade. VCOG Grades 3 and 4 gastrointestinal toxicity, Grade 4 neutropenia, and acute kidney injury were defined as DLTs at 120 mg/m2. Conclusions of this study define oral paclitaxel MTD in cancer-bearing dogs at 90 mg/m2 when given with encequidar for 3 consecutive days weekly for 3 weeks. Future Phase 2 trials evaluating the therapeutic activity of oral paclitaxel at its MTD co-administered with encequidar in defined tumour histologies are warranted.
Collapse
Affiliation(s)
- Jordan Ziegler
- Veterinary Specialty Hospital of san Diego, San Diego, California, USA
| | - Jacob Cawley
- Ethos Discovery, San Diego, California, USA
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Stephanie Istvan
- Veterinary Specialty Hospital of san Diego, San Diego, California, USA
| | - Saya Press
- Veterinary Specialty Hospital of san Diego, San Diego, California, USA
| | | | | | | |
Collapse
|
2
|
Zhou X, Zhang P, Yang Y, Shi W, Liu L, Lai Z, Zhang X, Pan P, Li L, Du J, Qian H, Cui S. Highly Potent and Intestine Specific P-Glycoprotein Inhibitor to Enable Oral Delivery of Taxol. Angew Chem Int Ed Engl 2024; 63:e202412649. [PMID: 39137118 DOI: 10.1002/anie.202412649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Taxol is widely used in cancer chemotherapy; however, the oral absorption of Taxol remains a formidable challenge. Since the intestinal p-glycoprotein (P-gp) mediated drug efflux is one of the primary causes, the development of P-gp inhibitor is emerging as a promising strategy to realize Taxol's oral delivery. Because P-gp exists in many tissues, the non-selective P-gp inhibitors would lead to toxicity. Correspondingly, a potent and intestine specific P-gp inhibitor would be an ideal solution to boost the oral absorption of Taxol and avoid exogenous toxicity. Herein, we would like to report a highly potent and intestine specific P-gp inhibitor to enable oral delivery of Taxol in high efficiency. Through a multicomponent reaction and post-modification, various benzofuran-fused-piperidine derivatives were achieved and the biological evaluation identified 16 c with potent P-gp inhibitory activity. Notably, 16 c was intestine specific and showed almost none absorption (F=0.82 %), but possessing higher efficacy than Encequidar to improve the oral absorption of Taxol. In MDA-MB-231 xenograft model, the oral administration of Taxol and 16 c showed high therapeutic efficiency and low toxicity, thus providing a valuable chemotherapy strategy.
Collapse
MESH Headings
- Paclitaxel/administration & dosage
- Paclitaxel/chemistry
- Paclitaxel/pharmacology
- Paclitaxel/pharmacokinetics
- Humans
- Administration, Oral
- Animals
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Mice
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacokinetics
- Cell Line, Tumor
- Molecular Structure
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Xianjing Zhou
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Ping Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Yuyan Yang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Lei Liu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhencheng Lai
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xing Zhang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Peichen Pan
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Lan Li
- Department of Gastroenterology, T, he First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Juan Du
- Department of Gastroenterology, T, he First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Sunliang Cui
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
3
|
Binkhathlan Z, Ali R, Yusuf O, Alomrani AH, Badran MM, Alshememry AK, Alshamsan A, Alqahtani F, Qamar W, Attwa MW. Polycaprolactone-Vitamin E TPGS Micellar Formulation for Oral Delivery of Paclitaxel. Polymers (Basel) 2024; 16:2232. [PMID: 39125257 PMCID: PMC11314731 DOI: 10.3390/polym16152232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
This study aimed to investigate the potential of polycaprolactone-vitamin E TPGS (PCL-TPGS) micelles as a delivery system for oral administration of paclitaxel (PTX). The PCL-TPGS copolymer was synthesized using ring opening polymerization, and PTX-loaded PCL-TPGS micelles (PTX micelles) were prepared via a co-solvent evaporation method. Characterization of these micelles included measurements of size, polydispersity, and encapsulation efficiency. The cellular uptake of PTX micelles was evaluated in Caco-2 cells using rhodamine 123 (Rh123) as a fluorescent probe. Moreover, an everted rat sac study was conducted to evaluate the ex vivo permeability of PTX micelles. Additionally, a comparative pharmacokinetic study of PTX micelles versus the marketed formulation, Ebetaxel® (a Taxol generic), was performed after a single oral administration to rats. The results demonstrated that the micellar formulation significantly improved PTX solubility (nearly 1 mg/mL). The in vitro stability and release of PTX micelles in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) demonstrated that PTX micelles remained stable for up to 24 h and significantly slowed the release of PTX in both media compared to Ebetaxel®. The in vitro cellular uptake, ex vivo intestinal permeability, and in vivo pharmacokinetic profile demonstrated that PTX micelles enhanced the permeability and facilitated a rapid absorption of the drug. Conclusively, the PCL7000-TPGS3500 micelles exhibit potential as an effective oral delivery system for PTX.
Collapse
Affiliation(s)
- Ziyad Binkhathlan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.); (O.Y.); (A.H.A.); (M.M.B.); (A.K.A.); (A.A.)
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Raisuddin Ali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.); (O.Y.); (A.H.A.); (M.M.B.); (A.K.A.); (A.A.)
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Osman Yusuf
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.); (O.Y.); (A.H.A.); (M.M.B.); (A.K.A.); (A.A.)
- Department of Pharmaceutics, Faculty of Pharmacy, Al-Neelain University, Khartoum 11121, Sudan
| | - Abdullah H. Alomrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.); (O.Y.); (A.H.A.); (M.M.B.); (A.K.A.); (A.A.)
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed M. Badran
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.); (O.Y.); (A.H.A.); (M.M.B.); (A.K.A.); (A.A.)
| | - Abdullah K. Alshememry
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.); (O.Y.); (A.H.A.); (M.M.B.); (A.K.A.); (A.A.)
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aws Alshamsan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.); (O.Y.); (A.H.A.); (M.M.B.); (A.K.A.); (A.A.)
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.A.); (W.Q.)
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.A.); (W.Q.)
| | - Mohamed W. Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
4
|
Wileński S, Koper A, Śledzińska P, Bebyn M, Koper K. Innovative strategies for effective paclitaxel delivery: Recent developments and prospects. J Oncol Pharm Pract 2024; 30:367-384. [PMID: 38204196 DOI: 10.1177/10781552231208978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
PURPOSE Paclitaxel is an effective chemotherapeutic agent against a variety of cancer types. However, the clinical utility of paclitaxel is restricted by its poor solubility in water and high toxicity, resulting in low drug tolerance. These difficulties could be resolved by using suitable pharmacological carriers. Hence, it is essential to determine innovative methods of administering this effective medication to overcome paclitaxel's inherent limitations. METHODS An extensive literature search was conducted using multiple electronic databases to identify relevant studies published. RESULTS In this comprehensive analysis, many different paclitaxel delivery systems are covered and discussed, such as albumin-bound paclitaxel, polymeric micelles, paclitaxel-loaded liposomes, prodrugs, cyclodextrins, and peptide-taxane conjugates. Moreover, the review also covers various delivery routes of conventional paclitaxel or novel paclitaxel formulations, such as oral administration, local applications, and intraperitoneal delivery. CONCLUSION In addition to albumin-bound paclitaxel, polymeric micelles appear to be the most promising formulations for innovative drug delivery systems at present. A variety of variants of polymeric micelles are currently undergoing advanced phases of clinical trials.
Collapse
Affiliation(s)
- Sławomir Wileński
- Department of Pharmaceutical Technology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
- Central Cytostatic Drug Department, Hospital Pharmacy, The F. Lukaszczyk Oncology Centre, Bydgoszcz, Poland
| | - Agnieszka Koper
- Department of Oncology and Brachytherapy, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
- Department of Oncology, Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland
| | - Paulina Śledzińska
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, Bydgoszcz, Poland
| | - Marek Bebyn
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, Bydgoszcz, Poland
| | - Krzysztof Koper
- Department of Oncology, Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland
- Department of Clinical Oncology, and Nursing, Department of Oncological Surgery, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| |
Collapse
|
5
|
Salem AM, Dvergsten E, Karovic S, Maitland ML, Gopalakrishnan M. Model-based approach to identify predictors of paclitaxel-induced myelosuppression in "real-world" administration. CPT Pharmacometrics Syst Pharmacol 2023; 12:929-940. [PMID: 37101403 PMCID: PMC10349185 DOI: 10.1002/psp4.12963] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 04/28/2023] Open
Abstract
Taxanes are currently the most frequently used chemotherapeutic agents in cancer care, where real-world use has focused on minimizing adverse events and standardizing the delivery. Myelosuppression is a well-characterized, adverse pharmacodynamic effect of taxanes. Electronic health records (EHRs) comprise data collected during routine clinical care that include patients with heterogeneous demographic, clinical, and treatment characteristics. Application of pharmacokinetic/pharmacodynamic (PK/PD) modeling to EHR data promises new insights on the real-world use of taxanes and strategies to improve therapeutic outcomes especially for populations who are typically excluded from clinical trials, including the elderly. This investigation: (i) leveraged previously published PK/PD models developed with clinical trial data and addressed challenges to fit EHR data, and (ii) evaluated predictors of paclitaxel-induced myelosuppression. Relevant EHR data were collected from patients treated with paclitaxel-containing chemotherapy at Inova Schar Cancer Institute between 2015 and 2019 (n = 405). Published PK models were used to simulate mean individual exposures of paclitaxel and carboplatin, which were linearly linked to absolute neutrophil count (ANC) using a published semiphysiologic myelosuppression model. Elderly patients (≥70 years) constituted 21.2% of the dataset and 2274 ANC measurements were included in the analysis. The PD parameters were estimated and matched previously reported values. The baseline ANC and chemotherapy regimen were significant predictors of paclitaxel-induced myelosuppression. The nadir ANC and use of supportive treatments, such as growth factors and antimicrobials, were consistent across age quantiles suggesting age had no effect on paclitaxel-induced myelosuppression. In conclusion, EHR data could complement clinical trial data in answering key therapeutic questions.
Collapse
Affiliation(s)
- Ahmed M. Salem
- Center for Translational MedicineUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | | | | | - Michael L. Maitland
- Inova Schar Cancer InstituteFairfaxVirginiaUSA
- University of Virginia Comprehensive Cancer CenterCharlottesvilleVirginiaUSA
| | - Mathangi Gopalakrishnan
- Center for Translational MedicineUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| |
Collapse
|
6
|
A phase Ib study of Oraxol (oral paclitaxel and encequidar) in patients with advanced malignancies. Cancer Chemother Pharmacol 2022; 90:7-17. [PMID: 35731258 DOI: 10.1007/s00280-022-04443-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Oraxol is an oral formulation of paclitaxel administered with a novel, minimally absorbed P-glycoprotein inhibitor encequidar (HM30181A). This phase Ib study was conducted to determine the maximum-tolerated dose (MTD) of Oraxol administered at a fixed dose for up to 5 consecutive days in patients with advanced malignancies. METHODS Part 1 of this study utilized a 3 + 3 dose-escalation design to determine the MTD of oral paclitaxel 270 mg plus oral encequidar 15 mg administered daily. Dose escalation was achieved by increasing the number of consecutive dosing days per week (from 2 to 5 days per week). Dosing occurred for 3 consecutive weeks out of a 4-week cycle. Part 2 treated additional patients at the MTD to determine tolerability and recommended phase II dose (RP2D). Adverse events, tumor responses, and pharmacokinetic profiles were assessed. RESULTS A total of 34 patients (n = 24 in Part 1, n = 10 in Part 2) received treatment. The MTD of Oraxol was determined to be 270 mg daily × 5 days per week per protocol definition and this was declared the RP2D. The most common treatment-related adverse events were fatigue, neutropenia, and nausea/vomiting. Hypersensitivity-type reactions were not observed. Of the 28 patients evaluable for response, 2 (7.1%) achieved partial response and 18 (64.3%) achieved stable disease. Pharmacokinetic analysis showed rapid absorption of paclitaxel when administered orally following encequidar. Paclitaxel daily exposure was comparable following 2-5 days dose levels. CONCLUSION The oral administration of encequidar with paclitaxel was safe, achieved clinically relevant paclitaxel levels, and showed evidence of anti-tumor activity.
Collapse
|
7
|
Du J, Zong L, Li M, Yu K, Qiao Y, Yuan Q, Pu X. Two-Pronged Anti-Tumor Therapy by a New Polymer-Paclitaxel Conjugate Micelle with an Anti-Multidrug Resistance Effect. Int J Nanomedicine 2022; 17:1323-1341. [PMID: 35345783 PMCID: PMC8957348 DOI: 10.2147/ijn.s348598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Cancerous tumors are still a major disease that threatens human life, with tumor multidrug resistance (MDR) being one of the main reasons for the failure of chemotherapy. Thus, reversing tumor MDR has become a research focus of medical scientists. Methods Here, a reduction-sensitive polymer prodrug micelle, mPEG-DCA-SS-PTX (PDSP), was manufactured with a new polymer inhibitor of drug resistance as a carrier to overcome MDR and improve the anti-tumor effect of PTX. Results The PDSP micelles display good stability, double-responsive drug release, and excellent biocompatibility. The PDSP micelles reduced the cytotoxicity of PTX to normal HL-7702 cells and enhanced that to SMMC-7721 and MCF-7 cells in vitro. Improved sensitivity of A549/ADR to PDSP was also observed in vitro. Furthermore, in vivo experiments show reduced systemic toxicity and enhanced therapeutic efficacy of PTX to H22 subcutaneous tumor-bearing mice. Conclusion This work proves that the reduction-sensitive polymer prodrug micelles carried by the new polymer inhibitor can be used as an alternative delivery system to target tumors and reverse MDR for paclitaxel and other tumor-resistant drugs.
Collapse
Affiliation(s)
- Juan Du
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, People’s Republic of China
| | - Lanlan Zong
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Mengmeng Li
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Keke Yu
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Yonghui Qiao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Qi Yuan
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Xiaohui Pu
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| |
Collapse
|
8
|
Jackson CGCA, Hung T, Segelov E, Barlow P, Prenen H, McLaren B, Hung NA, Clarke K, Chao TY, Dai MS, Yeh HT, Cutler DL, Kramer D, He J, Zhi J, Chan WK, Kwan R, Deva S. Oral paclitaxel with encequidar compared to intravenous paclitaxel in patients with advanced cancer: A randomised crossover pharmacokinetic study. Br J Clin Pharmacol 2021; 87:4670-4680. [PMID: 33960504 DOI: 10.1111/bcp.14886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/25/2022] Open
Abstract
AIMS Paclitaxel is a widely used anti-neoplastic agent but has low oral bioavailability due to gut extrusion by P-glycoprotein (P-gp). Oral paclitaxel could be more convenient, less resource intensive, and more tolerable than intravenous administration. Encequidar (HM30181A) is a novel, minimally absorbed gut-specific P-gp inhibitor. We tested whether administration of oral paclitaxel with encequidar (oPac+E) achieved comparable AUC to intravenous paclitaxel (IVP) 80 mg/m2 . METHODS We conducted a multi-centre randomised crossover study with two treatment periods. Patients (pts) with advanced cancer received either oral paclitaxel 615 mg/m2 divided over 3 days and encequidar 15 mg orally 1 hour prior, followed by IVP 80 mg/m2 , or the reverse sequence. PK blood samples were taken up to Day 9 for oPac+E and Day 5 for IVP. RESULTS Forty-two patients were enrolled; 35 completed both treatment periods. AUC0-∞ was 5033.5 ± 1401.1 ng.h/mL for oPac+E and 5595.9 ± 1264.1 ng.h/mL with IVP. The geometric mean ratio (GMR) for AUC was 89.50% (90% CI 83.89-95.50). Mean absolute bioavailability of oPac+E was 12% (CV% = 23%). PK parameters did not change meaningfully after 4 weeks administration of oPac+E in an extension study. G3 treatment-emergent adverse events occurred in seven (18%) pts with oPac+E and two (5%) with IVP. Seventy-five per cent of patients preferred oPac+E over IVP. CONCLUSIONS GMR for AUC was within the predefined acceptable range of 80-125% for demonstrating equivalence. oPac+E is tolerable and there is no evidence of P-gp induction with repeat administration. With further study, oPac+E could be an alternative to IVP.
Collapse
Affiliation(s)
| | - Tak Hung
- Zenith Technology Corporation Limited, Dunedin, New Zealand
| | - Eva Segelov
- Monash University and Monash Health, Melbourne, Australia
| | - Paula Barlow
- Auckland District Health Board, Auckland, New Zealand
| | - Hans Prenen
- University Hospital Antwerp, Edegem, Belgium
| | - Blair McLaren
- Southern Blood and Cancer, Southern District Health Board, New Zealand
| | - Noelyn Anne Hung
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | | | - Tsu-Yi Chao
- Taipei Medical University Shuang Ho Hospital, Taiwan
| | | | | | | | | | - Jimmy He
- Athenex Inc., Buffalo, NY, United States
| | - Jay Zhi
- Athenex Inc., Buffalo, NY, United States
| | | | | | - Sanjeev Deva
- Auckland District Health Board, Auckland, New Zealand
| |
Collapse
|
9
|
Vermunt MA, Bergman AM, der Putten EV, Beijnen JH. The intravenous to oral switch of taxanes: strategies and current clinical developments. Future Oncol 2020; 17:1379-1399. [PMID: 33356545 DOI: 10.2217/fon-2020-0876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The taxanes paclitaxel, docetaxel and cabazitaxel are important anticancer agents that are widely used as intravenous treatment for several solid tumor types. Switching from intravenous to oral treatment can be more convenient for patients, improve cost-effectiveness and reduce the demands of chemotherapy treatment on hospital care. However, oral treatment with taxanes is challenging because of pharmaceutical and pharmacological factors that lead to low oral bioavailability. This review summarizes the current clinical developments in oral taxane treatment. Intravenous parent drugs, strategies in the oral switch, individual agents in clinical trials, challenges and further perspectives on treatment with oral taxanes are subsequently discussed.
Collapse
Affiliation(s)
- Marit Ac Vermunt
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Andries M Bergman
- Department of Medical Oncology & Oncogenomics, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Eric van der Putten
- Modra Pharmaceuticals BV, Barbara Strozzilaan 201, Amsterdam, 1083HN, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands.,Modra Pharmaceuticals BV, Barbara Strozzilaan 201, Amsterdam, 1083HN, The Netherlands.,Department of Pharmaceutical Sciences, Utrecht University, Heidelberglaan 100, Utrecht, 3584CX, The Netherlands
| |
Collapse
|
10
|
de Weger VA, Vermunt MAC, Stuurman FE, Burylo AM, Damoiseaux D, Hendrikx JJMA, Sawicki E, Moes JJ, Huitema ADR, Nuijen B, Rosing H, Mergui-Roelvink M, Beijnen JH, Marchetti S. A Phase 1 Dose-Escalation Study of Low-Dose Metronomic Treatment With Novel Oral Paclitaxel Formulations in Combination With Ritonavir in Patients With Advanced Solid Tumors. Clin Pharmacol Drug Dev 2020; 10:607-621. [PMID: 33021083 DOI: 10.1002/cpdd.880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023]
Abstract
ModraPac001 (MP1) and ModraPac005 (MP5) are novel oral paclitaxel formulations that are coadministered with the cytochrome P450 3A4 inhibitor ritonavir (r), enabling daily low-dose metronomic (LDM) treatment. The primary aim of this study was to determine the safety, pharmacokinetics and maximum tolerated dose (MTD) of MP1/r and MP5/r. The second aim was to establish the recommended phase 2 dose (RP2D) as LDM treatment. This was an open-label phase 1 trial. Patients with advanced solid tumors were enrolled according to a classical 3+3 design. After initial employment of the MP1 capsule, the MP5 tablet was introduced. Safety was assessed using the Common Terminology Criteria for Adverse Events version 4.02. Pharmacokinetic sampling was performed on days 1, 2, 8, and 22 for determination of paclitaxel and ritonavir plasma concentrations. In this study, 37 patients were treated with up to twice-daily 30-mg paclitaxel combined with twice-daily 100-mg ritonavir (MP5/r 30-30/100-100) in 9 dose levels. Dose-limiting toxicities were nausea, (febrile) neutropenia, dehydration and vomiting. At the MTD/RP2D of MP5/r 20-20/100-100, the maximum paclitaxel plasma concentration and area under the concentration-time curve until 24 hours were 34.6 ng/mL (coefficient of variation, 79%) and 255 ng • h/mL (coefficient of variation, 62%), respectively. Stable disease was observed as best response in 15 of 31 evaluable patients. Based on these results, LDM therapy with oral paclitaxel coadministrated with ritonavir was considered feasible and safe. The MTD and RP2D were determined as MP5/r 20-20/100-100. Further clinical development of MP5/r as an LDM concept, including potential combination treatment, is warranted.
Collapse
Affiliation(s)
- Vincent A de Weger
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marit A C Vermunt
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frederik E Stuurman
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Artur M Burylo
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - David Damoiseaux
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jeroen J M A Hendrikx
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emilia Sawicki
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Modra Pharmaceuticals BV, Amsterdam, The Netherlands
| | - Johannes J Moes
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Bastiaan Nuijen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marja Mergui-Roelvink
- Division of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Modra Pharmaceuticals BV, Amsterdam, The Netherlands.,Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Serena Marchetti
- Division of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Cao Y, Wei Z, Li M, Wang H, Yin L, Chen D, Wang Y, Chen Y, Yuan Q, Pu X, Zong L, Duan S. Formulation, Pharmacokinetic Evaluation and Cytotoxicity of an Enhanced- penetration Paclitaxel Nanosuspension. Curr Cancer Drug Targets 2020; 19:338-347. [PMID: 29956630 DOI: 10.2174/1568009618666180629150927] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/06/2018] [Accepted: 06/22/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Improving poorly soluble drugs into druggability was a major problem faced by pharmaceutists. Nanosuspension can improve the druggability of insoluble drugs by improving the solubility, chemical stability and reducing the use of additives, which provided a new approach for the development and application of the insoluble drugs formulation. Paclitaxel (PTX) is a well-known BCS class IV drug with poor solubility and permeability. Also, many studies have proved that paclitaxel is a substrate of the membrane-bound drug efflux pump P-glycoprotein (P-gp), therefore it often shows limited efficacy against the resistant tumors and oral absorption or uptake. OBJECTIVE To manufacture an enhanced-penetration PTX nanosuspension (PTX-Nanos), and evaluate the physicochemical property, pharmacokinetics and tissue distribution in vivo and cytotoxic effect in vitro. METHODS PTX-Nanos were prepared by microprecipitation-high pressure homogenization, with a good biocompatibility amphiphilic block copolymer poly(L-phenylalanine)-b-poly(L-aspartic acid) (PPA-PAA) as stabilizer. RESULTS The PTX-Nanos had a sustained-dissolution manner and could effectively reduce plasma peak concentration and extend plasma circulating time as compared to PTX injection, markedly passively targeting the MPS-related organs, such as liver and spleen. This unique property might enhance treatment of cancer in these tissues and reduce the side effects in other normal tissues. Moreover, the hybrid stabilizers could enhance penetration of PTX in PTX-Nanos to multidrug resistance cells. CONCLUSION To sum up, our results showed that the optimal formula could improve the solubility of PTX and the stability of the product. The PTX-Nanos developed in this research would be a promising delivery platform in cancer treatment.
Collapse
Affiliation(s)
- Yanping Cao
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Zhihao Wei
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Mengmeng Li
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Haiyan Wang
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Li Yin
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Dongxiao Chen
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Yanfei Wang
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Yongchao Chen
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Qi Yuan
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Xiaohui Pu
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Lanlan Zong
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China.,National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Shaofeng Duan
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| |
Collapse
|
12
|
Liu X. Transporter-Mediated Drug-Drug Interactions and Their Significance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:241-291. [PMID: 31571167 DOI: 10.1007/978-981-13-7647-4_5] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug transporters are considered to be determinants of drug disposition and effects/toxicities by affecting the absorption, distribution, and excretion of drugs. Drug transporters are generally divided into solute carrier (SLC) family and ATP binding cassette (ABC) family. Widely studied ABC family transporters include P-glycoprotein (P-GP), breast cancer resistance protein (BCRP), and multidrug resistance proteins (MRPs). SLC family transporters related to drug transport mainly include organic anion-transporting polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), organic cation/carnitine transporters (OCTNs), peptide transporters (PEPTs), and multidrug/toxin extrusions (MATEs). These transporters are often expressed in tissues related to drug disposition, such as the small intestine, liver, and kidney, implicating intestinal absorption of drugs, uptake of drugs into hepatocytes, and renal/bile excretion of drugs. Most of therapeutic drugs are their substrates or inhibitors. When they are comedicated, serious drug-drug interactions (DDIs) may occur due to alterations in intestinal absorption, hepatic uptake, or renal/bile secretion of drugs, leading to enhancement of their activities or toxicities or therapeutic failure. This chapter will illustrate transporter-mediated DDIs (including food drug interaction) in human and their clinical significances.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
13
|
Chang S, Wang Y, Zhang T, Pu X, Zong L, Zhu H, Zhao L, Feng B. Redox-Responsive Disulfide Bond-Bridged mPEG-PBLA Prodrug Micelles for Enhanced Paclitaxel Biosafety and Antitumor Efficacy. Front Oncol 2019; 9:823. [PMID: 31508374 PMCID: PMC6719549 DOI: 10.3389/fonc.2019.00823] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/12/2019] [Indexed: 01/11/2023] Open
Abstract
The toxicity and side effects of traditional chemotherapeutic drugs are the main causes of chemotherapy failure. To improve the specificity and selectivity of chemotherapeutic drugs for tumor cells, a novel redox-sensitive polymer prodrug, polyethylene glycol-poly (β-benzyl-L-aspartate) (PEG-PBLA)-SS-paclitaxel (PPSP), was designed and synthesized in this study. The PPSP micelle was manufactured via high-speed dispersion stirring and dialysis. The particle size and zeta potential of this prodrug micelle were 63.77 ± 0.91 nm and −25.8 ± 3.24 mV, respectively. The micelles were uniformly distributed and presented a spherical morphology under a transmission electron microscope. In the tumor physiological environment, the particle size of the PPSP micelles and the release rate of paclitaxel (PTX) were significantly increased compared with those of mPEG-PBLA-CC-PTX (PPCP) micelles, reflecting the excellent redox-sensitive activity of the PPSP micelles. The inhibitory effect of PPSP on HepG2, MCF-7 and HL-7702 cell proliferation was investigated with MTT assays, and the results demonstrated that PPSP is superior to PTX with respect to the inhibition of two tumor cell types at different experimental concentration. Simultaneously PPSP has lower toxicity against HL-7702 cells then PTX and PPCP. Moreover, the blank micelle from mPEG-PBLA showed no obvious toxicity to the two tumor cells at different experimental concentrations. In summary, the redox-sensitive PPSP micelle significantly improved the biosafety and the anti-tumor activity of PTX.
Collapse
Affiliation(s)
- Sheng Chang
- College of Pharmacy, Jilin Medical University, Jilin, China
| | - Yanfei Wang
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Tianyi Zhang
- College of Pharmacy, Jilin Medical University, Jilin, China
| | - Xiaohui Pu
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Lanlan Zong
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Heyun Zhu
- College of Pharmacy, Jilin Medical University, Jilin, China
| | - Luling Zhao
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Bo Feng
- College of Pharmacy, Jilin Medical University, Jilin, China
| |
Collapse
|
14
|
Breast milk paclitaxel excretion following intravenous chemotherapy-a case report. Br J Cancer 2019; 121:421-424. [PMID: 31363168 PMCID: PMC6738114 DOI: 10.1038/s41416-019-0529-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/13/2019] [Accepted: 07/02/2019] [Indexed: 11/08/2022] Open
Abstract
Breast cancer can be diagnosed during pregnancy and in the peri-partum period, and the potential exposure of a foetus or neonate to chemotherapy is of concern to mothers and clinicians. Paclitaxel is a commonly used agent in breast cancer, but little is known about its excretion in breast milk. Breastfeeding during chemotherapy has been traditionally cautioned against due to the risk of neonatal exposure to chemotherapy agents, however, data are limited. We measured serum and breast milk concentrations of paclitaxel in a 33-year-old woman with an early breast cancer diagnosed during pregnancy and treated with weekly paclitaxel 80 mg/m2. We found breast milk paclitaxel levels drop below the minimum quantifiable dose at 72 h following chemotherapy, with a relative infant dose of 0.091%. Breast milk excretion of paclitaxel following a dose of 80 mg/m2 is negligible at 72 h, and this may be a safe time to recommence breastfeeding following exposure.
Collapse
|
15
|
Zhang Y, Mao Z, Wang B, Zhang J, Lu N, Hong R, Dong S, Yao C, Liu QH. Enhanced Antitumor Efficacy Achieved Through Combination of nsPEFs and Low-Dosage Paclitaxel. IEEE Trans Biomed Eng 2019; 66:3129-3135. [PMID: 30794505 DOI: 10.1109/tbme.2019.2900720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Looking for a safe and effective cancer therapy for patients is becoming an important and promising research direction. Nanosecond pulsed electric field (nsPEF) has been found to be a potential non-thermal therapeutic technique with few side effects in pre-clinical studies. On the other hand, paclitaxel (PTX), as a common chemotherapeutic agent, shows full anti-tumor activities and is used to treat a wide variety of cancers. However, the delivery of PTX is challenging due to its poor aqueous solubility. Hence, high dosages of PTX have been used to achieve effective treatment, which creates some side effects. In this study, nsPEF was combined with low-level PTX, in order to validate if this combined treatment could bring about enhanced efficacy and allow reduced doses of PTX in clinical application. Cell proliferation, apoptosis, and cell cycle distribution were examined using MTT and flow cytometry assay, respectively. Results showed that combination treatments of nsPEF and PTX exhibited significant synergistic effects in vitro. The underlying mechanism might be that these two agents acted at different targets and coordinately enhanced MDA-MB-231 cell death.
Collapse
|
16
|
Shih TC, Liu R, Fung G, Bhardwaj G, Ghosh PM, Lam KS. A Novel Galectin-1 Inhibitor Discovered through One-Bead Two-Compound Library Potentiates the Antitumor Effects of Paclitaxel in vivo. Mol Cancer Ther 2017; 16:1212-1223. [PMID: 28396365 DOI: 10.1158/1535-7163.mct-16-0690] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/16/2016] [Accepted: 04/03/2017] [Indexed: 01/03/2023]
Abstract
Through the one-bead two-compound (OB2C) ultra-high-throughput screening method, we discovered a new small-molecule compound LLS2 that can kill a variety of cancer cells. Pull-down assay and LC/MS-MS indicated that galectin-1 is the target protein of LLS2. Galectin-1 is known to be involved in the regulation of proliferation, apoptosis, cell cycle, and angiogenesis. Binding of LLS2 to galectin-1 decreased membrane-associated H-Ras and K-Ras and contributed to the suppression of pErk pathway. Importantly, combination of LLS2 with paclitaxel (a very important clinical chemotherapeutic agent) was found to exhibit synergistic activity against several human cancer cell lines (ovarian cancer, pancreatic cancer, and breast cancer cells) in vitro Furthermore, in vivo therapeutic study indicated that combination treatment with paclitaxel and LLS2 significantly inhibits the growth of ovarian cancer xenografts in athymic mice. Our results presented here indicate that the OB2C combinatorial technology is a highly efficient drug screening platform, and LLS2 discovered through this method can be further optimized for anticancer drug development. Mol Cancer Ther; 16(7); 1212-23. ©2017 AACR.
Collapse
Affiliation(s)
- Tsung-Chieh Shih
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California.
| | - Gabriel Fung
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California
| | - Gaurav Bhardwaj
- Department of Biochemistry, University of Washington, Seattle, Washington
| | - Paramita M Ghosh
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California.,Department of Urology, University of California Davis, Sacramento, California.,VA Northern California Health Care System, Sacramento, California
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California.
| |
Collapse
|
17
|
Pangeni R, Choi SW, Jeon OC, Byun Y, Park JW. Multiple nanoemulsion system for an oral combinational delivery of oxaliplatin and 5-fluorouracil: preparation and in vivo evaluation. Int J Nanomedicine 2016; 11:6379-6399. [PMID: 27942212 PMCID: PMC5138023 DOI: 10.2147/ijn.s121114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Oxaliplatin (OXA) is a third-generation cisplatin analog that has been approved as first-line chemotherapy in combination with 5-fluorouracil (5-FU) for the treatment of resectable and advanced colorectal cancer. However, the therapeutic efficacy of oral OXA and 5-FU is limited by their low bioavailability due to poor membrane permeability. The aim of the present study was to develop an oral delivery system for OXA and 5-FU. We constructed an ion-pairing complex of OXA with a deoxycholic acid derivative (Nα-deoxycholyl-l-lysyl-methylester, DCK) (OXA/DCK) as a permeation enhancer. Next, we prepared multiple water-in-oil-in-water nanoemulsions incorporating OXA/DCK and 5-FU to enhance their oral absorption. To evaluate their membrane permeability, we assessed in vitro permeabilities of OXA/DCK and 5-FU through an artificial intestinal membrane and Caco-2 cell monolayer. Finally, oral bioavailability in rats and tumor growth inhibition in the colorectal adenocarcinoma cell (CT26)-bearing mouse model were investigated after oral administration of nanoemulsion containing OXA/DCK and 5-FU. The droplet size of the optimized nanoemulsion was 20.3±0.22 nm with a zeta potential of −4.65±1.68 mV. In vitro permeabilities of OXA/DCK and 5-FU from the nanoemulsion through a Caco-2 cell monolayer were 4.80- and 4.30-fold greater than those of OXA and 5-FU, respectively. The oral absorption of OXA/DCK and 5-FU from the nanoemulsion also increased significantly, and the resulting oral bioavailability values of OXA/DCK and 5-FU in the nanoemulsive system were 9.19- and 1.39-fold higher than those of free OXA and 5-FU, respectively. Furthermore, tumor growth in CT26 tumor-bearing mice given the oral OXA/DCK- and 5-FU-loaded nanoemulsion was maximally inhibited by 73.9%, 48.5%, and 38.1%, compared with tumor volumes in the control group and the oral OXA and 5-FU groups, respectively. These findings demonstrate the therapeutic potential of a nanoemulsion incorporating OXA/DCK and 5-FU as an oral combination therapy for colorectal cancer.
Collapse
Affiliation(s)
- Rudra Pangeni
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun
| | - Sang Won Choi
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun
| | - Ok-Cheol Jeon
- Pharosgen R&D Center, Asan Institute for Life Sciences
| | - Youngro Byun
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jin Woo Park
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun
| |
Collapse
|
18
|
Parayath NN, Nehoff H, Norton SE, Highton AJ, Taurin S, Kemp RA, Greish K. Styrene maleic acid-encapsulated paclitaxel micelles: antitumor activity and toxicity studies following oral administration in a murine orthotopic colon cancer model. Int J Nanomedicine 2016; 11:3979-91. [PMID: 27574427 PMCID: PMC4993259 DOI: 10.2147/ijn.s110251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Oral administration of paclitaxel (PTX), a broad spectrum anticancer agent, is challenged by its low uptake due to its poor bioavailability, efflux through P-glycoprotein, and gastrointestinal toxicity. We synthesized PTX nanomicelles using poly(styrene-co-maleic acid) (SMA). Oral administration of SMA-PTX micelles doubled the maximum tolerated dose (60 mg/kg vs 30 mg/kg) compared to the commercially available PTX formulation (PTX [Ebewe]). In a murine orthotopic colon cancer model, oral administration of SMA-PTX micelles at doses 30 mg/kg and 60 mg/kg reduced tumor weight by 54% and 69%, respectively, as compared to the control group, while no significant reduction in tumor weight was observed with 30 mg/kg of PTX (Ebewe). In addition, toxicity of PTX was largely reduced by its encapsulation into SMA. Furthermore, examination of the tumors demonstrated a decrease in the number of blood vessels. Thus, oral delivery of SMA-PTX micelles may provide a safe and effective strategy for the treatment of colon cancer.
Collapse
Affiliation(s)
| | | | - Samuel E Norton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew J Highton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Sebastien Taurin
- Department of Pharmacology and Toxicology
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, USA
| | - Roslyn A Kemp
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Khaled Greish
- Department of Pharmacology and Toxicology
- Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
19
|
Lim HS, Bae KS, Jung JA, Noh YH, Hwang AK, Jo YW, Hong YS, Kim K, Lee JL, Joon Park S, Kim JE, Kang YK, Kim TW. Predicting the Efficacy of an Oral Paclitaxel Formulation (DHP107) Through Modeling and Simulation. Clin Ther 2015; 37:402-17. [DOI: 10.1016/j.clinthera.2014.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/21/2014] [Accepted: 12/08/2014] [Indexed: 11/26/2022]
|
20
|
Chiang PC, Gould S, Nannini M, Qin A, Deng Y, Arrazate A, Kam KR, Ran Y, Wong H. Nanosuspension delivery of paclitaxel to xenograft mice can alter drug disposition and anti-tumor activity. NANOSCALE RESEARCH LETTERS 2014; 9:156. [PMID: 24685243 PMCID: PMC3994220 DOI: 10.1186/1556-276x-9-156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/22/2014] [Indexed: 06/03/2023]
Abstract
Paclitaxel is a common chemotherapeutic agent that is effective against various cancers. The poor aqueous solubility of paclitaxel necessitates a large percentage of Cremophor EL:ethanol (USP) in its commercial formulation which leads to hypersensitivity reactions in patients. We evaluate the use of a crystalline nanosuspension versus the USP formulation to deliver paclitaxel to tumor-bearing xenograft mice. Anti-tumor efficacy was assessed following intravenous administration of three 20 mg/kg doses of paclitaxel. Paclitaxel pharmacokinetics and tissue distribution were evaluated, and differences were observed between the two formulations. Plasma clearance and tissue to plasma ratio of mice that were dosed with the nanosuspension are approximately 33- and 11-fold higher compared to those of mice that were given the USP formulation. Despite a higher tumor to plasma ratio for the nanosuspension treatment group, absolute paclitaxel tumor exposure was higher for the USP group. Accordingly, a higher anti-tumor effect was observed in the xenograft mice that were dosed with the USP formulation (90% versus 42% tumor growth inhibition). This reduction in activity of nanoparticle formulation appeared to result from a slower than anticipated dissolution in vivo. This study illustrates a need for careful consideration of both dose and systemic solubility prior utilizing nanosuspension as a mode of intravenous delivery.
Collapse
Affiliation(s)
- Po-Chang Chiang
- Department of Pharmaceutics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stephen Gould
- Department of In-Vivo Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Michelle Nannini
- Department of In-Vivo Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ann Qin
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yuzhong Deng
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alfonso Arrazate
- Department of In-Vivo Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kimberly R Kam
- Department of Pharmaceutics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yingqing Ran
- Department of Pharmaceutics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Harvey Wong
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
21
|
Abstract
The current regimen of chemotherapy is far from satisfactory--its efficiency is limited and patients suffer from serious side effects. Various drug delivery devices have been under intensive investigation in the past few decades in attempts to develop controlled and targeted methods of chemotherapy administration. This article reviews the latest developments in nanoparticles of biodegradable polymers for chemotherapy of cancer and other diseases such as cardiovascular restenosis. The preliminary results obtained in the author's laboratory are used to demonstrate the concept. This review is written with the belief that engineering, in particular, chemical engineering principles, can be applied and further developed to solve the problems in the current practice of chemotherapy and promote a new concept of chemotherapy - chemotherapy at home.
Collapse
Affiliation(s)
- Si-Shen Feng
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260.
| |
Collapse
|
22
|
Inhibition of OATP1B1 by tyrosine kinase inhibitors: in vitro-in vivo correlations. Br J Cancer 2014; 110:894-8. [PMID: 24398510 PMCID: PMC3929889 DOI: 10.1038/bjc.2013.811] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/04/2013] [Accepted: 12/06/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Several tyrosine kinase inhibitors (TKIs) can decrease docetaxel clearance in patients by an unknown mechanism. We hypothesised that these interactions are mediated by the hepatic uptake transporter OATP1B1. METHODS The influence of 16 approved TKIs on transport was studied in vitro using HEK293 cells expressing OATP1B1 or its mouse equivalent Oatp1b2. Pharmacokinetic studies were performed with Oatp1b2-knockout and OATP1B1-transgenic mice. RESULTS All docetaxel-interacting TKIs, including sorafenib, were identified as potent inhibitors of OATP1B1 in vitro. Although Oatp1b2 deficiency in vivo was associated with increased docetaxel exposure, single- or multiple-dose sorafenib did not influence docetaxel pharmacokinetics. CONCLUSION These findings highlight the importance of identifying proper preclinical models for verifying and predicting TKI-chemotherapy interactions involving transporters.
Collapse
|
23
|
Jibodh RA, Lagas JS, Nuijen B, Beijnen JH, Schellens JH. Taxanes: Old drugs, new oral formulations. Eur J Pharmacol 2013; 717:40-6. [DOI: 10.1016/j.ejphar.2013.02.058] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 01/30/2013] [Accepted: 02/05/2013] [Indexed: 11/30/2022]
|
24
|
Mei L, Zhang Z, Zhao L, Huang L, Yang XL, Tang J, Feng SS. Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev 2013; 65:880-90. [PMID: 23220325 DOI: 10.1016/j.addr.2012.11.005] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 10/28/2012] [Accepted: 11/07/2012] [Indexed: 01/01/2023]
Abstract
Oral chemotherapy is an important topic in the 21st century medicine, which may radically change the current regimen of chemotherapy and greatly improve the quality of life of the patients. Unfortunately, most anticancer drugs, especially those of high therapeutic efficacy such as paclitaxel and docetaxel, are not orally bioavailable due to the gastrointestinal (GI) drug barrier. The molecular basis of the GI barrier has been found mainly due to the multidrug efflux proteins, i.e. P-type glycoproteins (P-gp), which are rich in the epithelial cell membranes in the GI tract. Medical solution for oral chemotherapy is to apply P-gp inhibitors such as cyclosporine A, which, however, suppress the body's immune system either, thus causing medical complication. Pharmaceutical nanotechnology, which is to apply and further develop nanotechnology to solve the problems in drug delivery, may provide a better solution and thus change the way we make drug and the way we take drug. This review is focused on the problems encountered in oral chemotherapy and the pharmaceutical nanotechnology solutions such as prodrugs, nanoemulsions, dendrimers, micelles, liposomes, solid lipid nanoparticles and nanoparticles of biodegradable polymers. Proof-of-concept in vitro and in vivo results for oral delivery of anticancer drugs by the various nanocarriers, which can be found so far from the literature, are provided.
Collapse
|
25
|
Sezgin-Bayindir Z, Onay-Besikci A, Vural N, Yuksel N. Niosomes encapsulating paclitaxel for oral bioavailability enhancement: preparation, characterization, pharmacokinetics and biodistribution. J Microencapsul 2013; 30:796-804. [DOI: 10.3109/02652048.2013.788088] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Kadiyala I, Tan E. Formulation approaches in mitigating toxicity of orally administrated drugs. Pharm Dev Technol 2013; 18:305-12. [DOI: 10.3109/10837450.2012.734516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 2012. [DOI: 10.1016/j.addr.2012.09.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
28
|
Zee YK, Goh BC, Lee SC. Pharmacologic modulation strategies to reduce dose requirements of anticancer therapy while preserving clinical efficacy. Future Oncol 2012; 8:731-49. [PMID: 22764771 DOI: 10.2217/fon.12.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Drug interactions may be exploited to overcome pharmacokinetic issues in order to improve the therapeutic index of a drug, with clinical goals of reducing the dose of the active drug while preserving efficacy or reducing toxicity. This strategy has been used in infectious disease and transplant medicine, and, more recently, in oncology. Pharmacologic modulation strategies range from coadministration of either a drug that inhibits a metabolizing enzyme that would inactivate the drug of interest, a drug that induces an enzyme that activates the drug of interest or a drug that inhibits transporters that affect the uptake or elimination of the drug of interest. This review will discuss pharmacologic modulation strategies that have been tested clinically in order to increase systemic drug exposure. Important examples include ketoconazole inhibition of hepatic CYP3A4 in order to increase systemic exposure to docetaxel, irinotecan and etoposide, and cyclosporine inhibition of intestinal ATP-binding cassette transporters in order to decrease the toxicity of irinotecan and increase the bioavailability of oral docetaxel, paclitaxel and topotecan.
Collapse
Affiliation(s)
- Ying-Kiat Zee
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | | | | |
Collapse
|
29
|
Zeng N, Gao X, Hu Q, Song Q, Xia H, Liu Z, Gu G, Jiang M, Pang Z, Chen H, Chen J, Fang L. Lipid-based liquid crystalline nanoparticles as oral drug delivery vehicles for poorly water-soluble drugs: cellular interaction and in vivo absorption. Int J Nanomedicine 2012; 7:3703-18. [PMID: 22888230 PMCID: PMC3414211 DOI: 10.2147/ijn.s32599] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Lipid-based liquid crystalline nanoparticles (LCNPs) have attracted growing interest as novel drug-delivery systems for improving the bioavailability of both hydrophilic and hydrophobic drugs. However, their cellular interaction and in vivo behavior have not been fully developed and characterized. Methods In this study, self-assembled LCNPs prepared from soy phosphatidylcholine and glycerol dioleate were developed as a platform for oral delivery of paclitaxel. The particle size of empty LCNPs and paclitaxel-loaded LCNPs was around 80 nm. The phase behavior of the liquid crystalline matrix was characterized using crossed polarized light microscopy and small-angle X-ray scattering, and showed both reversed cubic and hexagonal phase in the liquid crystalline matrix. Transmission electron microscopy and cryofield emission scanning electron microscopy analysis revealed an inner winding water channel in LCNPs and a “ ball-like”/“hexagonal” morphology. Results Cellular uptake of LCNPs in Caco-2 cells was found to be concentration-dependent and time-dependent, with involvement of both clathrin and caveolae/lipid raft-mediated endocytosis. Under confocal laser scanning microscopy, soy phosphatidylcholine was observed to segregate from the internalized LCNPs and to fuse with the cell membrane. An in vivo pharmacokinetic study showed that the oral bioavailability of paclitaxel-loaded LCNPs (13.16%) was 2.1 times that of Taxol® (the commercial formulation of paclitaxel, 6.39%). Conclusion The findings of this study suggest that this LCNP delivery system may be a promising candidate for improving the oral bioavailability of poorly water-soluble agents.
Collapse
Affiliation(s)
- Ni Zeng
- Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
A phase I study of DHP107, a mucoadhesive lipid form of oral paclitaxel, in patients with advanced solid tumors: Crossover comparisons with intravenous paclitaxel. Invest New Drugs 2012; 31:616-22. [DOI: 10.1007/s10637-012-9841-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/27/2012] [Indexed: 11/30/2022]
|
31
|
Hu S, Niu H, Inaba H, Orwick S, Rose C, Panetta JC, Yang S, Pounds S, Fan Y, Calabrese C, Rehg JE, Campana D, Rubnitz JE, Baker SD. Activity of the multikinase inhibitor sorafenib in combination with cytarabine in acute myeloid leukemia. J Natl Cancer Inst 2011; 103:893-905. [PMID: 21487100 PMCID: PMC3110171 DOI: 10.1093/jnci/djr107] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 02/14/2011] [Accepted: 02/25/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a genetically heterogeneous cancer that frequently exhibits aberrant kinase signaling. We investigated a treatment strategy combining sorafenib, a multikinase inhibitor with limited single-agent activity in AML, and cytarabine, a key component of AML chemotherapy. METHODS Using 10 human AML cell lines, we determined the effects of sorafenib (10 μM) on antileukemic activity by measuring cell viability, proliferation, ERK1/2 signaling, and apoptosis. We also investigated the effects of sorafenib treatment on the accumulation of cytarabine and phosphorylated metabolites in vitro. A human equivalent dose of sorafenib in nontumor-bearing NOD-SCID-IL2Rγ(null) mice was determined by pharmacokinetic studies using high performance liquid chromatography with tandem mass spectrometric detection, and steady-state concentrations were estimated by the fit of a one-compartment pharmacokinetic model to concentration-time data. The antitumor activity of sorafenib alone (60 mg/kg) twice daily, cytarabine alone (6.25 mg/kg administered intraperitoneally), or sorafenib once or twice daily plus cytarabine was evaluated in NOD-SCID-IL2Rγ(null) mice bearing AML xenografts. RESULTS Sorafenib at 10 μM inhibited cell viability, proliferation and ERK1/2 signaling, and induced apoptosis in all cell lines studied. Sorafenib also increased the cellular accumulation of cytarabine and metabolites resulting in additive to synergistic antileukemic activity. A dose of 60 mg/kg in mice produced a human equivalent sorafenib steady-state plasma exposure of 10 μM. The more dose-intensive twice-daily sorafenib plus cytarabine (n = 15) statistically significantly prolonged median survival in an AML xenograft model compared with sorafenib once daily plus cytarabine (n = 12), cytarabine alone (n = 26), or controls (n = 27) (sorafenib twice daily plus cytarabine, median survival = 46 days; sorafenib once daily plus cytarabine, median survival = 40 days; cytarabine alone, median survival = 36 days; control, median survival = 19 days; P < .001 for combination twice daily vs all other treatments listed). CONCLUSIONS Sorafenib in combination with cytarabine resulted in strong anti-AML activity in vitro and in vivo. These results warrant clinical evaluation of sorafenib with cytarabine-based regimens in molecularly heterogeneous AML.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Benzenesulfonates/administration & dosage
- Benzenesulfonates/pharmacokinetics
- Benzenesulfonates/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Chromatography, High Pressure Liquid
- Confounding Factors, Epidemiologic
- Cytarabine/administration & dosage
- Cytarabine/pharmacology
- Disease Models, Animal
- Drug Administration Schedule
- Gene Expression Regulation, Neoplastic
- Humans
- Interleukin Receptor Common gamma Subunit/deficiency
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mitogen-Activated Protein Kinase 1/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 3/metabolism
- Multidrug Resistance-Associated Proteins/metabolism
- Niacinamide/analogs & derivatives
- Phenylurea Compounds
- Protein Kinase Inhibitors/administration & dosage
- Protein Kinase Inhibitors/pharmacokinetics
- Protein Kinase Inhibitors/pharmacology
- Pyridines/administration & dosage
- Pyridines/pharmacokinetics
- Pyridines/pharmacology
- Signal Transduction/drug effects
- Sorafenib
- Tandem Mass Spectrometry
- Time Factors
- Transplantation, Heterologous
- Treatment Outcome
Collapse
Affiliation(s)
- Shuiying Hu
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Si-Shen Feng
- Department of Chemical & Biomolecular Engineering & NUS Nanoscience and Nanotechnology Initiative (NUSNNI), National University of Singapore Block E3, 05–29, 2 Engineering Drive 3, Singapore 117576, Singapore
| | - Lingyun Zhao
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Jintian Tang
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
33
|
Alani AW, Rao DA, Seidel R, Wang J, Jiao J, Kwon GS. The Effect of Novel Surfactants and Solutol® HS 15 on Paclitaxel Aqueous Solubility and Permeability Across a Caco-2 Monolayer. J Pharm Sci 2010; 99:3473-85. [DOI: 10.1002/jps.22111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Oostendorp RL, Buckle T, Lambert G, Garrigue JS, Beijnen JH, Schellens JHM, van Tellingen O. Paclitaxel in self-micro emulsifying formulations: oral bioavailability study in mice. Invest New Drugs 2010; 29:768-76. [PMID: 20390333 PMCID: PMC3160553 DOI: 10.1007/s10637-010-9421-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Accepted: 03/09/2010] [Indexed: 12/02/2022]
Abstract
The anticancer drug paclitaxel is formulated for i.v. administration in a mixture of Cremophor EL and ethanol. Its oral bioavailability is very low due to the action of P-glycoprotein in the gut wall and CYP450 in gut wall and liver. However, proof-of-concept studies using the i.v. formulation diluted in drinking water have demonstrated the feasibility of the oral route as an alternative when given in combination with inhibitors of P-glycoprotein and CYP450. Because of the unacceptable pharmaceutical properties of the drinking solution, a better formulation for oral application is needed. We have evaluated the suitability of various self-micro emulsifying oily formulations (SMEOF’s) of paclitaxel for oral application using wild-type and P-glycoprotein knockout mice and cyclosporin A (CsA) as P-glycoprotein and CYP450 inhibitor. The oral bioavailability of paclitaxel in all SMEOF’s without concomitant CsA was low in wild-type mice, showing that this vehicle does not enhance intestinal uptake by itself. Paclitaxel (10 mg/kg) in SMEOF#3 given with CsA resulted in plasma levels that were comparable to the Cremophor EL-ethanol containing drinking solution plus CsA. Whereas the AUC increased linearly with the oral paclitaxel dose in P-glycoprotein knockout mice, it increased less than proportional in wild-type mice given with CsA. In both strains more unchanged paclitaxel was recovered in the feces at higher doses. This observation most likely reflects more profound precipitation of paclitaxel within the gastro-intestinal tract at higher doses. The resulting absolute reduction in absorption of paclitaxel from the gut was possibly concealed by partial saturation of first-pass metabolism when P-glycoprotein was absent. In conclusion, SMEOF’s maybe a useful vehicle for oral delivery of paclitaxel in combination with CsA, although the physical stability within the gastro-intestinal tract remains a critical issue, especially when applied at higher dose levels.
Collapse
Affiliation(s)
- Roos L. Oostendorp
- Division of Experimental Therapy, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - T. Buckle
- Clinical Chemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - G. Lambert
- Novagali Pharma S.A., Batiment Genavir IV, 1 rue Pierre Fontaine, FR-91058 Evry Cedex, France
| | - J. S. Garrigue
- Novagali Pharma S.A., Batiment Genavir IV, 1 rue Pierre Fontaine, FR-91058 Evry Cedex, France
| | - J. H. Beijnen
- Faculty of Science, Department of Pharmaceutical Sciences, Division of Biomedical Analysis, Utrecht University, Sorbonnelaan 16, 3584CA Utrecht, The Netherlands
- Depatment of Pharmacy, The Netherlands Cancer Institute, Louwesweg 6, 1066 EC Amsterdam, The Netherlands
| | - J. H. M. Schellens
- Division of Experimental Therapy, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
- Faculty of Science, Department of Pharmaceutical Sciences, Division of Biomedical Analysis, Utrecht University, Sorbonnelaan 16, 3584CA Utrecht, The Netherlands
- Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - O. van Tellingen
- Clinical Chemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
35
|
Koolen SLW, Beijnen JH, Schellens JHM. Intravenous-to-Oral Switch in Anticancer Chemotherapy: A Focus on Docetaxel and Paclitaxel. Clin Pharmacol Ther 2009; 87:126-9. [DOI: 10.1038/clpt.2009.233] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Kuppens IELM, Breedveld P, Beijnen JH, Schellens JHM. Modulation of Oral Drug Bioavailability: From Preclinical Mechanism to Therapeutic Application. Cancer Invest 2009; 23:443-64. [PMID: 16193644 DOI: 10.1081/cnv-58823] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Currently, more than one fourth of all anticancer drugs are developed as oral formulations, and it is expected that this number will increase substantially in the near future. To enable oral drug therapy, adequate oral bioavailability must be achieved. Factors that have proved to be important in limiting the oral bioavailability are the presence of ATP-binding cassette drug transporters (ABC transporters) and the cytochrome P450 enzymes. We discuss the tissues distribution and physiological function of the ABC transporters in the human body, their expression in tumors, currently known polymorphisms and drugs that are able to inhibit their function as transporter. Furthermore, the role of the ABC transporters and drug-metabolizing enzymes as mechanisms to modulate the pharmacokinetics of anticancer agents, will be reviewed. Finally, some clinical examples of oral drug modulation are discussed. Among these examples are the coadministration of paclitaxel with CsA, a CYP3A4 substrate with P-glycoprotein (P-gp) modulating activity, and topotecan combined with the BCRP/P-gp transport inhibitor elacridar. Both are good examples of improvement of oral drug bioavailability by temporary inhibition of drug transporters in the gut epithelium.
Collapse
Affiliation(s)
- Isa E L M Kuppens
- Department of Medical Oncology, Antoni van Leeuwenhoek Hospital/The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
37
|
Föger F, Malaivijitnond S, Wannaprasert T, Huck C, Bernkop-Schnürch A, Werle M. Effect of a thiolated polymer on oral paclitaxel absorption and tumor growth in rats. J Drug Target 2008; 16:149-55. [DOI: 10.1080/10611860701850130] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Chu Z, Chen JS, Liau CT, Wang HM, Lin YC, Yang MH, Chen PM, Gardner ER, Figg WD, Sparreboom A. Oral bioavailability of a novel paclitaxel formulation (Genetaxyl) administered with cyclosporin A in cancer patients. Anticancer Drugs 2008; 19:275-81. [PMID: 18510173 PMCID: PMC2718426 DOI: 10.1097/cad.0b013e3282f3fd2e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The formulation excipient Cremophor EL (CrEL) is known to limit the absorption of oral paclitaxel given together with cyclosporin A. We hypothesized that the use of oral Genetaxyl, a paclitaxel formulation containing only 20% CrEL would have an improved oral bioavailability. Cohorts of six patients were treated with oral Genetaxyl at a dose of 60, 120, or 180 mg/m2 and 10 mg/kg of oral cyclosporin A in cycle 1. In cycle 2, patients received intravenous (i.v.) Genetaxyl (175 mg/m2, 3-h infusion). Three additional patients received one dose of generic i.v. paclitaxel (Genaxol, containing 50% CrEL; 175mg/m2, 3-h infusion). The median area under the plasma concentration-time curve (AUC) and peak concentration of total paclitaxel following i.v. Genetaxyl were lower than those for i.v. Genaxol, as a result of significantly increased clearance (P = 0.017), and the AUC ratio for unbound to total paclitaxel for i.v. Genetaxyl was about two times higher than that for i.v. Genaxol (P = 0.0077). After oral administration of Genetaxyl at doses of 60, 120, and 180 mg/m2, the median total paclitaxel AUCs were 1.29, 1.60, and 1.85 microg x h/ml, respectively, suggesting a less than proportional increase in systemic exposure with increasing doses. The corresponding median values for the apparent bioavailability of oral Genetaxyl were similar when compared with i.v. Genetaxyl, when calculated either on the basis of data for total paclitaxel (30.1%) or unbound paclitaxel (30.6%).
Collapse
Affiliation(s)
- Zyting Chu
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jen-Shi Chen
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taipei, Taiwan
| | - Chi-Ting Liau
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taipei, Taiwan
| | - Hung-Ming Wang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taipei, Taiwan
| | - Yung-Chang Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taipei, Taiwan
| | - Muh-Hwa Yang
- Division of Hematology, Department of Medicine, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Po-Min Chen
- Division of Hematology, Department of Medicine, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | | | - William D. Figg
- Clinical Pharmacology Research Core, Medical Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Alex Sparreboom
- Clinical Pharmacology Research Core, Medical Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
39
|
Malingré MM, Rosing H, Koopman FJ, Schellens JHM, Beijnen JH. PERFORMANCE OF THE ANALYTICAL ASSAYS OF PACLITAXEL, DOCETAXEL, AND CYCLOSPORIN A IN A ROUTINE HOSPITAL LABORATORY SETTING. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-100106096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- M. M. Malingré
- a Department of Pharmacy and Pharmacology , The Netherlands Cancer Institute/Slotervaart Hospital , Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | - H. Rosing
- a Department of Pharmacy and Pharmacology , The Netherlands Cancer Institute/Slotervaart Hospital , Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | - F. J. Koopman
- a Department of Pharmacy and Pharmacology , The Netherlands Cancer Institute/Slotervaart Hospital , Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | - J. H. M. Schellens
- b Department of Medical Oncology , The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital , Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - J. H. Beijnen
- a Department of Pharmacy and Pharmacology , The Netherlands Cancer Institute/Slotervaart Hospital , Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Veltkamp SA, Rosing H, Huitema ADR, Fetell MR, Nol A, Beijnen JH, Schellens JHM. Novel paclitaxel formulations for oral application: a phase I pharmacokinetic study in patients with solid tumours. Cancer Chemother Pharmacol 2007; 60:635-42. [PMID: 17205304 DOI: 10.1007/s00280-006-0405-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Accepted: 12/11/2006] [Indexed: 12/18/2022]
Abstract
PURPOSE To explore the pharmacokinetics (PKs) of paclitaxel and two major metabolites after three single oral administrations of a novel drinking solution and two capsule formulations in combination with cyclosporin A (CsA) in patients with advanced cancer. Moreover, the tolerability and safety of the formulations was studied. In addition, single nucleotide polymorphisms in the multidrug resistance (MDR1) gene were determined. PATIENTS AND METHODS Ten patients were enrolled and randomized to receive CsA 10 mg/kg followed by oral paclitaxel 180 mg given as (1) drinking solution (formulation 1), (2) capsule formulation 2B, and (3) capsule formulation 2C on day 1, 8, or 15. RESULTS The median C (max) of paclitaxel was 0.42 (0.23-0.96), 0.48 (0.08-0.59), and 0.39 (0.11-1.03) microg/ml and the area under the plasma concentration-time curve was 2.83 (1.69-5.12), 2.01 (1.57-3.04), and 2.67 (1.05-3.61) mug h/ml following administration of formulations 1, 2B, and 2C, respectively. The novel formulations were tolerated after single oral dose without causing relevant gastrointestinal or haematological toxicity. CONCLUSIONS The PK and metabolism of paclitaxel were comparable between the oral formulations co-administered with CsA.
Collapse
Affiliation(s)
- S A Veltkamp
- Division of Experimental Therapy, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
41
|
Helgason HH, Kruijtzer CMF, Huitema ADR, Marcus SG, ten Bokkel Huinink WW, Schot ME, Schornagel JH, Beijnen JH, Schellens JHM. Phase II and pharmacological study of oral paclitaxel (Paxoral) plus ciclosporin in anthracycline-pretreated metastatic breast cancer. Br J Cancer 2006; 95:794-800. [PMID: 16969354 PMCID: PMC2360545 DOI: 10.1038/sj.bjc.6603332] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Paclitaxel is an important chemotherapeutic agent for breast cancer. Paclitaxel has high affinity for the P-glycoprotein (P-gp) (drug efflux pump) in the gastrointestinal tract causing low and variable oral bioavailability. Previously, we demonstrated that oral paclitaxel plus the P-gp inhibitor ciclosporin (CsA) is safe and results in adequate exposure to paclitaxel. This study evaluates the activity, toxicity and pharmacokinetics of paclitaxel combined with CsA in breast cancer patients. Patients with measurable metastatic breast cancer were given oral paclitaxel 90 mg m−2 combined with CsA 10 mg kg−1 (30 min prior to each paclitaxel administration) twice on one day, each week. Twenty-nine patients with a median age of 50 years were entered. All patients had received prior treatments, 25 had received prior anthracycline-containing chemotherapy and 19 had three or more metastatic sites. Total number of weekly administrations was 442 (median: 15/patient) and dose intensity of 97 mg m−2 week−1. Most patients needed treatment delay and 17 patients needed dose reductions. In intention to treat analysis, the overall response rate was 52%, the median time to progression was 6.5 months and overall survival was 16 months. The pharmacokinetics revealed moderate inter- and low intrapatient variability. Weekly oral paclitaxel, combined with CsA, is active in patients with advanced breast cancer.
Collapse
Affiliation(s)
- H H Helgason
- Department of Medical Oncology, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066CX Amsterdam, and Faculty of Pharmaceutical Sciences, Utrecht University, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Veltkamp SA, Thijssen B, Garrigue JS, Lambert G, Lallemand F, Binlich F, Huitema ADR, Nuijen B, Nol A, Beijnen JH, Schellens JHM. A novel self-microemulsifying formulation of paclitaxel for oral administration to patients with advanced cancer. Br J Cancer 2006; 95:729-34. [PMID: 16926835 PMCID: PMC2360510 DOI: 10.1038/sj.bjc.6603312] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To explore the parmacokinetics, safety and tolerability of paclitaxel after oral administration of SMEOF#3, a novel Self-Microemulsifying Oily Formulation, in combination with cyclosporin A (CsA) in patients with advanced cancer. Seven patients were enrolled and randomly assigned to receive oral paclitaxel (SMEOF#3) 160 mg+CsA 700 mg on day 1, followed by oral paclitaxel (Taxol®) 160 mg+CsA 700 mg on day 8 (group I) or vice versa (group II). Patients received paclitaxel (Taxol®) 160 mg as 3-h infusion on day 15. The median (range) area under the plasma concentration–time curve of paclitaxel was 2.06 (1.15–3.47) μg h ml−1 and 1.97 (0.58–3.22) μg h ml−1 after oral administration of SMEOF#3 and Taxol®, respectively, and 4.69 (3.90–6.09) μg h ml−1 after intravenous Taxol®. Oral SMEOF#3 resulted in a lower median Tmax of 2.0 (0.5–2.0) h than orally applied Taxol® (Tmax=4.0 (0.8–6.1) h, P=0.02). The median apparent bioavailability of paclitaxel was 40 (19–83)% and 55 (9–70)% for the oral SMEOF#3 and oral Taxol® formulation, respectively. Oral paclitaxel administered as SMEOF#3 or Taxol® was safe and well tolerated by the patients. Remarkably, the SMEOF#3 formulation resulted in a significantly lower Tmax than orally applied Taxol®, probably due to the excipients in the SMEOF#3 formulation resulting in a higher absorption rate of paclitaxel.
Collapse
Affiliation(s)
- S A Veltkamp
- Division of Experimental Therapy, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Veltkamp SA, Alderden-Los C, Sharma A, Rosing H, Beijnen JH, Schellens JHM. A pharmacokinetic and safety study of a novel polymeric paclitaxel formulation for oral application. Cancer Chemother Pharmacol 2006; 59:43-50. [PMID: 16680462 DOI: 10.1007/s00280-006-0245-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2005] [Accepted: 03/24/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE To investigate the pharmacokinetics, safety, and tolerability of a new oral formulation of paclitaxel containing the polymer polyvinyl acetate phthalate in patients with advanced solid tumors. PATIENTS AND METHODS A total of six patients received oral paclitaxel as single agent given as a single dose of 100 mg on day 1, oral paclitaxel 100 mg in combination with cyclosporin A (CsA) 10 mg/kg both given as a single dose on day 8, and i.v. paclitaxel (Taxol) 100 mg as a 3-h infusion on day 15. RESULTS The AUC (mean +/- standard deviation) values of paclitaxel after oral administration without CsA and with CsA were 476 +/- 254 and 967 +/- 779 ng/ml h, respectively. T (max) was 4.0 +/- 0.9 h after oral paclitaxel without CsA, and 6.0 +/- 3.1 h after oral paclitaxel with CsA. The mean AUC after oral administration as single agent was 13% of the AUC after i.v. administration of paclitaxel, and increased to 26% after co-administration with CsA. No haematological toxicities were observed, and only mild (CTC-grade 1 and 2) non-hematological toxicities occurred after oral intake of paclitaxel with or without CsA. CONCLUSION The AUC of the new polymeric paclitaxel formulation increased a factor 2 in combination with CsA, which confirms that CsA co-administration can also improve exposure to paclitaxel after oral administration of a polymeric formulation. Because of the delayed release of paclitaxel from this formulation, we hypothesize that a split-dose regimen of CsA where it is administered before and after paclitaxel administration will further increase the systemic exposure to paclitaxel up to therapeutic levels. The formulation was well tolerated at the dose of 100 mg without induction of severe toxicities.
Collapse
Affiliation(s)
- S A Veltkamp
- Division of Experimental Therapy, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
44
|
Joerger M, Huitema ADR, van den Bongard DHJG, Schellens JHM, Beijnen JH. Quantitative effect of gender, age, liver function, and body size on the population pharmacokinetics of Paclitaxel in patients with solid tumors. Clin Cancer Res 2006; 12:2150-7. [PMID: 16609028 DOI: 10.1158/1078-0432.ccr-05-2069] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The aim of this study was to quantitatively assess the effect of anthropometric and biochemical variables and third-space effusions on paclitaxel pharmacokinetics in solid tumor patients. MATERIALS AND METHODS Plasma concentration-time data of paclitaxel were collected in patients with non-small cell lung cancer (n = 84), ovarian cancer (n = 40), and various solid tumors (n = 44), totaling 168 patients. Paclitaxel was given as a 3-hour infusion (n = 163) at doses ranging from 100 to 250 mg/m(2), or as a 24-hour infusion (n = 5) at a dose of 135 or 175 mg/m(2). Data were analyzed using nonlinear mixed-effect modeling. RESULTS A three-compartment model with saturable elimination and distribution was used to describe concentration-time data. Male gender and body surface area were positively correlated with maximal elimination capacity of paclitaxel (VM(EL)); patient age and total bilirubin were negatively correlated with VM(EL) (P < 0.005 for all correlations). Typically, male patients had a 20% higher VM(EL); a 0.2 m(2) increase of body surface area led to a 9% increase of VM(EL); a 10-year increase of patient age led to a 5% decrease of VM(EL); and a 10-micromol increase of total bilirubin led to a 14% decrease of VM(EL). Third-space effusions were not correlated with paclitaxel pharmacokinetics. CONCLUSIONS This extended retrospective population analysis showed patient gender to significantly and independently affect paclitaxel distribution and elimination. Body surface area, total bilirubin, and patient age were confirmed to affect paclitaxel elimination. This pharmacokinetic model allowed quantification of the covariate effects on the elimination of paclitaxel and may be used for covariate-adapted paclitaxel dosing.
Collapse
Affiliation(s)
- Markus Joerger
- Department of Pharmacy and Pharmacology, Slotervaart Hospital, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
45
|
Bröker LE, de Vos FYFL, van Groeningen CJ, Kuenen BC, Gall HE, Woo MH, Voi M, Gietema JA, de Vries EGE, Giaccone G. Phase I Trial with BMS-275183, a Novel Oral Taxane with Promising Antitumor Activity. Clin Cancer Res 2006; 12:1760-7. [PMID: 16551860 DOI: 10.1158/1078-0432.ccr-05-2093] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE BMS-275183 is an orally administered C-4 methyl carbonate analogue of paclitaxel. We did a dose-escalating phase I study to investigate its safety, tolerability, pharmacokinetics, and possible antitumor activity. EXPERIMENTAL DESIGN A cycle consisted of four weekly doses of BMS-275183. The starting dose was 5 mg, which was increased by 100% increments (i.e., 5, 10, 20 mg/m2, etc.) in each new cohort consisting of one patient. Cohorts were expanded when toxicity was encountered, and 20 patients were treated at the maximum tolerated dose (MTD). Plasma pharmacokinetics were done on days 1 and 15. RESULTS A total of 48 patients were enrolled in this trial. Dose-limiting toxicities consisted of neuropathy, fatigue, diarrhea, and neutropenia. First cycle severe neuropathy was reported in four patients treated at 320 (n = 1), 240 (n = 2), and 160 mg/m2 (n = 1), whereas eight patients treated at dose levels ranging from 160 to 320 mg/m2 experienced grade 2 neuropathy in cycle one. The MTD was 200 mg/m2, as 3 of 20 patients experienced grade 3 or 4 toxicity in cycle one [fatigue (n = 2), and neutropenia/diarrhea (n = 1)]. BMS-275183 was rapidly absorbed with a mean plasma half-life of 22 hours. We observed a significant correlation between drug-exposure and toxicity. Tumor responses were observed in 9 of 38 evaluable patients with non-small cell lung cancer, prostate carcinoma, and other tumor types. CONCLUSIONS BMS-275183 is generally well tolerated on a weekly schedule. The main toxicity is peripheral neuropathy, and the MTD is 200 mg/m2. Promising activity was observed in several tumor types, and a phase II trial in non-small cell lung cancer has been initiated.
Collapse
Affiliation(s)
- Linda E Bröker
- VU University Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gutiérrez MB, Miguel BS, Villares C, Gallego JG, Tuñón MJ. Oxidative stress induced by Cremophor EL is not accompanied by changes in NF-kappaB activation or iNOS expression. Toxicology 2006; 222:125-31. [PMID: 16533553 DOI: 10.1016/j.tox.2006.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 02/06/2006] [Accepted: 02/06/2006] [Indexed: 10/25/2022]
Abstract
The effects of polyoxyethylenglycerol triricinoleate 35 (Cremophor EL, CrEL) on markers of oxidative stress, nuclear factor kappa B (NF-kappaB) activation and inducible nitric oxide synthase (iNOS) expression were studied in the liver of male Wistar rats. Animals were randomly divided into three groups. Group Cr1 received, i.p., CrEL at 0.046ml/kg daily for 7 days, group Cr2 received CrEL at 0.33ml/kg and the controls were injected with CrEL vehicle (saline solution with 25% ethanol). Both alanine transaminase (ALT) and aspartate transaminase (AST) serum activities were significantly increased in the Cr2 group (+16% and +25%, respectively). AST activity was also higher in the Cr1 group when compared to control animals (+20%). The cytosolic concentration of thiobarbituric acid reactive substances (TBARS) increased in both groups of rats receiving CrEL (Cr1: +24%; Cr2: +33%). Reduced glutathione (GSH) concentration was not significantly modified at any of the CrEL doses, but both the hepatic concentration of oxidised glutathione (GSSG) (Cr1: +37%; Cr2: +84%) and the GSH/GSSG ratio (Cr1: -21%; Cr2: -45%) were significantly modified. CrEL induced no significant NF-kappaB activation, changes in p50 and p65 NF-kappaB subunits or induction of iNOS protein. Data obtained indicate that although high doses of CrEL cause oxidative stress, this is not enough to induce changes in NF-kappaB activation or iNOS expression.
Collapse
|
47
|
Kim DB, Jang J, Cho YH, Yoon MS, Chung HS, Park YT, Choi YW, Kim SW. Anticancer Efficacy and Toxicity of Oral GMO-paclitaxel in a Hormone Refractory Prostate Cancer Model. Korean J Urol 2006. [DOI: 10.4111/kju.2006.47.2.143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Doo Bae Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joon Jang
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yong-Hyun Cho
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Moon Soo Yoon
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - He-Sson Chung
- Korean Institute of Science and Technology, Seoul, Korea
| | | | | | - Sae Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
48
|
Abstract
Over the past two decades, the taxanes have played a significant role in the treatment of various malignancies. However, the poor solubility of these compounds necessitates the inclusion of surfactant vehicles in their commercial formulations. Cremophor EL and polysorbate 80 have long comprised the standard solvent system for paclitaxel and docetaxel, respectively. A number of pharmacologic and biologic effects related to both of these drug formulations have been described, including clinically relevant acute hypersensitivity reactions and peripheral neuropathy. In addition, these solvents affect the disposition of intravenously administered solubilized drugs and leach plasticizers from polyvinylchloride infusion sets. A number of strategies to develop formulations of surfactant-free taxanes have been developed. They include albumin nanoparticles, polyglutamates, taxane analogs and prodrugs, emulsions, and lipsomes. An overview of these novel formulations of taxanes, their mechanisms of action, pharmacokinetics, dose and administration, adverse effects, and clinical efficacy will be discussed.
Collapse
Affiliation(s)
- K L Hennenfent
- St Louis College of Pharmacy, Ortho Biotech Clinical Affairs, LLC, St Louis, MO, USA
| | | |
Collapse
|
49
|
Varma MVS, Panchagnula R. Prediction of in vivo intestinal absorption enhancement on P-glycoprotein inhibition, from rat in situ permeability. J Pharm Sci 2005; 94:1694-704. [PMID: 15986467 DOI: 10.1002/jps.20309] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The purpose of this study is to determine the functional role of P-glycoprotein (P-gp) in intestinal absorption of drugs and to quantitatively predict the in vivo absorption enhancement on P-gp inhibition. In situ single-pass rat ileum permeability and aqueous solubility were measured for a set of 16 compounds. Permeability studies were also carried out in the presence of P-gp inhibitor to estimate the permeability enhancement on P-gp inhibition. A significant correlation was obtained between rat ileum permeability and the literature human intestinal absorption (HIA), F(a,human) (r = 0.891; p < 0.01). Compounds with permeability >0.2 x 10(-4) cm/s are completely absorbed; however, few practically insoluble compounds were overestimated with this relationship. Inhibition of P-gp increased the permeability (p < 0.05) of three moderately and three highly permeable compounds. Efflux inhibition ratio (EIR), the ratio of permeability due to P-gp-mediated efflux activity and passive permeability only, for these compounds was in the order of digoxin > paclitaxel > fexofenadine > quinidine > verapamil > cyclosporine. Integration of EIR with permeability versus F(a,human) predicted that modulation of P-gp has no significant effect on the absorption of highly permeable compounds (quinidine, verapamil, and cyclosporine A), while for moderately permeable compounds (digoxin, paclitaxel, and fexofenadine), P-gp profoundly influences the intestinal permeability. The in situ permeability in rat ileum may be used to predict the in vivo P-gp function and its quantitative contribution to intestinal drug absorption. Integration of the functional activity of P-gp with the characteristics of BCS may explain drug interactions and explore the possible pharmacokinetic advantage on P-gp inhibition.
Collapse
Affiliation(s)
- Manthena V S Varma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Phase X, SAS. Nagar, Punjab 160062, India
| | | |
Collapse
|
50
|
Abstract
The translation of advances in cancer biology to drug discovery can be complicated by pharmacokinetic variation between individuals and within individuals, and this can result in unpredictable toxicity and variable antineoplastic effects. Previously unrecognized variables (such as genetic polymorphisms) are now known to have a significant impact on drug disposition. How can the pharmacokinetic variability of anticancer agents be reduced? This will require the understanding of correlations between pharmacokinetics and treatment outcomes, the identification of relevant patient parameters, mathematical modelling of individual and population pharmacokinetics, and the development of algorithms that will tailor doses to the individual patient.
Collapse
Affiliation(s)
- Samir D Undevia
- Cancer Research Center, The University of Chicago, 5841 South Maryland Avenue, MC 2115 Chicago, Illinois 60637, USA
| | | | | |
Collapse
|