Michaelis M, Klassert D, Barth S, Suhan T, Breitling R, Mayer B, Hinsch N, Doerr HW, Cinatl J, Cinatl J. Chemoresistance acquisition induces a global shift of expression of aniogenesis-associated genes and increased pro-angogenic activity in neuroblastoma cells.
Mol Cancer 2009;
8:80. [PMID:
19788758 PMCID:
PMC2761864 DOI:
10.1186/1476-4598-8-80]
[Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 09/29/2009] [Indexed: 01/13/2023] Open
Abstract
Background
Chemoresistance acquisition may influence cancer cell biology. Here, bioinformatics analysis of gene expression data was used to identify chemoresistance-associated changes in neuroblastoma biology.
Results
Bioinformatics analysis of gene expression data revealed that expression of angiogenesis-associated genes significantly differs between chemosensitive and chemoresistant neuroblastoma cells. A subsequent systematic analysis of a panel of 14 chemosensitive and chemoresistant neuroblastoma cell lines in vitro and in animal experiments indicated a consistent shift to a more pro-angiogenic phenotype in chemoresistant neuroblastoma cells. The molecular mechanims underlying increased pro-angiogenic activity of neuroblastoma cells are individual and differ between the investigated chemoresistant cell lines. Treatment of animals carrying doxorubicin-resistant neuroblastoma xenografts with doxorubicin, a cytotoxic drug known to exert anti-angiogenic activity, resulted in decreased tumour vessel formation and growth indicating chemoresistance-associated enhanced pro-angiogenic activity to be relevant for tumour progression and to represent a potential therapeutic target.
Conclusion
A bioinformatics approach allowed to identify a relevant chemoresistance-associated shift in neuroblastoma cell biology. The chemoresistance-associated enhanced pro-angiogenic activity observed in neuroblastoma cells is relevant for tumour progression and represents a potential therapeutic target.
Collapse