1
|
Khuu A, Verreault M, Colin P, Tran H, Idbaih A. Clinical Applications of Antisense Oligonucleotides in Cancer: A Focus on Glioblastoma. Cells 2024; 13:1869. [PMID: 39594617 PMCID: PMC11592788 DOI: 10.3390/cells13221869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Antisense oligonucleotides (ASOs) are promising drugs capable of modulating the protein expression of virtually any target with high specificity and high affinity through complementary base pairing. However, this requires a deep understanding of the target sequence and significant effort in designing the correct complementary drug. In addition, ASOs have been demonstrated to be well tolerated during their clinical use. Indeed, they are already used in many diseases due to pathogenic RNAs of known sequences and in several neurodegenerative diseases and metabolic diseases, for which they were given marketing authorizations (MAs) in Europe and the United States. Their use in oncology is gaining momentum with several identified targets, promising preclinical and clinical results, and recent market authorizations in the US. However, many challenges remain for their clinical use in cancer. It seems necessary to take a step back and review our knowledge of ASOs and their therapeutic uses in oncology. The objectives of this review are (i) to summarize the current state of the art of ASOs; (ii) to discuss the therapeutic use of ASOs in cancer; and (iii) to focus on ASO usage in glioblastoma, the challenges, and the perspective ahead.
Collapse
Affiliation(s)
- Alexandre Khuu
- AP-HP, Institut du Cerveau, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, 75013 Paris, France; (A.K.); (M.V.)
- Institut de Recherche Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France;
| | - Maïté Verreault
- AP-HP, Institut du Cerveau, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, 75013 Paris, France; (A.K.); (M.V.)
| | - Philippe Colin
- Institut de Recherche Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France;
| | - Helene Tran
- Institut de Recherche Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France;
| | - Ahmed Idbaih
- AP-HP, Institut du Cerveau, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, 75013 Paris, France; (A.K.); (M.V.)
| |
Collapse
|
2
|
Desgraves JF, Mendez Valdez MJ, Chandar J, Gurses ME, Henderson L, Castro JR, Seetheram D, Ivan ME, Komotar RJ, Shah AH. Antisense Oligonucleotides for Rapid Translation of Gene Therapy in Glioblastoma. Cancers (Basel) 2024; 16:1944. [PMID: 38792022 PMCID: PMC11119631 DOI: 10.3390/cancers16101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
PURPOSE The limited efficacy of current treatments for malignant brain tumors necessitates novel therapeutic strategies. This study aimed to assess the potential of antisense oligonucleotides (ASOs) as adjuvant therapy for high-grade gliomas, focusing on their CNS penetration and clinical translation prospects. METHODS A comprehensive review of the existing literature was conducted to evaluate the implications of ASOs in neuro-oncology. Studies that investigated ASO therapy's efficacy, CNS penetration, and safety profile were analyzed to assess its potential as a therapeutic intervention for high-grade gliomas. RESULTS ASOs present a promising avenue for enhancing targeted gene therapies in malignant gliomas. Their potent CNS penetration, in vivo durability, and efficient transduction offer advantages over conventional treatments. Preliminary in vivo and in vitro studies suggest ASOs as a viable adjuvant therapy for high-grade gliomas, warranting further exploration in clinical trials. CONCLUSIONS ASOs hold significant promise as adjuvant therapy for high-grade gliomas, offering improved CNS penetration and durability compared with existing treatments. While preliminary studies are encouraging, additional research is needed to establish the safety and efficacy of ASO therapy in clinical settings. Further investigation and clinical trials are warranted to validate ASOs as a transformative approach in neuro-oncology.
Collapse
Affiliation(s)
- Jelisah F. Desgraves
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.F.D.); (M.J.M.V.); (J.C.); (L.H.); (J.R.C.); (D.S.); (A.H.S.)
| | - Mynor J. Mendez Valdez
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.F.D.); (M.J.M.V.); (J.C.); (L.H.); (J.R.C.); (D.S.); (A.H.S.)
| | - Jay Chandar
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.F.D.); (M.J.M.V.); (J.C.); (L.H.); (J.R.C.); (D.S.); (A.H.S.)
| | - Muhammet Enes Gurses
- Department of Neurosurgery, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace (D4-6), Miami, FL 33136, USA; (M.E.I.); (R.J.K.)
| | - Lisa Henderson
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.F.D.); (M.J.M.V.); (J.C.); (L.H.); (J.R.C.); (D.S.); (A.H.S.)
| | - Jesus R. Castro
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.F.D.); (M.J.M.V.); (J.C.); (L.H.); (J.R.C.); (D.S.); (A.H.S.)
| | - Deepa Seetheram
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.F.D.); (M.J.M.V.); (J.C.); (L.H.); (J.R.C.); (D.S.); (A.H.S.)
| | - Michael E. Ivan
- Department of Neurosurgery, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace (D4-6), Miami, FL 33136, USA; (M.E.I.); (R.J.K.)
| | - Ricardo J. Komotar
- Department of Neurosurgery, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace (D4-6), Miami, FL 33136, USA; (M.E.I.); (R.J.K.)
| | - Ashish H. Shah
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.F.D.); (M.J.M.V.); (J.C.); (L.H.); (J.R.C.); (D.S.); (A.H.S.)
| |
Collapse
|
3
|
Chen EC, Johnston H, Patel AA. Targeted Therapy for MPNs: Going Beyond JAK Inhibitors. Curr Hematol Malig Rep 2023; 18:41-55. [PMID: 36705855 DOI: 10.1007/s11899-023-00690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW JAK inhibition is an effective means of controlling symptom burden and improving splenomegaly in patients with myeloproliferative neoplasms (MPNs). However, a majority of patients treated with JAK inhibition will have disease progression with long-term use. In In this review, we focus on the investigation of novel targeted agents beyond JAK inhibitors both in the chronic phase of disease and in the accelerated/blast phase of disease. RECENT FINDINGS Relevant targeted therapies in MPNs include BET inhibitors, BCL inhibitors, LSD1 inhibitors, PI3K inhibitors, IDH inhibitors, telomerase inhibitors, and MDM2 inhibitor. Agents within these classes have been investigated either as monotherapy or in combination with a JAK inhibitor. We summarize the prospective data for these agents along with detailing the ongoing phase III trials incorporating these agents. While JAK inhibition has been a mainstay of therapy in MPNs, a majority of patients will have disease of progression. JAK inhibitors also have limited anti-clonal effect and do not impact the rate of progression to the blast phase of disease. The novel therapies detailed in this review not only show promise in ameliorating the symptom burden of MPNs but may be able to alter the natural history of disease.
Collapse
Affiliation(s)
- Evan C Chen
- Division of Leukemia, Dana Farber Cancer Institute, Boston, MA, USA
| | - Hannah Johnston
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Anand Ashwin Patel
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, 5841 S Maryland Avenue, MC 2115, Chicago, IL 60637, USA.
| |
Collapse
|
4
|
Making Sense of Antisense Oligonucleotide Therapeutics Targeting Bcl-2. Pharmaceutics 2022; 14:pharmaceutics14010097. [PMID: 35056993 PMCID: PMC8778715 DOI: 10.3390/pharmaceutics14010097] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
The B-cell lymphoma 2 (Bcl-2) family, comprised of pro- and anti-apoptotic proteins, regulates the delicate balance between programmed cell death and cell survival. The Bcl-2 family is essential in the maintenance of tissue homeostasis, but also a key culprit in tumorigenesis. Anti-apoptotic Bcl-2, the founding member of this family, was discovered due to its dysregulated expression in non-Hodgkin’s lymphoma. Bcl-2 is a central protagonist in a wide range of human cancers, promoting cell survival, angiogenesis and chemotherapy resistance; this has prompted the development of Bcl-2-targeting drugs. Antisense oligonucleotides (ASO) are highly specific nucleic acid polymers used to modulate target gene expression. Over the past 25 years several Bcl-2 ASO have been developed in preclinical studies and explored in clinical trials. This review will describe the history and development of Bcl-2-targeted ASO; from initial attempts, optimizations, clinical trials undertaken and the promising candidates at hand.
Collapse
|
5
|
Dobrovolskaia MA, Bathe M. Opportunities and challenges for the clinical translation of structured DNA assemblies as gene therapeutic delivery and vaccine vectors. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1657. [PMID: 32672007 PMCID: PMC7736207 DOI: 10.1002/wnan.1657] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Gene therapeutics including siRNAs, anti-sense oligos, messenger RNAs, and CRISPR ribonucleoprotein complexes offer unmet potential to treat over 7,000 known genetic diseases, as well as cancer, through targeted in vivo modulation of aberrant gene expression and immune cell activation. Compared with viral vectors, nonviral delivery vectors offer controlled immunogenicity and low manufacturing cost, yet suffer from limitations in toxicity, targeting, and transduction efficiency. Structured DNA assemblies fabricated using the principle of scaffolded DNA origami offer a new nonviral delivery vector with intrinsic, yet controllable immunostimulatory properties and virus-like spatial presentation of ligands and immunogens for cell-specific targeting, activation, and control over intracellular trafficking, in addition to low manufacturing cost. However, the relative utilities and limitations of these vectors must clearly be demonstrated in preclinical studies for their clinical potential to be realized. Here, we review the major capabilities, opportunities, and challenges we foresee in translating these next-generation delivery and vaccine vectors to the clinic. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology ProgramFrederick National Laboratory for Cancer Research sponsored by National Cancer InstituteFrederickMaryland
| | - Mark Bathe
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts
| |
Collapse
|
6
|
Retention and diffusion characteristics of oligonucleotides in a solid phase with polymer grafted anion-exchanger. J Chromatogr A 2020; 1629:461495. [PMID: 32846340 DOI: 10.1016/j.chroma.2020.461495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/09/2023]
Abstract
In the chromatographic separation process of oligonucleotides (ONs), mechanistic understanding of their binding and diffusion processes is of significant importance to determine operating conditions in a fast and robust way. In this work, we determined the number of binding sites and the diffusivities of ONs in a polymer grafted anion exchange chromatography through linear gradient experiments (LGE) being carried out at selected four to five gradient slopes. Synthetic poly (T)s with length ranging from 3 to 90-mer were employed as a model of an antisense oligonucleotide with typical lengths of 10 - 30 bases. Comparison of the retention was also conducted between the grafted anion exchanger with a conventional ligand and an anion monolith disk. For the ONs up to 50 bases, the number of binding sites determined can be correlated with the length of ONs, and the grafted resin showed a better diffusion and narrower peak width compared to the nongrafted one. The retention behavior became similar for porous media when the longer ONs (> 50mer) were applied. The results obtained suggest that antisense ONs can be separated with grafted ligands without sacrificing mass transfer properties.
Collapse
|
7
|
Herkt M, Foinquinos A, Batkai S, Thum T, Pich A. Pharmacokinetic Studies of Antisense Oligonucleotides Using MALDI-TOF Mass Spectrometry. Front Pharmacol 2020; 11:220. [PMID: 32269522 PMCID: PMC7109322 DOI: 10.3389/fphar.2020.00220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/18/2020] [Indexed: 11/21/2022] Open
Abstract
Cardiac diseases are the most frequent causes of death in industrialized countries. Pathological remodeling of the heart muscle is caused by several etiologies such as prolonged hypertension or injuries that can lead to myocardial infarction and in serious cases also the death of the patient. The micro-RNA miR-132 has been identified as a master-switch in the development of cardiac hypertrophy and adverse remodeling. In this study, MALDI-TOF mass spectrometry (MS) was utilized to establish a robust and fast method to sensitively detect and accurately quantify anti-microRNA (antimiR) oligonucleotides in blood plasma. An antimiR oligonucleotide isolation protocol containing an ethanol precipitation step with glycogen as oligonucleotide carrier as well as a robust and reproducible MS-analysis procedure has been established. Proteinase K treatment was crucial for releasing antimiR oligonucleotides from plasma- as well as cellular proteins and reducing background derived from biological matrices. AntimiR oligonucleotide detection was achieved from samples of studies in different animal models such as mouse and pig where locked nucleic acids-(LNA)-modified antimiR oligonucleotides have been used to generate pharmacokinetic data.
Collapse
Affiliation(s)
- Markus Herkt
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hanover, Germany
| | - Ariana Foinquinos
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hanover, Germany
| | - Sandor Batkai
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hanover, Germany
| | - Thomas Thum
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hanover, Germany
| | - Andreas Pich
- Hannover Medical School, Institute for Toxicology - Core Unit Proteomics, Hanover, Germany
| |
Collapse
|
8
|
Targeting Apoptotic Pathways in Acute Myeloid Leukaemia. Cancers (Basel) 2019; 11:cancers11111660. [PMID: 31717784 PMCID: PMC6895902 DOI: 10.3390/cancers11111660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
Acute Myeloid Leukaemia is a devastating disease that continues to have a poor outcome for the majority of patients. In recent years, however, a number of drugs have received FDA approval, following on from successful clinical trial results. This parallels the characterization of the molecular landscape of Acute Myeloid Leukaemia (AML) over the last decade, which has led to the development of drugs targeting newly identified recurring mutations. In addition, basic biological research into the pathobiology of AML has identified aberrant programmed cell death pathways in AML. Following on from successful outcomes in lymphoid malignancies, drugs targeting the B Cell Lymphoma 2 (BCL-2) family of anti-apoptotic proteins have been explored in AML. In this review, we will outline the preclinical and clinical work to date supporting the role of drugs targeting BCL-2, with Venetoclax being the most advanced to date. We will also highlight rationale combinations using Venetoclax, ongoing clinical trials and biomarkers of response identified from the early phase clinical trials performed.
Collapse
|
9
|
Yalniz FF, Wierda WG. Targeting BCL2 in Chronic Lymphocytic Leukemia and Other Hematologic Malignancies. Drugs 2019; 79:1287-1304. [PMID: 31313099 DOI: 10.1007/s40265-019-01163-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apoptosis, the process of programmed cell death, occurs normally during development and aging. Members of the B-cell lymphoma 2 (BCL2) family of proteins are central regulators of apoptosis, and resistance to apoptosis is one of the hallmarks of cancer. Targeting the apoptotic pathway via BCL2 inhibitors has been considered a promising treatment strategy in the past decade. Initial efforts with small molecule BH3 mimetics such as ABT-737 and ABT-263 (navitoclax) pioneered the development of the first-in-class Food and Drug Administration (FDA)-approved oral BCL2 inhibitor, venetoclax. Venetoclax was approved for the treatment of chronic lymphocytic leukemia and acute myeloid leukemia, and is now being studied in a number of hematologic malignancies. Several other inhibitors targeting different BCL2 family members are now in early stages of development.
Collapse
Affiliation(s)
- Fevzi F Yalniz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 428, Houston, TX, 77030, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 428, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Dai W, Mu L, Cui Y, Li Y, Chen P, Xie H, Wang X. Long non‑coding RNA CASC2 enhances berberine‑induced cytotoxicity in colorectal cancer cells by silencing BCL2. Mol Med Rep 2019; 20:995-1006. [PMID: 31173223 PMCID: PMC6625213 DOI: 10.3892/mmr.2019.10326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
Berberine, a natural isoquinoline alkaloid derived from Berberis species, has been reported to have anticancer effects. However, the mechanisms of action in human colorectal cancer (CRC) are not well established to date. In the present study, the cell cytotoxicity effect of berberine on human CRC cells, as well as the possible mechanisms involved, was investigated. The results of the cell viability and apoptosis assay revealed that treatment of CRC cells with berberine resulted in inhibition of cell viability and activation of cell apoptosis in a concentration-dependent manner. To reveal the underlying mechanism of berberine-induced anti-tumor activity and cell apoptosis, RNA-sequencing followed by reverse-transcription quantitative PCR were performed. In addition, RNA immunoprecipitation, chromatin immunoprecipitation and western blot analysis were used to identify the functional regulation of CASC2/EZH2/BCL2 axis in berberine-induced CRC cell apoptosis. The data revealed that lncRNA CASC2 was upregulated by berberine treatment. Gain- or loss-of-function assays suggested that lncRNA CASC2 was required for the berberine-induced inhibition of cell viability and activation of cell apoptosis. Subsequently, the downstream antiapoptotic gene BCL2 was identified as a functional target of the berberine/CASC2 mechanism, as BCL2 reversed the berberine/CASC2-induced cell cytotoxicity. lncRNA CASC2 silenced BCL2 expression by binding to the promoter region of BCL2 in an EZH2-dependent manner. In summary, berberine may be a novel therapeutic agent for CRC and lncRNA CASC2 may serve as an important therapeutic target to improve the anticancer effect of berberine.
Collapse
Affiliation(s)
- Wei Dai
- Department of Medical Laboratory, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Liyuan Mu
- Department of Medical Laboratory, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Yali Cui
- Department of Medical Laboratory, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Yingying Li
- Department of Medical Laboratory, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Ping Chen
- Department of Medical Laboratory, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Hongjian Xie
- Department of Medical Laboratory, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Xia Wang
- Department of Medical Laboratory, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
11
|
Nuckowski Ł, Kaczmarkiewicz A, Studzińska S. Review on sample preparation methods for oligonucleotides analysis by liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1090:90-100. [PMID: 29803869 DOI: 10.1016/j.jchromb.2018.05.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/10/2018] [Accepted: 05/17/2018] [Indexed: 02/01/2023]
Abstract
Antisense oligonucleotides have been successfully investigated for the treatment of different types of diseases. Detection and determination of antisense oligonucleotides and their metabolites are necessary for drug development and evaluation. This review focuses mainly on the first step of the analysis of oligonucleotides i.e. the sample preparation stage, and in particular on the techniques used for liquid chromatography and liquid chromatography coupled with mass spectrometry. Exceptional sample preparation techniques are required as antisense oligonucleotides need to be determined in complex biological matrices. The text discusses general issues in oligonucleotide sample preparation and approaches to their solution. The most popular techniques i.e. protein precipitation, protein enzyme digestion and liquid-liquid extraction are reviewed. Solid phase extraction methods are discussed and the issues connected with the application of each method are highlighted. Other newly reported promising techniques are also described. Finally, there is a summary of actually used techniques and the indication of the direction of future research.
Collapse
Affiliation(s)
- Łukasz Nuckowski
- Chair of the Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St., PL-87 100 Toruń, Poland
| | - Anna Kaczmarkiewicz
- Chair of the Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St., PL-87 100 Toruń, Poland
| | - Sylwia Studzińska
- Chair of the Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St., PL-87 100 Toruń, Poland.
| |
Collapse
|
12
|
Abstract
Background: The introduction of monoclonal antibodies, either as native molecules or conjugated to radioisotopes or other toxins, has led to new therapeutic options for patients with hematologic malignancies. In addition, the use of small molecules against specific cell surface receptors, enzymes, and proteins has become an important strategy in the treatment of such disorders. Methods: The author reviewed the published clinical trials of monoclonal antibody and other targeted therapies in hematologic malignancies. Results: Results from several trials demonstrate a therapeutic benefit for the use of monoclonal antibodies (either native or conjugated) and other targeted therapies, used alone or in combination with standard cytotoxic chemotherapy. Conclusions: Targeted therapy of hematologic malignancies seems to be an effective and less toxic approach to the treatment of such disorders. Nevertheless, additional studies are needed to determine where and when such management fits into a therapeutic regimen for any given disorder, whether upfront or as salvage therapy, alone or in combination with chemotherapy (concurrent or sequential).
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents/classification
- Antineoplastic Agents/therapeutic use
- Drug Delivery Systems/trends
- Hematologic Neoplasms/drug therapy
- Hematologic Neoplasms/immunology
- Hematologic Neoplasms/therapy
- Humans
- Immunologic Factors/immunology
- Immunologic Factors/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Lymphoma, Non-Hodgkin/drug therapy
- Lymphoma, Non-Hodgkin/immunology
- Multiple Myeloma/drug therapy
- Multiple Myeloma/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Radioimmunotherapy
Collapse
Affiliation(s)
- Philip Kuriakose
- Department of Internal Medicine, Division of Hematology/Oncology, Henry Ford Hospital, Detroit, MI 48202, USA.
| |
Collapse
|
13
|
Jafarinejad-Farsangi S, Farazmand A, Gharibdoost F, Karimizadeh E, Noorbakhsh F, Faridani H, Mahmoudi M, Jamshidi AR. Inhibition of MicroRNA-21 induces apoptosis in dermal fibroblasts of patients with systemic sclerosis. Int J Dermatol 2017; 55:1259-1267. [PMID: 27637490 DOI: 10.1111/ijd.13308] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Prolonged activation of dermal fibroblasts is the main cause of progressive fibrosis in systemic sclerosis (SSc). It seems that inhibition of apoptosis in SSc fibroblasts deregulates fibrosis. MicroRNA-21 (miR-21) is a pro-fibrotic factor with high expression in lesional areas of SSc skin and fibroblasts. METHODS The effects of miR-21 on expression of Bcl-2 and Bax, two apoptotic genes, in dermal fibroblasts of SSc patients were evaluated using real-time polymerase chain reaction and Western blot analysis. Apoptotic cells were detected using flow cytometry and Hoechst 33258 staining assays. RESULTS Overexpression of miR-21 using synthetic miR-21 RNA increased expression of Bcl-2, an inhibitor of apoptosis, and decreased the Bax : Bcl-2 expression ratio, a cell fate determinant, in SSc fibroblasts. Antisense inhibition of miR-21 induced a high rate of apoptosis in SSc fibroblasts. We propose that this may be associated with a decrease in Bcl-2 expression and a shift in the Bax : Bcl-2 ratio. CONCLUSIONS Although further studies are necessary to determine the underlying apoptotic pathway, we propose that inhibition of miR-21 in dermal fibroblasts from lesional skin may be useful in harnessing progressive fibrosis in SSc.
Collapse
Affiliation(s)
| | - Ali Farazmand
- Department of Cell and Molecular Biology, University of Tehran, Tehran, Iran.
| | - Farhad Gharibdoost
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Karimizadeh
- Department of Cell and Molecular Biology, University of Tehran, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Habibeh Faridani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Hu C, Yu M, Ren Y, Li K, Maggio DM, Mei C, Ye L, Wei J, Jin J, Zhuang Z, Tong H. PP2A inhibition from LB100 therapy enhances daunorubicin cytotoxicity in secondary acute myeloid leukemia via miR-181b-1 upregulation. Sci Rep 2017; 7:2894. [PMID: 28588271 PMCID: PMC5460144 DOI: 10.1038/s41598-017-03058-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/21/2017] [Indexed: 12/11/2022] Open
Abstract
Patients with secondary acute myeloid leukemia (sAML) arising from myelodysplastic syndromes have a poor prognosis marked by an increased resistance to chemotherapy. An urgent need exists for adjuvant treatments that can enhance or replace current therapeutic options. Here we show the potential of LB100, a small-molecule protein phosphatase 2 A (PP2A) inhibitor, as a monotherapy and chemosensitizing agent for sAML using an in-vitro and in-vivo approach. We demonstrate that LB100 decreases cell viability through caspase activation and G2/M cell-cycle arrest. LB100 enhances daunorubicin (DNR) cytotoxicity resulting in decreased xenograft volumes and improved overall survival. LB100 profoundly upregulates miR-181b-1, which we show directly binds to the 3′ untranslated region of Bcl-2 mRNA leading to its translational inhibition. MiR-181b-1 ectopic overexpression further diminishes Bcl-2 expression leading to suppression of sAML cell growth, and enhancement of DNR cytotoxicity. Our research highlights the therapeutic potential of LB100, and provides new insights into the mechanism of LB100 chemosensitization.
Collapse
Affiliation(s)
- Chao Hu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Mengxia Yu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China.,Department of Hematology, Hangzhou First People's Hospital, Hangzhou, 310006, Zhejiang Province, People's Republic of China
| | - Yanling Ren
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Kongfei Li
- Department of Hematology, Yin Zhou People's Hospital, Ningbo, 315040, Zhejiang Province, People's Republic of China
| | - Dominic M Maggio
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chen Mei
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Li Ye
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Juying Wei
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China. .,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
15
|
Cell death: From initial concepts to pathways to clinical applications – Personal reflections of a clinical researcher. Biochem Biophys Res Commun 2017; 482:445-449. [DOI: 10.1016/j.bbrc.2016.10.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 01/30/2023]
|
16
|
Witkowska M, Smolewski P, Majchrzak A, Robak T. Innovation in non-Hodgkin lymphoma drug discovery: what needs to be done? Expert Opin Drug Discov 2016; 11:1033-1045. [PMID: 27569454 DOI: 10.1080/17460441.2016.1230095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION A new generation of anticancer agents called target drugs has been recently developed for the treatment of non-Hodgkin lymphomas. Current recovery rates in these diseases are up to 70% with immunotherapy based on the anti-CD20 monoclonal antibody combined with standard chemotherapeutics. However, there are still refractory or relapsed patients. Recently, several novel anti-lymphoma agents have been developed. Choosing the most effective personalized therapy still remains a crucial challenge in hematology. Areas covered: New drugs can specifically target malignant cells and inhibit cancer cell growth, proliferation and survival by specific interactions with one or more target proteins. Recent clinical studies have illustrated promising outcomes for novel drugs used as single agents and in combination with traditional therapeutics. In this article, the authors discuss novel targeted therapies with a promising outcome in NHL patients that are becoming integrated into treatment paradigms. Expert opinion: The development of new treatment options may help to avoid cytotoxic chemotherapy entirely in some clinical settings. Multicenter studies should be continued to investigate small agents and pathways inhibitors as this will enable us to enhance not only the duration of the treatment response but also the quality of the extended survival.
Collapse
Affiliation(s)
- Magdalena Witkowska
- a Department of Experimental Hematology , Medical University of Lodz , Lodz , Poland
| | - Piotr Smolewski
- a Department of Experimental Hematology , Medical University of Lodz , Lodz , Poland
| | - Agata Majchrzak
- a Department of Experimental Hematology , Medical University of Lodz , Lodz , Poland.,b Department of Hematology , Medical University of Lodz , Lodz , Poland
| | - Tadeusz Robak
- b Department of Hematology , Medical University of Lodz , Lodz , Poland
| |
Collapse
|
17
|
Barata P, Sood AK, Hong DS. RNA-targeted therapeutics in cancer clinical trials: Current status and future directions. Cancer Treat Rev 2016; 50:35-47. [PMID: 27612280 DOI: 10.1016/j.ctrv.2016.08.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/12/2016] [Indexed: 12/25/2022]
Abstract
Recent advances in RNA delivery and target selection provide unprecedented opportunities for cancer treatment, especially for cancers that are particularly hard to treat with existing drugs. Small interfering RNAs, microRNAs, and antisense oligonucleotides are the most widely used strategies for silencing gene expression. In this review, we summarize how these approaches were used to develop drugs targeting RNA in human cells. Then, we review the current state of clinical trials of these agents for different types of cancer and outcomes from published data. Finally, we discuss lessons learned from completed studies and future directions for this class of drugs.
Collapse
Affiliation(s)
- Pedro Barata
- Department of Solid Tumors, Taussig Cancer Institute, Cleveland Clinic, Cleveland, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
18
|
Birdsall RE, Gilar M, Shion H, Yu YQ, Chen W. Reduction of metal adducts in oligonucleotide mass spectra in ion-pair reversed-phase chromatography/mass spectrometry analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1667-1679. [PMID: 28328039 PMCID: PMC5094505 DOI: 10.1002/rcm.7596] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/28/2016] [Accepted: 05/01/2016] [Indexed: 05/09/2023]
Abstract
RATIONALE Electrospray ionization mass spectrometry (ESI-MS)-based techniques commonly used in oligonucleotide analyses are known to be sensitive to alkali metal adduct formation. Adducts directly impact the sensitivity of MS-based analyses as the available charge is distributed across the parent peak and adduct(s). The current study systematically evaluated common liquid chromatography (LC) components in LC/ESI-MS configurations used in oligonucleotide analysis to identify metal adduct contributions from LC instrumentation. METHODS A UPLC liquid chromatography system was configured with a single quadrupole MS detector (ACQUITY QDa, Waters Corp.) to monitor adduct formation in oligonucleotide separations. An ion-pairing mobile phase comprised of 15 mM triethylamine and 400 mM hexafluoro-2-propanol was used in conjunction with an oligonucleotide separation column (Waters OST BEH C18, 2.1 mm × 50 mm) for all separations. A 10-min method was used to provide statistical figures of merit and evaluate adduct formation over time. RESULTS Trace alkali metal salts in the mobile phase and reagents were determined to be the main source of metal salt adducts in LC/ESI-MS-based configurations. Non-specific adsorption sites located throughout the fluidic path contribute to adduct formation in oligonucleotide analyses. Ion-pairing mobile phases prepared at neutral or slightly basic pH result in up to a 57% loss of spectral abundance to adduct formation in the current study. CONCLUSIONS Implementation of a short low pH reconditioning step was observed to effectively displace trace metal salts non-specifically adsorbed to surfaces in the fluidic path and was able to maintain an average MS spectral abundance ≥94% with a high degree of repeatability (relative standard deviation (R.S.D.) 0.8%) over an extended time study. The proposed method offers the ability to rapidly regenerate adsorption sites with minimal impact on productivity while retaining assay sensitivity afforded by MS detection with reduced adduct formation. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
| | - Martin Gilar
- Waters Corp., 34 Maple St, Milford, MA, 01757-3604, USA
| | - Henry Shion
- Waters Corp., 34 Maple St, Milford, MA, 01757-3604, USA
| | - Ying Qing Yu
- Waters Corp., 34 Maple St, Milford, MA, 01757-3604, USA
| | - Weibin Chen
- Waters Corp., 34 Maple St, Milford, MA, 01757-3604, USA
| |
Collapse
|
19
|
Manderville RA, Wetmore SD. C-Linked 8-aryl guanine nucleobase adducts: biological outcomes and utility as fluorescent probes. Chem Sci 2016; 7:3482-3493. [PMID: 29997840 PMCID: PMC6007177 DOI: 10.1039/c6sc00053c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/23/2016] [Indexed: 12/18/2022] Open
Abstract
Aryl radical species derived from enzymatic transformations of aromatic mutagens preferentially react at the 8-site of the guanine (G) nucleobase to afford carbon-linked 8arylG adducts. The resulting lesions possess altered biophysical and genetic coding properties compared to the precursor G nucleoside in B-form DNA. Unlike other adducts, these lesions also possess useful fluorescent properties, since direct attachment of the 8aryl ring extends the purine π-system to afford G mimics with red-shifted excitation maxima and emission that can be sensitive to the microenvironment of the 8arylG base within nucleic acid structures. In B-form DNA, 8arylG adducts are disruptive to duplex formation because they prefer to adopt the syn-conformation about the bond connecting the nucleobase to the deoxyribose backbone, which perturbs Watson-Crick (WC) H-bonding with the opposing cytosine (C). Thus, in a B-form duplex, the emissive properties of 8arylG adducts can be employed as a tool to provide insight into adduct conformation, which can be related to their biological outcomes. However, since Gs preferentially adopt the syn-conformation in left-handed Z-DNA and antiparallel G-quadruplex (GQ) structures, 8arylG lesions can be inserted into syn-G positions without disrupting H-bonding interactions. In fact, 8arylG lesions can serve as ideal fluorescent probes in an antiparallel GQ because their emission is sensitive to GQ folding. This perspective outlines recent developments in the biological implications of 8arylG formation together with their utility as fluorescent G analogs for use in DNA-based diagnostic systems.
Collapse
Affiliation(s)
- Richard A Manderville
- Department of Chemistry & Toxicology , University of Guelph , Guelph , ON , Canada N1G 2W1 .
| | - Stacey D Wetmore
- Department of Chemistry & Biochemistry , University of Lethbridge , Lethbridge , AB , Canada T1K 3M4 .
| |
Collapse
|
20
|
Biau J, Devun F, Verrelle P, Dutreix M. [Dbait: An innovative concept to inhibit DNA repair and treat cancer]. Bull Cancer 2016; 103:227-35. [PMID: 26917468 DOI: 10.1016/j.bulcan.2016.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/22/2022]
Abstract
The ability of cancer cells to recognize damage and initiate DNA repair is an important mechanism for therapeutic resistance. The use of inhibitors of DNA damage repair or signaling pathways appears to provide a unique opportunity for targeting genetic differences between tumor and normal cells. In this review, we firstly describe the main DNA lesions induced by the different treatments and the pathways involved in their repair. Then we review the mechanism of action and applications of an innovative DNA repair inhibitor: Dbait (and its clinical form DT01). Dbait/DT01 consists of 32 bp deoxyribonucleotides forming an intramolecular DNA double helix that mimics DNA lesions. They act as a bait for DNA damage signaling enzymes, the polyadenyl-ribose polymerase (PARP), and the DNA-dependent kinase (DNA-PK), inducing a "false" DNA damage signal and ultimately inhibiting recruitment at the damage site of many proteins involved in double-strand break and single-strand break repair pathways. Preclinical studies have demonstrated the capacity of Dbait/DT01 to improve the efficiency of (i) chemotherapy in colorectal cancer or hepatocellular carcinoma models, (ii) radiofrequency ablative in colorectal cancer liver metastases models, and (iii) radiotherapy in xenografted mice with head & neck squamous cell carcinoma, glioblastoma and melanoma. Following this good preclinical results, we performed a first-in-human phase 1-2a study evaluating the safety and efficacy of the combination of DT01 with radiotherapy for the treatment of skin metastases of melanoma. Twenty-three patients were included. No dose-limiting toxicity was observed. An objective response was observed in 59% lesions, including 30% complete responses. This first promising clinical efficacy provides future potential interesting clinical development of Dbait/DT01 with various anticancer treatments.
Collapse
Affiliation(s)
- Julian Biau
- Centre de recherche, institut Curie, 91400 Orsay, France; Centre national de la recherche scientifique, UMR3347, Orsay, France; Institut national de la santé et de la recherche médicale, U1021, Orsay, France; Université Paris Sud, Orsay, France; Clermont université, université d'Auvergne, EA7283 CREaT, 63011 Clermont-Ferrand, France; Centre Jean-Perrin, département de radiothérapie, 58, rue Montalembert, 63011 Clermont-Ferrand, France.
| | - Flavien Devun
- Centre de recherche, institut Curie, 91400 Orsay, France; DNA Therapeutics, 91000 Evry, France
| | - Pierre Verrelle
- Centre de recherche, institut Curie, 91400 Orsay, France; Clermont université, université d'Auvergne, EA7283 CREaT, 63011 Clermont-Ferrand, France; Centre Jean-Perrin, département de radiothérapie, 58, rue Montalembert, 63011 Clermont-Ferrand, France
| | - Marie Dutreix
- Centre de recherche, institut Curie, 91400 Orsay, France; Centre national de la recherche scientifique, UMR3347, Orsay, France; Institut national de la santé et de la recherche médicale, U1021, Orsay, France; Université Paris Sud, Orsay, France
| |
Collapse
|
21
|
Antisense Oligonucleotides for Amyotrophic Lateral Sclerosis. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Dobrovolskaia MA, McNeil SE. Immunological and hematological toxicities challenging clinical translation of nucleic acid-based therapeutics. Expert Opin Biol Ther 2015; 15:1023-48. [PMID: 26017628 DOI: 10.1517/14712598.2015.1014794] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Nucleic acid-based therapeutics (NATs) are proven agents in correcting disorders caused by gene mutations, as treatments against cancer, microbes and viruses, and as vaccine adjuvants. Although many traditional small molecule NATs have been approved for clinical use, commercialization of macromolecular NATs has been considerably slower, and only a few have successfully reached the market. Preclinical and clinical evaluation of macromolecular NATs has revealed many assorted challenges in immunotoxicity, hematotoxicity, pharmacokinetics (PKs), toxicology and formulation. Extensive review has been given to the PK and toxicological concerns of NATs including approaches designed to overcome these issues. Immunological and hematological issues are a commonly reported side effect of NAT treatment; however, literature exploring the mechanistic background of these effects is sparse. AREAS COVERED This review focuses on the immunomodulatory properties of various types of therapeutic nucleic acid concepts. The most commonly observed immunological and hematological toxicities are described for various NAT classes, with citations of how to circumvent these toxicities. EXPERT OPINION Although some success with overcoming immunological and hematological toxicities of NATs has been achieved in recent years, immunostimulation remains the main dose-limiting factor challenging clinical translation of these promising therapies. Novel delivery vehicles should be considered to overcome this challenge.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Nanotechnology Characterization Laboratory, Cancer Research Technology Program , P.O. Box B, Frederick, MD 21702 , USA +1 301 846 6939 ; +1 301 846 6399 ;
| | | |
Collapse
|
23
|
Jagani H, Kasinathan N, Meka SR, Josyula VR. Antiapoptotic Bcl-2 protein as a potential target for cancer therapy: A mini review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1212-21. [DOI: 10.3109/21691401.2015.1019668] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hitesh Jagani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Narayanan Kasinathan
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Sreenivasa Reddy Meka
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Venkata Rao Josyula
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| |
Collapse
|
24
|
Frazier KS. Antisense oligonucleotide therapies: the promise and the challenges from a toxicologic pathologist's perspective. Toxicol Pathol 2014; 43:78-89. [PMID: 25385330 DOI: 10.1177/0192623314551840] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Many antisense oligonucleotides (ASOs) from several classes of molecules are currently in drug development. Despite over 20 years of pharmaceutical research, few ASOs have been marketed due to problems with clinical efficacy or preclinical toxicologic challenges. However, a number of recent developments have renewed interest in this class including the registration of mipomersen, the advent of successful screening strategies to eliminate more toxic molecules, and new understanding of the risks of off-target nucleotide binding and mitigation of potential off-target effects. Recent advances in backbone chemistries, conjugation to other moieties, and new delivery systems have allowed better tissue penetration, enhanced intracellular targeting, and less frequent dosing, resulting in fewer toxicities. While these new developments provide invigorated interest in these platforms, a few lingering challenges and preclinical/clinical toxicity issues remain to be completely resolved, including: (1) proinflammatory effects (vasculitis/inflammatory infiltrates); (2) nephrotoxicity and hepatotoxicity unrelated to lysosomal accumulation; and (3) thrombocytopenia. Recent investigative work by several laboratories have helped elucidate mechanisms for these issues, allowing a better understanding of the clinical relevance and implications of particular toxicities. It is important for toxicologists, pathologists, and regulatory reviewers to be familiar with new developments in the ASO field and their implications, as a greater number of new types of antisense molecules undergo preclinical toxicity testing.
Collapse
|
25
|
Quantification of oligonucleotides by LC-MS/MS: the challenges of quantifying a phosphorothioate oligonucleotide and multiple metabolites. Bioanalysis 2014; 6:447-64. [PMID: 24568349 DOI: 10.4155/bio.13.319] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND LC-MS/MS allows quantification of therapeutic oligonucleotides in biological fluids at low ng/ml concentrations. Achieving selectivity between metabolites and parent molecules in a single assay is one of the biggest challenges when developing a method. We present a strategy that allows quantification of an 18-mer antisense therapeutic, trabedersen, and six metabolites in human plasma. RESULTS/METHODOLOGY: The method utilizes phenol-chloroform and SPE with UHPLC-MS/MS to independently quantify trabedersen and the 5´n-1, 5´n-2, 5´n-3, 3´n-1, 3´n-2 and 3´n-3 metabolites in a single assay. The qualification data indicate that if the method was validated it would meet regulatory expectations for precision, accuracy and selectivity. CONCLUSION We show that quantification of an oligonucleotide and multiple metabolites, including isobaric 3´ and 5´ metabolites, is achievable in a single assay through good sample clean-up and careful optimization of the LC-MS/MS parameters. The strategy presented here can be applied elsewhere and may be useful for other oligonucleotides and their metabolites.
Collapse
|
26
|
Bonavida B. Postulated mechanisms of resistance of B-cell non-Hodgkin lymphoma to rituximab treatment regimens: strategies to overcome resistance. Semin Oncol 2014; 41:667-77. [PMID: 25440611 DOI: 10.1053/j.seminoncol.2014.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antibody-mediated immunotherapy has gained significant momentum since 1997 when the US Food and Drug Administration approved the first monoclonal antibody (mAb) for the treatment of B-cell non-Hodgkin lymphoma (B-NHL), namely, rituximab (chimeric anti-CD20 mAb). Subsequently, more than 20 approved mAbs have been in use clinically for the treatment of various cancers and several non-cancer-related diseases. Further, the combination treatment of mAbs with chemotherapy, immunotherapy, proteaosome inhibitors, and other inhibitors has resulted in synergistic anti-tumor activity with significant objective clinical responses. Despite their successful clinical use, the underlying mechanisms of rituximab's in vivo activities remain elusive. Further, it is not clear why a subset of patients is initially unresponsive and many responding patients become refractory and resistant to further treatments; hence, the underlying mechanisms of resistance are not known, Attempts have been made to develop model systems to investigate resistance to mAb therapy with the hope to apply the findings in both the generation of new therapeutics and in their use as new prognostic biomarkers. This review focuses on the development of resistance to rituximab treatments and discusses possible underlying mechanisms of action, postulated mechanisms of resistance in model systems, and suggested means to overcome resistance. Several prior reviews on the subject of rituximab resistance have been published and the present review both complements as well as adds new topics of relevance.
Collapse
Affiliation(s)
- Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA.
| |
Collapse
|
27
|
Batkai S, Thum T. Analytical approaches in microRNA therapeutics. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 964:146-52. [DOI: 10.1016/j.jchromb.2014.03.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 02/06/2023]
|
28
|
Astakhova IK, Wengel J. Scaffolding along nucleic acid duplexes using 2'-amino-locked nucleic acids. Acc Chem Res 2014; 47:1768-77. [PMID: 24749544 DOI: 10.1021/ar500014g] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CONSPECTUS: Incorporation of chemically modified nucleotide scaffolds into nucleic acids to form assemblies rich in function is an innovative area with great promise for nanotechnology and biomedical and material science applications. The intrinsic biorecognition potential of nucleic acids combined with advanced properties of the locked nucleic acids (LNAs) provide opportunities to develop new nanomaterials and devices like sensors, aptamers, and machines. In this Account, we describe recent research on preparation and investigation of the properties of LNA/DNA hybrids containing functionalized 2'-amino-LNA nucleotides. By application of different chemical reactions, modification of 2'-amino-LNA scaffolds can be efficiently performed in high yields and with various tags, postsynthetically or during the automated oligonucleotide synthesis. The choice of a synthetic method for scaffolding along 2'-amino-LNA mainly depends on the chemical nature of the modification, its price, its availability, and applications of the product. One of the most useful applications of the product LNA/DNA scaffolds containing 2'-amino-LNA is to detect complementary DNA and RNA targets. Examples of these applications include sensing of clinically important single-nucleotide polymorphisms (SNPs) and imaging of nucleic acids in vitro, in cell culture, and in vivo. According to our studies, 2'-amino-LNA scaffolds are efficient within diagnostic probes for DNA and RNA targets and as therapeutics, whereas both 2'-amino- and isomeric 2'-α-l-amino-LNA scaffolds have promising properties for stabilization and detection of DNA nanostructures. Attachment of fluorescent groups to the 2'-amino group results in very high fluorescent quantum yields of the duplexes and remarkable sensitivity of the fluorescence signal to target binding. Notably, fluorescent LNA/DNA probes bind nucleic acid targets with advantages of high affinity and specificity. Thus, molecular motion of nanodevices and programmable self-assembly of chemically modified LNA/DNA nanomaterials can be followed by bright fluorescence signaling from the functionalized LNA units. Another appealing aspect of the amino-LNA scaffolds is specific targeting of nucleic acids and proteins for therapeutic applications. 2'-Amino-LNA/DNA conjugates containing peptide and polyaromatic hydrocarbon (PAH) groups are promising in this context as well as for advanced imaging and diagnostic purposes in vivo. For imaging applications, photostability of fluorescence dyes is of crucial importance. Chemically stable and photostable fluorescent PAH molecules attached to 2'-amino functionality of the 2'-amino-LNA are potent for in vitro and in vivo imaging of DNA and RNA targets. We believe that rational evolution of the biopolymers of Nature may solve the major challenges of the future material science and biomedicine. However, this requires strong scientific progress and efficient interdisciplinary research. Examples of this Account demonstrate that among other synthetic biopolymers, synthetic nucleic acids containing functionalized 2'-amino-LNA scaffolds offer great opportunities for material science, diagnostics, and medicine of the future.
Collapse
Affiliation(s)
- I. Kira Astakhova
- Nucleic Acid Center,
Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jesper Wengel
- Nucleic Acid Center,
Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
29
|
Puvvada S, Kendrick S, Rimsza L. Molecular classification, pathway addiction, and therapeutic targeting in diffuse large B cell lymphoma. Cancer Genet 2013; 206:257-65. [PMID: 24080457 DOI: 10.1016/j.cancergen.2013.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 11/16/2022]
Abstract
The rapid emergence of molecularly based techniques to detect changes in the genetic landscape of diffuse large B cell lymphoma (DLBCL), including gene expression, DNA and RNA sequencing, and epigenetic profiling, has significantly influenced the understanding and therapeutic targeting of DLBCL. In this review, we briefly discuss the new methods used in the study of DLBCL. We describe the influence of the generated data on DLBCL classification and the identification of new entities and altered cell survival strategies, with a focus on the renewed interest in some classic oncogenic pathways that are currently targeted for new therapy. Finally, we examine the molecular genomic studies that revealed the importance of the tumor microenvironment in the pathogenesis of DLBCL.
Collapse
Affiliation(s)
- Soham Puvvada
- Department of Medicine, Division of Hematology-Oncology, University of Arizona, Tucson, AZ, USA.
| | | | | |
Collapse
|
30
|
Xie J, Li X, Jiang CJ, Lee RJG, Zhou YL, Teng LS. Novel PLGA microspheres for sustained delivery of antisense oligonucleotide. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-3127-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Fu Q, He C, Mao ZR. Epstein-Barr virus interactions with the Bcl-2 protein family and apoptosis in human tumor cells. J Zhejiang Univ Sci B 2013; 14:8-24. [PMID: 23303627 DOI: 10.1631/jzus.b1200189] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epstein-Barr virus (EBV), a human gammaherpesvirus carried by more than 90% of the world's population, is associated with malignant tumors such as Burkitt's lymphoma (BL), Hodgkin lymphoma, post-transplant lymphoma, extra-nodal natural killer/T cell lymphoma, and nasopharyngeal and gastric carcinomas in immune-compromised patients. In the process of infection, EBV faces challenges: the host cell environment is harsh, and the survival and apoptosis of host cells are precisely regulated. Only when host cells receive sufficient survival signals may they immortalize. To establish efficiently a lytic or long-term latent infection, EBV must escape the host cell immunologic mechanism and resist host cell apoptosis by interfering with multiple signaling pathways. This review details the apoptotic pathway disrupted by EBV in EBV-infected cells and describes the interactions of EBV gene products with host cellular factors as well as the function of these factors, which decide the fate of the host cell. The relationships between other EBV-encoded genes and proteins of the B-cell leukemia/lymphoma (Bcl) family are unknown. Still, EBV seems to contribute to establishing its own latency and the formation of tumors by modifying events that impact cell survival and proliferation as well as the immune response of the infected host. We discuss potential therapeutic drugs to provide a foundation for further studies of tumor pathogenesis aimed at exploiting novel therapeutic strategies for EBV-associated diseases.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | | | | |
Collapse
|
32
|
Del Principe MI, Del Poeta G, Venditti A, Buccisano F, Maurillo L, Mazzone C, Bruno A, Neri B, Irno Consalvo M, Lo Coco F, Amadori S. Apoptosis and immaturity in acute myeloid leukemia. Hematology 2013; 10:25-34. [PMID: 16019442 DOI: 10.1080/10245330400020454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The primary cause of treatment failures in acute myeloid leukemia (AML) is the emergence of both resistant disease and early relapse. Among the most frequent agents of these phenomena are defects in the mitochondrial-mediated apoptotic pathway. This pathway is regulated by bcl-2 family of anti-apoptotic (bcl-2, bcl-xl, mcl-1) and pro-apoptotic proteins (bax, bad, bak). In particular, bcl-2 dimerizes with several members of bcl-2 family of proteins, altering the threshold of cell death. The flow cytometric quantitative measurement of bcl-2 and bax expression for the determination of bax/bcl-2 ratio provided crucial clinical information in AML: in our hands, lower bax/bcl-2 ratio conferred a very poor prognosis with decreased rates of complete remission (CR) and overall survival (OS). Moreover, striking correlations were found between lower bax/bcl-2 ratio and higher progenitor marker expression, such as CD34, CD117 and CD133 antigens, confirming the link between this apoptotic index and the maturation pathways. However, the capacity of bax/bcl-2 ratio to clearly identify patients with different prognosis with regard to CR and OS within the CD34+, CD117+ and CD133+ subgroups implies that other mechanisms, such as proliferation and/or cell cycle dysregulation may be involved to explain its clinical significance. Finally, small molecules that target both the receptor- and mitochondrial-mediated pathway of apoptosis are providing encouraging results in patients with relapsed and/or refractory disease (i.e. CDDOMe, bcl-2 antisense oligonucleotides, CEP-701, etc), confirming the key role of apoptotic mechanisms on the outcome of AML patients.
Collapse
|
33
|
Maxwell SA, Mousavi-Fard S. Non-Hodgkin's B-cell lymphoma: advances in molecular strategies targeting drug resistance. Exp Biol Med (Maywood) 2013; 238:971-90. [PMID: 23986223 DOI: 10.1177/1535370213498985] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Non-Hodgkin's lymphoma (NHL) is a heterogeneous class of cancers displaying a diverse range of biological phenotypes, clinical behaviours and prognoses. Standard treatments for B-cell NHL are anthracycline-based combinatorial chemotherapy regimens composed of cyclophosphamide, doxorubicin, vincristine and prednisolone. Even though complete response rates of 40-50% with chemotherapy can be attained, a substantial proportion of patients relapse, resulting in 3-year overall survival rates of about 30%. Relapsed lymphomas are refractory to subsequent treatments with the initial chemotherapy regimen and can exhibit cross-resistance to a wide variety of anticancer drugs. The emergence of acquired chemoresistance thus poses a challenge in the clinic preventing the successful treatment and cure of disseminated B-cell lymphomas. Gene-expression analyses have increased our understanding of the molecular basis of chemotherapy resistance and identified rational targets for drug interventions to prevent and treat relapsed/refractory diffuse large B-cell lymphoma. Acquisition of drug resistance in lymphoma is in part driven by the inherent genetic heterogeneity and instability of the tumour cells. Due to the genetic heterogeneity of B-cell NHL, many different pathways leading to drug resistance have been identified. Successful treatment of chemoresistant NHL will thus require the rational design of combinatorial drugs targeting multiple pathways specific to different subtypes of B-cell NHL as well as the development of personalized approaches to address patient-to-patient genetic heterogeneity. This review highlights the new insights into the molecular basis of chemorefractory B-cell NHL that are facilitating the rational design of novel strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Steve A Maxwell
- Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | | |
Collapse
|
34
|
Chao MP. Treatment challenges in the management of relapsed or refractory non-Hodgkin's lymphoma - novel and emerging therapies. Cancer Manag Res 2013; 5:251-69. [PMID: 24049458 PMCID: PMC3775637 DOI: 10.2147/cmar.s34273] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Over the last few decades, advances in immunochemotherapy have led to dramatic improvement in the prognosis of non-Hodgkin's lymphoma (NHL). Despite these advances, relapsed and refractory disease represents a major treatment challenge. For both aggressive and indolent subtypes of NHL, there is no standard of care for salvage regimens, with prognosis after relapse remaining relatively poor. Nevertheless, there are multiple emerging classes of targeted therapies for relapsed/refractory disease, including monoclonal antibodies, antibody- drug conjugates, radioimmunotherapy, small-molecule inhibitors of cell-growth pathways, and novel chemotherapy agents. This review will discuss treatment challenges of NHL, current available salvage regimens for relapsed/refractory NHL, and the safety and efficacy of novel emerging therapies.
Collapse
Affiliation(s)
- Mark P Chao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
35
|
Abstract
Over the last few years, five agents have demonstrated a survival benefit over a comparator treatment or placebo in the treatment of metastatic castration-resistant prostate cancer and have been approved by the US Food and Drug Administration: sipuleucel-T (a dendritic cell immunotherapy); cabazitaxel; abiraterone acetate and enzalutamide (both hormonal agents); and radium 223 (an alpha emitter). The development of these agents pivoted on whether patients had been treated with docetaxel, which remains the first-line chemotherapy of choice. To date, no combination of docetaxel and another active agent has demonstrated superiority to docetaxel alone despite numerous Phase III trials. Clusterin is a cytoprotective chaperone protein that is upregulated in response to various anticancer therapies. When overexpressed, clusterin interferes with apoptotic signaling, thereby promoting cell survival and conferring broad-spectrum resistance in cancer cell lines. Custirsen (OGX-011) is a second-generation 2'-methoxyethyl modified phosphorothioate antisense oligonucleotide that inhibits expression of clusterin. This review presents the preclinical and clinical data that provided the rationale for the combination of custirsen with chemotherapy in ongoing Phase III trials.
Collapse
Affiliation(s)
- Celestia S Higano
- Department of Medicine, University of Washington, and Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
36
|
Abstract
Resistance to fluoropyrimidine-based chemotherapy is the major reason for the failure of advanced colorectal cancer (CRC) treatment. The lack of ability of tumor cells to undergo apoptosis after genotoxic stress is the key contributor to this intrinsic mechanism. Mounting evidence has demonstrated that non-coding microRNAs (miRNAs) are crucial regulators of gene expression, in particular, under acute genotoxic stress. However, there is still limited knowledge about the role of miRNAs in apoptosis. In this study, we discovered a novel mechanism mediated by microRNA-129 (miR-129) to trigger apoptosis by suppressing a key anti-apoptotic protein, B-cell lymphoma 2 (BCL2). Ectopic expression of miR-129 promoted apoptosis, inhibited cell proliferation and caused cell-cycle arrest in CRC cells. The intrinsic apoptotic pathway triggered by miR-129 was activated by cleavage of caspase-9 and caspase-3. The expression of miR-129 was significantly downregulated in CRC tissue specimens compared with the paired normal control samples. More importantly, we demonstrated that miR-129 enhanced the cytotoxic effect of 5-fluorouracil both in vitro and in vivo. These results suggest that miR-129 has a unique potential as a tumor suppressor and a novel candidate for developing miR-129-based therapeutic strategies in CRC.
Collapse
|
37
|
Yang B, Yu RL, Tuo S, Tuo CW, Liu QZ, Zhang N, Lu XC, Chi XH, Lv SB, Cai LL. Antisense oligonucleotide against hTERT (Cantide) inhibits tumor growth in an orthotopic primary hepatic lymphoma mouse model. PLoS One 2012; 7:e41467. [PMID: 22848504 PMCID: PMC3404084 DOI: 10.1371/journal.pone.0041467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/21/2012] [Indexed: 11/24/2022] Open
Abstract
Background Human xenograft models, resulting from orthotopic transplantation (implantation into the anatomically correct site) of histologically intact tissue into animals, are important for investigating local tumor growth, vascular and lymphatic invasion at the primary tumor site and metastasis. Methodology/Principal Findings We used surgical orthotopic transplantation to establish a nude mouse model of primary hepatic lymphoma (PHL), HLBL-0102. We performed orthotopic transfer of the HLBL-0102 tumor for 42 generations and characterized the tumor cells. The maintenance of PHL characteristics were supported by immunohistochemical and cytogenetic analysis. We also report the antitumor effect of Cantide, an antisense phosphorothioate oligonucleotide against hTERT, on the growth of HLBL-0102 tumors. We showed a significant, dose-dependent inhibition of tumor weight and serum LDH activity in the orthotopically transplanted animals by Cantide. Importantly, survival was prolonged in Cantide-treated HLBL-0102 tumor-bearing mice when compared to mock-treated mice. Conclusions/Significance Our study provided the basis for the development of a clinical trial protocol to treat PHL.
Collapse
Affiliation(s)
- Bo Yang
- Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing, China
| | - Rui-li Yu
- Institute of Otorhinolaryngology, Chinese PLA General Hospital, Beijing, China
- * E-mail:
| | - Shuai Tuo
- Department of Ultrastructural Pathology, Hospital of Chinese PLA, Shenyang, China
| | - Chao-wei Tuo
- Department of Ultrastructural Pathology, Hospital of Chinese PLA, Shenyang, China
| | - Qiu-zhen Liu
- Department of Ultrastructural Pathology, Hospital of Chinese PLA, Shenyang, China
| | - Ning Zhang
- Department of Ultrastructural Pathology, Hospital of Chinese PLA, Shenyang, China
| | - Xue-chun Lu
- Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing, China
| | - Xiao-hua Chi
- Department of Pharmacy, the Second Artillery General Hospital, Beijing, China
| | - Shu-bao Lv
- Department of Statistics, Unit of Chinese PLA, Baicheng, China
| | - Li-li Cai
- Department of Geriatric Laboratory Medicine, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
38
|
Abstract
OPINION STATEMENT: The standard front-line treatment of Diffuse Large B-Cell Lymphoma (DLBCL) remains Rituximab combined with multi-agent cytotoxic chemotherapy. In spite of high response rates to this therapy, relapsed/refractory disease is observed in up to 40% of patients. It is our opinion that additional chemoimmunotherapy, followed by high-dose therapy with autologous stem cell transplant (HDT-ASCT) for responsive disease, is the optimal therapy for these patients. However, many patients cannot tolerate HDT-ASCT, or have relapsed/refractory disease in spite of it. These patients have a poor overall prognosis, and there is no clear consensus as to how these patients should be treated. Over the past decade, significant advances have been made in the understanding of the molecular genesis and subtyping of DLBCL, leading to the identification of multiple pathways and molecules that can be targeted for clinical benefit. Examples include Bcl-2, Bcl-6, cell surface markers, and myriad molecules in both the B-Cell receptor and PI3K/Akt/mTOR pathways. As agents targeting these molecules and pathways progress from preclinical models to early clinical trials, more is learned about what might predict for response to these agents, such as cell of origin classification, and/or expression of relevant molecular markers, as measured by immunohistochemistry or gene expression profiling. Both the successes and failures of these novel targeted agents promise to dramatically refine, improve, and individualize the classification and treatment of DLBCL. Therefore, it is our opinion that patients with relapsed/refractory DLBCL are an ideal population for clinical trials due to both the lack of standardized treatment, and the recent advancements in pathobiology and early-phase treatment options.
Collapse
|
39
|
Smith SM. What is the best strategy for incorporating new agents into the current treatment of follicular lymphoma? Am Soc Clin Oncol Educ Book 2012:481-7. [PMID: 24451784 DOI: 10.14694/edbook_am.2012.32.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although there is increasing knowledge about the pathobiology of follicular lymphoma (FL), the incorporation of new agents is challenged by the long clinical course and inherent heterogeneity of the disease. Furthermore, a longstanding concept in FL is that although most patients have an indolent initial phase of disease, this is typically followed by sequentially shorter remission durations and justifies the continued intense search for new rationally designed agents. Ideally, there would be personalized prognostic tools, preemptive target identification, and means to predict response in individual patients. Short of having these tools, one conceptual approach is to consider FL as a series of clinical disease states divided between treatment-naïve (low tumor burden and high tumor burden), relapsed (typically still chemoimmunotherapy-sensitive), and multiply relapsed (usually chemoimmunotherapy-resistant) disease. By applying what is known about the biology of FL along with the available agents, new treatment options can be better defined and tested within these clinical contexts. During the last few years, novel chemotherapeutics, biologic agents, monoclonal antibodies, antibody drug conjugates, and maintenance strategies are all either replacing or adding onto existing strategies. These new agents and approaches challenge the notion of inevitably shorter response durations, and offer hope of improved clinical outcomes compared with traditional sequential cytotoxic therapy.
Collapse
Affiliation(s)
- Sonali M Smith
- From the Section of Hematology/Oncology, Lymphoma Program, The University of Chicago, Chicago, IL
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Although enormous progress has been made in treating non-Hodgkin's lymphoma (NHL), and some patients can be cured with combination immunochemotherapy, patients with relapsed and refractory lymphoma often succumb to their disease. Advances in our understanding of lymphoma biology and molecular pathogenesis are yielding new therapeutic targets. RECENT FINDINGS This article reviews NHL biology and describes how our understanding of molecular pathogenesis is leading to the discovery of many therapeutic targets, including the cell signaling and cell cycle regulatory proteins, pro-apoptotic family members, the B-cell antigen receptor (BCR), and histone deacetylase. Recent preclinical and clinical data with inhibitors of phosphatidylinositol 3-kinase, AKT, mammalian target of rapamycin, histone deacetylase, bcl-2, and the Bruton's tyrosine kinase, a pivotal enzyme in the BCR pathway, are discussed. SUMMARY Understanding these novel targets in the context of NHL biology will bring new therapies and allow us to develop new therapeutic platforms for the treatment of relapsed and refractory NHL, and will hopefully improve the clinical outcome for these patients.
Collapse
|
41
|
Li H, Nelson CE, Evans BC, Duvall CL. Delivery of intracellular-acting biologics in pro-apoptotic therapies. Curr Pharm Des 2011; 17:293-319. [PMID: 21348831 DOI: 10.2174/138161211795049642] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/18/2011] [Indexed: 12/21/2022]
Abstract
The recent elucidation of molecular regulators of apoptosis and their roles in cellular oncogenesis has motivated the development of biomacromolecular anticancer therapeutics that can activate intracellular apoptotic signaling pathways. Pharmaceutical scientists have employed a variety of classes of biologics toward this goal, including antisense oligodeoxynucleotides, small interfering RNA, proteins, antibodies, and peptides. However, stability in the in vivo environment, tumor-specific biodistribution, cell internalization, and localization to the intracellular microenvironment where the targeted molecule is localized pose significant challenges that limit the ability to directly apply intracellular-acting, pro-apoptotic biologics for therapeutic use. Thus, approaches to improve the pharmaceutical properties of therapeutic biomacromolecules are of great significance and have included chemically modifying the bioactive molecule itself or formulation with auxiliary compounds. Recently, promising advances in delivery of pro-apoptotic biomacromolecular agents have been made using tools such as peptide "stapling", cell penetrating peptides, fusogenic peptides, liposomes, nanoparticles, smart polymers, and synergistic combinations of these components. This review will discuss the molecular mediators of cellular apoptosis, the respective mechanisms by which these mediators are dysregulated in cellular oncogenesis, the history and development of both nucleic-acid and amino-acid based drugs, and techniques to achieve intracellular delivery of these biologics. Finally, recent applications where pro-apoptotic functionality has been achieved through delivery of intracellular-acting biomacromolecular drugs will be highlighted.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
42
|
McGinnis AC, Chen B, Bartlett MG. Chromatographic methods for the determination of therapeutic oligonucleotides. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 883-884:76-94. [PMID: 21945211 DOI: 10.1016/j.jchromb.2011.09.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/31/2011] [Accepted: 09/05/2011] [Indexed: 11/25/2022]
Abstract
Both DNA and RNA are being explored for their therapeutic potential against a wide range of diseases. As these new drugs emerge, new demands arise for the analysis and quantitation of these biomolecules. Pharmacokinetic and pharmacodynamic analysis requirements for drug approval place enormous challenges on the methods for analyzing these therapeutics. This review will focus on bioanalytical methods for DNA antisense and aptamers as well as small-interfering RNA (siRNA) therapeutics. Chromatography methods employing ultraviolet (UV), fluorescence and mass spectrometric (MS) detection along with matrix-assisted laser desorption/ionization (MALDI) will be covered. Sample preparation from biological matrices will be reviewed as well as metabolite analysis and identification. All of these techniques are important contributions toward oligonucleotide therapeutic development. They will also be important in microRNA (miRNA) biomarker discovery and RNomics in general, as more non-coding RNAs are inevitably discovered.
Collapse
Affiliation(s)
- A Cary McGinnis
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, USA
| | | | | |
Collapse
|
43
|
Wrobel G, Chaber R, Rygier J, Bonar J, Muszynska-Roslan K, Chybicka A. Long-term survival of a child with refractory anaplastic large cell lymphoma following therapy with an antisense oligonucleotide, topotecan, and vinblastine. Hematol Oncol 2011; 33:52-5. [PMID: 21809366 DOI: 10.1002/hon.1006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 05/29/2011] [Accepted: 06/03/2011] [Indexed: 11/11/2022]
Abstract
Anaplastic large cell lymphoma includes a subset of highly aggressive tumours and has a relapse rate of 30% at 2 years. Relapsed patients often have poor clinical outcome. The use of antisense oligonucleotides to down-regulate Bcl-2 protein can reverse chemotherapy resistance. The authors describe an 11-year-old boy with recurrent anaplastic large cell lymphoma who had received double high-dose chemotherapy followed by autologous haematopoietic stem-cell transplantation, had refractory disease and then had achieved long-term remission with the use of an antisense oligonucleotides in combination with vinblastine and topotecan.
Collapse
Affiliation(s)
- Grazyna Wrobel
- Department of Bone Marrow Transplantation, Children Oncology and Haematology, Medical University of Wroclaw, Wroclaw, Poland
| | | | | | | | | | | |
Collapse
|
44
|
Masood A, Azmi AS, Mohammad RM. Small molecule inhibitors of bcl-2 family proteins for pancreatic cancer therapy. Cancers (Basel) 2011; 3:1527-1549. [PMID: 21760983 PMCID: PMC3134295 DOI: 10.3390/cancers3021527] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 02/24/2011] [Accepted: 03/16/2011] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer (PC) has a complex etiology and displays a wide range of cellular escape pathways that allow it to resist different treatment modalities. Crucial signaling molecules that function downstream of the survival pathways, particularly at points where several of these pathways crosstalk, provide valuable targets for the development of novel anti-cancer drugs. Bcl-2 family member proteins are anti-apoptotic molecules that are known to be overexpressed in most cancers including PC. The anti-apoptotic machinery has been linked to the observed resistance developed to chemotherapy and radiation and therefore is important from the targeted drug development point of view. Over the past ten years, our group has extensively studied a series of small molecule inhibitors of Bcl-2 against PC and provide solid preclinical platform for testing such novel drugs in the clinic. This review examines the efficacy, potency, and function of several small molecule inhibitor drugs targeted to the Bcl-2 family of proteins and their preclinical progress against PC. This article further focuses on compounds that have been studied the most and also discusses the anti-cancer potential of newer class of Bcl-2 drugs.
Collapse
Affiliation(s)
- Ashiq Masood
- Department of Internal Medicine/Pathology, Karmanos Cancer Institute, Wayne State University, 4100 John R, HWCRC 732, Detroit, MI 48201, USA; E-Mail:
| | - Asfar S. Azmi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, 4100 John R, HWCRC 732, Detroit MI 48201, USA; E-Mail:
| | - Ramzi M. Mohammad
- Department of Internal Medicine/Pathology, Karmanos Cancer Institute, Wayne State University, 4100 John R, HWCRC 732, Detroit, MI 48201, USA; E-Mail:
- Department of Oncology, Karmanos Cancer Institute, 4100 John R, HWCRC 732, Detroit, MI 48201, USA
| |
Collapse
|
45
|
Oligonucleotide Therapeutics. PRINCIPLES OF ANTICANCER DRUG DEVELOPMENT 2011. [PMCID: PMC7121153 DOI: 10.1007/978-1-4419-7358-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The idea of sequence-specific gene silencing by synthetic oligonucleotides targeting mRNA is at least 40 years old, but it was only in the mid-1980s when technical advances made the chemical synthesis of oligonucleotides possible that practical steps could be taken toward its implementation. The result was a deluge of experimental data in a variety of systems [1], most of which employed the phosphorothioate (PS) backbone modification, and much of which was ultimately, and unfortunately, uninterpretable.
Collapse
|
46
|
Wilson WH, O'Connor OA, Czuczman MS, LaCasce AS, Gerecitano JF, Leonard JP, Tulpule A, Dunleavy K, Xiong H, Chiu YL, Cui Y, Busman T, Elmore SW, Rosenberg SH, Krivoshik AP, Enschede SH, Humerickhouse RA. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol 2010; 11:1149-59. [PMID: 21094089 DOI: 10.1016/s1470-2045(10)70261-8] [Citation(s) in RCA: 674] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Proteins of the BCL-2 family regulate clonal selection and survival of lymphocytes, and are frequently overexpressed in lymphomas. Navitoclax is a targeted high-affinity small molecule that inhibits the anti-apoptotic activity of BCL-2 and BCL-XL. We aimed to assess the safety and antitumour activity of navitoclax in patients with lymphoid tumours, and establish the drug's pharmacokinetic and pharmacodynamic profiles. METHODS In this phase 1 dose-escalation study, patients (aged ≥18 years) with relapsed or refractory lymphoid malignancies were enrolled and treated at seven sites in the USA between November, 2006, and November, 2009. A modified Fibonacci 3+3 design was used to assign patients to receive oral navitoclax once daily by one of two dosing schedules: intermittently for the first 14 days of a 21-day cycle (14/21) at doses of 10, 20, 40, 80, 110, 160, 225, 315, or 440 mg/day; or continuously for 21 days of a 21-day cycle (21/21) at doses of 200, 275, 325, or 425 mg/day. Study endpoints were safety, maximum tolerated dose, pharmacokinetic profile, pharmacodynamic effects on platelets and T cells, and antitumour activity. This trial is registered with ClinicalTrials.gov, number NCT00406809. FINDINGS 55 patients were enrolled (median age 59 years, IQR 51-67), 38 to receive the 14/21 dosing schedule, and 17 to receive the 21/21 dosing schedule. Common toxic effects included grade 1 or 2 anaemia (41 patients), infection (39), diarrhoea (31), nausea (29), and fatigue (21); and grade 3 or 4 thrombocytopenia (29), lymphocytopenia (18), and neutropenia (18). On the intermittent 14/21 schedule, dose-limiting toxic effects were hospital admissions for bronchitis (one) and pleural effusion (one), grade 3 increase in aminotransferases (one), grade 4 thrombocytopenia (one), and grade 3 cardiac arrhythmia (one). To reduce platelet nadir associated with intermittent 14/21 dosing, we assessed a 150 mg/day lead-in dose followed by a continuous 21/21 dosing schedule. On the 21/21 dosing schedule, two patients did not complete the first cycle and were excluded from assessment of dose-limiting toxic effects; dose-limiting toxic effects were grade 4 thrombocytopenia (one), grade 3 increase in aminotransferases (one), and grade 3 gastrointestinal bleeding (one). Navitoclax showed a pharmacodynamic effect on circulating platelets and T cells. Clinical responses occurred across the range of doses and in several tumour types. Ten of 46 patients with assessable disease had a partial response, and these responders had median progression-free survival of 455 days (IQR 40-218). INTERPRETATION Navitoclax has a novel mechanism of peripheral thrombocytopenia and T-cell lymphopenia, attributable to high-affinity inhibition of BCL-XL and BCL-2, respectively. On the basis of these findings, a 150 mg 7-day lead-in dose followed by a 325 mg dose administered on a continuous 21/21 dosing schedule was selected for phase 2 study. FUNDING Abbott Laboratories, Genentech, and National Cancer Institute, National Institutes of Health.
Collapse
Affiliation(s)
- Wyndham H Wilson
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Duvall CL, Convertine AJ, Benoit DSW, Hoffman AS, Stayton PS. Intracellular delivery of a proapoptotic peptide via conjugation to a RAFT synthesized endosomolytic polymer. Mol Pharm 2010; 7:468-76. [PMID: 19968323 DOI: 10.1021/mp9002267] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Peptides derived from the third B-cell lymphoma 2 (Bcl-2) homology domain (BH3) can heterodimerize with antiapoptotic Bcl-2 family members to block their activity and trigger apoptosis. Use of these peptides presents a viable anticancer approach, but delivery barriers limit the broad application of intracellular-acting peptides as clinical therapeutics. Here, a novel diblock copolymer carrier is described that confers desirable pharmaceutical properties to intracellular-acting therapeutic peptides through site-specific molecular conjugation. This polymer was prepared using reversible addition-fragmentation chain transfer (RAFT) to form a pyridyl disulfide end-functionalized, modular diblock copolymer with precisely controlled molecular weight (M(n)) and low polydispersity (PDI). The diblock polymer (M(n) 19,000 g/mol, PDI 1.27) was composed of an N-(2-hydroxypropyl) methacrylamide (HPMA) first block (M(n) 13,800 g/mol, PDI 1.13) intended to enhance water solubility and circulation time. The second polymer block was a pH-responsive composition designed to enhance endosomal escape and consisted of equimolar quantities of dimethylaminoethyl methacrylate (DMAEMA), propylacrylic acid (PAA), and butyl methacrylate (BMA). A hemolysis assay indicated that the diblock polymer undergoes a physiologically relevant pH-dependent switch from a membrane inert (1% hemolysis, pH 7.4) to a membrane disruptive (61% hemolysis, pH 5.8) conformation. Thiol-disulfide exchange reactions were found to efficiently produce reversible polymer conjugates (75 mol % peptide reactivity with polymer) with a cell-internalized proapoptotic peptide. Microscopy studies showed that peptide delivered via polymer conjugates effectively escaped endosomes and achieved diffusion into the cytosol. Peptide-polymer conjugates also produced significantly increased apoptotic activity over peptide alone in HeLa cervical carcinoma cells as found using flow cytometric measurements of mitochondrial membrane depolarization (2.5-fold increase) and cell viability tests that showed 50% cytotoxicity after 6 h of treatment with 10 muM peptide conjugate. These results indicate that this multifunctional carrier shows significant promise for proapoptotic peptide cancer therapeutics and also as a general platform for delivery of peptide drugs with intracellular targets.
Collapse
Affiliation(s)
- Craig L Duvall
- Department of Bioengineering, University of Washington, Seattle Washington 98195, USA
| | | | | | | | | |
Collapse
|
48
|
Galatin PS, Advani RH, Fisher GA, Francisco B, Julian T, Losa R, Sierra MI, Sikic BI. Phase I trial of oblimersen (Genasense®) and gemcitabine in refractory and advanced malignancies. Invest New Drugs 2010; 29:971-7. [PMID: 20349264 DOI: 10.1007/s10637-010-9416-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Overexpression of Bcl-2 is associated with worse prognosis for a number of cancer types. The present study was designed to determine the maximum tolerated dose (MTD) of oblimersen (antisense Bcl-2) and gemcitabine when administered to patients with refractory malignancies. MATERIALS AND METHODS Sixteen patients with advanced solid tumors refractory to standard therapies were treated with escalating doses of oblimersen continuous, 120-h intravenous infusion given every 14 days, with a fixed-dose-rate intravenous infusion of gemcitabine administered on day 5 of each cycle. Serial plasma samples were collected to calculate the pharmacokinetics of oblimersen and gemcitabine, and also to measure the effect of oblimersen on Bcl-2 expression. RESULTS 7 women and 9 men, median age 55 years (range 35-74 years), received a 5-day infusion of oblimersen at dose levels of 5 mg/kg/day (n = 4) or 7 mg/kg/day (n = 12). On the 5th day of the infusion, gemcitabine was given at 10 mg/m(2)/h for a total dose of 1,000 mg/m(2) (n = 7; cohorts I and II), 1,200 mg/m(2) (n = 3; cohort III), or 1,500 mg/m(2) (n = 6; cohort IV). Edema was the dose-limiting toxicity (DLT), necessitating expansion of cohort IV. No subsequent DLTs were noted. Thus, the maximum planned doses were well tolerated, and a formal MTD was not determined. Most hematologic toxicities were grade 1 or 2. There was low-grade fatigue, nausea/vomiting, and myalgias/arthralgias. Oblimersen C(ss) and AUC increased in relation to the dose escalation, but gemcitabine triphosphate levels did not correlate well with dose. There were no objective responses, though 5 patients had stable disease. A >75% reduction in Bcl-2 expression in peripheral blood mononuclear leucocytes was seen more frequently in patients who achieved stable disease than in progressing patients. CONCLUSIONS The maximal planned dose levels of oblimersen and gemcitabine in combination were well tolerated. Only one DLT (edema) occurred. There was a correlation between Bcl-2 reduction and stable disease. The recommended doses of the drugs for future studies are 7 mg/kg/day of oblimersen on days 1-5, and gemcitabine 1,500 mg/m(2) on day 5, every two weeks.
Collapse
Affiliation(s)
- Peter S Galatin
- Department of Medicine, Oncology, Stanford University School of Medicine, Stanford, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Specific down regulation of 3T3-L1 adipocyte differentiation by cell-permeable antisense HIF1alpha-oligonucleotide. J Control Release 2010; 144:82-90. [PMID: 20109509 DOI: 10.1016/j.jconrel.2010.01.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/12/2010] [Accepted: 01/15/2010] [Indexed: 02/05/2023]
Abstract
Hypoxia is a strong modulator of angiogenesis, accelerating adipose tissue expansion, suggesting that hypoxia inducible factor 1alpha (HIF1alpha) can be a novel target for anti-obesity. We conjugated antisense-HIF1alpha-oligonucleotide (ASO) with low molecular weight protamine (LMWP), a cell-penetrating peptide, to enhance its ability to block hypoxic-angiogenesis, thereby eliciting an anti-obesity effect. Nano-sized ASO-LMWP (AS-L) conjugates enhanced cellular uptake of ASO without yielding a cytotoxic effect and protected the ASO against enzymatic attack and chemical reduction. AS-L showed enhanced intra-cellular localization compared to naked ASO and the complex of ASO with lipofectamine during hypoxic-differentiation. Consequently AS-L induced significant down-regulation of leptin and VEGF gene expressions, thereby reducing fat accumulation in the cell. This proof-of-concept study shows that AS-L produces an inhibitory effect on adipogenesis and angiogenesis during differentiation, indicating LMWP mediated ASO delivery can potentially be a safe and promising treatment for obesity.
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Members of the Bcl-2 family of proteins are critical components in regulating the intrinsic apoptotic pathway. Bcl-2 protein overexpression is associated with drug resistance and poor clinical outcome in cancer patients. Preclinical and clinical evaluations demonstrate that downregulation of Bcl-2 restores the intrinsic apoptotic pathways with antitumor effects. Thus, Bcl-2 is aggressively pursued as a therapeutic target in cancer with several new drugs undergoing clinical investigations. In this manuscript, we will review clinical information on some of the novel compounds specifically designed to target the Bcl-2 gene product(s). RECENT FINDINGS Extensive clinical evaluations using a Bcl-2-specific antisense have resulted in an overall disappointing experience. But new small molecule inhibitors of the Bcl-2 hold promise with high target affinity, ease of administration and improved toxicity profile. Early stage clinical trials of these agents are revealing promising results alone as well as in combination with existing anticancer therapeutics. Encouraging results from some of these clinical investigations are summarized in this review. SUMMARY Downregulation of Bcl-2 and restoration of a critical apoptotic pathway in cancer cells remains an important strategy. Novel Bcl-2 inhibitors have started to deliver the therapeutic promise of this target-specific quest.
Collapse
|