1
|
Kumar KP, Madhusoodanan M, Pangath M, Menon D. Innovative landscapes in intraperitoneal therapy of ovarian cancer. Drug Deliv Transl Res 2025; 15:1877-1906. [PMID: 39888579 DOI: 10.1007/s13346-024-01765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 02/01/2025]
Abstract
Epithelial ovarian cancer is the most prevalent gynecological malignancy, characterized by high mortality rates due to its late-stage diagnosis and frequent recurrence. The current standard of care for ovarian cancer is a combination of debulking surgery followed by the conventional mode of chemotherapy. Despite significant advances in therapeutic modalities, the overall survival rate of EOC continues to be poor, mainly because low concentrations of the chemotherapeutics reach the peritoneum, which is the primary site of ovarian cancer, leading to disease relapse. Here, intraperitoneal chemotherapy gains advantage due to its ability to deliver the drug molecules directly to the peritoneal cavity and provide localized and sustained effects. This is facilitated by the use of diverse kinds of nano or micron sized delivery systems, which help in transporting drugs, vaccines, antibodies and genes appropriately to the peritoneum for its desired function. This review article delves on how intraperitoneal delivery impacts the therapy of epithelial ovarian cancer spanning the conventional therapeutic modes to the recent nanoinnovations in chemotherapy, immunotherapy and gene therapy.
Collapse
Affiliation(s)
- Krishna Pradeep Kumar
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Maneesha Madhusoodanan
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Meghna Pangath
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Deepthy Menon
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| |
Collapse
|
2
|
Alarabi AB, Khasawneh FT, Alshbool FZ. Managing thrombus formation with EL2-5HTVac: A selective vaccination-based approach targeting the platelet serotonin 5-HT 2AR. J Pharmacol Exp Ther 2025; 392:103399. [PMID: 40054391 DOI: 10.1016/j.jpet.2025.103399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/03/2025] [Indexed: 05/03/2025] Open
Abstract
Cardiovascular disease is the leading global cause of death, largely attributable to thrombotic events that can result in conditions like myocardial infarction and stroke. The serotonin 2A receptor (5-HT2AR) has been identified as a key mediator in platelet aggregation and thrombogenesis, making it a promising target for antithrombotic therapies. Current 5-HT2AR antagonists, however, have been limited by nonselectivity and adverse effects. This study introduces a novel vaccine designed to target the ligand-binding domain of 5-HT2AR, which resides in the second extracellular loop (EL2). This vaccine, referred to as "EL2-5HTVac," is expected to provide a long-lasting and selective therapeutic approach without the complications of increased bleeding risk. In this study, we demonstrate that EL2-5HTVac induces a robust immune response with a significant elevation in EL2-specific antibodies in comparison with the controls. Furthermore, vaccinated mice exhibited prolonged occlusion times in a FeCl3-induced carotid artery thrombosis model without extending tail bleeding times, indicating a favorable safety profile. The EL2-5HTVac also effectively inhibited the serotonin-induced platelet shape change. Additionally, it also blocked serotonin-enhanced ADP-induced platelet aggregation, suggesting an ability to prevent serotonin-facilitated amplification of platelet activation. These findings suggest that EL2-5HTVac offers a dual advantage of thromboprotection and maintenance of hemostasis, potentially overcoming limitations of existing antithrombotic strategies. Future studies should focus on the long-term efficacy and safety of EL2-5HTVac, as well as the feasibility of a vaccination-based approach in larger animal models for eventual clinical application. SIGNIFICANCE STATEMENT: This study documents the utility of a vaccine as a potential antithrombotic agent. The vaccine can prevent thrombus formation without affecting hemostasis (causing bleeding).
Collapse
Affiliation(s)
- Ahmed B Alarabi
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, Kingsville, Texas
| | - Fadi T Khasawneh
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, Kingsville, Texas.
| | - Fatima Z Alshbool
- Department of Pharmacy Practice, College of Pharmacy, Texas A&M University, Kingsville, Texas.
| |
Collapse
|
3
|
Liu D, Liu L, Li X, Wang S, Wu G, Che X. Advancements and Challenges in Peptide-Based Cancer Vaccination: A Multidisciplinary Perspective. Vaccines (Basel) 2024; 12:950. [PMID: 39204073 PMCID: PMC11359700 DOI: 10.3390/vaccines12080950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
With the continuous advancements in tumor immunotherapy, researchers are actively exploring new treatment methods. Peptide therapeutic cancer vaccines have garnered significant attention for their potential in improving patient outcomes. Despite its potential, only a single peptide-based cancer vaccine has been approved by the U.S. Food and Drug Administration (FDA). A comprehensive understanding of the underlying mechanisms and current development status is crucial for advancing these vaccines. This review provides an in-depth analysis of the production principles and therapeutic mechanisms of peptide-based cancer vaccines, highlights the commonly used peptide-based cancer vaccines, and examines the synergistic effects of combining these vaccines with immunotherapy, targeted therapy, radiotherapy, and chemotherapy. While some studies have yielded suboptimal results, the potential of combination therapies remains substantial. Additionally, we addressed the management and adverse events associated with peptide-based cancer vaccines, noting their relatively higher safety profile compared to traditional radiotherapy and chemotherapy. Lastly, we also discussed the roles of adjuvants and targeted delivery systems in enhancing vaccine efficacy. In conclusion, this review comprehensively outlines the current landscape of peptide-based cancer vaccination and underscores its potential as a pivotal immunotherapy approach.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Xinghan Li
- Department of Stomatology, General Hospital of Northern Theater Command, Shenyang 110016, China;
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| |
Collapse
|
4
|
Zhou Y, Wu T, Sun J, Bi H, Xiao Y, Wang H. Mapping the landscape and exploring trends in macrophage-related research within non-small cell lung cancer: a comprehensive bibliometric analysis. Front Immunol 2024; 15:1398166. [PMID: 39034998 PMCID: PMC11257854 DOI: 10.3389/fimmu.2024.1398166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Background Macrophages play a pivotal role in the research landscape of non-small cell lung cancer (NSCLC), contributing significantly to understanding tumor progression, treatment resistance, and immunotherapy efficacy. In this study, we utilized bibliometric techniques to analyze shifts in research hotspots and trends within the field, while also forecasting future research directions. These insights aim to offer guidance for both clinical therapeutic interventions and foundational scientific inquiries. Methods All publications were released between 1993 and 2023 and focus on research pertaining to macrophages in the field of NSCLC. The articles were identified from the Web of Science Core Collection and analyzed using VOSviewer 1.6.19, CiteSpace 6.2.R2, and Scimago Graphica 1.0.35. Result A total of 361 articles authored by 3,072 researchers from 48 countries were included in the analysis. TAMs have gained increasing attention for their role in NSCLC development and as potential therapeutic targets. Modulating TAM behavior may offer avenues to suppress tumor growth and drug resistance, improving patient outcomes. International collaboration, particularly between China and the United States, accelerates progress in NSCLC research, benefiting patients worldwide. The research hotspot revolves around understanding the role of macrophages in immunotherapy, focusing on their contribution to tumor progression, therapeutic resistance, and potential as therapeutic targets in NSCLC. Conclusions The therapeutic significance of macrophages in the field of NSCLC is gaining increasing attention and recognition, highlighting their potential as key players in the development of novel treatment strategies. Future research will focus on understanding TAM molecular mechanisms, interactions with immune cells, and exploring novel therapies, with the aim of improving NSCLC treatment outcomes.
Collapse
Affiliation(s)
- Yinxue Zhou
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tingyu Wu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiangxing Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huanhuan Bi
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuting Xiao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongmei Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Seadawy MG, Lotfy MM, Saeed AA, Ageez AM. Novel HER2-based multi-epitope vaccine (HER2-MEV) against HER2-positive breast cancer: In silico design and validation. Hum Immunol 2024; 85:110832. [PMID: 38905717 DOI: 10.1016/j.humimm.2024.110832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
Breast cancer (BC) continues to be the malignancy with the highest diagnosis rate worldwide. Between 15 % and 30 % of BC patients show overexpressed human epidermal growth factor receptor 2 (HER2), which is linked to poor clinical results in terms of invasiveness and recurrence risk. Passive immunity-based therapeutic approaches for treating HER2-enriched BC, are not effective and significant problems need to be tackled. Constructing multi-epitope vaccines is favored over single-epitope vaccines due to its ability to induce immunity against a variety of antigenic targets which will improve the efficacy of the vaccine. The current study describes a multi-epitope vaccine from HER2 protein against HER2-positive BC using several immunoinformatic techniques to achieve a potent and durable immune response. Nine Cytotoxic T lymphocytes (CTL) and five Helper T lymphocytes (HTL) epitopes were predicted and validated from HER2 protein using in silico tools. The expressed protein of the designed vaccine is predicted to be highly thermostable with better solubility. The predicted vaccine 3D structure was validated by ProSA servers and by the ERRAT server. Molecular docking analysis revealed a high binding affinity and stability of the designed vaccine with MHCI and TLR-2, 4, 7, and 9 receptors. The analysis of the C-ImmSim server revealed that the novel vaccine construct had the ability to elicit robust anti-cancerous innate, humoral, and cell-mediated immune responses. The vaccine can be a suitable option for HER2-positive BC patients and other patients with HER2-positive cancers to evoke immune responses. However, in vitro and in vivo experiments are needed to assess its effectiveness and safety.
Collapse
Affiliation(s)
- Mohamed G Seadawy
- Biodefense Center for Infectious and Emerging Diseases, Ministry of Defense, Cairo, Egypt.
| | - Mai M Lotfy
- Cancer Biology Department, National Cancer Institute, Cairo University, Giza 12613, Egypt.
| | - Aya A Saeed
- Cancer Biology Department, National Cancer Institute, Cairo University, Giza 12613, Egypt.
| | - Amr M Ageez
- Faculty of Biotechnology, October University for Modern Sciences and Arts, MSA University, 6 October City 12451, Giza, Egypt.
| |
Collapse
|
6
|
Zahedipour F, Jamialahmadi K, Zamani P, Reza Jaafari M. Improving the efficacy of peptide vaccines in cancer immunotherapy. Int Immunopharmacol 2023; 123:110721. [PMID: 37543011 DOI: 10.1016/j.intimp.2023.110721] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
Peptide vaccines have shown great potential in cancer immunotherapy by targeting tumor antigens and activating the patient's immune system to mount a specific response against cancer cells. However, the efficacy of peptide vaccines in inducing a sustained immune response and achieving clinical benefit remains a major challenge. In this review, we discuss the current status of peptide vaccines in cancer immunotherapy and strategies to improve their efficacy. We summarize the recent advancements in the development of peptide vaccines in pre-clinical and clinical settings, including the use of novel adjuvants, neoantigens, nano-delivery systems, and combination therapies. We also highlight the importance of personalized cancer vaccines, which consider the unique genetic and immunological profiles of individual patients. We also discuss the strategies to enhance the immunogenicity of peptide vaccines such as multivalent peptides, conjugated peptides, fusion proteins, and self-assembled peptides. Although, peptide vaccines alone are weak immunogens, combining peptide vaccines with other immunotherapeutic approaches and developing novel approaches such as personalized vaccines can be promising methods to significantly enhance their efficacy and improve the clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Disis ML, Dang Y, Coveler AL, Childs JS, Higgins DM, Liu Y, Zhou J, Mackay S, Salazar LG. A Phase I/II Trial of HER2 Vaccine-Primed Autologous T-Cell Infusions in Patients with Treatment Refractory HER2-Overexpressing Breast Cancer. Clin Cancer Res 2023; 29:3362-3371. [PMID: 37093223 PMCID: PMC10754340 DOI: 10.1158/1078-0432.ccr-22-3578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/17/2023] [Accepted: 04/19/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE High levels of type I T cells are needed for tumor eradication. We evaluated whether the HER2-specific vaccine-primed T cells are readily expanded ex vivo to achieve levels needed for therapeutic infusion. PATIENTS AND METHODS Phase I/II nonrandomized trial of escalating doses of ex vivo-expanded HER2-specific T cells after in vivo priming with a multiple peptide-based HER2 intracellular domain (ICD) vaccine. Vaccines were given weekly for a total of three immunizations. Two weeks after the third vaccine, patients underwent leukapheresis for T-cell expansion, then received three escalating cell doses over 7- to 10-day intervals. Booster vaccines were administered after the T-cell infusions. The primary objective was safety. The secondary objectives included extent and persistence of HER2-specific T cells, development of epitope spreading, and clinical response. Patients received a CT scan prior to enrollment and 1 month after the last T-cell infusion. RESULTS Nineteen patients received T-cell infusions. Treatment was well tolerated. One month after the last T-cell infusion, 82% of patients had significantly augmented T cells to at least one of the immunizing epitopes and 81% of patients demonstrated enhanced intramolecular epitope spreading compared with baseline (P < 0.05). There were no complete responses, one partial response (6%), and eight patients with stable disease (47%), for a disease control rate of 53%. The median survival for those with progressive disease was 20.5 months and for responders (PR+SD) was 45.0 months. CONCLUSIONS Adoptive transfer of HER2 vaccine-primed T cells was feasible, was associated with minimal toxicity, and resulted in an increased overall survival in responding patients. See related commentary by Crosby et al., p. 3256.
Collapse
Affiliation(s)
- Mary L. Disis
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, WA
| | - Yushe Dang
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, WA
| | - Andrew L. Coveler
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, WA
| | - Jennifer S Childs
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, WA
| | - Doreen M Higgins
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, WA
| | - Ying Liu
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, WA
| | | | | | - Lupe G. Salazar
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, WA
| |
Collapse
|
8
|
Nordin ML, Azemi AK, Nordin AH, Nabgan W, Ng PY, Yusoff K, Abu N, Lim KP, Zakaria ZA, Ismail N, Azmi F. Peptide-Based Vaccine against Breast Cancer: Recent Advances and Prospects. Pharmaceuticals (Basel) 2023; 16:923. [PMID: 37513835 PMCID: PMC10386531 DOI: 10.3390/ph16070923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is considered the second-leading cancer after lung cancer and is the most prevalent cancer among women globally. Currently, cancer immunotherapy via vaccine has gained great attention due to specific and targeted immune cell activity that creates a potent immune response, thus providing long-lasting protection against the disease. Despite peptides being very susceptible to enzymatic degradation and poor immunogenicity, they can be easily customized with selected epitopes to induce a specific immune response and particulate with carriers to improve their delivery and thus overcome their weaknesses. With advances in nanotechnology, the peptide-based vaccine could incorporate other components, thereby modulating the immune system response against breast cancer. Considering that peptide-based vaccines seem to show remarkably promising outcomes against cancer, this review focuses on and provides a specific view of peptide-based vaccines used against breast cancer. Here, we discuss the benefits associated with a peptide-based vaccine, which can be a mainstay in the prevention and recurrence of breast cancer. Additionally, we also report the results of recent trials as well as plausible prospects for nanotechnology against breast cancer.
Collapse
Affiliation(s)
- Muhammad Luqman Nordin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Ahmad Khusairi Azemi
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Abu Hassan Nordin
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Malaysia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Khatijah Yusoff
- National Institutes of Biotechnology, Malaysia Genome and Vaccine Institute, Jalan Bangi, Kajang 43000, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kue Peng Lim
- Cancer Immunology & Immunotherapy Unit, Cancer Research Malaysia, No. 1 Jalan SS12/1A, Subang Jaya 47500, Malaysia
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Fazren Azmi
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
9
|
Sei S, Ahadova A, Keskin DB, Bohaumilitzky L, Gebert J, von Knebel Doeberitz M, Lipkin SM, Kloor M. Lynch syndrome cancer vaccines: A roadmap for the development of precision immunoprevention strategies. Front Oncol 2023; 13:1147590. [PMID: 37035178 PMCID: PMC10073468 DOI: 10.3389/fonc.2023.1147590] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Hereditary cancer syndromes (HCS) account for 5~10% of all cancer diagnosis. Lynch syndrome (LS) is one of the most common HCS, caused by germline mutations in the DNA mismatch repair (MMR) genes. Even with prospective cancer surveillance, LS is associated with up to 50% lifetime risk of colorectal, endometrial, and other cancers. While significant progress has been made in the timely identification of germline pathogenic variant carriers and monitoring and early detection of precancerous lesions, cancer-risk reduction strategies are still centered around endoscopic or surgical removal of neoplastic lesions and susceptible organs. Safe and effective cancer prevention strategies are critically needed to improve the life quality and longevity of LS and other HCS carriers. The era of precision oncology driven by recent technological advances in tumor molecular profiling and a better understanding of genetic risk factors has transformed cancer prevention approaches for at-risk individuals, including LS carriers. MMR deficiency leads to the accumulation of insertion and deletion mutations in microsatellites (MS), which are particularly prone to DNA polymerase slippage during DNA replication. Mutations in coding MS give rise to frameshift peptides (FSP) that are recognized by the immune system as neoantigens. Due to clonal evolution, LS tumors share a set of recurrent and predictable FSP neoantigens in the same and in different LS patients. Cancer vaccines composed of commonly recurring FSP neoantigens selected through prediction algorithms have been clinically evaluated in LS carriers and proven safe and immunogenic. Preclinically analogous FSP vaccines have been shown to elicit FSP-directed immune responses and exert tumor-preventive efficacy in murine models of LS. While the immunopreventive efficacy of "off-the-shelf" vaccines consisting of commonly recurring FSP antigens is currently investigated in LS clinical trials, the feasibility and utility of personalized FSP vaccines with individual HLA-restricted epitopes are being explored for more precise targeting. Here, we discuss recent advances in precision cancer immunoprevention approaches, emerging enabling technologies, research gaps, and implementation barriers toward clinical translation of risk-tailored prevention strategies for LS carriers. We will also discuss the feasibility and practicality of next-generation cancer vaccines that are based on personalized immunogenic epitopes for precision cancer immunoprevention.
Collapse
Affiliation(s)
- Shizuko Sei
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Aysel Ahadova
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Derin B. Keskin
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Broad Institute of The Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Lena Bohaumilitzky
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Steven M. Lipkin
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Adamik J, Butterfield LH. What’s next for cancer vaccines. Sci Transl Med 2022; 14:eabo4632. [DOI: 10.1126/scitranslmed.abo4632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cancer vaccines have been shown clinically to drive tumor-reactive cell activation, proliferation, and effector function. Unfortunately, tumor eradication by treatment with cancer vaccines has been unsuccessful in many patients. Critical steps are under way to improve vaccine efficacy and combine them with immunotherapy and standard-of-care treatments.
Collapse
Affiliation(s)
- Juraj Adamik
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, Suite D3500, 1 Letterman Drive, San Francisco, CA 94129, USA
| | - Lisa H. Butterfield
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, Suite D3500, 1 Letterman Drive, San Francisco, CA 94129, USA
| |
Collapse
|
11
|
Kang J, Lee HJ, Lee J, Hong J, Hong Kim Y, Disis ML, Gim JA, Park KH. Novel peptide-based vaccine targeting heat shock protein 90 induces effective antitumor immunity in a HER2+ breast cancer murine model. J Immunother Cancer 2022; 10:jitc-2022-004702. [PMID: 36109084 PMCID: PMC9478831 DOI: 10.1136/jitc-2022-004702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2022] [Indexed: 11/05/2022] Open
Abstract
Background Heat shock protein 90 (HSP90) is a protein chaperone for most of the important signal transduction pathways in human epidermal growth factor receptor 2-positive (HER2+) breast cancer, including human epidermal growth factor receptor 2, estrogen receptor, progesterone receptor and Akt. The aim of our study is to identify peptide-based vaccines and to develop an effective immunotherapeutics for the treatment of HER2+ breast cancer. Methods HSP90-derived major histocompatibility complex (MHC) class II epitopes were selected using in silico algorithms and validated by enzyme-linked immunospot (ELISPOT). In vivo antitumor efficacy was evaluated in MMTVneu-transgenic mice. HSP90 peptide-specific systemic T-cell responses were assessed using interferon gamma ELISPOT assay, and immune microenvironment in tumors was evaluated using multiplex immunohistochemistry and TCRβ sequencing. Results First, candidate HSP90-derived MHC class II epitopes with high binding affinities across multiple human HLA class II genotypes were identified using in silico algorithms. Among the top 10 peptides, p485 and p527 were selected as promising Th1 immunity-inducing epitopes with low potential for Th2 immunity induction. The selected MHC class II HSP90 peptides induced strong antigen-specific T cell responses, which was induced by cross-priming of CD8+ T cells in vivo. The HSP90 peptide vaccines were effective in the established tumor model, and their efficacy was further enhanced when combined with stimulator of interferon genes (STING) agonist and/or anticytotoxic T lymphocyte-associated antigen-4 antibody in MMTVneu-transgenic mice. Increased tumor rejection was associated with increased systemic HSP90-specific T-cell responses, increased T-cell recruitment in tumor microenvironment, intermolecular epitope spreading, and increased rearrangement of TCRβ by STING agonist. Conclusions In conclusion, we have provided the first preclinical evidence of the action mechanism of HSP90 peptide vaccines with a distinct potential for improving breast cancer treatment.
Collapse
Affiliation(s)
- Jinho Kang
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Hye-Jin Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Jimin Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Jinhwa Hong
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Yeul Hong Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Mary L Disis
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Jeong-An Gim
- Center for Research Support, Korea University College of Medicine, Seoul, South Korea
| | - Kyong Hwa Park
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Abstract
This review discusses peptide epitopes used as antigens in the development of vaccines in clinical trials as well as future vaccine candidates. It covers peptides used in potential immunotherapies for infectious diseases including SARS-CoV-2, influenza, hepatitis B and C, HIV, malaria, and others. In addition, peptides for cancer vaccines that target examples of overexpressed proteins are summarized, including human epidermal growth factor receptor 2 (HER-2), mucin 1 (MUC1), folate receptor, and others. The uses of peptides to target cancers caused by infective agents, for example, cervical cancer caused by human papilloma virus (HPV), are also discussed. This review also provides an overview of model peptide epitopes used to stimulate non-specific immune responses, and of self-adjuvanting peptides, as well as the influence of other adjuvants on peptide formulations. As highlighted in this review, several peptide immunotherapies are in advanced clinical trials as vaccines, and there is great potential for future therapies due the specificity of the response that can be achieved using peptide epitopes.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|
13
|
Abstract
Breast cancer has become the most commonly diagnosed cancer globally. The relapse and metastasis of breast cancer remain a great challenge despite advances in chemotherapy, endocrine therapy, and HER2 targeted therapy in the past decades. Innovative therapeutic strategies are still critically in need. Cancer vaccine is an attractive option as it aims to induce a durable immunologic response to eradicate tumor cells. Different types of breast cancer vaccines have been evaluated in clinical trials, but none has led to significant benefits. Despite the disappointing results at present, new promise from the latest study indicates the possibility of applying vaccines in combination with anti-HER2 monoclonal antibodies or immune checkpoint blockade. This review summarizes the principles and mechanisms underlying breast cancer vaccines, recapitulates the type and administration routes of vaccine, reviews the current results of relevant clinical trials, and addresses the potential reasons for the setbacks and future directions to explore.
Collapse
Affiliation(s)
- Si-Yuan Zhu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Nishida S, Morimoto S, Oji Y, Morita S, Shirakata T, Enomoto T, Tsuboi A, Ueda Y, Yoshino K, Shouq A, Kanegae M, Ohno S, Fujiki F, Nakajima H, Nakae Y, Nakata J, Hosen N, Kumanogoh A, Oka Y, Kimura T, Sugiyama H. Cellular and Humoral Immune Responses Induced by an HLA Class I-restricted Peptide Cancer Vaccine Targeting WT1 Are Associated With Favorable Clinical Outcomes in Advanced Ovarian Cancer. J Immunother 2022; 45:56-66. [PMID: 34874330 PMCID: PMC8654282 DOI: 10.1097/cji.0000000000000405] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/22/2021] [Indexed: 11/25/2022]
Abstract
The HLA-A*24:02-restricted peptide vaccine targeting Wilms' tumor 1 (WT1) (WT1 vaccine) is a promising therapeutic strategy for ovarian cancer; however, its efficacy varies among patients. In this study, we analyzed WT1-specific immune responses in patients with advanced or recurrent ovarian cancer that was refractory to standard chemotherapies and their associations with clinical outcomes. In 25 patients, the WT1 vaccine was administered subcutaneously weekly for 3 months and biweekly thereafter until disease progression or severe adverse events. We assessed Wilms' tumor 1-specific cytotoxic T lymphocytes (WT1-CTLs) and Wilms' tumor 1 peptide-specific immunoglobulin G (WT1235-IgG). After vaccination, the percentage of tetramer high-avidity population of WT1-CTLs among CD8+ T lymphocytes (%tet-hi WT1-CTL) and the WT1235-IgG titer increased significantly, although the values were extremely low or below the limit of detection before vaccination (%tet-hi WT1-CTL: 0.003%-0.103%.; WT1235-IgG: <0.05-0.077 U/mL). Patients who had %tet-hi WT1-CTL of ≥0.25% (n=6) or WT1235-IgG of ≥0.10 U/mL (n=12) had a significantly longer progression-free survival than those of patients in the other groups. In addition, an increase in WT1235-IgG corresponded to a significantly longer progression-free survival (P=0.0496). In patients with systemic inflammation, as evidenced by elevated C-reactive protein levels, the induction of tet-hi WT1-CTL or WT1235-IgG was insufficient. Decreased serum albumin levels, multiple tumor lesions, poor performance status, and excess ascites negatively influenced the clinical effectiveness of the WT1 vaccine. In conclusion, the WT1 vaccine induced antigen-specific cellular and humoral immunity in patients with refractory ovarian cancer. Both %tet-hi WT1-CTL and WT1235-IgG levels are prognostic markers for the WT1 vaccine.
Collapse
Affiliation(s)
| | | | | | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto
| | | | - Takayuki Enomoto
- Obstetrics and Gynecology, Osaka University Graduates School of Medicine
- Department of Obstetrics and Gynecology, Niigata University Medical School, Niigata
| | | | - Yutaka Ueda
- Obstetrics and Gynecology, Osaka University Graduates School of Medicine
| | - Kiyoshi Yoshino
- Obstetrics and Gynecology, Osaka University Graduates School of Medicine
- Department of Obstetrics and Gynecology, University of Occupational and Environmental Health, Kita-Kyushu, Fukuoka Prefecture
| | | | | | - Satoshi Ohno
- Cancer Immunotherapy
- Clinical Research Support Center, Shimane University Faculty of Medicine, Izumo, Shimane Prefecture, Japan
| | | | | | - Yoshiki Nakae
- Departments of Respiratory Medicine and Clinical Immunology
| | | | | | - Atsushi Kumanogoh
- Departments of Respiratory Medicine and Clinical Immunology
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka Prefecture
| | - Yoshihiro Oka
- Cancer Stem Cell Biology
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University
| | - Tadashi Kimura
- Obstetrics and Gynecology, Osaka University Graduates School of Medicine
| | | |
Collapse
|
15
|
Dehghan-Manshadi M, Nikpoor AR, Hadinedoushan H, Zare F, Sankian M, Fesahat F, Tahoori MT, Jaafari MR, Rafatpanah H. Preventive cancer vaccination with P5 HER-2/neo-derived peptide‐pulsed peripheral blood mononuclear cells in a mouse model of breast cancer. Biochem Cell Biol 2021; 99:435-446. [DOI: 10.1139/bcb-2020-0559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study compared the prophylactic effects from vaccines based on dendritic cells (DCs) and peripheral blood mononuclear cells (PBMCs) by pulsing the cells in-vitro with p5 peptide. The different test groups of mice were injected with free peptide or with peptide pulsed with DCs or PBMCs. Two weeks after the last booster dose, immunological tests were performed on splenocyte suspensions from three mice in each group and the remaining mice (5/each group) were evaluated for tumor growth and survival time. The levels of IFN-γ, granzyme B, and IL-10 were detected in T cells. Additionally, IFN-γ and perforin as well as mRNA levels of some genes associated with immune responses were assessed after challenging the splenocytes with TUBO cells. A significant increase was observed in frequency of CD4+ IFN-γ+, CD8+ IFN-γ+, and CD8+ granzyme B+ T cells, and the perforin of supernatants from mice in the DC and PBMC treatment groups. Significant expression levels of Fas ligand (FasL) and forkhead box P3 (Foxp3) were observed in the DC and PBMC groups. These responses led to smaller tumors and longer survival time in our mouse model of breast cancer. The efficacy of the PBMC-based vaccine in improving the protective immune response makes it a simpler and less expensive candidate vaccine compared with DC-based vaccines.
Collapse
Affiliation(s)
- Mahdi Dehghan-Manshadi
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Reza Nikpoor
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Hadinedoushan
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Zare
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mojtaba Sankian
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Taher Tahoori
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Ram Kumar PS, Rencilin CF, Sundar K. Emerging nanomaterials for cancer immunotherapy. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy is a unique approach to treat cancer that targets tumours besides triggering the immune cells. It attempts to harness the supremacy and specificity of immune cells for the regression of malignancy. The key strategy of immunotherapy is that it boosts the natural defence and manipulates the immune system at both cellular and molecular levels. Long-lasting anti-tumour response, reduced metastasis, and recurrence can be achieved with immunotherapy than conventional treatments. For example, targeting cytotoxic T-lymphocyte antigen-4 (CTLA4) by monoclonal antibody is reported as an effective strategy against cancer progression in vivo and chimeric antigen receptor (CAR) modified T-cells are known to express a stronger anti-tumour activity. CTLA4 and CAR are, therefore, beneficial in cancer immunotherapy; however, in clinical settings, both are expensive and cause adverse side effects. Nanomaterials have augmented advantages in cancer immunotherapy, besides their utility in effective delivery and diagnostics. In particular, materials based on lipids, polymers, and metals have been sought-after for delivery technologies. Moreover, the surface of nanomaterials can be engineered using ligands, antigens, and antibodies to target immune cells. In this sense, checkpoint inhibitors, cytokines, agonistic antibodies, surface receptors, and engineered T-cells are promising to regulate the immune system against tumours. Therefore, emerging nanomaterials that can be used for the treatment of cancer is the prime focus of this review. The correlation of mode of administration and biodistribution of various nanomaterials is reviewed here. Besides, the acute and chronic side effects and outcome of clinical trials in the context of cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Pandian Sureshbabu Ram Kumar
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Clayton Fernando Rencilin
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Krishnan Sundar
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| |
Collapse
|
17
|
Vacchelli E, Martins I, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Peptide vaccines in cancer therapy. Oncoimmunology 2021; 1:1557-1576. [PMID: 23264902 PMCID: PMC3525611 DOI: 10.4161/onci.22428] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prophylactic vaccination constitutes one of the most prominent medical achievements of history. This concept was first demonstrated by the pioneer work of Edward Jenner, dating back to the late 1790s, after which an array of preparations that confer life-long protective immunity against several infectious agents has been developed. The ensuing implementation of nation-wide vaccination programs has de facto abated the incidence of dreadful diseases including rabies, typhoid, cholera and many others. Among all, the most impressive result of vaccination campaigns is surely represented by the eradication of natural smallpox infection, which was definitively certified by the WHO in 1980. The idea of employing vaccines as anticancer interventions was first theorized in the 1890s by Paul Ehrlich and William Coley. However, it soon became clear that while vaccination could be efficiently employed as a preventive measure against infectious agents, anticancer vaccines would have to (1) operate as therapeutic, rather than preventive, interventions (at least in the vast majority of settings), and (2) circumvent the fact that tumor cells often fail to elicit immune responses. During the past 30 y, along with the recognition that the immune system is not irresponsive to tumors (as it was initially thought) and that malignant cells express tumor-associated antigens whereby they can be discriminated from normal cells, considerable efforts have been dedicated to the development of anticancer vaccines. Some of these approaches, encompassing cell-based, DNA-based and purified component-based preparations, have already been shown to exert conspicuous anticancer effects in cohorts of patients affected by both hematological and solid malignancies. In this Trial Watch, we will summarize the results of recent clinical trials that have evaluated/are evaluating purified peptides or full-length proteins as therapeutic interventions against cancer.
Collapse
Affiliation(s)
- Erika Vacchelli
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Inderberg-Suso EM, Trachsel S, Lislerud K, Rasmussen AM, Gaudernack G. Widespread CD4+ T-cell reactivity to novel hTERT epitopes following vaccination of cancer patients with a single hTERT peptide GV1001. Oncoimmunology 2021; 1:670-686. [PMID: 22934259 PMCID: PMC3429571 DOI: 10.4161/onci.20426] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Understanding the basis of a successful clinical response after treatment with therapeutic cancer vaccines is essential for the development of more efficacious therapy. After vaccination with the single telomerase (hTERT) 16-mer peptide, GV1001, some patients experienced clinical responses and long-term survival. This study reports in-depth immunological analysis of the T-cell response against telomerase (hTERT) in clinically responding patients compared with clinical non-responders following vaccination with the single hTERT 16-mer peptide, GV1001. Extensive characterization of CD4+ T-cell clones specific for GV1001 generated from a lung cancer patient in complete remission after vaccination demonstrated a very broad immune response to this single peptide vaccine with differences in fine specificity, HLA restriction, affinity and function. Some CD4+ T-cell clones were cytotoxic against peptide-loaded target cells and also recognized processed recombinant hTERT protein. Furthermore, T-cell responses against several unrelated hTERT epitopes, some of which are novel, were detected, indicating extensive epitope spreading which was confirmed in other clinical responders. In contrast, patients responding immunologically, but not clinically, after vaccination did not display this intramolecular epitope spreading. Multifunctional CD4+ T-cell clones specific for novel hTERT epitopes were generated and shown to recognize a melanoma cell line. Pentamer analysis of T cells in peripheral blood also demonstrated the presence of an important CD8+ T-cell response recognizing an HLA-B7 epitope embedded in GV1001 not previously described. These results indicate that the highly diverse hTERT-specific T-cell response, integrating both T helper and CTL responses, is essential for tumor regression and the generation of long-term T-cell memory.
Collapse
Affiliation(s)
- Else-Marit Inderberg-Suso
- Unit for Immunotherapy; Section for Immunology; Institute for Cancer Research; Oslo University Hospital; Norwegian Radium Hospital; Oslo, Norway
| | | | | | | | | |
Collapse
|
19
|
McCarthy PM, Clifton GT, Vreeland TJ, Adams AM, O'Shea AE, Peoples GE. AE37: a HER2-targeted vaccine for the prevention of breast cancer recurrence. Expert Opin Investig Drugs 2020; 30:5-11. [PMID: 33191799 DOI: 10.1080/13543784.2021.1849140] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION HER2 is a prevalent growth factor in a variety of malignancies, most prominently breast cancer. Over-expression has been correlated with the poorest overall survival and has been the target of successful therapies such as trastuzumab. AE37 is a novel, HER2-directed vaccine based on the AE36 hybrid peptide (aa776-790), which is derived from the intracellular portion of the HER2 protein, and the core portion of the MHC Class II invariant chain (the Ii-Key peptide). This hybrid peptide is given with GM-CSF immunoadjuvant as the AE37 vaccine. AREAS COVERED This article describes in detail the preclinical science leading to the creation of the AE37 vaccine and examines use of this agent in multiple clinical trials for breast and prostate cancer. The safety profile of AE37 is discussed and opinions on the potential of the vaccine in breast and prostate cancer patient subsets along with other malignancies, are offered. EXPERT OPINION Future trials utilizing the AE37 vaccine to treat other HER2-expressing malignancies are likely to see similar success, and this will be enhanced by combination immunotherapy. Ii-Key modification of other peptides of interest across oncology and virology could yield impressive results over the longer term.
Collapse
Affiliation(s)
- Patrick M McCarthy
- Department of Surgery, Brooke Army Medical Center , Fort Sam Houston, TX, USA
| | - G Travis Clifton
- Department of Surgery, Brooke Army Medical Center , Fort Sam Houston, TX, USA
| | - Timothy J Vreeland
- Department of Surgery, Brooke Army Medical Center , Fort Sam Houston, TX, USA
| | - Alexandra M Adams
- Department of Surgery, Brooke Army Medical Center , Fort Sam Houston, TX, USA
| | - Anne E O'Shea
- Department of Surgery, Brooke Army Medical Center , Fort Sam Houston, TX, USA
| | | |
Collapse
|
20
|
Shemesh CS, Hsu JC, Hosseini I, Shen BQ, Rotte A, Twomey P, Girish S, Wu B. Personalized Cancer Vaccines: Clinical Landscape, Challenges, and Opportunities. Mol Ther 2020; 29:555-570. [PMID: 33038322 DOI: 10.1016/j.ymthe.2020.09.038] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/15/2020] [Accepted: 09/26/2020] [Indexed: 12/21/2022] Open
Abstract
Tremendous innovation is underway among a rapidly expanding repertoire of promising personalized immune-based treatments. Therapeutic cancer vaccines (TCVs) are attractive systemic immunotherapies that activate and expand antigen-specific CD8+ and CD4+ T cells to enhance anti-tumor immunity. Our review highlights key issues impacting TCVs in clinical practice and reports on progress in development. We review the mechanism of action, immune-monitoring, dosing strategies, combinations, obstacles, and regulation of cancer vaccines. Most trials of personalized TCVs are ongoing and represent diverse platforms with predominantly early investigations of mRNA, DNA, or peptide-based targeting strategies against neoantigens in solid tumors, with many in combination immunotherapies. Multiple delivery systems, routes of administration, and dosing strategies are used. Intravenous or intramuscular administration is common, including delivery by lipid nanoparticles. Absorption and biodistribution impact antigen uptake, expression, and presentation, affecting the strength, speed, and duration of immune response. The emerging trials illustrate the complexity of developing this class of innovative immunotherapies. Methodical testing of the multiple potential factors influencing immune responses, as well as refined quantitative methodologies to facilitate optimal dosing strategies, could help resolve uncertainty of therapeutic approaches. To increase the likelihood of success in bringing these medicines to patients, several unique development challenges must be overcome.
Collapse
Affiliation(s)
- Colby S Shemesh
- Department of Clinical Pharmacology Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Joy C Hsu
- Department of Clinical Pharmacology Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Iraj Hosseini
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ben-Quan Shen
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Anand Rotte
- Department of Clinical Pharmacology Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Patrick Twomey
- Department of Product Development Safety, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Sandhya Girish
- Department of Clinical Pharmacology Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Benjamin Wu
- Department of Clinical Pharmacology Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
21
|
Jain S, Kumar S. Cancer immunotherapy: dawn of the death of cancer? Int Rev Immunol 2020; 39:1-18. [PMID: 32530336 DOI: 10.1080/08830185.2020.1775827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 02/08/2023]
Abstract
Cancer is one of the proficient evaders of the immune system which claims millions of lives every year. Developing therapeutics against cancer is extremely challenging as cancer involves aberrations in self, most of which are not detected by the immune system. Conventional therapeutics like chemotherapy, radiotherapy are not only toxic but they significantly lower the quality of life. Immunotherapy, which gained momentum in the 20th century, is emerging as one of the alternatives to the conventional therapies and is relatively less harmful but more costly. This review explores the modern advances in an array of such therapies and try to compare them along with a limited analysis of concerns associated with them.
Collapse
Affiliation(s)
- Sidhant Jain
- Department of Zoology, University of Delhi, Delhi, India
| | - Sahil Kumar
- Department of Pharmacology, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| |
Collapse
|
22
|
Brossart P. The Role of Antigen Spreading in the Efficacy of Immunotherapies. Clin Cancer Res 2020; 26:4442-4447. [PMID: 32357962 DOI: 10.1158/1078-0432.ccr-20-0305] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/17/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022]
Abstract
The introduction and the unexpected efficacy of checkpoint inhibitors (CPI) and more recently of chimeric antigen receptor T cells (CAR T-cells) in the treatment of malignant diseases boosted the efforts in the development and clinical application of immunotherapeutic approaches. However, the definition of predictive factors associated with clinical responses as well as the identification of underlying mechanisms that promote the therapeutic efficacy remain to be determined. Starting from the first immunotherapeutic trials, it became evident that vaccine-induced tumor-specific T cells or the adoptive transfer of ex vivo-expanded T lymphocytes can recognize and eliminate malignant cells leading to long-lasting remissions in some patients. In addition, a phenomenon called epitope spreading, which was observed in responding patients, seemed to increase the efficiency possibly representing an important predictive factor. This review will focus on experimental and clinical evidence for the induction of epitope spreading and its role in the maintenance of an efficient antitumor immune response in cancer immunotherapy.
Collapse
Affiliation(s)
- Peter Brossart
- Department of Oncology, Haematology, Immuno-Oncology and Rheumatogy, University of Bonn, Bonn, Germany.
| |
Collapse
|
23
|
Breast cancer vaccines: Heeding the lessons of the past to guide a path forward. Cancer Treat Rev 2020; 84:101947. [DOI: 10.1016/j.ctrv.2019.101947] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 01/29/2023]
|
24
|
Batoo S, Bayraktar S, Al-Hattab E, Basu S, Okuno S, Glück S. Recent advances and optimal management of human epidermal growth factor receptor-2-positive early-stage breast cancer. J Carcinog 2019; 18:5. [PMID: 31949426 PMCID: PMC6961084 DOI: 10.4103/jcar.jcar_14_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/02/2019] [Indexed: 01/03/2023] Open
Abstract
With the introduction of anthracycline-based regimens, 5-year survival rates have significantly improved in patients with early-stage breast cancer. With the addition of trastuzumab, a monoclonal antibody targeting the human epidermal growth factor receptor-2 (HER2), improvements in overall survival have been observed among patients with advanced HER2-positive disease. Subsequently, lapatinib, an orally bioavailable small molecule dual HER2- and EGFR/HER1-specific tyrosine kinase inhibitor, received Food and Drug Administration (FDA) approval in combination with capecitabine for patients with advanced HER2+ breast cancer. Then, pertuzumab in 2012 and ado-trastuzumab emtansine in 2013 were approved in the US and elsewhere based on evidence showing an improvement in survival outcomes in patients with mostly trastuzumab naïve or trastuzumab-exposed metastatic disease. The FDA also approved 1 year of extended adjuvant neratinib after chemotherapy and a year of trastuzumab for HER2-positive breast cancer on the basis of the ExteNET trial. The clinical benefit demonstrated by those drugs in advanced disease has triggered several adjuvant and neoadjuvant trials testing them in combination with chemotherapy, but also without conventional chemotherapy, using single or dual HER2-targeting drugs. In this article, we review the current data on the therapeutic management of HER2-positive early-stage breast cancer in the adjuvant and neoadjuvant setting. We also review the data the efficacy and safety of anthracycline-based and nonanthracycline-based adjuvant chemotherapy regimens combined with trastuzumab, and optimum chemotherapy regimens in small HER2-positive tumors.
Collapse
Affiliation(s)
- Sameer Batoo
- Department of Medicine, Division of Medical Oncology and Hematology, Mayo Clinic Health System, Eau Claire, WI, USA
| | - Soley Bayraktar
- Department of Medicine, Division of Medical Oncology and Hematology, Mayo Clinic Health System, Eau Claire, WI, USA.,Department of Medicine, Division of Medical Oncology and Hematology, Biruni University School of Medicine, Istanbul, Turkey
| | - Eyad Al-Hattab
- Department of Medicine, Division of Medical Oncology and Hematology, Mayo Clinic Health System, Eau Claire, WI, USA
| | - Sandeep Basu
- Department of Medicine, Division of Medical Oncology and Hematology, Mayo Clinic Health System, Eau Claire, WI, USA
| | - Scott Okuno
- Department of Medicine, Division of Medical Oncology and Hematology, Mayo Clinic Health System, Eau Claire, WI, USA
| | - Stefan Glück
- Vice President Global Medical Affairs, Early Assets, Celgene Corporation, Summit, NJ, USA
| |
Collapse
|
25
|
DeVette CI, Gundlapalli H, Lai SCA, McMurtrey CP, Hoover AR, Gurung HR, Chen WR, Welm AL, Hildebrand WH. A pipeline for identification and validation of tumor-specific antigens in a mouse model of metastatic breast cancer. Oncoimmunology 2019; 9:1685300. [PMID: 32002300 PMCID: PMC6959440 DOI: 10.1080/2162402x.2019.1685300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapy continues to make headway as a treatment for advanced stage tumors, revealing an urgent need to understand the fundamentals of anti-tumor immune responses. Noteworthy is a scarcity of data pertaining to the breadth and specificity of tumor-specific T cell responses in metastatic breast cancer. Autochthonous transgenic models of breast cancer display spontaneous metastasis in the FVB/NJ mouse strain, yet a lack of knowledge regarding tumor-bound MHC/peptide immune epitopes in this mouse model limits the characterization of tumor-specific T cell responses, and the mechanisms that regulate T cell responses in the metastatic setting. We recently generated the NetH2pan prediction tool for murine class I MHC ligands by building an FVB/NJ H-2q ligand database and combining it with public information from six other murine MHC alleles. Here, we deployed NetH2pan in combination with an advanced proteomics workflow to identify immunogenic T cell epitopes in the MMTV-PyMT transgenic model for metastatic breast cancer. Five unique MHC I/PyMT epitopes were identified. These tumor-specific epitopes were confirmed to be presented by the class I MHC of primary MMTV-PyMT tumors and their T cell immunogenicity was validated. Vaccination using a DNA construct encoding a truncated PyMT protein generated CD8 + T cell responses to these MHC class I/peptide complexes and prevented tumor development. In sum, we have established an MHC-ligand discovery pipeline in FVB/NJ mice, identified and tracked H-2Dq/PyMT neoantigen-specific T cells, and developed a vaccine that prevents tumor development in this metastatic model of breast cancer.
Collapse
Affiliation(s)
- Christa I DeVette
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | | | - Curtis P McMurtrey
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ashley R Hoover
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, OK, USA
| | - Hem R Gurung
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wei R Chen
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, OK, USA
| | - Alana L Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - William H Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
26
|
Adams S, Gatti-Mays ME, Kalinsky K, Korde LA, Sharon E, Amiri-Kordestani L, Bear H, McArthur HL, Frank E, Perlmutter J, Page DB, Vincent B, Hayes JF, Gulley JL, Litton JK, Hortobagyi GN, Chia S, Krop I, White J, Sparano J, Disis ML, Mittendorf EA. Current Landscape of Immunotherapy in Breast Cancer: A Review. JAMA Oncol 2019; 5:1205-1214. [PMID: 30973611 DOI: 10.1001/jamaoncol.2018.7147] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance There is tremendous interest in using immunotherapy to treat breast cancer, as evidenced by the more than 290 clinical trials ongoing at the time of this narrative review. The objective of this review is to describe the current status of immunotherapy in breast cancer, highlighting its potential in both early-stage and metastatic disease. Observations After searching ClinicalTrials.gov on April 24, 2018, and PubMed up to June 30, 2018, to identify breast cancer immunotherapy trials, we found that immune checkpoint blockade (ICB) is the most investigated form of immunotherapy in breast cancer. Use of ICB as monotherapy has achieved objective responses in patients with breast cancer, with higher rates seen when administered in earlier lines of therapy. For responding patients, those responses are durable. More recent data suggest clinical efficacy when ICB is given in combination with chemotherapy. Ongoing studies are evaluating combination strategies pairing ICB with additional chemotherapeutic agents, targeted therapy, vaccines, and local ablative therapies to enhance response. To date, robust predictive biomarkers for response to ICB have not been established. Conclusions and Relevance It is anticipated that combination therapy strategies will be the way forward for immunotherapy in breast cancer, with an improved understanding of tumor, microenvironment, and host factors informing treatment combination decisions. Thoughtful study design incorporating appropriate end points and correlative studies will be critical in identifying optimal strategies for enhancing the immune response against breast tumors.
Collapse
Affiliation(s)
- Sylvia Adams
- Perlmutter Cancer Center, NYU School of Medicine, New York, New York
| | - Margaret E Gatti-Mays
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland
| | | | - Larissa A Korde
- Clinical Investigations Branch, Cancer Therapy and Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland
| | - Elad Sharon
- Investigational Drug Branch, Cancer Therapy and Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland
| | | | - Harry Bear
- Virginia Commonwealth University, Massey Cancer Center, Richmond
| | | | - Elizabeth Frank
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - David B Page
- Providence Cancer Institute, Earle A. Chiles Research Institute, Portland, Oregon
| | - Benjamin Vincent
- Department of Medicine, Division of Hematology/Oncology, Lineberger Comprehensive Cancer Center, Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill
| | - Jennifer F Hayes
- Coordinating Center for Clinical Trials, National Cancer Institute, Rockville, Maryland
| | - James L Gulley
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland
| | | | | | - Stephen Chia
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Ian Krop
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Julia White
- The Ohio State University Comprehensive Cancer Center, Columbus
| | - Joseph Sparano
- Montefiore Einstein Center for Cancer Care, New York, New York
| | - Mary L Disis
- Fred Hutchinson Cancer Research Center, Seattle, Washington.,Editor, JAMA Oncology
| | - Elizabeth A Mittendorf
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts.,Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts
| |
Collapse
|
27
|
Kochin V, Nishikawa H. <Editors' Choice> Meddling with meddlers: curbing regulatory T cells and augmenting antitumor immunity. NAGOYA JOURNAL OF MEDICAL SCIENCE 2019; 81:1-18. [PMID: 30962651 PMCID: PMC6433633 DOI: 10.18999/nagjms.81.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CD4+ regulatory T cells (Tregs) expressing the transcription factor forkhead
box P3 (FoxP3) play an important role in self-tolerance and immune homeostasis. Tregs have
evolved to protect the host from aberrant immune responses against self-components and
collateral damages occurring in the process of defense against invading pathogens by
softening immune responses. However, they turned to be a scourge in malignant tumors by
not only allowing and promoting tumor growth but also suppressing effective antitumor
actions, both inherent (host’s immune surveillance) and extrinsic (anticancer therapy). An
increase in the number of Tregs infiltrating into tumor sites and a concomitant decrease
in the number of CD8+ cytotoxic T lymphocytes are associated with a poor
prognosis for various types of cancers, marking Tregs as notorious meddlers with an
effective antitumor response. Various cancer immunotherapy approaches are often dampened
by meddling Tregs, making them one of the major targets in the treatment of cancer. The
recent success of immune checkpoint inhibitors (ICIs) that target immune checkpoint
molecules expressed by Tregs or effector T cells implies, that “meddling with meddlers”
represents an effective strategy in cancer immunotherapy. However, clinical responses to
ICIs are effective and durable only in some patients with cancer, whereas more than half
of them do not show significant clinical improvement. This implies that a therapeutic
approach based on the use of a single ICI, or targeting Tregs alone, is insufficient,
highlighting the need for combinatorial approaches. With regard to antitumor immune
stimulation, several approaches, such as vaccination with peptides (or the corresponding
DNA) to stimulate antigen-presenting CD8+ T cells with tumor-specific
neoantigens, cancer/testis antigens, or cancer stem cell antigens, that eventually boost
effective cytotoxic antitumor responses are being tested. This review describes the
immunosuppressive physiology of Tregs and their meddling with the host’s antitumor
immunity; current and prospective approaches to curb Tregs; and approaches to augment
antitumor immunity.
Collapse
Affiliation(s)
- Vitaly Kochin
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo / Chiba, Japan
| |
Collapse
|
28
|
Shibata T, Lieblong BJ, Sasagawa T, Nakagawa M. The promise of combining cancer vaccine and checkpoint blockade for treating HPV-related cancer. Cancer Treat Rev 2019; 78:8-16. [PMID: 31302573 DOI: 10.1016/j.ctrv.2019.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
Human papillomavirus (HPV)-associated intraepithelial neoplasia or cancers are ideal candidates for cancer immunotherapy since HPV oncoproteins, such as E6 and E7 proteins of high-risk HPVs, could be utilized as foreign antigens. In HPV-associated cancers as well as nonviral cancers, the cancer cells may evade host immunity through the expression of immune checkpoint molecules, downregulation of human leukocyte antigen, and activation of immune regulatory cells. Because of these immune suppressive mechanisms, HPV therapeutic vaccines have shown little efficacy against HPV-associated cancers, although they have shown efficacy in treating HPV-associated intraepithelial neoplasias. Recently, checkpoint blockade emerged as a promising new treatment for solid cancers; however, these therapies have shown only modest efficacy against HPV-associated cancers. Here we reviewed literature analyzing a combinatory therapy using an immune checkpoint inhibitor and an HPV therapeutic vaccine for treating HPV-associated cancers to compensate for shortfalls of each monotherapy. Complimentary modes of T cell activation would be deployed; as vaccines would directly stimulate the T cells, while checkpoint inhibitors would do so by releasing inhibition. Some promising studies using animal models and early human clinical trials raised a possibility that such combinations may be efficacious in regressing HPV-associated cancers. Epitope spreading (the phenomenon in which non-targeted antigens become new targets of immune response) may play a critical role mechanistically. Currently ongoing studies will shed light as to whether such combination therapy would indeed be a promising new treatment paradigm. Current and future studies must also determine the adverse effect profile of such a combination treatment.
Collapse
Affiliation(s)
- Takeo Shibata
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| | - Benjamin J Lieblong
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Toshiyuki Sasagawa
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| | - Mayumi Nakagawa
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
29
|
Hulett TW, Fox BA, Messenheimer DJ, Marwitz S, Moudgil T, Afentoulis ME, Wegman KW, Ballesteros-Merino C, Jensen SM. Future Research Goals in Immunotherapy. Surg Oncol Clin N Am 2019; 28:505-518. [DOI: 10.1016/j.soc.2019.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Abstract
It has been known for decades that the immune system can be spontaneously activated against melanoma. The presence of tumor infiltrating lymphocytes in tumor deposits is a positive prognostic factor. Cancer vaccination includes approaches to generate, amplify, or skew antitumor immunity. To accomplish this goal, tested approaches involve administration of tumor antigens, antigen presenting cells or other immune modulators, or direct modulation of the tumor. Because the success of checkpoint blockade can depend in part on an existing antitumor response, cancer vaccination may play an important role in future combination therapies. In this review, we discuss a variety of melanoma vaccine approaches and methods to determine the biological impact of vaccination.
Collapse
|
31
|
Mittendorf EA, Lu B, Melisko M, Price Hiller J, Bondarenko I, Brunt AM, Sergii G, Petrakova K, Peoples GE. Efficacy and Safety Analysis of Nelipepimut-S Vaccine to Prevent Breast Cancer Recurrence: A Randomized, Multicenter, Phase III Clinical Trial. Clin Cancer Res 2019; 25:4248-4254. [PMID: 31036542 DOI: 10.1158/1078-0432.ccr-18-2867] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/31/2018] [Accepted: 04/19/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE In phase I/II studies, nelipepimut-S (NP-S) plus GM-CSF vaccine was well tolerated and effectively raised HER2-specific immunity in patients with breast cancer. Results from a prespecified interim analysis of a phase III trial assessing NP-S + GM-CSF are reported. PATIENTS AND METHODS This multicenter, randomized, double-blind phase III study enrolled females ≥18 years with T1-T3, HER2 low-expressing (IHC 1+/2+), node-positive breast cancer in the adjuvant setting. Patients received 1,000 μg NP-S + 250 μg GM-CSF or placebo + GM-CSF monthly for 6 months, then every 6 months through 36 months. The primary objective was disease-free survival (DFS). Protocol-specified imaging occurred annually. New abnormalities were categorized as recurrence events; biopsy confirmation was not mandated. The interim analysis was conducted as specified in the protocol after 73 DFS events. RESULTS A total of 758 patients (mean age 51.8 years) were randomized. Adverse events were similar between groups; most common were injection-associated: erythema (84.3%), induration (55.8%), and pruritus (54.9%). There was no significant between-arms difference in DFS events at interim analysis at median follow-up (16.8 months). In the NP-S arm, imaging detected 54.1% of recurrence events in asymptomatic patients versus 29.2% in the placebo arm (P = 0.069). CONCLUSIONS NP-S was well tolerated. There was no significant difference in DFS events between NP-S and placebo. Use of mandated annual scans and image-detected recurrence events hastened the interim analysis contributing to early trial termination.
Collapse
Affiliation(s)
- Elizabeth A Mittendorf
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts. .,Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts
| | - Biao Lu
- Independent Statistical Contractor, San Ramon, California
| | - Michelle Melisko
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Julie Price Hiller
- Division of Medical Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Igor Bondarenko
- Department of Oncology and Medical Radiology, Dnipropetrovsk State Medical Academy, Dnipropetrovsk, Ukraine
| | - Adrian Murray Brunt
- Cancer Centre, University Hospitals of North Midlands and Keele University, Stoke-on-Trent, United Kingdom
| | | | | | | |
Collapse
|
32
|
Butterfield LH, Vujanovic L, Santos PM, Maurer DM, Gambotto A, Lohr J, Li C, Waldman J, Chandran U, Lin Y, Lin H, Tawbi HA, Tarhini AA, Kirkwood JM. Multiple antigen-engineered DC vaccines with or without IFNα to promote antitumor immunity in melanoma. J Immunother Cancer 2019; 7:113. [PMID: 31014399 PMCID: PMC6480917 DOI: 10.1186/s40425-019-0552-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 02/27/2019] [Indexed: 02/08/2023] Open
Abstract
Background Cancer vaccines are designed to promote systemic antitumor immunity and tumor eradication. Cancer vaccination may be more efficacious in combination with additional interventions that may build on or amplify their effects. Methods Based on our previous clinical and in vitro studies, we designed an antigen-engineered DC vaccine trial to promote a polyclonal CD8+ and CD4+ T cell response against three shared melanoma antigens. The 35 vaccine recipients were then randomized to receive one month of high-dose IFNα or observation. Results The resulting clinical outcomes were 2 partial responses, 8 stable disease and 14 progressive disease among patients with measurable disease using RECIST 1.1, and, of 11 surgically treated patients with no evidence of disease (NED), 4 remain NED at a median follow-up of 3 years. The majority of vaccinated patients showed an increase in vaccine antigen-specific CD8+ and CD4+ T cell responses. The addition of IFNα did not appear to improve immune or clinical responses in this trial. Examination of the DC vaccine profiles showed that IL-12p70 secretion did not correlate with immune or clinical responses. In depth immune biomarker studies support the importance of circulating Treg and MDSC for development of antigen-specific T cell responses, and of circulating CD8+ and CD4+ T cell subsets in clinical responses. Conclusions DC vaccines are a safe and reliable platform for promoting antitumor immunity. This combination with one month of high dose IFNα did not improve outcomes. Immune biomarker analysis in the blood identified several predictive and prognostic biomarkers for further analysis, including MDSC. Trial registration NCT01622933. Electronic supplementary material The online version of this article (10.1186/s40425-019-0552-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lisa H Butterfield
- Department of Medicine, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA. .,Department of Surgery, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA. .,Department of Immunology, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA. .,UPMC Hillman Cancer Center, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.
| | - Lazar Vujanovic
- Department of Medicine, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA
| | - Patricia M Santos
- Department of Medicine, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA
| | - Deena M Maurer
- Department of Immunology, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA
| | - Joel Lohr
- Department of Immunology, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA
| | - Chunlei Li
- UPMC Hillman Cancer Center, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.,Present address: Tsinghua University School of Medicine, Beijing, China
| | - Jacob Waldman
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Uma Chandran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yan Lin
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Huang Lin
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hussein A Tawbi
- Department of Medicine, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.,UPMC Hillman Cancer Center, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.,Present address: Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmad A Tarhini
- Department of Medicine, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.,UPMC Hillman Cancer Center, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.,Present address: Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - John M Kirkwood
- Department of Medicine, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.,UPMC Hillman Cancer Center, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA
| |
Collapse
|
33
|
Jackaman C, Gardner JK, Tomay F, Spowart J, Crabb H, Dye DE, Fox S, Proksch S, Metharom P, Dhaliwal SS, Nelson DJ. CD8 + cytotoxic T cell responses to dominant tumor-associated antigens are profoundly weakened by aging yet subdominant responses retain functionality and expand in response to chemotherapy. Oncoimmunology 2019; 8:e1564452. [PMID: 30906657 PMCID: PMC6422383 DOI: 10.1080/2162402x.2018.1564452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/30/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Increasing life expectancy is associated with increased cancer incidence, yet the effect of cancer and anti-cancer treatment on elderly patients and their immune systems is not well understood. Declining T cell function with aging in response to infection and vaccination is well documented, however little is known about aged T cell responses to tumor antigens during cancer progression or how these responses are modulated by standard chemotherapy. We examined T cell responses to cancer in aged mice using AE17sOVA mesothelioma in which ovalbumin (OVA) becomes a 'spy' tumor antigen containing one dominant (SIINFEKL) and two subdominant (KVVRFDKL and NAIVFKGL) epitopes. Faster progressing tumors in elderly (22-24 months, cf. 60-70 human years) relative to young (2-3 months, human 15-18 years) mice were associated with increased pro-inflammatory cytokines and worsened cancer cachexia. Pentamer staining and an in-vivo cytotoxic T lymphocyte (CTL) assay showed that whilst elderly mice generated a greater number of CD8+ T cells recognizing all epitopes, they exhibited a profound loss of function in their ability to lyse targets expressing the dominant, but not subdominant, epitopes compared to young mice. Chemotherapy was less effective and more toxic in elderly mice however, similar to young mice, chemotherapy expanded CTLs recognizing at least one subdominant epitope in tumors and draining lymph nodes, yet treatment efficacy still required CD8+ T cells. Given the significant dysfunction associated with elderly CTLs recognizing dominant epitopes, our data suggest that responses to subdominant tumor epitopes may become important when elderly hosts with cancer are treated with chemotherapy.
Collapse
Affiliation(s)
- Connie Jackaman
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Joanne K Gardner
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Federica Tomay
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Joshua Spowart
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Hannah Crabb
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Danielle E Dye
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Simon Fox
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Stephen Proksch
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Pat Metharom
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Satvinder S Dhaliwal
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.,School of Public Health, Curtin University, Perth, Australia
| | - Delia J Nelson
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| |
Collapse
|
34
|
Aydiner A. Systemic Treatment of HER2-Overexpressing Metastatic Breast Cancer. Breast Cancer 2019. [DOI: 10.1007/978-3-319-96947-3_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Bayraktar S, Aydiner A. Adjuvant Therapy for HER2-Positive Early-Stage Breast Cancer. Breast Cancer 2019. [DOI: 10.1007/978-3-319-96947-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Berchialla P, Zohar S, Baldi I. Bayesian sample size determination for phase IIA clinical trials using historical data and semi-parametric prior's elicitation. Pharm Stat 2018; 18:198-211. [PMID: 30440109 DOI: 10.1002/pst.1914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/13/2018] [Accepted: 10/17/2018] [Indexed: 11/10/2022]
Abstract
The Simon's two-stage design is the most commonly applied among multi-stage designs in phase IIA clinical trials. It combines the sample sizes at the two stages in order to minimize either the expected or the maximum sample size. When the uncertainty about pre-trial beliefs on the expected or desired response rate is high, a Bayesian alternative should be considered since it allows to deal with the entire distribution of the parameter of interest in a more natural way. In this setting, a crucial issue is how to construct a distribution from the available summaries to use as a clinical prior in a Bayesian design. In this work, we explore the Bayesian counterparts of the Simon's two-stage design based on the predictive version of the single threshold design. This design requires specifying two prior distributions: the analysis prior, which is used to compute the posterior probabilities, and the design prior, which is employed to obtain the prior predictive distribution. While the usual approach is to build beta priors for carrying out a conjugate analysis, we derived both the analysis and the design distributions through linear combinations of B-splines. The motivating example is the planning of the phase IIA two-stage trial on anti-HER2 DNA vaccine in breast cancer, where initial beliefs formed from elicited experts' opinions and historical data showed a high level of uncertainty. In a sample size determination problem, the impact of different priors is evaluated.
Collapse
Affiliation(s)
- Paola Berchialla
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Sarah Zohar
- Centre de Recherche des Cordeliers, INSERM, Paris, France
| | - Ileana Baldi
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| |
Collapse
|
37
|
Paijens ST, Leffers N, Daemen T, Helfrich W, Boezen HM, Cohlen BJ, Melief CJM, de Bruyn M, Nijman HW. Antigen-specific active immunotherapy for ovarian cancer. Cochrane Database Syst Rev 2018; 9:CD007287. [PMID: 30199097 PMCID: PMC6513204 DOI: 10.1002/14651858.cd007287.pub4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND This is the second update of the review first published in the Cochrane Library (2010, Issue 2) and later updated (2014, Issue 9).Despite advances in chemotherapy, the prognosis of ovarian cancer remains poor. Antigen-specific active immunotherapy aims to induce tumour antigen-specific anti-tumour immune responses as an alternative treatment for ovarian cancer. OBJECTIVES Primary objective• To assess the clinical efficacy of antigen-specific active immunotherapy for the treatment of ovarian cancer as evaluated by tumour response measured by Response Evaluation Criteria In Solid Tumors (RECIST) and/or cancer antigen (CA)-125 levels, response to post-immunotherapy treatment, and survival differences◦ In addition, we recorded the numbers of observed antigen-specific humoral and cellular responsesSecondary objective• To establish which combinations of immunotherapeutic strategies with tumour antigens provide the best immunological and clinical results SEARCH METHODS: For the previous version of this review, we performed a systematic search of the Cochrane Central Register of Controlled Trials (CENTRAL; 2009, Issue 3), in the Cochrane Library, the Cochrane Gynaecological Cancer Group Specialised Register, MEDLINE and Embase databases, and clinicaltrials.gov (1966 to July 2009). We also conducted handsearches of the proceedings of relevant annual meetings (1996 to July 2009).For the first update of this review, we extended the searches to October 2013, and for this update, we extended the searches to July 2017. SELECTION CRITERIA We searched for randomised controlled trials (RCTs), as well as non-randomised studies (NRSs), that included participants with epithelial ovarian cancer, irrespective of disease stage, who were treated with antigen-specific active immunotherapy, irrespective of type of vaccine, antigen used, adjuvant used, route of vaccination, treatment schedule, and reported clinical or immunological outcomes. DATA COLLECTION AND ANALYSIS Two reviews authors independently extracted the data. We evaluated the risk of bias for RCTs according to standard methodological procedures expected by Cochrane, and for NRSs by using a selection of quality domains deemed best applicable to the NRS. MAIN RESULTS We included 67 studies (representing 3632 women with epithelial ovarian cancer). The most striking observations of this review address the lack of uniformity in conduct and reporting of early-phase immunotherapy studies. Response definitions show substantial variation between trials, which makes comparison of trial results unreliable. Information on adverse events is frequently limited. Furthermore, reports of both RCTs and NRSs frequently lack the relevant information necessary for risk of bias assessment. Therefore, we cannot rule out serious biases in most of the included trials. However, selection, attrition, and selective reporting biases are likely to have affected the studies included in this review. GRADE ratings were high only for survival; for other primary outcomes, GRADE ratings were very low.The largest body of evidence is currently available for CA-125-targeted antibody therapy (17 studies, 2347 participants; very low-certainty evidence). Non-randomised studies of CA-125-targeted antibody therapy suggest improved survival among humoral and/or cellular responders, with only moderate adverse events. However, four large randomised placebo-controlled trials did not show any clinical benefit, despite induction of immune responses in approximately 60% of participants. Time to relapse with CA-125 monoclonal antibody versus placebo, respectively, ranged from 10.3 to 18.9 months versus 10.3 to 13 months (six RCTs, 1882 participants; high-certainty evidence). Only one RCT provided data on overall survival, reporting rates of 80% in both treatment and placebo groups (three RCTs, 1062 participants; high-certainty evidence). Other small studies targeting many different tumour antigens have presented promising immunological results. As these strategies have not yet been tested in RCTs, no reliable inferences about clinical efficacy can be made. Given the promising immunological results and the limited side effects and toxicity reported, exploration of clinical efficacy in large well-designed RCTs may be worthwhile. AUTHORS' CONCLUSIONS We conclude that despite promising immunological responses, no clinically effective antigen-specific active immunotherapy is yet available for ovarian cancer. Results should be interpreted cautiously, as review authors found a significant dearth of relevant information for assessment of risk of bias in both RCTs and NRSs.
Collapse
Affiliation(s)
- Sterre T Paijens
- University Medical Center Groningen (UMCG)Obstetrics & GynaecologyGroningenNetherlands9713 GZ
| | - Ninke Leffers
- University Medical Center Groningen (UMCG)Obstetrics & GynaecologyGroningenNetherlands9713 GZ
| | - Toos Daemen
- University Medical Center Groningen (UMCG)GroningenNetherlands9713 GZ
| | - Wijnand Helfrich
- University Medical Center Groningen (UMCG)Department of Surgery. Translational Surgical OncologyGroningenNetherlands9713 GZ
| | - H Marike Boezen
- University Medical Center Groningen (UMCG)Unit Chronic Airway Diseases, Department of EpidemiologyGroningenNetherlands9713 GZ
| | - Ben J Cohlen
- Isala Clinics, Location SophiaDepartment of Obstetrics & GynaecologyDr van Heesweg 2P O Box 10400ZwolleNetherlands3515 BE
| | - Cornelis JM Melief
- Leiden University Medical CenterDepartment of Immunohaematology and Blood TransfusionPO Box 9600E3‐QLeidenNetherlands2300 RC
| | - Marco de Bruyn
- University Medical Center Groningen (UMCG)Obstetrics & GynaecologyGroningenNetherlands9713 GZ
| | - Hans W Nijman
- University Medical Center Groningen (UMCG)GroningenNetherlands9713 GZ
| | | |
Collapse
|
38
|
Kalli KR, Block MS, Kasi PM, Erskine CL, Hobday TJ, Dietz A, Padley D, Gustafson MP, Shreeder B, Puglisi-Knutson D, Visscher DW, Mangskau TK, Wilson G, Knutson KL. Folate Receptor Alpha Peptide Vaccine Generates Immunity in Breast and Ovarian Cancer Patients. Clin Cancer Res 2018. [PMID: 29545464 DOI: 10.1158/1078-0432.ccr-17-2499] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: Folate receptor alpha (FR) is overexpressed in several cancers. Endogenous immunity to the FR has been demonstrated in patients and suggests the feasibility of targeting FR with vaccine or other immune therapies. CD4 helper T cells are central to the development of coordinated immunity, and prior work shows their importance in protecting against relapse. Our previous identification of degenerate HLA-class II epitopes from human FR led to the development of a broad coverage epitope pool potentially useful in augmenting antigen-specific immune responses in most patients.Patients and Methods: We conducted a phase I clinical trial testing safety and immunogenicity of this vaccine, enrolling patients with ovarian cancer or breast cancer who completed conventional treatment and who showed no evidence of disease. Patients were initially treated with low-dose cyclophosphamide and then vaccinated 6 times, monthly. Immunity and safety were examined during the vaccine period and up to 1 year later.Results: Vaccination was well tolerated in all patients. Vaccine elicited or augmented immunity in more than 90% of patients examined. Unlike recall immunity to tetanus toxoid (TT), FR T-cell responses developed slowly over the course of vaccination with a median time to maximal immunity in 5 months. Despite slow development of immunity, responsiveness appeared to persist for at least 12 months.Conclusions: The results demonstrate that it is safe to augment immunity to the FR tumor antigen, and the developed vaccine is testable for therapeutic activity in most patients whose tumors express FR, regardless of HLA genotype. Clin Cancer Res; 24(13); 3014-25. ©2018 AACR.
Collapse
Affiliation(s)
| | - Matthew S Block
- Department of Oncology, Mayo Clinic, Rochester, Minnesota.,Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | - Allan Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Douglas Padley
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Michael P Gustafson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Dan W Visscher
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Toni K Mangskau
- Mayo Clinic Cancer Education Program, Mayo Clinic, Rochester, Minnesota
| | | | - Keith L Knutson
- Department of Immunology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
39
|
Kalli KR, Block MS, Kasi PM, Erskine CL, Hobday TJ, Dietz A, Padley D, Gustafson MP, Shreeder B, Puglisi-Knutson D, Visscher DW, Mangskau TK, Wilson G, Knutson KL. Folate Receptor Alpha Peptide Vaccine Generates Immunity in Breast and Ovarian Cancer Patients. Clin Cancer Res 2018; 24:3014-3025. [PMID: 29545464 PMCID: PMC6030477 DOI: 10.1158/1078-0432.ccr-17-2499] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/18/2018] [Accepted: 03/13/2018] [Indexed: 01/09/2023]
Abstract
Purpose: Folate receptor alpha (FR) is overexpressed in several cancers. Endogenous immunity to the FR has been demonstrated in patients and suggests the feasibility of targeting FR with vaccine or other immune therapies. CD4 helper T cells are central to the development of coordinated immunity, and prior work shows their importance in protecting against relapse. Our previous identification of degenerate HLA-class II epitopes from human FR led to the development of a broad coverage epitope pool potentially useful in augmenting antigen-specific immune responses in most patients.Patients and Methods: We conducted a phase I clinical trial testing safety and immunogenicity of this vaccine, enrolling patients with ovarian cancer or breast cancer who completed conventional treatment and who showed no evidence of disease. Patients were initially treated with low-dose cyclophosphamide and then vaccinated 6 times, monthly. Immunity and safety were examined during the vaccine period and up to 1 year later.Results: Vaccination was well tolerated in all patients. Vaccine elicited or augmented immunity in more than 90% of patients examined. Unlike recall immunity to tetanus toxoid (TT), FR T-cell responses developed slowly over the course of vaccination with a median time to maximal immunity in 5 months. Despite slow development of immunity, responsiveness appeared to persist for at least 12 months.Conclusions: The results demonstrate that it is safe to augment immunity to the FR tumor antigen, and the developed vaccine is testable for therapeutic activity in most patients whose tumors express FR, regardless of HLA genotype. Clin Cancer Res; 24(13); 3014-25. ©2018 AACR.
Collapse
Affiliation(s)
| | - Matthew S Block
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | - Allan Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Douglas Padley
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Michael P Gustafson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Dan W Visscher
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Toni K Mangskau
- Mayo Clinic Cancer Education Program, Mayo Clinic, Rochester, Minnesota
| | | | - Keith L Knutson
- Department of Immunology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
40
|
Abstract
Resistance to therapies and disease recurrences after surgery or treatment are common challenges in breast cancer management in clinic. Active immunotherapy using human epidermal growth factor receptor 2 (HER2)-targeted vaccines represents an attractive option in combating breast cancer. Different HER2-derived vaccines have been developed over the years. Many clinical trials have been carried out in evaluating HER2-based vaccines. The authors reviewed current literature on HER2-based vaccines in clinical trials. The trials covered in this mini-review represent some of the major trials published in the past 20 years regarding the clinical use and test of HER2 vaccines. Their focus is on trials using HER2 peptide vaccines as the majority of clinical trials initiated or published used HER2 peptide-based vaccines. Findings from combination therapy trials of HER2 peptide vaccines with other treatment modalities are also presented.
Collapse
Affiliation(s)
- Naipeng Cui
- 1 Department of Breast Surgery, Affiliated Hospital of Hebei University , Baoding, China
| | - Jianhong Shi
- 2 Central Laboratory, Hebei Laboratory of Mechanism and Procedure of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University , Baoding, China
| | - Chuanwei Yang
- 3 Breast Medical Oncology, The University of Texas MD Anderson Cancer Center , Houston, Texas
| |
Collapse
|
41
|
Jindal V, Arora E, Gupta S, Lal A, Masab M, Potdar R. Prospects of chimeric antigen receptor T cell therapy in ovarian cancer. Med Oncol 2018; 35:70. [PMID: 29651744 DOI: 10.1007/s12032-018-1131-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/08/2018] [Indexed: 01/12/2023]
Abstract
Despite advances in various chemotherapy regimens, current therapeutic options are limited for ovarian cancer patients. Immunotherapy provides a promising and novel treatment option for ovarian cancer. Recently, chimeric antigen receptor (CAR) T cell therapy has shown promising results in hematological tumors and current research is going on in various solid tumors like ovarian cancer. CAR T cells are genetically engineered T cells with major histocompatibility complex-independent, tumor-specific, immune-mediated cytolytic actions against cancer cells. Initial studies of CAR T cell therapy have shown promising results in ovarian cancer, but there are some obstacles like impaired T cell trafficking, lack of antigenic targets, cytokine release syndrome and most important immunosuppressive tumor microenvironment. Optimization of design, improving tumor microenvironment and combinations with other therapies may help us in improving CAR T cell efficacy. In this review article, we highlight the current knowledge regarding CAR T cell therapy in ovarian cancer. We have discussed basic functioning of CAR T cells, their rationale and clinical outcome in ovarian cancer with limitations.
Collapse
Affiliation(s)
- Vishal Jindal
- Department of Internal Medicine, Saint Vincent Hospital, 123 Summer Street, Worcester, 01608, USA.
| | - Ena Arora
- Department of Internal Medicine, Government Medical College and Hospital, Chandigarh, India
| | - Sorab Gupta
- Department of Hematology and Oncology, Einstein Healthcare Network, Philadelphia, USA
| | - Amos Lal
- Department of Internal Medicine, Saint Vincent Hospital, 123 Summer Street, Worcester, 01608, USA
| | - Muhammad Masab
- Department of Internal Medicine, Einstein Healthcare Network, Philadelphia, USA
| | - Rashmika Potdar
- Department of Hematology and Oncology, Einstein Healthcare Network, Philadelphia, USA
| |
Collapse
|
42
|
Ahmadi M, Sadri-Ardalani F, Amiri MM, Jeddi-Tehrani M, Shabani M, Shokri F. Immunization with HER2 extracellular subdomain proteins induces cellular response and tumor growth inhibition in mice. Immunotherapy 2018; 10:511-524. [PMID: 29562854 DOI: 10.2217/imt-2017-0181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AIM We investigated cellular and protective immune responses in mice vaccinated with recombinant HER2 extracellular subdomains. MATERIALS & METHODS Balb/C mice were immunized with recombinant full HER2 extracellular domain and subdomain proteins. Humoral and cellular immune response and antitumor effect was evaluated using a syngeneic mice tumor model. RESULTS All recombinant proteins induced secretion of IL-4 and particularly IFN-γ and IL-17 cytokines. Challenging of immunized mice with stable 4T1-HER2 transfected cells resulted in partial but significant tumor growth inhibition in all groups of mice particularly those immunized with fHER2-ECD together with CPG. CONCLUSION Our results suggest that the recombinant HER2-ECD subdomains induce mainly Th1 and Th17 responses, which seem to contribute to tumor growth inhibition in syngeneic mice.
Collapse
Affiliation(s)
- Moslem Ahmadi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Fateme Sadri-Ardalani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad M Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
43
|
Don-López CA, Monroy-García A, Weiss-Steider B, Rocha-Zavaleta L, Hernández-Montes J, García-Rocha R, Mora-García MDL. GLMEEMSAL epitope common in different isoforms of hMena elicits in vitro activation of cytotoxic T cells and stimulates specific antitumor immunity in BALB/c mice. Int Immunopharmacol 2018; 56:291-300. [PMID: 29414664 DOI: 10.1016/j.intimp.2018.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Alternative expression of human ortholog of murine Mena (hMena) hMena/hMena11a and hMena/hMenaΔv6 isoforms regulate the invasiveness and metastatic potential of tumor cells. It is then important to identify epitopes of these proteins that can elicit antitumor immune response to contribute to the elimination of cells with metastatic potential. METHODS We assayed the capacity of the peptide GLMEEMSAL, common in hMena/hMena11a and hMena/hMenaΔv6 isoforms, to generate an antitumor immune response through an in vitro vaccination system with mature dendritic cells (MDC) loaded with this peptide and in vivo immunization using a tumor model with the mammary adenocarcinoma JC cell line to induce tumors in BALBc mice. RESULTS MDC loaded with the peptide GLMEEMSAL elicited strong proliferation and activation of CD8+ T lymphocytes. The CTLs generated with this system were capable to lyse specifically BrCa and CeCa cell lines expressing either hMena/hMena11a or hMena/hMenaΔv6. Immunization with GLMEEMSAL provided protective and therapeutic antitumor activity as well as increased survival in BALB/c mice. CONCLUSION These results are highly relevant for the use of common peptides among the different isoforms of hMena to develop immunotherapy protocols to counteract the growth and metastatic potential of tumors with over-expression of hMena.
Collapse
Affiliation(s)
- Christian Azucena Don-López
- Immunobiology Laboratory, Cellular Differentiation and Cancer Unit, FES-Zaragoza, UNAM, Mexico City, Mexico; Postgraduate Program in Biological Sciences, UNAM, Mexico City, Mexico
| | - Alberto Monroy-García
- Immunobiology Laboratory, Cellular Differentiation and Cancer Unit, FES-Zaragoza, UNAM, Mexico City, Mexico; Immunology and Cancer Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Mexico City, Mexico
| | - Benny Weiss-Steider
- Immunobiology Laboratory, Cellular Differentiation and Cancer Unit, FES-Zaragoza, UNAM, Mexico City, Mexico
| | - Leticia Rocha-Zavaleta
- Department of Molecular Biology and Biotechnology, Institute of Biomedicine, UNAM, Mexico City, Mexico
| | - Jorge Hernández-Montes
- Immunobiology Laboratory, Cellular Differentiation and Cancer Unit, FES-Zaragoza, UNAM, Mexico City, Mexico
| | - Rosario García-Rocha
- Immunobiology Laboratory, Cellular Differentiation and Cancer Unit, FES-Zaragoza, UNAM, Mexico City, Mexico
| | | |
Collapse
|
44
|
Chua BY, Sekiya T, Jackson DC. Opinion: Making Inactivated and Subunit-Based Vaccines Work. Viral Immunol 2018; 31:150-158. [PMID: 29369750 DOI: 10.1089/vim.2017.0146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Empirically derived vaccines have in the past relied on the isolation and growth of disease-causing microorganisms that are then inactivated or attenuated before being administered. This is often done without prior knowledge of the mechanisms involved in conferring protective immunity. Recent advances in scientific technologies and in our knowledge of how protective immune responses are induced enable us to rationally design novel and safer vaccination strategies. Such advances have accelerated the development of inactivated whole-organism- and subunit-based vaccines. In this review, we discuss ideal attributes and criteria that need to be considered for the development of vaccines and some existing vaccine platforms. We focus on inactivated vaccines against influenza virus and ways by which vaccine efficacy can be improved with the use of adjuvants and Toll-like receptor-2 signaling.
Collapse
Affiliation(s)
- Brendon Y Chua
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia .,2 Research Center for Zoonosis Control, Hokkaido University , Sapporo, Japan .,3 Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo, Japan
| | - Toshiki Sekiya
- 2 Research Center for Zoonosis Control, Hokkaido University , Sapporo, Japan .,3 Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo, Japan
| | - David C Jackson
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia .,2 Research Center for Zoonosis Control, Hokkaido University , Sapporo, Japan .,3 Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo, Japan
| |
Collapse
|
45
|
Li X, Bu X. Progress in Vaccine Therapies for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:315-330. [DOI: 10.1007/978-981-10-6020-5_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Deligne C, Milcent B, Josseaume N, Teillaud JL, Sibéril S. Impact of Depleting Therapeutic Monoclonal Antibodies on the Host Adaptive Immunity: A Bonus or a Malus? Front Immunol 2017; 8:950. [PMID: 28855903 PMCID: PMC5557783 DOI: 10.3389/fimmu.2017.00950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022] Open
Abstract
Clinical responses to anti-tumor monoclonal antibody (mAb) treatment have been regarded for many years only as a consequence of the ability of mAbs to destroy tumor cells by innate immune effector mechanisms. More recently, it has also been shown that anti-tumor antibodies can induce a long-lasting anti-tumor adaptive immunity, likely responsible for durable clinical responses, a phenomenon that has been termed the vaccinal effect of antibodies. However, some of these anti-tumor antibodies are directed against molecules expressed both by tumor cells and normal immune cells, in particular lymphocytes, and, hence, can also strongly affect the host adaptive immunity. In addition to a delayed recovery of target cells, lymphocyte depleting-mAb treatments can have dramatic consequences on the adaptive immune cell network, its rebound, and its functional capacities. Thus, in this review, we will not only discuss the mAb-induced vaccinal effect that has emerged from experimental preclinical studies and clinical trials but also the multifaceted impact of lymphocytes-depleting therapeutic antibodies on the host adaptive immunity. We will also discuss some of the molecular and cellular mechanisms of action whereby therapeutic mAbs induce a long-term protective anti-tumor effect and the relationship between the mAb-induced vaccinal effect and the immune response against self-antigens.
Collapse
Affiliation(s)
- Claire Deligne
- Cordeliers Research Center, INSERM UMR-S 1138, "Cancer, Immune Control and Escape" Laboratory, Paris, France.,Sorbonne Universities, Université Pierre et Marie Curie, UMR-S 1138, Paris, France.,Université Paris Descartes, UMR-S 1138, Paris, France.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Benoît Milcent
- Cordeliers Research Center, INSERM UMR-S 1138, "Cancer, Immune Control and Escape" Laboratory, Paris, France.,Sorbonne Universities, Université Pierre et Marie Curie, UMR-S 1138, Paris, France.,Université Paris Descartes, UMR-S 1138, Paris, France
| | - Nathalie Josseaume
- Cordeliers Research Center, INSERM UMR-S 1138, "Cancer, Immune Control and Escape" Laboratory, Paris, France.,Sorbonne Universities, Université Pierre et Marie Curie, UMR-S 1138, Paris, France.,Université Paris Descartes, UMR-S 1138, Paris, France
| | - Jean-Luc Teillaud
- Cordeliers Research Center, INSERM UMR-S 1138, "Cancer, Immune Control and Escape" Laboratory, Paris, France.,Sorbonne Universities, Université Pierre et Marie Curie, UMR-S 1138, Paris, France.,Université Paris Descartes, UMR-S 1138, Paris, France
| | - Sophie Sibéril
- Cordeliers Research Center, INSERM UMR-S 1138, "Cancer, Immune Control and Escape" Laboratory, Paris, France.,Sorbonne Universities, Université Pierre et Marie Curie, UMR-S 1138, Paris, France.,Université Paris Descartes, UMR-S 1138, Paris, France
| |
Collapse
|
47
|
Pathangey LB, McCurry DB, Gendler SJ, Dominguez AL, Gorman JE, Pathangey G, Mihalik LA, Dang Y, Disis ML, Cohen PA. Surrogate in vitro activation of innate immunity synergizes with interleukin-7 to unleash rapid antigen-driven outgrowth of CD4+ and CD8+ human peripheral blood T-cells naturally recognizing MUC1, HER2/neu and other tumor-associated antigens. Oncotarget 2017; 8:10785-10808. [PMID: 27974697 PMCID: PMC5355224 DOI: 10.18632/oncotarget.13911] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/23/2016] [Indexed: 01/21/2023] Open
Abstract
Effective adoptive immunotherapy has proved elusive for many types of human cancer, often due to difficulties achieving robust expansion of natural tumor-specific T-cells from peripheral blood. We hypothesized that antigen-driven T-cell expansion might best be triggered in vitro by acute activation of innate immunity to mimic a life-threatening infection. Unfractionated peripheral blood mononuclear cells (PBMC) were subjected to a two-step culture, first synchronizing their exposure to exogenous antigens with aggressive surrogate activation of innate immunity, followed by γ-chain cytokine-modulated T-cell hyperexpansion. Step 1 exposure to GM-CSF plus paired Toll-like receptor agonists (resiquimod and LPS), stimulated abundant IL-12 and IL-23 secretion, as well as upregulated co-stimulatory molecules and CD11c expression within the myeloid (CD33+) subpopulation. Added synthetic long peptides (>20aa) derived from widely expressed oncoproteins (MUC1, HER2/neu and CMVpp65), were reliably presented to CD4+ T-cells and cross-presented to CD8+ T-cells. Both presentation and cross-presentation demonstrated proteasomal and Sec61 dependence that could bypass the endoplasmic reticulum. Step 2 exposure to exogenous IL-7 or IL-7+IL-2 produced selective and sustained expansion of both CD4+ and CD8+ peptide-specific T-cells with a predominant interferon-γ-producing T1-type, as well as the antigen-specific ability to lyse tumor targets. Other γ-chain cytokines and/or combinations were initially proliferogenic, but followed by a contractile phase not observed with IL-7 or IL-7+IL-2. Regulatory T-cells were minimally propagated under these culture conditions. This mechanistically rational culture sequence, effective even for unvaccinated donors, enables rapid preparation of T-cells recognizing tumor-associated antigens expressed by the majority of human cancers, including pancreatic cancers, breast cancers and glioblastomas.
Collapse
Affiliation(s)
- Latha B Pathangey
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, USA
| | - Dustin B McCurry
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, USA
| | - Sandra J Gendler
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, USA.,Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA.,Department of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Ana L Dominguez
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, USA
| | - Jessica E Gorman
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, USA
| | - Girish Pathangey
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, USA
| | - Laurie A Mihalik
- Department of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Yushe Dang
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, WA, USA
| | - Mary L Disis
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, WA, USA
| | - Peter A Cohen
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA.,Department of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
48
|
Watt WC, Cecil DL, Disis ML. Selection of epitopes from self-antigens for eliciting Th2 or Th1 activity in the treatment of autoimmune disease or cancer. Semin Immunopathol 2017; 39:245-253. [PMID: 27975138 DOI: 10.1007/s00281-016-0596-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/03/2016] [Indexed: 12/22/2022]
Abstract
Vaccines have been valuable tools in the prevention of infectious diseases, and the rapid development of new vectors against constantly mutating foreign antigens in viruses such as influenza has become a regular, seasonal exercise. Harnessing the immune response against self-antigens is not necessarily analogous or as achievable by iterative processes, and since the desired outcome includes leaving the targeted organism intact, requires some precision engineering. In vaccine-based treatment of autoimmunity and cancer, the proper selection of antigens and generation of the desired antigen-specific therapeutic immunity has been challenging. Both cases involve a threshold of existing, undesired immunity that must be overcome, and despite considerable academic and industry efforts, this challenge has proven to be largely refractory to vaccine approaches leveraging enhanced vectors, adjuvants, and administration strategies. There are in silico approaches in development for predicting the immunogenicity of self-antigen epitopes, which are being validated slowly. One simple approach showing promise is the functional screening of self-antigen epitopes for selective Th1 antitumor immunogenicity, or inversely, selective Th2 immunogenicity for treatment of autoimmune inflammation. The approach reveals the importance of confirming both Th1 and Th2 components of a vaccine immunogen; the two can confound one another if not parsed but may be used individually to modulate antigen-specific inflammation in autoimmune disease or cancer.
Collapse
Affiliation(s)
- William C Watt
- Tumor Vaccine Group, University of Washington, 850 Republican Street, Box 358050, Seattle, WA, 98109-4714, USA
- EpiThany, Inc., 3240 Fuhrman Ave E, Ste 106, Seattle, WA, 98102, USA
| | - Denise L Cecil
- Tumor Vaccine Group, University of Washington, 850 Republican Street, Box 358050, Seattle, WA, 98109-4714, USA
| | - Mary L Disis
- Tumor Vaccine Group, University of Washington, 850 Republican Street, Box 358050, Seattle, WA, 98109-4714, USA.
| |
Collapse
|
49
|
Ladoire S, Derangère V, Arnould L, Thibaudin M, Coudert B, Lorgis V, Desmoulins I, Chaix M, Fumoleau P, Ghiringhelli F. [The anti-tumor immune response in breast cancer: Update and therapeutic perspectives]. Ann Pathol 2017; 37:133-141. [PMID: 28159406 DOI: 10.1016/j.annpat.2016.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 11/18/2022]
Abstract
The role of the immune response in breast cancer is now well recognized and increasingly taken in account. The goal of this article is, in the first part, to underline its prognostic impact and to precise the immunosurvelliance, immunoselection and the immunosubversion concepts involved in the control and evasion of breast carcinoma. In the second part, therapeutic strategies for the restauration of anti-tumor immunity are developed. Vaccination strategies and checkpoints inhibitors blockade strategies are discussed as well as the immunogenic death linked to the conventional treatments of breast cancer.
Collapse
Affiliation(s)
- Sylvain Ladoire
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France; Plateforme de transfert en biologie cancérologique, centre Georges-François-Leclerc, 21000 Dijon, France; UMR Inserm U866, faculté de médecine de Dijon, 21000 Dijon, France; UFR des sciences de santé, 21000 Dijon, France; Université de Bourgogne, 21000 Dijon, France.
| | - Valentin Derangère
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France; Plateforme de transfert en biologie cancérologique, centre Georges-François-Leclerc, 21000 Dijon, France; UMR Inserm U866, faculté de médecine de Dijon, 21000 Dijon, France; Université de Bourgogne, 21000 Dijon, France; Département de pathologie et de biologie des tumeurs, centre Georges-François-Leclerc, 21000 Dijon, France
| | - Laurent Arnould
- Plateforme de transfert en biologie cancérologique, centre Georges-François-Leclerc, 21000 Dijon, France; Université de Bourgogne, 21000 Dijon, France; Département de pathologie et de biologie des tumeurs, centre Georges-François-Leclerc, 21000 Dijon, France
| | - Marion Thibaudin
- UMR Inserm U866, faculté de médecine de Dijon, 21000 Dijon, France
| | - Bruno Coudert
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France
| | - Veronique Lorgis
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France
| | - Isabelle Desmoulins
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France
| | - Marie Chaix
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France; UMR Inserm U866, faculté de médecine de Dijon, 21000 Dijon, France; UFR des sciences de santé, 21000 Dijon, France; Université de Bourgogne, 21000 Dijon, France
| | - Pierre Fumoleau
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France; Plateforme de transfert en biologie cancérologique, centre Georges-François-Leclerc, 21000 Dijon, France; UFR des sciences de santé, 21000 Dijon, France; Université de Bourgogne, 21000 Dijon, France
| | - François Ghiringhelli
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France; Plateforme de transfert en biologie cancérologique, centre Georges-François-Leclerc, 21000 Dijon, France; UMR Inserm U866, faculté de médecine de Dijon, 21000 Dijon, France; UFR des sciences de santé, 21000 Dijon, France; Université de Bourgogne, 21000 Dijon, France
| |
Collapse
|
50
|
Anti-HER2 Therapies in the Adjuvant and Advanced Disease Settings. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|