1
|
Awosika JA, Gulley JL, Pastor DM. Deficient Mismatch Repair and Microsatellite Instability in Solid Tumors. Int J Mol Sci 2025; 26:4394. [PMID: 40362635 PMCID: PMC12072705 DOI: 10.3390/ijms26094394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/26/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
The integrity of the genome is maintained by mismatch repair (MMR) proteins that recognize and repair base mismatches and insertion/deletion errors generated during DNA replication and recombination. A defective MMR system results in genome-wide instability and the progressive accumulation of mutations. Tumors exhibiting deficient MMR (dMMR) and/or high levels of microsatellite instability (termed "microsatellite instability high", or MSI-H) have been shown to possess fundamental differences in clinical, pathological, and molecular characteristics, distinguishing them from their "microsatellite stable" (MSS) counterparts. Molecularly, they are defined by a high mutational burden, genetic instability, and a distinctive immune profile. Their distinct genetic and immunological profiles have made dMMR/MSI-H tumors particularly amenable to treatment with immune checkpoint inhibitors (ICIs). The ongoing development of biomarker-driven therapies and the evaluation of novel combinations of immune-based therapies, with or without the use of conventional cytotoxic treatment regimens, continue to refine treatment strategies with the goals of maximizing therapeutic efficacy and survival outcomes in this distinct patient population. Moreover, the resultant knowledge of the mechanisms by which these features are suspected to render these tumors more responsive, overall, to immunotherapy may provide information regarding the potential optimization of this therapeutic approach in tumors with proficient MMR (pMMR)/MSS tumors.
Collapse
Affiliation(s)
- Joy A. Awosika
- Gastrointestinal Malignancies Section, Thoracic & GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James L. Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle M. Pastor
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Andarawi S, Vodickova L, Uttarilli A, Hanak P, Vodicka P. Defective DNA repair: a putative nexus linking immunological diseases, neurodegenerative disorders, and cancer. Mutagenesis 2025; 40:4-19. [PMID: 39937585 DOI: 10.1093/mutage/geae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
DNA damage is a common event in cells, resulting from both internal and external factors. The maintenance of genomic integrity is vital for cellular function and physiological processes. The inadequate repair of DNA damage results in the genomic instability, which has been associated with the development and progression of various human diseases. Accumulation of DNA damage can lead to multiple diseases, such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and ageing. This comprehensive review delves the impact of alterations in DNA damage response genes (DDR) and tries to elucidate how and to what extent the same traits modulate diverse major human diseases, such as cancer, neurodegenerative diseases, and immunological disorders. DDR is apparently the trait connecting important complex disorders in humans. However, the pathogenesis of the above disorders and diseases are different and lead to divergent consequences. It is important to discover the switch(es) that direct further the pathogenic process either to proliferative, or degenerative diseases. Our understanding of the influence of DNA damage on diverse human disorders may enable the development of the strategies to prevent, diagnose, and treat these diseases. In our article, we analysed publicly available GWAS summary statistics from the NHGRI-EBI GWAS Catalog and identified 12 009 single-nucleotide polymorphisms (SNPs) associated with cancer. Among these, 119 SNPs were found in DDR pathways, exhibiting significant P-values. Additionally, we identified 44 SNPs linked to various cancer types and neurodegenerative diseases (NDDs), including four located in DDR-related genes: ATM, CUX2, and WNT3. Furthermore, 402 SNPs were associated with both cancer and immunological disorders, with two found in the DDR gene RAD51B. This highlights the versatility of the DDR pathway in multifactorial diseases. However, the specific mechanisms that regulate DDR to initiate distinct pathogenic processes remain to be elucidated.
Collapse
Affiliation(s)
- Safaa Andarawi
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300 Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300 Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Anusha Uttarilli
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
| | - Petr Hanak
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
| | - Pavel Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300 Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| |
Collapse
|
3
|
Bunting EL, Donaldson J, Cumming SA, Olive J, Broom E, Miclăuș M, Hamilton J, Tegtmeyer M, Zhao HT, Brenton J, Lee WS, Handsaker RE, Li S, Ford B, Ryten M, McCarroll SA, Kordasiewicz HB, Monckton DG, Balmus G, Flower M, Tabrizi SJ. Antisense oligonucleotide-mediated MSH3 suppression reduces somatic CAG repeat expansion in Huntington's disease iPSC-derived striatal neurons. Sci Transl Med 2025; 17:eadn4600. [PMID: 39937881 DOI: 10.1126/scitranslmed.adn4600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/23/2025] [Indexed: 02/14/2025]
Abstract
Expanded CAG alleles in the huntingtin (HTT) gene that cause the neurodegenerative disorder Huntington's disease (HD) are genetically unstable and continue to expand somatically throughout life, driving HD onset and progression. MSH3, a DNA mismatch repair protein, modifies HD onset and progression by driving this somatic CAG repeat expansion process. MSH3 is relatively tolerant of loss-of-function variation in humans, making it a potential therapeutic target. Here, we show that an MSH3-targeting antisense oligonucleotide (ASO) effectively engaged with its RNA target in induced pluripotent stem cell (iPSC)-derived striatal neurons obtained from a patient with HD carrying 125 HTT CAG repeats (the 125 CAG iPSC line). ASO treatment led to a dose-dependent reduction of MSH3 and subsequent stalling of CAG repeat expansion in these striatal neurons. Bulk RNA sequencing revealed a safe profile for MSH3 reduction, even when reduced by >95%. Maximal knockdown of MSH3 also effectively slowed CAG repeat expansion in striatal neurons with an otherwise accelerated expansion rate, derived from the 125 CAG iPSC line where FAN1 was knocked out by CRISPR-Cas9 editing. Last, we created a knock-in mouse model expressing the human MSH3 gene and demonstrated effective in vivo reduction in human MSH3 after ASO treatment. Our study shows that ASO-mediated MSH3 reduction can prevent HTT CAG repeat expansion in HD 125 CAG iPSC-derived striatal neurons, highlighting the therapeutic potential of this approach.
Collapse
Affiliation(s)
- Emma L Bunting
- Huntington's Disease Centre and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and UK Dementia Research Institute, UCL, London, UK
| | - Jasmine Donaldson
- Huntington's Disease Centre and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and UK Dementia Research Institute, UCL, London, UK
| | - Sarah A Cumming
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jessica Olive
- Huntington's Disease Centre and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and UK Dementia Research Institute, UCL, London, UK
| | - Elizabeth Broom
- Huntington's Disease Centre and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and UK Dementia Research Institute, UCL, London, UK
| | - Mihai Miclăuș
- UK Dementia Research Institute at University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
- Department of Molecular Neuroscience, Transylvanian Institute of Neuroscience, 400191 Cluj-Napoca, Romania
| | - Joseph Hamilton
- Huntington's Disease Centre and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and UK Dementia Research Institute, UCL, London, UK
| | - Matthew Tegtmeyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jonathan Brenton
- UK Dementia Research Institute at University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, London, UK
| | - Won-Seok Lee
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Robert E Handsaker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Susan Li
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | - Mina Ryten
- UK Dementia Research Institute at University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, London, UK
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Darren G Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gabriel Balmus
- UK Dementia Research Institute at University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
- Department of Molecular Neuroscience, Transylvanian Institute of Neuroscience, 400191 Cluj-Napoca, Romania
| | - Michael Flower
- Huntington's Disease Centre and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and UK Dementia Research Institute, UCL, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and UK Dementia Research Institute, UCL, London, UK
| |
Collapse
|
4
|
Lim NR, Chung WC. Increased risk of adenomatous colon polyps in patients with long-term use of proton pump inhibitors: a single-center retrospective study. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2025; 42:24. [PMID: 39837312 PMCID: PMC12005682 DOI: 10.12701/jyms.2025.42.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND It is unclear whether long-term use of proton pump inhibitors (PPIs) has a potential carcinogenic effect on the colorectum. METHODS We reviewed a consecutive series of neurosurgery outpatients who underwent two or more colonoscopies between January 2014 and April 2023. Patients in whom the timing of endoscopy was not in accordance with the guidelines and those without a history of previous endoscopy were excluded. In the second colonoscopy, the risk of adenomatous colon polyps was evaluated depending on whether the patient had taken a PPI. RESULTS In total, 520 patients were enrolled. In the multivariate analysis related to the risk of adenomatous colon polyps, age and aspirin use for >5 years were identified as significant factors. After excluding patients who had taken aspirin for >5 years, the patients were divided into three groups: those who had taken PPIs for >12 months, those who had taken PPIs for >3 months but <12 months, and those who had not taken PPIs. The risk of adenomatous colon polyps in these groups was 35.2%, 32.8%, and 22.8%, respectively (p=0.10). In the post-hoc analysis, there was a significant difference between patients who took PPIs and those who did not (p=0.03). In the multivariate analysis, a history of PPI use for >12 months was a significant risk factor for the development of advanced colon polyps (p=0.03). CONCLUSION Prolonged PPI use appears to increase the risk of developing adenomatous and advanced colon polyps.
Collapse
Affiliation(s)
- Na Rae Lim
- Department of Internal Medicine, St. Vincent Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woo Chul Chung
- Department of Internal Medicine, St. Vincent Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
5
|
Evaristo G, Harmath C, Segal JP, Shergill A, Setia N. Diagnostic Challenges due to a Germline Missense MSH2 Variant in a Patient With Immunotherapy-Responsive Locally Advanced Rectal Adenocarcinoma. Cancer Rep (Hoboken) 2024; 7:e70037. [PMID: 39696980 DOI: 10.1002/cnr2.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/28/2024] [Accepted: 10/14/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Rapid and accurate identification of mismatch repair (MMR) deficiency and Lynch syndrome is critical in the prognostication and clinical management of patients with colorectal carcinoma. CASE DESCRIPTION We describe here a young woman who developed a locally aggressive rectal adenocarcinoma with intact MMR protein expression by immunohistochemistry and absence of histologic evidence of MMR deficiency-associated increased tumoral immune response. Germline DNA-targeted sequencing identified MSH2 variant p.R711P, initially classified as a variant of undetermined significance. Somatic tumoral DNA analysis revealed the identical MSH2 variant, high tumor mutational burden, and microsatellite instability, in addition to superimposed alterations in β2-microglobulin gene, possibly explaining the altered intratumoral immunity. Consequently, the patient was started on immunotherapy, leading to successful disease control (33 month follow-up). CONCLUSION The findings emphasize the utility of an integrative approach in the assessment of MMR status for determining candidacy for immunotherapy, especially in the setting of missense variants in MMR genes.
Collapse
Affiliation(s)
- Gertruda Evaristo
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Carla Harmath
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA
| | - Jeremy P Segal
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Ardaman Shergill
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Namrata Setia
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
Albertí-Valls M, Olave S, Olomí A, Macià A, Eritja N. Advances in Immunotherapy for Endometrial Cancer: Insights into MMR Status and Tumor Microenvironment. Cancers (Basel) 2024; 16:3918. [PMID: 39682106 DOI: 10.3390/cancers16233918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Endometrial cancer is one of the most common gynecological malignancies, and while early-stage cases are highly treatable, recurrent or advanced EC remains challenging to manage. Immunotherapy, particularly immune checkpoint inhibitors, has revolutionized treatment approaches in oncology, and its application in EC has shown promising results. Key to immunotherapy efficacy in EC is the tumor's mismatch repair status, with MMR-deficient tumors demonstrating a higher tumor mutational burden and increased PD-L1 expression, making them more susceptible to immune checkpoint inhibitors (ICIs) such as pembrolizumab, durvalumab, and dostarlimab. However, not all mismatch repair-deficient (MMRd) tumors respond to ICIs, particularly those with a "cold" tumor microenvironment (TME) characterized by poor immune infiltration. In contrast, some MMR-proficient tumors with a "hot" TME respond well to ICIs, underscoring the complex interplay between MMR status, tumor mutational burden (TMB), and TME. To overcome resistance in cold tumors, novel therapies, including Chimeric Antigen Receptor (CAR) T cells and tumor-infiltrating lymphocytes are being explored, offering targeted immune-based strategies to enhance treatment efficacy. This review discusses the current understanding of immunotherapy in EC, emphasizing the prognostic and therapeutic implications of MMR status, TME composition, and emerging cell-based therapies.
Collapse
Affiliation(s)
- Manel Albertí-Valls
- Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida (UdL), Av. Rovira Roure 80, 25198 Lleida, Spain
| | - Sara Olave
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Anna Olomí
- Developmental and Oncogenic Signaling, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida (UdL), Av. Rovira Roure 80, 25198 Lleida, Spain
| | - Anna Macià
- Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida (UdL), Av. Rovira Roure 80, 25198 Lleida, Spain
| | - Núria Eritja
- Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida (UdL), Av. Rovira Roure 80, 25198 Lleida, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
7
|
Abdelmaksoud-Dammak R, Ammous-Boukhris N, BenAyed-Guerfali D, Gdoura Y, Boujelben I, Guidara S, Charfi S, Boudabbous W, Ammar S, Rhaiem W, Boudawara MZ, Kamoun H, Sallemi-Boudawara T, Mhiri R, Mokdad-Gargouri R. Strategies for diagnosis and management of CMMRD in low-resource countries: report of a Tunisian family. Fam Cancer 2024; 23:515-522. [PMID: 38687438 DOI: 10.1007/s10689-024-00386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/30/2024] [Indexed: 05/02/2024]
Abstract
Constitutional Mismatch Repair Deficiency (CMMRD) is a rare childhood cancer predisposition syndrome, caused by biallelic pathogenic germline variants in the mismatch repair genes. Diagnosis and management of this syndrome is challenging, especially in low-resource settings. This study describes a patient diagnosed with colorectal cancer and grade 3 astrocytoma at the age of 11 and 12 respectively. Immunohistochemistry analysis showed a loss of MSH2 and MSH6 protein expression in CRC tissues of the patient. We identified by Targeted Exome Sequencing a homozygous pathogenic germline variant in exon 9 of the MSH6 gene (c.3991 C > T; p.Ala1268Glyfs*6). Genetic investigation of the family showed that the father was heterozygous for the identified pathogenic variant while the brother was wild type for this variant. Our study highlights the importance of a correct and timely diagnosis of CMMRD which can have implications for treatment. It also underlines the imperative need to enhance awareness, diagnostic standards, and surveillance that are crucial for patients and their families.
Collapse
Affiliation(s)
- Rania Abdelmaksoud-Dammak
- Department of Cancer Genetics, Laboratory of Molecular Biotechnology of Eukaryotes, Center of Biotechnology of Sfax, University of Sfax BPK 1177, Sfax, 3018, Tunisia
| | - Nihel Ammous-Boukhris
- Department of Cancer Genetics, Laboratory of Molecular Biotechnology of Eukaryotes, Center of Biotechnology of Sfax, University of Sfax BPK 1177, Sfax, 3018, Tunisia
| | - Dorra BenAyed-Guerfali
- Department of Cancer Genetics, Laboratory of Molecular Biotechnology of Eukaryotes, Center of Biotechnology of Sfax, University of Sfax BPK 1177, Sfax, 3018, Tunisia
| | - Yassine Gdoura
- Department of Neurosurgery, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Imen Boujelben
- Department of Human Genetics, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Souhir Guidara
- Department of Human Genetics, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Slim Charfi
- Department of Anatomopathology, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Wiem Boudabbous
- Department of Neurosurgery, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Saloua Ammar
- Department of Pediatric Surgery, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Wiem Rhaiem
- Department of Pediatric Surgery, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | | | - Hassen Kamoun
- Department of Human Genetics, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | | | - Riadh Mhiri
- Department of Pediatric Surgery, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Raja Mokdad-Gargouri
- Department of Cancer Genetics, Laboratory of Molecular Biotechnology of Eukaryotes, Center of Biotechnology of Sfax, University of Sfax BPK 1177, Sfax, 3018, Tunisia.
| |
Collapse
|
8
|
Smith HG, Schlesinger NH, Chiranth D, Qvortrup C. The Association of Mismatch Repair Status with Microscopically Positive (R1) Margins in Stage III Colorectal Cancer: A Retrospective Cohort Study. Ann Surg Oncol 2024; 31:6423-6431. [PMID: 38907136 PMCID: PMC11413156 DOI: 10.1245/s10434-024-15595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/28/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND There is mounting evidence that microscopically positive (R1) margins in patients with colorectal cancer (CRC) may represent a surrogate for aggressive cancer biology rather than technical failure during surgery. However, whether detectable biological differences exist between CRC with R0 and R1 margins is unknown. We sought to investigate whether mismatch repair (MMR) status differs between Stage III CRC with R0 or R1 margins. METHODS Patients treated for Stage III CRC from January 1, 2016 to December 31, 2019 were identified by using the Danish Colorectal Cancer Group database. Patients were stratified according to MMR status (proficient [pMMR] vs. deficient [dMMR]) and margin status. Outcomes of interest included the R1 rate according to MMR and overall survival. RESULTS A total of 3636 patients were included, of whom 473 (13.0%) had dMMR colorectal cancers. Patients with dMMR cancers were more likely to be elderly, female, and have right-sided cancers. R1 margins were significantly more common in patients with dMMR cancers (20.5% vs. 15.2%, p < 0.001), with the greatest difference seen in the rate of R1 margins related to the primary tumour (8.9% vs. 4.7%) rather than to lymph node metastases (11.6% vs. 10.5%). This association was seen in both right- and left-sided cancers. On multivariable analyses, R1 margins, but not MMR status, were associated with poorer survival, alongside age, pN stage, perineural invasion, and extramural venous invasion. CONCLUSIONS In patients with Stage III CRC, dMMR status is associated with increased risks of R1 margins following potentially curative surgery, supporting the use of neoadjuvant immunotherapy in this patient group.
Collapse
Affiliation(s)
- Henry G Smith
- Abdominalcenter K, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.
| | - Nis H Schlesinger
- Abdominalcenter K, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Deepthi Chiranth
- Department of Pathology, Copenhagen University Hospital - Rigshospital, Copenhagen, Denmark
| | - Camilla Qvortrup
- Department of Oncology, Copenhagen University Hospital - Rigshospital, Copenhagen, Denmark
| |
Collapse
|
9
|
Chen M, Deng S, Cao Y, Wang J, Zou F, Gu J, Mao F, Xue Y, Jiang Z, Cheng D, Huang N, Huang L, Cai K. Mitochondrial DNA Copy Number as a Biomarker for Guiding Adjuvant Chemotherapy in Stages II and III Colorectal Cancer Patients with Mismatch Repair Deficiency: Seeking Benefits and Avoiding Harms. Ann Surg Oncol 2024; 31:6320-6330. [PMID: 38985229 PMCID: PMC11300489 DOI: 10.1245/s10434-024-15759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) patients with mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) status are conventionally perceived as unresponsive to adjuvant chemotherapy (ACT). The mitochondrial transcription factor A (TFAM) is required for mitochondrial DNA copy number (mtDNA-CN) expression. In light of previous findings indicating that the frequent truncating-mutation of TFAM affects the chemotherapy resistance of MSI CRC cells, this study aimed to explore the potential of mtDNA-CN as a predictive biomarker for ACT efficacy in dMMR CRC patients. METHODS Levels of MtDNA-CN were assessed using quantitative real-time polymerase chain reaction (qRT-PCR) in a cohort of 308 CRC patients with dMMR comprising 180 stage II and 128 stage III patients. Clinicopathologic and therapeutic data were collected. The study examined the association between mtDNA-CN levels and prognosis, as well as the impact of ACT benefit on dMMR CRC patients. Subgroup analyses were performed based mainly on tumor stage and mtDNA-CN level. Kaplan-Meier and Cox regression models were used to evaluate the effect of mtDNA-CN on disease-free survival (DFS) and overall survival (OS). RESULTS A substantial reduction in mtDNA-CN expression was observed in tumor tissue, and higher mtDNA-CN levels were correlated with improved DFS (73.4% vs 85.7%; P = 0.0055) and OS (82.5% vs 90.3%; P = 0.0366) in dMMR CRC patients. Cox regression analysis identified high mtDNA-CN as an independent protective factor for DFS (hazard ratio [HR] 0.547; 95% confidence interval [CI] 0.321-0.934; P = 0.0270) and OS (HR 0.520; 95% CI 0.272-0.998; P = 0.0492). Notably, for dMMR CRC patients with elevated mtDNA-CN, ACT significantly improved DFS (74.6% vs 93.4%; P = 0.0015) and OS (81.0% vs 96.7%; P = 0.0017), including those with stage II or III disease. CONCLUSIONS The mtDNA-CN levels exhibited a correlation with the prognosis of stage II or III CRC patients with dMMR. Elevated mtDNA-CN emerges as a robust prognostic factor, indicating improved ACT outcomes for stages II and III CRC patients with dMMR. These findings suggest the potential utility of mtDNA-CN as a biomarker for guiding personalized ACT treatment in this population.
Collapse
Affiliation(s)
- Mian Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou, China
| | - Shenghe Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yinghao Cao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Falong Zou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junnang Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuwei Mao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yifan Xue
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenxing Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Denglong Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ning Huang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou, China.
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Goudarzi Y, Monirvaghefi K, Aghaei S, Amiri SS, Rezaei M, Dehghanitafti A, Azarpey A, Azani A, Pakmehr S, Eftekhari HR, Tahmasebi S, Zohourian Shahzadi S, Rajabivahid M. Effect of genetic profiling on surgical decisions at hereditary colorectal cancer syndromes. Heliyon 2024; 10:e34375. [PMID: 39145015 PMCID: PMC11320152 DOI: 10.1016/j.heliyon.2024.e34375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
Hereditary colorectal cancer syndromes, such as Lynch syndrome and familial adenomatous polyposis (FAP), present significant clinical challenges due to the heightened cancer risks associated with these genetic conditions. This review explores genetic profiling impact on surgical decisions for hereditary colorectal cancer (HCRC), assessing options, timing, and outcomes. Genotypes of different HCRCs are discussed, revealing a connection between genetic profiles, disease severity, and outcomes. For Lynch syndrome, mutations in the MLH1, MSH2, MSH6, and PMS2 genes guide the choice of surgery. Subtotal colectomy is recommended for patients with mutations in MLH1 and MSH2, while segmental colectomy is preferred for those with MSH6 and PMS2 mutations. In cases of metachronous colon cancer after segmental colectomy, subtotal colectomy with ileorectal anastomosis is advised for all mutations. Surgical strategies for primary rectal cancer include anterior resection or abdominoperineal resection (APR), irrespective of the specific mutation. For rectal cancer occurring after a previous segmental colectomy, proctocolectomy with ileal pouch-anal anastomosis (IPAA) or APR with a permanent ileostomy is recommended. In FAP, surgical decisions are based on genotype-phenotype correlations. The risk of desmoid tumors post-surgery supports a single-stage approach, particularly for certain APC gene variants. Juvenile Polyposis Syndrome (JPS) surgical decisions involve genetic testing, polyp characteristics with attention to vascular lesions in SMAD4 mutation carriers. However, genetic profiling does not directly dictate the specific surgical approach for JPS. In conclusion this review highlights the critical role of personalized surgical plans based on genetic profiles to optimize patient outcomes and reduce cancer risk. Further research is needed to refine these strategies and enhance clinical guidelines.
Collapse
Affiliation(s)
- Yasaman Goudarzi
- Department of Medical Science, Shahroud Branch, Islamic Azad University, Iran
| | - Khaterehsadat Monirvaghefi
- Department of Adult Hematology & Oncology, School of Medicine, Ayatollah Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Salar Aghaei
- Faculty of Medicine, Medical University of Kurdistan, Sanandaj, Iran
| | - Seyed Siamak Amiri
- Department of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahdi Rezaei
- Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Atefeh Dehghanitafti
- Department of General Surgery, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Azarpey
- Emory University School of Medicine, Atlanta, GA, USA
| | - Alireza Azani
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Hamid Reza Eftekhari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mansour Rajabivahid
- Department of Internal Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
11
|
Chen J, Hu C, Yang H, Wang L, Chu X, Yu X, Zhang S, Li X, Zhao C, Cheng L, Hong W, Liu D, Wen L, Su C. PMS2 amplification contributes brain metastasis from lung cancer. Biol Proced Online 2024; 26:12. [PMID: 38714954 PMCID: PMC11075212 DOI: 10.1186/s12575-024-00238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma metastasizing to the brain results in a notable increase in patient mortality. The high incidence and its impact on survival presents a critical unmet need to develop an improved understanding of its mechanisms. METHODS To identify genes that drive brain metastasis of tumor cells, we collected cerebrospinal fluid samples and paired plasma samples from 114 lung adenocarcinoma patients with brain metastasis and performed 168 panel-targeted gene sequencing. We examined the biological behavior of PMS2 (PMS1 Homolog 2)-amplified lung cancer cell lines through wound healing assays and migration assays. In vivo imaging techniques are used to detect fluorescent signals that colonize the mouse brain. RNA sequencing was used to compare differentially expressed genes between PMS2 amplification and wild-type lung cancer cell lines. RESULTS We discovered that PMS2 amplification was a plausible candidate driver of brain metastasis. Via in vivo and in vitro assays, we validated that PMS2 amplified PC-9 and LLC lung cancer cells had strong migration and invasion capabilities. The functional pathway of PMS2 amplification of lung cancer cells is mainly enriched in thiamine, butanoate, glutathione metabolism. CONCLUSION Tumor cells elevated expression of PMS2 possess the capacity to augment the metastatic potential of lung cancer and establish colonies within the brain through metabolism pathways.
Collapse
Affiliation(s)
- Jianing Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital &, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Congli Hu
- Department of Medical Oncology, Shanghai Pulmonary Hospital &, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Hainan Yang
- Department of Medical Oncology, Shanghai Pulmonary Hospital &, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
- Department of Critical Care Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital &, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Xiangling Chu
- Department of Medical Oncology, Shanghai Pulmonary Hospital &, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Xin Yu
- Department of Medical Oncology, Shanghai Pulmonary Hospital &, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shiji Zhang
- Department of Medical Oncology, Shanghai Pulmonary Hospital &, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Xuefei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital &, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Chao Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital &, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Lei Cheng
- Department of Medical Oncology, Shanghai Pulmonary Hospital &, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Weiping Hong
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Da Liu
- Department of Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Lei Wen
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, 253 Gongye Dadao, Guangdong, 510280, Guangzhou, China.
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital &, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
- Clinical Research Center, Shanghai Pulmonary Hospital, Shanghai, China.
| |
Collapse
|
12
|
Bendixen KK, Forsberg-Pho S, Dazio G, Hansen EE, Eriksen SK, Epistolio S, Merlo E, Boldorini R, Venesio T, Movilia A, Caprera C, Arnspang EC, Børgesen M, Christensen UB, Frattini M, Petersen RK. One-instrument, objective microsatellite instability analysis using high-resolution melt. PLoS One 2024; 19:e0302274. [PMID: 38662796 PMCID: PMC11045061 DOI: 10.1371/journal.pone.0302274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, immune checkpoint inhibitors have proved immense clinical progression in the treatment of certain cancers. The efficacy of immune checkpoint inhibitors is correlated with mismatch repair system deficiency and is exceptionally administered based exclusively on this biological mechanism independent of the cancer type. The promising effect of immune checkpoint inhibitors has left an increasing demand for analytical tools evaluating the mismatch repair status. The analysis of microsatellite instability (MSI), reflecting an indirect but objective manner the inactivation of the mismatch repair system, plays several roles in clinical practice and, therefore, its evaluation is of high relevance. Analysis of MSI by PCR followed by fragment analysis on capillary electrophoresis remains the gold standard method for detection of a deficient mismatch repair system and thereby treatment with immune checkpoint inhibitors. Novel technologies have been applied and concepts such as tumor mutation burden have been introduced. However, to date, most of these technologies require high costs or the need of matched non-tumor tissue as internal comparator. In this study, we present a novel, one-instrument, fast, and objective method for the detection of MSI (MicroSight® MSI 1-step HRM Analysis), which does not depend on the use of matched non-tumor tissue. The assay analyzes five well-described mononucleotide microsatellite sequences by real-time PCR followed by high-resolution melt and evaluates microsatellite length variations via PCR product melting profiles. The assay was evaluated using two different patient cohorts and evaluation included several DNA extraction methodologies, two different PCR platforms, and an inter-laboratory ring study. The MicroSight® MSI assay showed a high repeatability regardless of DNA extraction method and PCR platform, and a 100% agreement of the MSI status with PCR fragment analysis methods applied as clinical comparator.
Collapse
Affiliation(s)
| | | | - Giulia Dazio
- Institute of Pathology, Ente Ospedaliero Cantonale, Locarno, Switzerland
| | | | | | - Samantha Epistolio
- Institute of Pathology, Ente Ospedaliero Cantonale, Locarno, Switzerland
| | - Elisabetta Merlo
- Institute of Pathology, Ente Ospedaliero Cantonale, Locarno, Switzerland
| | - Renzo Boldorini
- Unit of Pathology, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Tiziana Venesio
- Candiolo Cancer Institute, Fondazione del Piemonte per l’Oncologia, Candiolo, Italy
| | - Alessandra Movilia
- Hospital of Legnano, SS Biologia Molecolare, UO Anatomia Patologica, Azienda Socio Sanitaria Territoriale Ovest Milanese, Ospedale di Legnano, Legnano, Italy
| | - Cecilia Caprera
- Laboratory of Molecular Oncology and Predictive Medicine, Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, Terni, Italy
| | - Eva Christensen Arnspang
- Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Odense, Denmark
| | | | | | - Milo Frattini
- Institute of Pathology, Ente Ospedaliero Cantonale, Locarno, Switzerland
| | | |
Collapse
|
13
|
Edsjö A, Gisselsson D, Staaf J, Holmquist L, Fioretos T, Cavelier L, Rosenquist R. Current and emerging sequencing-based tools for precision cancer medicine. Mol Aspects Med 2024; 96:101250. [PMID: 38330674 DOI: 10.1016/j.mam.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Current precision cancer medicine is dependent on the analyses of a plethora of clinically relevant genomic aberrations. During the last decade, next-generation sequencing (NGS) has gradually replaced most other methods for precision cancer diagnostics, spanning from targeted tumor-informed assays and gene panel sequencing to global whole-genome and whole-transcriptome sequencing analyses. The shift has been impelled by a clinical need to assess an increasing number of genomic alterations with diagnostic, prognostic and predictive impact, including more complex biomarkers (e.g. microsatellite instability, MSI, and homologous recombination deficiency, HRD), driven by the parallel development of novel targeted therapies and enabled by the rapid reduction in sequencing costs. This review focuses on these sequencing-based methods, puts their emergence in a historic perspective, highlights their clinical utility in diagnostics and decision-making in pediatric and adult cancer, as well as raises challenges for their clinical implementation. Finally, the importance of applying sensitive tools for longitudinal monitoring of treatment response and detection of measurable residual disease, as well as future avenues in the rapidly evolving field of sequencing-based methods are discussed.
Collapse
Affiliation(s)
- Anders Edsjö
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden; Division of Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - David Gisselsson
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden; Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Johan Staaf
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Lund, Sweden
| | - Louise Holmquist
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden; Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden; Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden; Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Deycmar S, Johnson BJ, Ray K, Schaaf GW, Ryan DP, Cullin C, Dozier BL, Ferguson B, Bimber BN, Olson JD, Caudell DL, Whitlow CT, Solingapuram Sai KK, Romero EC, Villinger FJ, Burgos AG, Ainsworth HC, Miller LD, Hawkins GA, Chou JW, Gomes B, Hettich M, Ceppi M, Charo J, Cline JM. Epigenetic MLH1 silencing concurs with mismatch repair deficiency in sporadic, naturally occurring colorectal cancer in rhesus macaques. J Transl Med 2024; 22:292. [PMID: 38504345 PMCID: PMC10953092 DOI: 10.1186/s12967-024-04869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/08/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Naturally occurring colorectal cancers (CRC) in rhesus macaques share many features with their human counterparts and are useful models for cancer immunotherapy; but mechanistic data are lacking regarding the comparative molecular pathogenesis of these cancers. METHODS We conducted state-of-the-art imaging including CT and PET, clinical assessments, and pathological review of 24 rhesus macaques with naturally occurring CRC. Additionally, we molecularly characterized these tumors utilizing immunohistochemistry (IHC), microsatellite instability assays, DNAseq, transcriptomics, and developed a DNA methylation-specific qPCR assay for MLH1, CACNA1G, CDKN2A, CRABP1, and NEUROG1, human markers for CpG island methylator phenotype (CIMP). We furthermore employed Monte-Carlo simulations to in-silico model alterations in DNA topology in transcription-factor binding site-rich promoter regions upon experimentally demonstrated DNA methylation. RESULTS Similar cancer histology, progression patterns, and co-morbidities could be observed in rhesus as reported for human CRC patients. IHC identified loss of MLH1 and PMS2 in all cases, with functional microsatellite instability. DNA sequencing revealed the close genetic relatedness to human CRCs, including a similar mutational signature, chromosomal instability, and functionally-relevant mutations affecting KRAS (G12D), TP53 (R175H, R273*), APC, AMER1, ALK, and ARID1A. Interestingly, MLH1 mutations were rarely identified on a somatic or germline level. Transcriptomics not only corroborated the similarities of rhesus and human CRCs, but also demonstrated the significant downregulation of MLH1 but not MSH2, MSH6, or PMS2 in rhesus CRCs. Methylation-specific qPCR suggested CIMP-positivity in 9/16 rhesus CRCs, but all 16/16 exhibited significant MLH1 promoter hypermethylation. DNA hypermethylation was modelled to affect DNA topology, particularly propeller twist and roll profiles. Modelling the DNA topology of a transcription factor binding motif (TFAP2A) in the MLH1 promoter that overlapped with a methylation-specific probe, we observed significant differences in DNA topology upon experimentally shown DNA methylation. This suggests a role of transcription factor binding interference in epigenetic silencing of MLH1 in rhesus CRCs. CONCLUSIONS These data indicate that epigenetic silencing suppresses MLH1 transcription, induces the loss of MLH1 protein, abrogates mismatch repair, and drives genomic instability in naturally occurring CRC in rhesus macaques. We consider this spontaneous, uninduced CRC in immunocompetent, treatment-naïve rhesus macaques to be a uniquely informative model for human CRC.
Collapse
Affiliation(s)
- Simon Deycmar
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Roche Postdoctoral Fellowship (RPF) Program, Basel, Switzerland
| | - Brendan J Johnson
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Karina Ray
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - George W Schaaf
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Declan Patrick Ryan
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Cassandra Cullin
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Brandy L Dozier
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Betsy Ferguson
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Benjamin N Bimber
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - John D Olson
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - David L Caudell
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Christopher T Whitlow
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Emily C Romero
- New Iberia Research Center, University of Louisiana-Lafayette, New Iberia, LA, USA
| | - Francois J Villinger
- New Iberia Research Center, University of Louisiana-Lafayette, New Iberia, LA, USA
| | - Armando G Burgos
- Caribbean Primate Research Center, University of Puerto Rico, Toa Baja, PR, USA
| | - Hannah C Ainsworth
- Department of Biostatistics and Data Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Center for Cancer Genomics and Precision Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Gregory A Hawkins
- Center for Cancer Genomics and Precision Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jeff W Chou
- Center for Cancer Genomics and Precision Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Bruno Gomes
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Michael Hettich
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Maurizio Ceppi
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
- iTeos Therapeutics, Translational Medicine, Gosselies, Belgium
| | - Jehad Charo
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - J Mark Cline
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
15
|
Selves J, de Castro E Gloria H, Brunac AC, Saffi J, Guimbaud R, Brousset P, Hoffmann JS. Exploring the basis of heterogeneity of cancer aggressiveness among the mutated POLE variants. Life Sci Alliance 2024; 7:e202302290. [PMID: 37891003 PMCID: PMC10610022 DOI: 10.26508/lsa.202302290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Germline pathogenic variants in the exonuclease domain of the replicative DNA polymerase Pol ε encoded by the POLE gene, predispose essentially to colorectal and endometrial tumors by inducing an ultramutator phenotype. It is still unclear whether all the POLE alterations influence similar strength tumorigenesis, immune microenvironment, and treatment response. In this review, we summarize the current understanding of the mechanisms and consequences of POLE mutations in human malignancies; we highlight the heterogeneity of mutation rate and cancer aggressiveness among POLE variants, propose some mechanistic basis underlining such heterogeneity, and discuss novel considerations for the choice and efficacy of therapies of POLE tumors.
Collapse
Affiliation(s)
- Janick Selves
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse; Centre Hospitalier Universitaire (CHU), Toulouse, France
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, Toulouse, France
| | - Helena de Castro E Gloria
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Anne-Cécile Brunac
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse; Centre Hospitalier Universitaire (CHU), Toulouse, France
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Rosine Guimbaud
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, Toulouse, France
- Department of Digestive Oncology, Centre Hospitalier Universitaire (CHU), Toulouse, France
- Department of Digestive Surgery, Centre Hospitalier Universitaire (CHU), Toulouse, France
| | - Pierre Brousset
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse; Centre Hospitalier Universitaire (CHU), Toulouse, France
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Toulouse, France
| | - Jean-Sébastien Hoffmann
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse; Centre Hospitalier Universitaire (CHU), Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Toulouse, France
| |
Collapse
|
16
|
Guerrini-Rousseau L, Merlevede J, Denizeau P, Andreiuolo F, Varlet P, Puget S, Beccaria K, Blauwblomme T, Cabaret O, Hamzaoui N, Bourdeaut F, Faure-Conter C, Muleris M, Colas C, Adam de Beaumais T, Castel D, Rouleau E, Brugières L, Grill J, Debily MA. Glioma oncogenesis in the Constitutional mismatch repair deficiency (CMMRD) syndrome. Neurooncol Adv 2024; 6:vdae120. [PMID: 39233831 PMCID: PMC11372297 DOI: 10.1093/noajnl/vdae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Background Constitutional mismatch repair deficiency (CMMRD) is a cancer predisposition due to biallelic mutations in one of the mismatch repair (MMR) genes associated with early onset of cancers, especially high-grade gliomas. Our aim was to decipher the molecular specificities of these gliomas. Methods Clinical, histopathological, and whole exome sequencing data were analyzed in 12 children with genetically proven CMMRD and a high-grade glioma. Results PDL1 expression was present in immunohistochemistry in 50% of the samples. In 9 patients, the glioma harbored an ultra-hypermutated phenotype (104-635 coding single nucleotide variants (SNV) per Mb, median 204). Driver mutations in POLE and POLD1 exonuclease domains were described for 8 and 1 patients respectively and were always present in the mutation burst with the highest variant allele frequency (VAF). The mutational signatures were dominated by MMR-related ones and similar in the different mutation bursts of a same patient without subsequent enrichment of the mutation signatures with POL-driven ones. Median number of coding SNV with VAF above one of the driving polymerase mutation per Mb was 57 (17-191). Our findings suggest that somatic polymerase alterations does not entirely explain the ultra-hypermutant phenotype. SETD2, TP53, NF1, EPHB2, PRKDC, and DICER1 genes were frequently mutated with higher VAF than the deleterious somatic polymerase mutation. Conclusions CMMRD-associated gliomas have a specific oncogenesis that does not involve usual pathways and mutations seen in sporadic pediatric or adult glioblastomas. Frequent alterations in other pathways such as MAPK may suggest the use of other targeted therapies along with PD1 inhibitors.
Collapse
Affiliation(s)
- Lea Guerrini-Rousseau
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, France
- Molecular Predictors and New Targets in Oncology, INSERM U981, Team "Genomics and Oncogenesis of pediatric Brain Tumors," Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Jane Merlevede
- Molecular Predictors and New Targets in Oncology, INSERM U981, Team "Genomics and Oncogenesis of pediatric Brain Tumors," Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | | | - Felipe Andreiuolo
- Neuropathology and INSERM UMR1266 IMA-Brain, GHU-Paris Psychiatry and Neuroscience, Sainte-Anne Hospital, Paris, France
| | - Pascale Varlet
- Neuropathology and INSERM UMR1266 IMA-Brain, GHU-Paris Psychiatry and Neuroscience, Sainte-Anne Hospital, Paris, France
| | - Stéphanie Puget
- Neurosurgery, Necker Hospital, Paris University, Paris, France
| | - Kevin Beccaria
- Neurosurgery, Necker Hospital, Paris University, Paris, France
| | | | - Odile Cabaret
- Department of Medical Genetics, Gustave Roussy, Villejuif, France
| | - Nadim Hamzaoui
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, APHP Centre Université de Paris, Paris, France
- Inserm UMR_S1016, Institut Cochin, Université de Paris, Paris, France
| | - Franck Bourdeaut
- Translational Research in Pediatric Oncology (RTOP), INSERM U830 Laboratory of Genetics and Biology of Cancers, SIREDO: Care, Innovation, and Research for Children, Adolescents and Young Adults with Cancer, Curie Institute, Paris University, Paris, France
| | - Cécile Faure-Conter
- Pediatric Hematology and Oncology Institute (IHOPE), Centre Leon Berard, Lyon, France
| | - Martine Muleris
- Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | - Chrystelle Colas
- Département de Génétique, Institut Curie, Université Paris Sciences Lettres, Paris, France
| | | | - David Castel
- Molecular Predictors and New Targets in Oncology, INSERM U981, Team "Genomics and Oncogenesis of pediatric Brain Tumors," Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Etienne Rouleau
- Department of Medical Genetics, Gustave Roussy, Villejuif, France
| | - Laurence Brugières
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, France
- Molecular Predictors and New Targets in Oncology, INSERM U981, Team "Genomics and Oncogenesis of pediatric Brain Tumors," Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Jacques Grill
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, France
- Molecular Predictors and New Targets in Oncology, INSERM U981, Team "Genomics and Oncogenesis of pediatric Brain Tumors," Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Marie-Anne Debily
- Molecular Predictors and New Targets in Oncology, INSERM U981, Team "Genomics and Oncogenesis of pediatric Brain Tumors," Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Département de Biologie, Université Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
17
|
Chakraborty B, Agarwal S, Kori S, Das R, Kashaw V, Iyer AK, Kashaw SK. Multiple Protein Biomarkers and Different Treatment Strategies for Colorectal Carcinoma: A Comprehensive Prospective. Curr Med Chem 2024; 31:3286-3326. [PMID: 37151060 DOI: 10.2174/0929867330666230505165031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 05/09/2023]
Abstract
In this review, we emphasized important biomarkers, pathogenesis, and newly developed therapeutic approaches in the treatment of colorectal cancer (CRC). This includes a complete description of small-molecule inhibitors, phytopharmaceuticals with antiproliferative potential, monoclonal antibodies for targeted therapy, vaccinations as immunotherapeutic agents, and many innovative strategies to intervene in the interaction of oncogenic proteins. Many factors combine to determine the clinical behavior of colorectal cancer and it is still difficult to comprehend the molecular causes of a person's vulnerability to CRC. It is also challenging to identify the causes of the tumor's onset, progression, and responsiveness or resistance to antitumor treatment. Current recommendations for targeted medications are being updated by guidelines throughout the world in light of the growing number of high-quality clinical studies. So, being concerned about the aforementioned aspects, we have tried to present a summarized pathogenic view, including a brief description of biomarkers and an update of compounds with their underlying mechanisms that are currently under various stages of clinical testing. This will help to identify gaps or shortfalls that can be addressed in upcoming colorectal cancer research.
Collapse
Affiliation(s)
- Biswadip Chakraborty
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivangi Agarwal
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam Kori
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Ratnesh Das
- Department of Chemistry, ISF College of Pharmacy, Moga-Punjab, India
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar (M.P.), India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
- Molecular Imaging Program, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Sushil Kumar Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
18
|
Lu M, Zhang X, Chu Q, Chen Y, Zhang P. Susceptibility Genes Associated with Multiple Primary Cancers. Cancers (Basel) 2023; 15:5788. [PMID: 38136334 PMCID: PMC10741435 DOI: 10.3390/cancers15245788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
With advancements in treatment and screening techniques, we have been witnessing an era where more cancer survivors harbor multiple primary cancers (MPCs), affecting approximately one in six patients. Identifying MPCs is crucial for tumor staging and subsequent treatment choices. However, the current clinicopathological criteria for clinical application are limited and insufficient, making it challenging to differentiate them from recurrences or metastases. The emergence of next-generation sequencing (NGS) technology has provided a genetic perspective for defining multiple primary cancers. Researchers have found that, when considering multiple tumor pairs, it is crucial not only to examine well-known essential mutations like MLH1/MSH2, EGFR, PTEN, BRCA1/2, CHEK2, and TP53 mutations but also to explore certain pleiotropic loci. Moreover, specific deleterious mutations may serve as regulatory factors in second cancer development following treatment. This review aims to discuss these susceptibility genes and provide an explanation of their functions based on the signaling pathway background. Additionally, the association network between genetic signatures and different tumor pairs will be summarized.
Collapse
Affiliation(s)
| | | | | | | | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.L.)
| |
Collapse
|
19
|
Giatromanolaki A, Kavazis C, Gkegka AG, Kouroupi M, Tsaroucha A, Pitiakoudis M, Koukourakis MI. Tumor-infiltrating lymphocytes, PD-L1, and MMR-deficiency combined characterization may identify subgroups of rectal cancer patients who would benefit from immunotherapy. Immunobiology 2023; 228:152756. [PMID: 38860277 DOI: 10.1016/j.imbio.2023.152756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Mismatch repair deficiency, immunological fertility, and PD-L1 expression status are key histopathological and molecular features defining tumor responsiveness to immunotherapy and, eventually, prognosis. These were investigated in a series of locally advanced rectal cancer patients treated with postoperative chemotherapy and radiotherapy. MATERIALS AND METHODS Tumor-infiltrating lymphocyte (TIL) density was assessed in hematoxylin-eosin tissue sections. PD-L1 expression and the expression of MMR proteins (MLH1, PSM2, MSH2, and MSH6) were assessed with immunohistochemistry. Their association with histopathological variables (node involvement and tumor budding) and prognosis was assessed. RESULTS The TIL-density was significantly higher in the invading tumor front and was inversely related to tumor budding and directly with better overall survival (OS) and distant metastasis-free survival (DMFS) (p = 0.02 and 0.02, respectively). Cancer cell PD-L1 expression was related to high TIL-density (p < 0.01) but not to prognosis, although its overexpression defined a trend for poorer OS in patients with high TIL-density. High PD-L1 expression by stroma infiltrating immune cells was linked with better OS and DMFS (p = 0.007 and 0.001, respectively. MMR deficiency was recorded in 26.2 % of cases, and this was linked with higher TIL-density, but not with prognosis. CONCLUSIONS Dense intratumoral lymphocytic infiltration relates to a better prognosis in rectal cancer, although it is also linked with PD-L1 expression that may adversely modulate the anti-tumor effects of TILs. This latter subgroup of patients (high TIL-density/high cancer cell PD-L1 expression) could be an additional target for anti-PD-1/PD-L1 immunotherapy, along with the established subgroup of MMR deficient patients.
Collapse
Affiliation(s)
- Alexandra Giatromanolaki
- Department of Pathology, University Hospital of Alexandroupolis, Alexandroupolis, Greece; Department of Radiotherapy/Oncology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Christos Kavazis
- Departments of Surgery, University Hospital of Alexandroupolis, Alexandroupolis, Greece; Department of Radiotherapy/Oncology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Anastasia G Gkegka
- Department of Pathology, University Hospital of Alexandroupolis, Alexandroupolis, Greece; Department of Radiotherapy/Oncology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Maria Kouroupi
- Department of Pathology, University Hospital of Alexandroupolis, Alexandroupolis, Greece; Department of Radiotherapy/Oncology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Alexandra Tsaroucha
- Laboratory of Experimental Surgery and Surgical Research, University Hospital of Alexandroupolis, Alexandroupolis, Greece; Department of Radiotherapy/Oncology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Michael Pitiakoudis
- Departments of Surgery, University Hospital of Alexandroupolis, Alexandroupolis, Greece; Department of Radiotherapy/Oncology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Michael I Koukourakis
- Laboratory of Experimental Surgery and Surgical Research, University Hospital of Alexandroupolis, Alexandroupolis, Greece; Department of Radiotherapy/Oncology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece.
| |
Collapse
|
20
|
Cha J, Kim H, Shin HJ, Lee M, Jun S, Kang WJ, Cho A. Does high [ 18F]FDG uptake always mean poor prognosis? Colon cancer with high-level microsatellite instability is associated with high [ 18F]FDG uptake on PET/CT. Eur Radiol 2023; 33:7450-7460. [PMID: 37338560 DOI: 10.1007/s00330-023-09832-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVES High-level microsatellite instability (MSI-high) is generally associated with higher F-18 fluorodeoxyglucose ([18F]FDG) uptake than stable microsatellite (MSI-stable) tumors. However, MSI-high tumors have better prognosis, which is in contrast with general understanding that high [18F]FDG uptake correlates with poor prognosis. This study evaluated metastasis incidence with MSI status and [18F]FDG uptake. METHODS We retrospectively reviewed 108 right-side colon cancer patients who underwent preoperative [18F]FDG PET/CT and postoperative MSI evaluations using a standard polymerase chain reaction at five Bethesda guidelines panel loci. The maximum standard uptake value (SUVmax), SUVmax tumor-to-liver ratio (TLR), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) of the primary tumor were measured using SUV 2.5 cut-off threshold. Student's t-test or Mann-Whitney U test was performed for continuous variables, and χ2 test or Fisher's exact test was performed for categorical variables (p value of < 0.05 for statistical significance). Medical records were reviewed for metastasis incidence. RESULTS Our study population had 66 MSI-stable and 42 MSI-high tumors. [18F]FDG uptake was higher in MSI-high tumors than MSI-stable tumors (TLR, median (Q1, Q3): 7.95 (6.06, 10.54) vs. 6.08 (4.09, 8.82), p = 0.021). Multivariable subgroup analysis demonstrated that higher [18F]FDG uptake was associated with higher risks of distant metastasis in MSI-stable tumors (SUVmax: p = 0.025, MTV: p = 0.008, TLG: p = 0.019) but not in MSI-high tumors. CONCLUSION MSI-high colon cancer is associated with high [18F]FDG uptake, but unlike MSI-stable tumors, the degree of [18F]FDG uptake does not correlate with the rate of distant metastasis. CLINICAL RELEVANCE STATEMENT MSI status should be considered during PET/CT assessment of colon cancer patients, as the degree of [18F]FDG uptake might not reflect metastatic potential in MSI-high tumors. KEY POINTS • High-level microsatellite instability (MSI-high) tumor is a prognostic factor for distant metastasis. • MSI-high colon cancers had a tendency of demonstrating higher [18F]FDG uptake compared to MSI-stable tumors. • Although higher [18F]FDG uptake is known to represent higher risks of distant metastasis, the degree of [18F]FDG uptake in MSI-high tumors did not correlate with the rate at which distant metastasis occurred.
Collapse
Affiliation(s)
- Jongtae Cha
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Honsoul Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Samsung Life Building (B, 7th floor) 115 Irwon-ro, Gangnam-gu, Seoul, 06355, Republic of Korea.
- Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| | - Hye Jung Shin
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myeongjee Lee
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seowoong Jun
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Jun Kang
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Arthur Cho
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea.
| |
Collapse
|
21
|
He TC, Li JA, Xu ZH, Chen QD, Yin HL, Pu N, Wang WQ, Liu L. Biological and clinical implications of early-onset cancers: A unique subtype. Crit Rev Oncol Hematol 2023; 190:104120. [PMID: 37660930 DOI: 10.1016/j.critrevonc.2023.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
In recent years, the incidence of cancers is continuously increasing in young adults. Early-onset cancer (EOC) is usually defined as patients with cancers under the age of 50, and may represent a unique subgroup due to its special disease features. Overall, EOCs often initiate at a young age, present as a better physical performance but high degree of malignancy. EOCs also share common epidemiological and hereditary risk factors. In this review, we discuss several representative EOCs which were well studied previously. By revealing their clinical and molecular similarities and differences, we consider the group of EOCs as a unique subtype compared to ordinary cancers. In consideration of EOC as a rising threat to human health, more researches on molecular mechanisms, and large-scale, prospective clinical trials should be carried out to further translate into improved outcomes.
Collapse
Affiliation(s)
- Tao-Chen He
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian-Ang Li
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhi-Hang Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiang-Da Chen
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Han-Lin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
22
|
Jayaraj A, Thayer KM, Beveridge DL, Hingorani MM. Molecular dynamics of mismatch detection-How MutS uses indirect readout to find errors in DNA. Biophys J 2023; 122:3031-3043. [PMID: 37329136 PMCID: PMC10432192 DOI: 10.1016/j.bpj.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 04/30/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
The mismatch repair protein MutS safeguards genomic integrity by finding and initiating repair of basepairing errors in DNA. Single-molecule studies show MutS diffusing on DNA, presumably scanning for mispaired/unpaired bases, and crystal structures show a characteristic "mismatch-recognition" complex with DNA enclosed within MutS and kinked at the site of error. But how MutS goes from scanning thousands of Watson-Crick basepairs to recognizing rare mismatches remains unanswered, largely because atomic-resolution data on the search process are lacking. Here, 10 μs all-atom molecular dynamics simulations of Thermus aquaticus MutS bound to homoduplex DNA and T-bulge DNA illuminate the structural dynamics underlying the search mechanism. MutS-DNA interactions constitute a multistep mechanism to check DNA over two helical turns for its 1) shape, through contacts with the sugar-phosphate backbone, 2) conformational flexibility, through bending/unbending engineered by large-scale motions of the clamp domain, and 3) local deformability, through basepair destabilizing contacts. Thus, MutS can localize a potential target by indirect readout due to lower energetic costs of bending mismatched DNA and identify a site that distorts easily due to weaker base stacking and pairing as a mismatch. The MutS signature Phe-X-Glu motif can then lock in the mismatch-recognition complex to initiate repair.
Collapse
Affiliation(s)
- Abhilash Jayaraj
- Chemistry Department, Wesleyan University, Middletown, Connecticut.
| | - Kelly M Thayer
- Chemistry Department, Wesleyan University, Middletown, Connecticut
| | | | - Manju M Hingorani
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, Connecticut.
| |
Collapse
|
23
|
Shechter S, Ya'ar Bar S, Khattib H, Gage MJ, Avni D. Riok1, A Novel Potential Target in MSI-High p53 Mutant Colorectal Cancer Cells. Molecules 2023; 28:molecules28114452. [PMID: 37298928 DOI: 10.3390/molecules28114452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
The vulnerabilities of cancer cells constitute a promising strategy for drug therapeutics. This paper integrates proteomics, bioinformatics, and cell genotype together with in vitro cell proliferation assays to identify key biological processes and potential novel kinases that could account, at least in part, for the clinical differences observed in colorectal cancer (CRC) patients. This study started by focusing on CRC cell lines stratified by their microsatellite (MS) state and p53 genotype. It shows that cell-cycle checkpoint, metabolism of proteins and RNA, signal transduction, and WNT signaling processes are significantly more active in MSI-High p53-WT cell lines. Conversely, MSI-High cell lines with a mutant (Mut) p53 gene showed hyperactivation of cell signaling, DNA repair, and immune-system processes. Several kinases were linked to these phenotypes, from which RIOK1 was selected for additional exploration. We also included the KRAS genotype in our analysis. Our results showed that RIOK1's inhibition in CRC MSI-High cell lines was dependent on both the p53 and KRAS genotypes. Explicitly, Nintedanib showed relatively low cytotoxicity in MSI-High with both mutant p53 and KRAS (HCT-15) but no inhibition in p53 and KRAS WT (SW48) MSI-High cells. This trend was flipped in CRC MSI-High bearing opposite p53-KRAS genotypes (e.g., p53-Mut KRAS-WT or p53-WT KRAS-Mut), where observed cytotoxicity was more extensive compared to the p53-KRAS WT-WT or Mut-Mut cells, with HCT 116 (KRAS-Mut and p53-WT) being the most sensitive to RIOK1 inhibition. These results highlight the potential of our in silico computational approach to identify novel kinases in CRC sub-MSI-High populations as well as the importance of clinical genomics in determining drug potency.
Collapse
Affiliation(s)
- Sharon Shechter
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854-2874, USA
| | - Sapir Ya'ar Bar
- Department of Natural Compound, Nutrition, and Health, MIGAL Galilee Research Institute, Kiryat Shmona 1101600, Israel
| | - Hamdan Khattib
- Department of Natural Compound, Nutrition, and Health, MIGAL Galilee Research Institute, Kiryat Shmona 1101600, Israel
| | - Matthew J Gage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854-2874, USA
| | - Dorit Avni
- Department of Natural Compound, Nutrition, and Health, MIGAL Galilee Research Institute, Kiryat Shmona 1101600, Israel
| |
Collapse
|
24
|
Jaworski D, Brzoszczyk B, Szylberg Ł. Recent Research Advances in Double-Strand Break and Mismatch Repair Defects in Prostate Cancer and Potential Clinical Applications. Cells 2023; 12:1375. [PMID: 37408208 DOI: 10.3390/cells12101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 07/07/2023] Open
Abstract
Prostate cancer remains a leading cause of cancer-related death in men worldwide. Recent research advances have emphasized the critical roles of mismatch repair (MMR) and double-strand break (DSB) in prostate cancer development and progression. Here, we provide a comprehensive review of the molecular mechanisms underlying DSB and MMR defects in prostate cancer, as well as their clinical implications. Furthermore, we discuss the promising therapeutic potential of immune checkpoint inhibitors and PARP inhibitors in targeting these defects, particularly in the context of personalized medicine and further perspectives. Recent clinical trials have demonstrated the efficacy of these novel treatments, including Food and Drugs Association (FDA) drug approvals, offering hope for improved patient outcomes. Overall, this review emphasizes the importance of understanding the interplay between MMR and DSB defects in prostate cancer to develop innovative and effective therapeutic strategies for patients.
Collapse
Affiliation(s)
- Damian Jaworski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland
- Division of Ophthalmology and Optometry, Department of Ophthalmology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland
| | - Bartosz Brzoszczyk
- Department of Urology, University Hospital No. 2 im. Dr. Jan Biziel in Bydgoszcz, 85-067 Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland
| |
Collapse
|
25
|
Kadyrova LY, Mieczkowski PA, Kadyrov FA. Genome-wide contributions of the MutSα- and MutSβ-dependent DNA mismatch repair pathways to the maintenance of genetic stability in S. cerevisiae. J Biol Chem 2023; 299:104705. [PMID: 37059180 DOI: 10.1016/j.jbc.2023.104705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/16/2023] Open
Abstract
The DNA mismatch repair (MMR) system is a major DNA repair system that suppresses inherited and sporadic cancers in humans. In eukaryotes the MutSα-dependent and MutSβ-dependent MMR pathways correct DNA polymerase errors. Here, we investigated these two pathways on a whole-genome level in S. cerevisiae. We found that inactivation of MutSα-dependent MMR by deletion of the MSH6 gene increases the genome-wide mutation rate by ∼17-fold, and loss of MutSβ-dependent MMR via deletion of MSH3 elevates the genome-wide mutation rate by ∼4-fold. We also found that MutSα-dependent MMR does not show a preference for protecting coding or noncoding DNA from mutations, whereas MutSβ-dependent MMR preferentially protects noncoding DNA from mutations. The most frequent mutations in the msh6Δ strain are C>T transitions, whereas 1-6-bp deletions are the most common genetic alterations in the msh3Δ strain. Strikingly, MutSα-dependent MMR is more important than MutSβ-dependent MMR for protection from 1-bp insertions, while MutSβ-dependent MMR has a more critical role in the defense against 1-bp deletions and 2-6-bp indels. We also determined that a mutational signature of yeast MSH6 loss is similar to mutational signatures of human MMR deficiency. Furthermore, our analysis showed that compared to other 5'-NCN-3' trinucleotides, 5'-GCA-3' trinucleotides are at the highest risk of accumulating C>T transitions at the central position in the msh6Δ cells and that the presence of a G/A base at the -1 position is important for the efficient MutSα-dependent suppression of C>T transitions. Our results highlight key differences between the roles of the MutSα-dependent and MutSβ-dependent MMR pathways.
Collapse
Affiliation(s)
- Lyudmila Y Kadyrova
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Farid A Kadyrov
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
26
|
Su A, Pedraza R, Kennecke H. Developments in Checkpoint Inhibitor Therapy for the Management of Deficient Mismatch Repair (dMMR) Rectal Cancer. Curr Oncol 2023; 30:3672-3683. [PMID: 37185392 PMCID: PMC10136520 DOI: 10.3390/curroncol30040279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Deficient mismatch repair (dMMR)/microsatellite instability-high (MSIH) colorectal cancer is resistant to conventional chemotherapy but responds to immune checkpoint inhibition (ICI). We review the standard of care in locally advanced dMMR rectal cancer with a focus on ICI. We also present a case report to highlight the treatment complexities and unique challenges of this novel treatment approach. ICI can lead to immune related adverse events (irAEs), resulting in early treatment discontinuation as well as new challenges to surveillance and surgical management. Overall, neoadjuvant ICI can lead to robust treatment responses, but its impact on durable response and organ preservation requires further study.
Collapse
|
27
|
Yang L, Liu S, He W, Xiong Z, Xia L. Characterisation of tumor microenvironment and prevalence of CD274/PD-L1 genetic alterations difference in colorectal Cancer. BMC Cancer 2023; 23:221. [PMID: 36894899 PMCID: PMC9996909 DOI: 10.1186/s12885-023-10610-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Large-scale genomic alterations, especially CD274/PD-L1 gene amplification, have great impact on anti-PD-1 efficacy on cancers such as Hodgkin's lymphoma. However, the prevalence of PD-L1 genetic alterations in colorectal cancer (CRC) and its correlation with the tumor immune microenvironment and clinical implications remain unknown. MATERIALS AND METHODS PD-L1 genetic alterations were evaluated in 324 patients with newly diagnosed CRC including 160 mismatch repair-deficient (dMMR) patients and 164 mismatch repair-proficient (pMMR) patients using fluorescence in situ hybridization (FISH) method. The correlation between PD-L1 and the expression of the common immune markers was analyzed. RESULTS Totally 33 (10.2%) patients were identified with aberrant PD-L1 genetic alternations including deletion (2.2%), polysomy (4.9%), and amplification (3.1%); They had more aggressive features such as advanced stage (P = 0.02), shorter overall survival (OS) (P < 0.001) than patients with disomy. The aberrations correlated with positive lymph node (PLN) (p = 0.001), PD-L1 expression by immunohistochemistry (IHC) in tumor cells (TCs) or tumor-infiltrated immunocytes (ICs) (both p < 0.001), and pMMR (p = 0.029). When dMMR and pMMR were analyzed independently, the correlations of aberrant PD-L1 genetic alterations with PD-1 expression (p = 0.016), CD4 + T cells (p = 0.032), CD8 T + cells (p = 0.032) and CD68 + cells (p = 0.04) were only found in dMMR cohort. CONCLUSIONS The prevalence of PD-L1 genetic alterations was relatively low in CRC, but the aberrations usually correlate with aggressive nature. The correlation between PD-L1 genetic alterations and tumor immune features was only observed in dMMR CRC.
Collapse
Affiliation(s)
- Lin Yang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 Baiyun Avenue North, Guangzhou, 510515, China
| | - Shousheng Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road east, Guangzhou, 510060, China.,Department of General Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road east, Guangzhou, 510060, China
| | - Wenzhuo He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road east, Guangzhou, 510060, China.,Department of General Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road east, Guangzhou, 510060, China
| | - Zhenchong Xiong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road east, Guangzhou, 510060, China. .,Department of Breast Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road east, Guangzhou, 510060, China.
| | - Liangping Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road east, Guangzhou, 510060, China. .,Department of General Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road east, Guangzhou, 510060, China.
| |
Collapse
|
28
|
Rubinstein JC, Pour AF, Zhou J, Sheridan TB, White BS, Chuang JH. Deep learning image analysis quantifies tumor heterogeneity and identifies microsatellite instability in colon cancer. J Surg Oncol 2023; 127:426-433. [PMID: 36251352 PMCID: PMC11446314 DOI: 10.1002/jso.27118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/09/2022] [Accepted: 09/24/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND OBJECTIVES Deep learning utilizing convolutional neural networks (CNNs) applied to hematoxylin & eosin (H&E)-stained slides numerically encodes histomorphological tumor features. Tumor heterogeneity is an emerging biomarker in colon cancer that is, captured by these features, whereas microsatellite instability (MSI) is an established biomarker traditionally assessed by immunohistochemistry or polymerase chain reaction. METHODS H&E-stained slides from The Cancer Genome Atlas (TCGA) colon cohort are passed through the CNN. Resulting imaging features are used to cluster morphologically similar slide regions. Tile-level pairwise similarities are calculated and used to generate a tumor heterogeneity score (THS). Patient-level THS is then correlated with TCGA-reported biomarkers, including MSI-status. RESULTS H&E-stained images from 313 patients generated 534 771 tiles. Deep learning automatically identified and annotated cells by type and clustered morphologically similar slide regions. MSI-high tumors demonstrated significantly higher THS than MSS/MSI-low (p < 0.001). THS was higher in MLH1-silent versus non-silent tumors (p < 0.001). The sequencing derived MSIsensor score also correlated with THS (r = 0.51, p < 0.0001). CONCLUSIONS Deep learning provides spatially resolved visualization of imaging-derived biomarkers and automated quantification of tumor heterogeneity. Our novel THS correlates with MSI-status, indicating that with expanded training sets, translational tools could be developed that predict MSI-status using H&E-stained images alone.
Collapse
Affiliation(s)
- Jill C. Rubinstein
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
- University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Hartford Healthcare, Hartford, Connecticut, USA
| | - Ali Foroughi Pour
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Jie Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Todd B. Sheridan
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
- Hartford Healthcare, Hartford, Connecticut, USA
| | - Brian S. White
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Jeffrey H. Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| |
Collapse
|
29
|
Altshuler E, Franke AJ, Skelton WP, Feely M, Wang Y, Lee JH, Read T, Terracina K, Lou XY, Dai Y, George TJ. Impact of Institutional Universal Microsatellite-Instability (MSI) Reflex Testing on Molecular Profiling Differences Between Younger and Older Patients with Colorectal Cancer. Clin Colorectal Cancer 2023; 22:153-159. [PMID: 36319582 DOI: 10.1016/j.clcc.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/31/2022] [Accepted: 09/27/2022] [Indexed: 12/01/2022]
Abstract
INTRODUCTION DNA mismatch repair deficient (dMMR) or microsatellite instability-high (MSI-H) colorectal cancer (CRC) is found in about 15% of early-stage diseases and 5% of metastatic diseases. We reviewed a large, single-institutional database after implementation of universal reflex dMMR/MSI-H testing in CRC to compare profiles of younger (≤50) and older (>50) patients. PATIENTS AND METHODS Between 2009 and 2017, all patients diagnosed with CRC at the University of Florida underwent reflex somatic tumor testing for dMMR by immunohistochemistry (MLH1, PMS2, MSH2, MSH6), MSI by PCR, and Next-Generation Sequencing. Statistical analysis was conducted with 2-sample comparison tests and logistic regression models. RESULTS There were 375 patients included in the final analysis. Patients were grouped as younger (ages ≤50 years-old; n = 80) or older (>50 years-old; n = 295). Compared to tumors from older patients, tumors from younger patients were less likely to be dMMR/MSI-H (12.5% vs. 21.4%, P = .013) and less likely to have a BRAF mutation (1.5% vs. 16.1%, P = .002). BRAF mutation status was highly associated with MMR status; BRAF-mutated tumors were 29.7 times more likely than BRAF-WT tumors to be dMMR/MSI-H (P = < .001, 95% CI 11.3-78.3). CONCLUSIONS Tumors of younger patients were less likely than tumors of older patients to have a dMMR/MSI-H or BRAF mutation. Universal MMR/MSI testing in our dataset identified a relatively large population of older patients with sporadic CRC who were eligible for immunotherapy.
Collapse
Affiliation(s)
- Ellery Altshuler
- Division of Hematology & Oncology, Department of Medicine, University of Florida, Gainesville, FL
| | - Aaron J Franke
- Division of Hematology & Oncology, Department of Medicine, University of Florida, Gainesville, FL.
| | - William Paul Skelton
- Division of Hematology & Oncology, Department of Medicine, University of Florida, Gainesville, FL; Division of Hematology/Oncology, H. Lee Moffitt Cancer Center & Research Institute/University of South Florida, Tampa, FL
| | - Michael Feely
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Yu Wang
- Division of Quantitative Sciences, University of Florida Health Cancer Center, Gainesville, FL
| | - Ji-Hyun Lee
- Division of Quantitative Sciences, University of Florida Health Cancer Center, Gainesville, FL; Department of Biostatistics, University of Florida, Gainesville, FL
| | - Thomas Read
- Department of Surgery, University of Florida, Gainesville, FL
| | | | - Xiang-Yang Lou
- Division of Quantitative Sciences, University of Florida Health Cancer Center, Gainesville, FL; Department of Biostatistics, University of Florida, Gainesville, FL
| | - Yunfeng Dai
- Department of Biostatistics, University of Florida, Gainesville, FL
| | - Thomas J George
- Division of Hematology & Oncology, Department of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
30
|
Andini KD, Nielsen M, Suerink M, Helderman NC, Koornstra JJ, Ahadova A, Kloor M, Mourits MJ, Kok K, Sijmons RH, Bajwa–ten Broeke SW. PMS2-associated Lynch syndrome: Past, present and future. Front Oncol 2023; 13:1127329. [PMID: 36895471 PMCID: PMC9989154 DOI: 10.3389/fonc.2023.1127329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
Carriers of any pathogenic variant in one of the MMR genes (path_MMR carriers) were traditionally thought to be at comparable risk of developing a range of different malignancies, foremost colorectal cancer (CRC) and endometrial cancer. However, it is now widely accepted that their cancer risk and cancer spectrum range notably depending on which MMR gene is affected. Moreover, there is increasing evidence that the MMR gene affected also influences the molecular pathogenesis of Lynch syndrome CRC. Although substantial progress has been made over the past decade in understanding these differences, many questions remain unanswered, especially pertaining to path_PMS2 carriers. Recent findings show that, while the cancer risk is relatively low, PMS2-deficient CRCs tend to show more aggressive behaviour and have a worse prognosis than other MMR-deficient CRCs. This, together with lower intratumoral immune infiltration, suggests that PMS2-deficient CRCs might have more in common biologically with sporadic MMR-proficient CRCs than with other MMR-deficient CRCs. These findings could have important consequences for surveillance, chemoprevention and therapeutic strategies (e.g. vaccines). In this review we discuss the current knowledge, current (clinical) challenges and knowledge gaps that should be targeted by future studies.
Collapse
Affiliation(s)
- Katarina D. Andini
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Noah C. Helderman
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan Jacob Koornstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Aysel Ahadova
- Department of Applied Tumour Biology, Institute of Pathology, Heidelberg University Hospital, and Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumour Biology, Institute of Pathology, Heidelberg University Hospital, and Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany
| | - Marian J.E. Mourits
- Department of Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Klaas Kok
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rolf H. Sijmons
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Sanne W. Bajwa–ten Broeke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
31
|
Biswas K, Mohammed A, Sharan SK, Shoemaker RH. Genetically engineered mouse models for hereditary cancer syndromes. Cancer Sci 2023; 114:1800-1815. [PMID: 36715493 PMCID: PMC10154891 DOI: 10.1111/cas.15737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Advances in molecular diagnostics have led to improved diagnosis and molecular understanding of hereditary cancers in the clinic. Improving the management, treatment, and potential prevention of cancers in carriers of predisposing mutations requires preclinical experimental models that reflect the key pathogenic features of the specific syndrome associated with the mutations. Numerous genetically engineered mouse (GEM) models of hereditary cancer have been developed. In this review, we describe the models of Lynch syndrome and hereditary breast and ovarian cancer syndrome, the two most common hereditary cancer predisposition syndromes. We focus on Lynch syndrome models as illustrative of the potential for using mouse models to devise improved approaches to prevention of cancer in a high-risk population. GEM models are an invaluable tool for hereditary cancer models. Here, we review GEM models for some hereditary cancers and their potential use in cancer prevention studies.
Collapse
Affiliation(s)
- Kajal Biswas
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
| | - Altaf Mohammed
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
32
|
Pandey H, Tang DWT, Wong SH, Lal D. Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers (Basel) 2023; 15:cancers15030866. [PMID: 36765824 PMCID: PMC9913759 DOI: 10.3390/cancers15030866] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths worldwide. While CRC is thought to be an interplay between genetic and environmental factors, several lines of evidence suggest the involvement of gut microbiota in promoting inflammation and tumor progression. Gut microbiota refer to the ~40 trillion microorganisms that inhabit the human gut. Advances in next-generation sequencing technologies and metagenomics have provided new insights into the gut microbial ecology and have helped in linking gut microbiota to CRC. Many studies carried out in humans and animal models have emphasized the role of certain gut bacteria, such as Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, and colibactin-producing Escherichia coli, in the onset and progression of CRC. Metagenomic studies have opened up new avenues for the application of gut microbiota in the diagnosis, prevention, and treatment of CRC. This review article summarizes the role of gut microbiota in CRC development and its use as a biomarker to predict the disease and its potential therapeutic applications.
Collapse
Affiliation(s)
- Himani Pandey
- Redcliffe Labs, Electronic City, Noida 201301, India
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Correspondence: (S.H.W.); (D.L.)
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
- Correspondence: (S.H.W.); (D.L.)
| |
Collapse
|
33
|
Wei B, Gu J, Gao B, Bao Y, Duan R, Li Q, Xie F. Deficient mismatch repair is detected in large-to-giant congenital melanocytic naevi: providing new insight into aetiology and diagnosis. Br J Dermatol 2023; 188:64-74. [PMID: 36689509 DOI: 10.1093/bjd/ljac020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/31/2022] [Accepted: 09/13/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND The aetiologies of large-to-giant congenital melanocytic naevi (LGCMN) remain ambiguous. A previous study discovered signatures associated with deficient mismatch repair (dMMR) in patients with LGCMN. However, a screening diagnostic immunohistochemistry (IHC) panel of dMMR in patients with LGCMN has not been performed to date. OBJECTIVES To identify the MMR status and aetiologies of LGCMN. METHODS A total of 110 patients with CMN, including 30 giant CMN, 30 large CMN, 30 medium CMN and 20 small CMN, underwent diagnostic IHC (for MSH6, MSH2, PMS2 and MLH1) screening of dMMR. The control group comprised normal skin samples from 20 healthy people. MMR proteins with little effect (MSH3 and PMS1) on the MMR system were stained in all samples. The surgical procedures conducted on each patient were noted because they might alter the behaviour of CMN and confound the results. Binary logistic regression analyses were performed between the phenotypic data and MMR status to identify associations. Whole-exome sequencing was performed on the main naevi, satellite naevi and normal skin tissues of four patients to detect variants. Mutational signature analyses were conducted to explore the aetiologies of LGCMN. RESULTS dMMR was detected in 37% (11 of 30) of giant, 23% (7 of 30) of large and 7% (2 of 30) of medium CMNs, but were not identified in small CMNs or normal skin tissues. Moreover, multiple LGCMNs had a much higher dMMR rate than did single LGCMNs. The regression analyses showed that MMR status was significantly associated with CMN size and the presence of satellites, but was not correlated with age, sex, location, satellite diversity or tissue expansion. Notably, the pattern of protein loss in LGCMN mainly consisted of PMS2 loss. Mutational signature analyses detected dMMR-related signatures in patients with LGCMN. Additionally, rare deleterious germline mutations in DNA repair genes were detected in LGCMN, mainly in MSH6, ATM, RAD50, BRCA1 and ERCC8. These germline mutations were single-patient variants with unknown significance. CONCLUSIONS dMMR is one of the aetiologies underlying LGCMN, particularly in patients with giant main lesions and multiple satellite lesions. Further studies are necessary to investigate the role of the DNA repair system, particularly MMR, in LGCMN.
Collapse
Affiliation(s)
- Boxuan Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Medical College of Shanghai Jiaotong University, Shanghai, People's Republic ofChina
| | - Jieyu Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Medical College of Shanghai Jiaotong University, Shanghai, People's Republic ofChina
| | - Bowen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Medical College of Shanghai Jiaotong University, Shanghai, People's Republic ofChina
| | - Yongyang Bao
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ran Duan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Medical College of Shanghai Jiaotong University, Shanghai, People's Republic ofChina
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Medical College of Shanghai Jiaotong University, Shanghai, People's Republic ofChina
| | - Feng Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Medical College of Shanghai Jiaotong University, Shanghai, People's Republic ofChina
| |
Collapse
|
34
|
Chen M, Chen J, Huang J, Liu H, Cao W, Luo S, Liu Z, Hu H, Lai S, Hou Y, Kang L, Huang L. Clinical significance of neoadjuvant chemotherapy for locally advanced colorectal cancer patients with deficient mismatch repair: possibly residual value in the era of immunotherapy. Therap Adv Gastroenterol 2023; 16:17562848221150306. [PMID: 36742014 PMCID: PMC9893354 DOI: 10.1177/17562848221150306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023] Open
Abstract
Background Deficient mismatch repair (dMMR) or microsatellite instability is one of the well-established molecular biomarkers in colorectal cancer (CRC). The efficiency of neoadjuvant chemotherapy (NAC) in locally advanced colorectal cancer (LACC) patients with dMMR is unclear. Objectives We assessed the tumor response and clinical outcome in LACC patients with dMMR received NAC. Design Retrospective, single-center analysis. Methods From 2013 to 2018, a total of 577 LACC patients with dMMR who underwent radical surgery were identified. Among them, 109 patients who received adjuvant chemotherapy were further screened out for analysis. According to whether receiving NAC or not, 109 patients were divided into two groups with the purpose of retrospectively analyzing their characteristics, treatment, and survival results, especially the 5-year disease-free survival (DFS) and 5-year overall survival. Results Baseline characteristics were matched between the two groups. One of 40 patients in NAC group recurred, while 13 of 69 patients in non-NAC group recurred. Univariate and multivariate analyses showed that NAC (hazard ratio: 0.115; 95% confidence interval: 0.015-0.897; p = 0.039) was independent influence factor for DFS. In NAC group, there were 13/40 (32.5%) patients for tumor regression grade 1 and 27/40 (67.5%) patients converted clinical positive N-stage into negative N-stage. Conclusion In this study, NAC was associated with better tumor downstaging and longer 5-year DFS in LACC patients with dMMR. Consequently, NAC might be an additional treatment choice when it comes to such patients in the future.
Collapse
Affiliation(s)
| | | | | | - Huashan Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wuteng Cao
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuangling Luo
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhanzhen Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huanxin Hu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sicong Lai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yujie Hou
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | | |
Collapse
|
35
|
Park YS, Kook MC, Kim BH, Lee HS, Kang DW, Gu MJ, Shin OR, Choi Y, Lee W, Kim H, Song IH, Kim KM, Kim HS, Kang G, Park DY, Jin SY, Kim JM, Choi YJ, Chang HK, Ahn S, Chang MS, Han SH, Kwak Y, Seo AN, Lee SH, Cho MY. A Standardized Pathology Report for Gastric Cancer: 2nd Edition. J Gastric Cancer 2023; 23:107-145. [PMID: 36750994 PMCID: PMC9911618 DOI: 10.5230/jgc.2023.23.e7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/27/2023] Open
Abstract
The first edition of 'A Standardized Pathology Report for Gastric Cancer' was initiated by the Gastrointestinal Pathology Study Group of the Korean Society of Pathologists and published 17 years ago. Since then, significant advances have been made in the pathologic diagnosis, molecular genetics, and management of gastric cancer (GC). To reflect those changes, a committee for publishing a second edition of the report was formed within the Gastrointestinal Pathology Study Group of the Korean Society of Pathologists. This second edition consists of two parts: standard data elements and conditional data elements. The standard data elements contain the basic pathologic findings and items necessary to predict the prognosis of GC patients, and they are adequate for routine surgical pathology service. Other diagnostic and prognostic factors relevant to adjuvant therapy, including molecular biomarkers, are classified as conditional data elements to allow each pathologist to selectively choose items appropriate to the environment in their institution. We trust that the standardized pathology report will be helpful for GC diagnosis and facilitate large-scale multidisciplinary collaborative studies.
Collapse
Affiliation(s)
- Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Baek-Hui Kim
- Department of Pathology, Korea University Guro Hospital, Seoul, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Wook Kang
- Department of Pathology, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, Sejong, Korea
| | - Mi-Jin Gu
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea
| | - Ok Ran Shin
- Department of Hospital Pathology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Younghee Choi
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - Wonae Lee
- Department of Pathology, Dankook University College of Medicine, Cheonan, Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - In Hye Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Sung Kim
- Department of Pathology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Guhyun Kang
- LabGenomics Clinical Laboratories, Seongnam, Korea
| | | | - So-Young Jin
- Department of Pathology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Joon Mee Kim
- Department of Pathology, Inha University School of Medicine, Incheon, Korea
| | - Yoon Jung Choi
- Department of Pathology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Hee Kyung Chang
- Department of Pathology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
| | - Soomin Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Song-Hee Han
- Department of Pathology, Dong-A University College of Medicine, Busan, Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - An Na Seo
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Sung Hak Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Mee-Yon Cho
- Department of Pathology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea.
| |
Collapse
|
36
|
Park YS, Kook MC, Kim BH, Lee HS, Kang DW, Gu MJ, Shin OR, Choi Y, Lee W, Kim H, Song IH, Kim KM, Kim HS, Kang G, Park DY, Jin SY, Kim JM, Choi YJ, Chang HK, Ahn S, Chang MS, Han SH, Kwak Y, Seo AN, Lee SH, Cho MY. A standardized pathology report for gastric cancer: 2nd edition. J Pathol Transl Med 2023; 57:1-27. [PMID: 36647283 PMCID: PMC9846007 DOI: 10.4132/jptm.2022.12.23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
The first edition of 'A Standardized Pathology Report for Gastric Cancer' was initiated by the Gastrointestinal Pathology Study Group of the Korean Society of Pathologists and published 17 years ago. Since then, significant advances have been made in the pathologic diagnosis, molecular genetics, and management of gastric cancer (GC). To reflect those changes, a committee for publishing a second edition of the report was formed within the Gastrointestinal Pathology Study Group of the Korean Society of Pathologists. This second edition consists of two parts: standard data elements and conditional data elements. The standard data elements contain the basic pathologic findings and items necessary to predict the prognosis of GC patients, and they are adequate for routine surgical pathology service. Other diagnostic and prognostic factors relevant to adjuvant therapy, including molecular biomarkers, are classified as conditional data elements to allow each pathologist to selectively choose items appropriate to the environment in their institution. We trust that the standardized pathology report will be helpful for GC diagnosis and facilitate large-scale multidisciplinary collaborative studies.
Collapse
Affiliation(s)
- Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Baek-hui Kim
- Department of Pathology, Korea University Guro Hospital, Seoul, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Wook Kang
- Department of Pathology, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, Sejong, Korea
| | - Mi-Jin Gu
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea
| | - Ok Ran Shin
- Department of Hospital Pathology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Younghee Choi
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - Wonae Lee
- Department of Pathology, Dankook University College of Medicine, Cheonan, Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - In Hye Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Sung Kim
- Department of Pathology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Guhyun Kang
- LabGenomics Clinical Laboratories, Seongnam, Korea
| | | | - So-Young Jin
- Department of Pathology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Joon Mee Kim
- Department of Pathology, Inha University School of Medicine, Incheon, Korea
| | - Yoon Jung Choi
- Department of Pathology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Hee Kyung Chang
- Department of Pathology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
| | - Soomin Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Song-Hee Han
- Department of Pathology, Dong-A University College of Medicine, Busan, Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - An Na Seo
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Sung Hak Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mee-Yon Cho
- Department of Pathology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - The Gastrointestinal Pathology Study Group of the Korean Society of Pathologists
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Center for Gastric Cancer, National Cancer Center, Goyang, Korea
- Department of Pathology, Korea University Guro Hospital, Seoul, Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, Sejong, Korea
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea
- Department of Hospital Pathology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
- Department of Pathology, Dankook University College of Medicine, Cheonan, Korea
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Pathology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
- LabGenomics Clinical Laboratories, Seongnam, Korea
- St. Maria Pathology Laboratory, Busan, Korea
- Department of Pathology, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Department of Pathology, Inha University School of Medicine, Incheon, Korea
- Department of Pathology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
- Department of Pathology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Dong-A University College of Medicine, Busan, Korea
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Pathology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
37
|
Kumari S, Sharma S, Advani D, Khosla A, Kumar P, Ambasta RK. Unboxing the molecular modalities of mutagens in cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62111-62159. [PMID: 34611806 PMCID: PMC8492102 DOI: 10.1007/s11356-021-16726-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/22/2021] [Indexed: 04/16/2023]
Abstract
The etiology of the majority of human cancers is associated with a myriad of environmental causes, including physical, chemical, and biological factors. DNA damage induced by such mutagens is the initial step in the process of carcinogenesis resulting in the accumulation of mutations. Mutational events are considered the major triggers for introducing genetic and epigenetic insults such as DNA crosslinks, single- and double-strand DNA breaks, formation of DNA adducts, mismatched bases, modification in histones, DNA methylation, and microRNA alterations. However, DNA repair mechanisms are devoted to protect the DNA to ensure genetic stability, any aberrations in these calibrated mechanisms provoke cancer occurrence. Comprehensive knowledge of the type of mutagens and carcinogens and the influence of these agents in DNA damage and cancer induction is crucial to develop rational anticancer strategies. This review delineated the molecular mechanism of DNA damage and the repair pathways to provide a deep understanding of the molecular basis of mutagenicity and carcinogenicity. A relationship between DNA adduct formation and cancer incidence has also been summarized. The mechanistic basis of inflammatory response and oxidative damage triggered by mutagens in tumorigenesis has also been highlighted. We elucidated the interesting interplay between DNA damage response and immune system mechanisms. We addressed the current understanding of DNA repair targeted therapies and DNA damaging chemotherapeutic agents for cancer treatment and discussed how antiviral agents, anti-inflammatory drugs, and immunotherapeutic agents combined with traditional approaches lay the foundations for future cancer therapies.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
38
|
Proteomic and functional characterization of intra-tumor heterogeneity in human endometrial cancer. Cell Rep Med 2022; 3:100738. [PMID: 36103879 PMCID: PMC9512672 DOI: 10.1016/j.xcrm.2022.100738] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 12/01/2022]
Abstract
Endometrial cancer is one of the most frequently diagnosed gynecological cancers worldwide, and its prevalence has increased by more than 50% over the last two decades. Despite the understanding of the major signaling pathways driving the growth and metastasis of endometrial cancer, clinical trials targeting these signals have reported poor outcomes. The heterogeneous nature of endometrial cancer is suspected to be one of the key reasons for the failure of targeted therapies. In this study, we perform a sequential window acquisition of all theoretical fragment ion spectra (SWATH)-based comparative proteomic analysis of 63 tumor biopsies collected from 20 patients and define differences in protein signature in multiple regions of the same tumor. We develop organoids from multiple biopsies collected from the same tumor and show that organoids capture heterogeneity in endometrial cancer growth. Overall, using quantitative proteomics and patient-derived organoids, we define the heterogeneous nature of endometrial cancer within a patient’s tumor. Proteomic analysis of endometrial cancer intra-tumor heterogeneity Identification of potential biomarkers of tumor volume and invasion Protein signatures correlate with pre-and postmenopausal cancers Patient-derived organoids capture endometrial cancer heterogeneity
Collapse
|
39
|
Zhang XW, Jia ZH, Zhao LP, Wu YS, Cui MH, Jia Y, Xu TM. MutL homolog 1 germline mutation c.(453+1_454-1)_(545+1_546-1)del identified in lynch syndrome: A case report and review of literature. World J Clin Cases 2022; 10:7105-7115. [PMID: 36051147 PMCID: PMC9297429 DOI: 10.12998/wjcc.v10.i20.7105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/04/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lynch syndrome (LS) is an autosomal dominant hereditary disorder because of germline mutations in DNA mismatch repair genes, such as MutL homolog 1 (MLH1), PMS1 homolog 2, MutS homolog 2, and MutS homolog 6. Gene mutations could make individuals and their families more susceptible to experiencing various malignant tumors. In Chinese, MLH1 germline mutation c.(453+1_454-1)_(545+1_546-1)del-related LS has been infrequently reported. Therefore, we report a rare LS patient with colorectal and endometrioid adenocarcinoma and describe her pedigree characteristics. CASE SUMMARY A 57-year-old female patient complained of irregular postmenopausal vaginal bleeding for 6 mo. She was diagnosed with LS, colonic malignancy, endometrioid adenocarcinoma, secondary fallopian tube malignancy, and intermyometrial leiomyomas. Then, she was treated by abdominal hysterectomy, bilateral oviduct oophorectomy, and sentinel lymph node resection. Genetic testing was performed using next-generation sequencing technology to detect the causative genetic mutations. Moreover, all her family members were offered a free genetic test, but no one accepted it. CONCLUSION No tumor relapse or metastasis was found in the patient during the 30-mo follow-up period. The genetic panel sequencing showed a novel pathogenic germline mutation in MLH1, c.(453+1_454-1)_(545+1_546-1)del, for LS. Moreover, cancer genetic counseling and testing are still in the initial development state in China, and maybe face numerous challenges in the further.
Collapse
Affiliation(s)
- Xi-Wen Zhang
- Department of Gynecology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Zan-Hui Jia
- Department of Gynecology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Li-Ping Zhao
- Department of Gynecology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Yi-Shi Wu
- Department of Gynecology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Man-Hua Cui
- Department of Gynecology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Yan Jia
- Department of Gynecology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Tian-Min Xu
- Department of Gynecology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
40
|
Colon cancer microsatellite instability influences computed tomography assessment of regional lymph node morphology and diagnostic performance. Eur J Radiol 2022; 154:110396. [PMID: 35709643 DOI: 10.1016/j.ejrad.2022.110396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/24/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE To elucidate whether a high level of microsatellite instability (MSI-high) in colon cancer influences the CT assessment of regional lymph node (rLN) morphology and diagnostic performance on predicting pathological node-negative (pN0) patients. METHOD We retrospectively reviewed 507 patients with cecal/proximal ascending colon cancer (age, 63.0 ± 11.6 years; MSI-stable, n = 398; MSI-high, n = 109) who underwent right hemicolectomy between July 1, 2009, and December 31, 2018. Preoperative CT images were assessed for number of rLNs, long/short diameter of the largest rLN, and CT LN grade (CTN0, low probability of metastasis; CTN1, borderline; CTN2, high probability). Sensitivity, specificity, positive predictive value and negative predictive value for predicting pN0 was calculated. Multivariable logistic regression analysis was performed. Statistical significance was defined as P < 0.05. RESULTS A study population of 507 patients (mean age ± standard deviation, 63.0 ± 11.6; 264 women) were evaluated. In patients with rLN metastasis, the rLN long axis (pN1: P = 0.013, pN2: P = 0.039) and short axis (pN1: P = 0.001, pN2: P = 0.009) were both longer in MSI-high tumors compared with MSI-stable tumors. High specificity for predicting pN0 was only achieved in MSI-high tumors [sensitivityMSI-stable = 58.3% (n = 137/235), specificityMSI-stable = 71.2% (n = 116/163); sensitivityMSI-high = 38.4% (n = 33/86), specificityMSI-high = 91.3% (n = 21/23)]. Multivariable logistic regression indicated MSI-high (P < 0.001, odds ratio = 3.701), smaller LN long axis (P = 0.023, odds ratio = 0.905), and lower CT LN grade (CTN0: P = 0.009, odds ratio = 2.987; CTN1: P = 0.014, odds ratio = 2.195) as significant parameters in predicting pN0. CONCLUSION MSI-high colon cancer is associated with larger rLNs and high specificity for predicting pN0 on CT assessment.
Collapse
|
41
|
Evolutionary Significance of Fungal Hypermutators: Lessons Learned from Clinical Strains and Implications for Fungal Plant Pathogens. mSphere 2022; 7:e0008722. [PMID: 35638358 PMCID: PMC9241500 DOI: 10.1128/msphere.00087-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid evolution of fungal pathogens poses a serious threat to medicine and agriculture. The mutation rate determines the pace of evolution of a fungal pathogen. Hypermutator fungal strains have an elevated mutation rate owing to certain defects such as those in the DNA mismatch repair system. Studies in Saccharomyces cerevisiae show that hypermutators expedite evolution by generating beneficial alleles at a faster pace than the wild-type strains. However, an accumulation of deleterious alleles in a hypermutator may reduce its fitness. The balance between fitness cost and mutation benefit determines the prevalence of hypermutators in a population. This balance is affected by a complex interaction of ploidy, mode of reproduction, population size, and recent population history. Studies in human fungal pathogens like Aspergillus fumigatus, Candida albicans, Candida glabrata, Cryptococcus deuterogattii, and Cryptococcus neoformans have highlighted the importance of hypermutators in host adaptation and development of antifungal resistance. However, a critical examination of hypermutator biology, experimental evolution studies, and epidemiological studies suggests that hypermutators may impact evolutionary investigations. This review aims to integrate the knowledge about biology, experimental evolution, and dynamics of fungal hypermutators to critically examine the evolutionary role of hypermutators in fungal pathogen populations and project implications of hypermutators in the evolution of fungal plant pathogen populations. Understanding the factors determining the emergence and evolution of fungal hypermutators can open a novel avenue of managing rapidly evolving fungal pathogens in medicine and agriculture.
Collapse
|
42
|
Crain PR, Zepp JM, Gille S, Jenkins L, Kauffman TL, Shuster E, Goddard KAB, Wilfond BS, Hunter JE. Identifying patients with Lynch syndrome using a universal tumor screening program in an integrated healthcare system. Hered Cancer Clin Pract 2022; 20:17. [PMID: 35436948 PMCID: PMC9014602 DOI: 10.1186/s13053-022-00217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 03/01/2022] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Lynch syndrome (LS) is associated with an increased risk of colorectal (CRC) and endometrial (EC) cancers. Universal tumor screening (UTS) of all individuals diagnosed with CRC and EC is recommended to increase identification of LS. Kaiser Permanente Northwest (KPNW) implemented a UTS program for LS among individuals newly diagnosed with CRC in January 2016 and EC in November 2016. UTS at KPNW begins with immunohistochemistry (IHC) of tumor tissue to determine loss of mismatch repair proteins associated with LS (MLH1, MSH2, MSH6, and PMS2)., IHC showing loss of MLH1 is followed by reflex testing (automatic testing) to detect the presence of the BRAF V600E variant (in cases of CRC) and MLH1 promoter hypermethylation to rule out likely sporadic cases. MATERIALS AND METHODS Individuals newly diagnosed with CRC and EC were identified between the initiation of the respective UTS programs and July 2018. Electronic medical records were reviewed to extract patient data related to UTS, including IHC and reflex testing results, date of referrals to the genetics department, and results of germline genetic testing for LS. RESULTS 313 out of 362 individuals diagnosed with CRC and 61 out of 64 individuals diagnosed with EC who were eligible were screened by IHC for LS. Most (47/52 or 90%, including 46/49 CRC and 1/3 EC) individuals that were not screened by IHC only had a biopsy sample available. Fourteen individuals (3.7% overall, including 13/313 CRC and 1/61 EC) received an abnormal result after reflex testing and were referred for genetic counseling. Of these, 10 individuals (71% overall, including 9/13 CRC and 1/1 EC) underwent germline genetic testing for LS. Five individuals diagnosed with CRC were found to have pathogenic variants. in PMS2 (n = 3), MLH1 (n = 1), and MSH6 (n = 1). No pathogenic variants were identified in individuals diagnosed with EC. CONCLUSIONS UTS identified individuals at risk for LS. Most individuals who screened positive for LS had follow-up germline genetic testing for LS. The consistent use of biopsy samples is an opportunity to improve UTS.
Collapse
Affiliation(s)
- Philip R Crain
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Jamilyn M Zepp
- Department of Translational and Applied Genomics, Center for Health Research, Kaiser Permanente Northwest, Portland, OR, USA
| | - Sara Gille
- Center for Health Research, Kaiser Permanente Northwest, Portland, OR, USA
| | - Lindsay Jenkins
- Center for Health Research, Kaiser Permanente Northwest, Portland, OR, USA
| | - Tia L Kauffman
- Department of Translational and Applied Genomics, Center for Health Research, Kaiser Permanente Northwest, Portland, OR, USA
| | - Elizabeth Shuster
- Center for Health Research, Kaiser Permanente Northwest, Portland, OR, USA
| | - Katrina A B Goddard
- Department of Translational and Applied Genomics, Center for Health Research, Kaiser Permanente Northwest, Portland, OR, USA
| | - Benjamin S Wilfond
- Treuman Katz Center for Pediatric Bioethics, Department of Pediatrics, Seattle Children's Research Institute and Hospital, University of Washington School of Medicine, Seattle, WA, USA
| | - Jessica Ezzell Hunter
- Department of Translational and Applied Genomics, Center for Health Research, Kaiser Permanente Northwest, Portland, OR, USA.
| |
Collapse
|
43
|
Nakamura F, Sato Y, Okamoto K, Fujino Y, Mitsui Y, Kagemoto K, Kawaguchi T, Miyamoto H, Muguruma N, Sonoda T, Tsuneyama K, Takayama T. Colorectal carcinoma occurring via the adenoma-carcinoma pathway in patients with serrated polyposis syndrome. J Gastroenterol 2022; 57:286-299. [PMID: 35194694 DOI: 10.1007/s00535-022-01858-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Although serrated polyposis syndrome (SPS) is associated with an increased colorectal cancer (CRC) risk, the carcinogenic mechanisms remain unknown. We investigated clinicopathological characteristics and genetic abnormalities in colorectal polyps and CRC to elucidate carcinogenic mechanisms in SPS. METHODS We retrospectively analyzed clinicopathological features of colorectal polyps in 44 SPS patients, and examined mutations of genes including APC, RAS, BRAF, and TP53, and microsatellite instability (MSI) in CRC tissues. RESULTS Of the 44 patients, 25 (56%) fulfilled WHO criterion 1, 11 (25%) fulfilled criterion 2, and 8 (18%) fulfilled both. A total of 956 polyps were observed; 642 (67%) hyperplastic polyps (HP), 204 (21%) sessile serrated lesions (SSL), 10 (1%) traditional serrated adenoma (TSA), and 100 (11%) adenomas. The median numbers of polyps (/patient) were 10.5 (IQR 2.75-23) HPs, 4.0 (2.0-6.0) SSLs, 0 (0-0) TSA, and 1 (0-3.3) adenoma. SSL and HP located preferentially in the proximal and distal colon, respectively. Twenty-two CRCs were found in 18 patients. Based on the histological coexistence of SSL/TSA, BRAF mutation and MSI, 5 CRCs (26%) were classified as serrated-neoplasia pathway. Conversely, based on the coexistence of adenoma, APC/RAS and TP53 mutations, 11 CRCs (58%) were classified as adenoma-carcinoma pathway. The remaining three were unclassifiable. Most CRCs through adenoma-carcinoma pathway were located in the left-side colorectum and patients bearing those met criterion 2, characterized by many HP and advanced adenomas. Adenoma was a significant risk factor for CRC. CONCLUSIONS Our results suggest that more than half of the CRCs, particularly those in the left-side colorectum, developed through the adenoma-carcinoma pathway in SPS patients. Adenoma was a risk factor for CRCs, suggesting its importance in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Fumika Nakamura
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yasushi Sato
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Koichi Okamoto
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yasuteru Fujino
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yasuhiro Mitsui
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kaizo Kagemoto
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Tomoyuki Kawaguchi
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiroshi Miyamoto
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Naoki Muguruma
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Tomoko Sonoda
- Department of Public Health, Sapporo Medical University School of Medicine, Minami 1-jo Nishi 17-chome, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| |
Collapse
|
44
|
Polymerase Epsilon-Associated Ultramutagenesis in Cancer. Cancers (Basel) 2022; 14:cancers14061467. [PMID: 35326618 PMCID: PMC8946778 DOI: 10.3390/cancers14061467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
With advances in next generation sequencing (NGS) technologies, efforts have been made to develop personalized medicine, targeting the specific genetic makeup of an individual. Somatic or germline DNA Polymerase epsilon (PolE) mutations cause ultramutated (>100 mutations/Mb) cancer. In contrast to mismatch repair-deficient hypermutated (>10 mutations/Mb) cancer, PolE-associated cancer is primarily microsatellite stable (MSS) In this article, we provide a comprehensive review of this PolE-associated ultramutated tumor. We describe its molecular characteristics, including the mutation sites and mutation signature of this type of tumor and the mechanism of its ultramutagenesis. We discuss its good clinical prognosis and elucidate the mechanism for enhanced immunogenicity with a high tumor mutation burden, increased neoantigen load, and enriched tumor-infiltrating lymphocytes. We also provide the rationale for immune checkpoint inhibitors in PolE-mutated tumors.
Collapse
|
45
|
Chu XD, Lin ZB, Huang T, Ding H, Zhang YR, Zhao Z, Huangfu SC, Qiu SH, Guo YG, Chu XL, Pan JH, Pan YL. Thrombospondin-2 holds prognostic value and is associated with metastasis and the mismatch repair process in gastric cancer. BMC Cancer 2022; 22:250. [PMID: 35255858 PMCID: PMC8900425 DOI: 10.1186/s12885-022-09201-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND This study aims to investigate thrombospondin 2 (TSP2) expression levels in gastric cancer (GC) and determine the relationship between TSP2 and clinical characteristics and prognosis. METHODS The online database Gene Expression Profile Interactive Analysis (GEPIA) was used to analyse TSP2 mRNA expression levels in GC. The Kaplan-Meier plotter prognostic analysis tool was used to evaluate the influence of TSP2 expression on clinical prognosis in GC patients. TSP2 expression levels were analysed in paraffin-embedded GC samples and adjacent normal tissues by immunohistochemistry. The relationship between the clinicopathological characteristics and prognosis of GC patients was assessed. Transwell experiments were used to evaluate the effect of TSP2 on HGC27 and AGS cell invasion and migration. The EdU experiment was used to detect the effect of transfection of TSP2 on cell proliferation, and the flow cytometry experiment was used to detect the effect of TSP2 on cell apoptosis and the cell growth cycle. Western blotting (Wb) technology was used to detect MMP, E-cadherin, N-cadherin, Vimentin, Snail, AKT, PI3K, and VEGF protein expression in HGC27 cells. RESULTS Compared with normal tissues, TSP2 mRNA expression in GC was significantly upregulated and was closely related to the clinical stage of GC. High TSP2 expression significantly affected the OS, FP and PPS of patients with GC. Among these patients, TSP2 expression levels did not affect the prognosis of patients with GC in the N0 subgroup but significantly affected the prognosis of patients with GC in the N (1 + 2 + 3) subgroup. TSP2 protein expression levels were significantly higher in GC tissue compared with normal tissues (P < 0.01). The overall survival (OS) and relapse-free survival (RFS) of patients with high TSP2 expression were lower than those of patients with low TSP2 expression. Cells transfected with the TSP2-silencing sequence exhibited increased apoptosis and inhibition of proliferation, migration and invasion. AKT and PI3K expression in cells was significantly downregulated (P < 0.01). AKT, PI3K and VEGF expression in cells transfected with the TSP2 silencing sequence was significantly reduced. Proliferation, migration, invasion ability, and TSP2 expression levels significantly correlated with mismatch repair genes, such as PMS2, MSH6, MSH2, and MLH1 (P < 0.05). CONCLUSION TSP2 expression is significantly increased in GC. TSP2 expression is closely related to metastasis and the mismatch repair process in GC patients and affects GC patient prognosis. The mechanism may involve regulating gastric cancer cell proliferation and migration by modulating the VEGF/PI3K/AKT signalling pathway. TSP2 is a potential marker and therapeutic target for the prognosis of GC patients.
Collapse
Affiliation(s)
- Xiao-Dong Chu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 613 Huangpu West Avenue, Guangzhou, Guangdong, 510632, China
| | - Zheng-Bin Lin
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 613 Huangpu West Avenue, Guangzhou, Guangdong, 510632, China
| | - Ting Huang
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, 613 Huangpu West Avenue, Guangzhou, Guangdong, 510632, China
| | - Hui Ding
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 613 Huangpu West Avenue, Guangzhou, Guangdong, 510632, China
| | - Yi-Ran Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 613 Huangpu West Avenue, Guangzhou, Guangdong, 510632, China
| | - Zhan Zhao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 613 Huangpu West Avenue, Guangzhou, Guangdong, 510632, China
| | - Shu-Chen Huangfu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 613 Huangpu West Avenue, Guangzhou, Guangdong, 510632, China
| | - Sheng-Hui Qiu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 613 Huangpu West Avenue, Guangzhou, Guangdong, 510632, China
| | - Yan-Guan Guo
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 613 Huangpu West Avenue, Guangzhou, Guangdong, 510632, China
| | - Xiao-Li Chu
- Guangdong Provincial Key laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Jing-Hua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 613 Huangpu West Avenue, Guangzhou, Guangdong, 510632, China.
| | - Yun-Long Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 613 Huangpu West Avenue, Guangzhou, Guangdong, 510632, China
| |
Collapse
|
46
|
Do MD, Nguyen TH, Le KT, Le LHG, Nguyen BH, Le KT, Doan TPT, Ho CQ, Nguyen HN, Tran TD, Vu HA. Molecular characteristics of young-onset colorectal cancer in Vietnamese patients. Asia Pac J Clin Oncol 2022; 18:678-685. [PMID: 35098669 DOI: 10.1111/ajco.13749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 12/04/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common cancer globally. Understanding the genetic characteristics of CRC is essential for appropriate treatment and genetic counseling. METHODS The genetic profile of CRC tumor tissues was identified using next-generation sequencing of 17 target genes (MLH1, MSH2, MSH6, PMS2, EPCAM, APC, SMAD4, BMPR1A, MUTYH, STK11, PTEN, TP53, ATM, CDH1, CHEK2, POLE, and POLD1) in a cohort of 101 Vietnamese patients diagnosed with young-onset CRC. Corresponding germline genetic alterations of determined somatic mutations were subsequently confirmed from patients' blood samples. RESULTS Somatic mutations were determined in 96 out of 101 CRC patients. Two-thirds of the tumors harbored more than two mutations, and the most prevalent mutated genes were TP53 and APC. Among confirmed germline mutations, 10 pathogenic mutations and 11 variants of unknown significance were identified. CONCLUSIONS Given the burden of CRC and the gradually reducing cost of genetic testing, multigene panel screening can benefit young-onset CRC patients as well as their relatives.
Collapse
Affiliation(s)
- Minh Duc Do
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Khuong Thai Le
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Linh Hoang Gia Le
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Kien Trung Le
- University Medical Center, Ho Chi Minh City, Vietnam
| | - Thao Phuong Thi Doan
- Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Chuong Quoc Ho
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hoai-Nghia Nguyen
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Tuan Diep Tran
- Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hoang Anh Vu
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
47
|
Ishiguro S, Upreti D, Bassette M, Singam ERA, Thakkar R, Loyd M, Inui M, Comer J, Tamura M. Local immune checkpoint blockade therapy by an adenovirus encoding a novel PD-L1 inhibitory peptide inhibits the growth of colon carcinoma in immunocompetent mice. Transl Oncol 2022; 16:101337. [PMID: 34990908 PMCID: PMC8741604 DOI: 10.1016/j.tranon.2021.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/05/2022] Open
Abstract
A novel inhibitory peptide interfering with the PD-L1/PD-1 immune checkpoint pathway, dubbed PD-L1ip3, was designed. The affinity of PD-L1ip3 for PD-L1 was only a few times weaker than that of its natural ligand, PD-1. Direct treatment with PD-L1ip3 enhanced the ability of CD8+ T cells primed with cancer antigens to kill cancer cells in culture. A combination treatment including transduction into cancer cells of a gene encoding PD-L1ip3 coupled with direct administration of PD-L1ip3 in peptide form significantly attenuated the growth of murine colon carcinoma in mice.
A novel peptide that interferes with the PD-1/PD-L1 immune checkpoint pathway, termed PD-L1 inhibitory peptide 3 (PD-L1ip3), was computationally designed, experimentally validated for its specific binding to PD-L1, and evaluated for its antitumor effects in cell culture and in a mouse colon carcinoma syngeneic murine model. In several cell culture studies, direct treatment with PD-L1ip3, but not a similar peptide with a scrambled sequence, substantially increased death of CT26 colon carcinoma cells when co-cultured with murine CD8+ T cells primed by CT26 cell antigens. In a syngeneic mouse tumor model, the growth of CT26 tumor cells transduced with the PD-L1ip3 gene by an adenovirus vector was significantly slower than that of un-transduced CT26 cells in immunocompetent mice. This tumor growth attenuation was further enhanced by the coadministration of the peptide form of PD-L1ip3 (10 mg/kg/day). The current study suggests that this peptide can stimulate host antitumor immunity via blockade of the PD-1/PD-L1 pathway, thereby increasing CD8+ T cell-induced death of colon carcinoma cells. The tumor site-specific inhibition of PD-L1 by an adenovirus carrying the PD-L1ip3 gene, together with direct peptide treatment, may be used as a local immune checkpoint blockade therapy to inhibit colon carcinoma growth.
Collapse
Affiliation(s)
- Susumu Ishiguro
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
| | - Deepa Upreti
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
| | - Molly Bassette
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; Department of Pathology, University of California, San Francisco, CA 94143, USA.
| | - E R Azhagiya Singam
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; Molecular Graphics and Computation Facility, College of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Ravindra Thakkar
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
| | - Mayme Loyd
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
| | - Makoto Inui
- Departments of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan.
| | - Jeffrey Comer
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
| | - Masaaki Tamura
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
| |
Collapse
|
48
|
Immunotherapy in Gastrointestinal Malignancies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:259-272. [PMID: 34972968 DOI: 10.1007/978-3-030-79308-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Gastrointestinal (GI) cancers represent a heterogeneous group of malignancies, each with a unique tumor biology that in turn affects response to treatment and subsequent prognosis. The interplay between tumor cells and the local immune microenvironment also varies within each GI malignancy and can portend prognosis and response to therapy. Treatment with immune checkpoint inhibitors has changed the treatment landscape of various solid tumors including (but not limited to) renal cell carcinoma, melanoma, and lung cancer. Advances in the understanding between the interplay between the immune system and tumors cells have led to the integration of immunotherapy as standard of care in various GI malignancies. For example, immunotherapy is now a mainstay of treatment for tumors harboring defects in DNA mismatch repair proteins and tumors harboring a high mutational load, regardless of primary site of origin. Data from recent clinical trials have led to the integration of immunotherapy as standard of care for a subset of gastroesophageal cancers and hepatocellular carcinoma. Here, we outline the current landscape of immunotherapy in GI malignancies and highlight ongoing clinical trials that will likely help to further our understanding of how and when to integrate immunotherapy into the treatment of various GI malignancies.
Collapse
|
49
|
Das B, Nagano K, Kawai G, Murata A, Nakatani K. 2-Amino-1,8-naphthyridine Dimer (ANP77), a High-Affinity Binder to the Internal Loops of C/CC and T/CC Sites in Double-Stranded DNA. J Org Chem 2021; 87:340-350. [PMID: 34937340 DOI: 10.1021/acs.joc.1c02383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small molecules targeting DNA regions with structural fluctuation are an important class of molecule as chemical probes for studying the role of these structures in biological systems and the development of neurological disorders. The molecule ANP77 we described here, where a three-atom linker connects two 2-amino-1,8-naphthyridines at the C7 position, was found to form stacked structure with protonation of naphthyridine at low pH, and bound to the internal loop consisting of C/CC and T/CC in double-stranded DNA with affinities of 4.8 and 34.4 nM, respectively. Mass spectrometry and isothermal titration calorimetry analyses determined the stoichiometry for the binding as 1:1, and chemical footprinting with permanganate and NMR structural analysis revealed that the T in the T/CC was forced to flip out toward an extrahelical position upon ANP77 binding. Protonated stacked ANP77 interacted with two adjacent cytosines through hydrogen bonding and occupied the position in the duplex by flipping out the C or T opposite CC. Finally, this study demonstrated the potential of ANP77 for binding to the sequences of biological significance with the TG(T/C)CC repeat of the PIG3 promoter and the telomere repeat CCCTAA.
Collapse
Affiliation(s)
- Bimolendu Das
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Konami Nagano
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, Chiba 275-0016, Japan
| | - Gota Kawai
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, Chiba 275-0016, Japan
| | - Asako Murata
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
50
|
Susanti S, Wibowo S, Akbariani G, Yoshuantari N, Heriyanto DS, Ridwanuloh AM, Hariyatun H, Handaya AY, Kurnianda J, Hutajulu SH, Ilyas M. Molecular Analysis of Colorectal Cancers Suggests a High Frequency of Lynch Syndrome in Indonesia. Cancers (Basel) 2021; 13:cancers13246245. [PMID: 34944866 PMCID: PMC8699188 DOI: 10.3390/cancers13246245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The incidence of young people <50 years old who are diagnosed with colorectal cancer (CRC), termed as early onset colorectal cancer (EOCRC), accounted for nearly 30% of the total CRC patients in Indonesia, which is about three times higher than what is being reported in Europe, the UK and USA. Lynch syndrome (LS) is a hereditary type of CRC that is associated with a younger age of onset. Detecting LS has been long reported to be a cost-effective strategy to provide aid in the diagnosis or management of the individual or at-risk family members. The aim of this retrospective study was to screen for Lynch Syndrome in Indonesian CRC patients using simple and robust polymerase chain reaction (PCR)-based molecular testing, known as N_LyST (Nottingham Lynch Syndrome Test). To our knowledge, we are the first to study and observe a potentially higher frequency of LS (13.85%) among CRC patients in Indonesia (n = 231). This may partially contribute to the reported much higher rate of EOCRC found in the country. Abstract There is about three times higher incidence of young patients <50 years old with colorectal cancer, termed EOCRC, in Indonesia as compared to Europe, the UK and USA. The aim of this study was to investigate the frequency of Lynch Syndrome (LS) in Indonesian CRC patients. The previously described Nottingham Lynch Syndrome Test (N_LyST) was used in this project. N_LyST is a robust high-resolution melting (HRM)-based test that has shown 100% concordance with standard reference methods, including capillary electrophoresis and Sanger sequencing. The test consisted of five mononucleotide microsatellite markers (BAT25, BAT26, BCAT25, MYB, EWSR1), BRAF V600E mutation and MLH1 region C promoter for methylation (using bisulphite-modified DNA). A total of 231 archival (2016–2019) formalin-fixed, paraffin-embedded (FFPE) tumour tissues from CRC patients collected from Dr. Sardjito General Hospital Yogyakarta, Indonesia, were successfully tested and analysed. Among those, 44/231 (19.05%) were MSI, 25/231 (10.82%) were harbouring BRAF V600E mutation and 6/231 (2.60%) had MLH1 promoter methylation. Almost all—186/197 (99.45%)—MSS cases were MLH1 promoter unmethylated, while there were only 5/44 (11.36%) MSI cases with MLH1 promoter methylation. Similarly, only 9/44 (20.45%) of MSI cases were BRAF mutant. There were 50/231 (21.65%) EOCRC cases, with 15/50 (30%) regarded as MSI, as opposed to 29/181 (16.02%) within the older group. In total, 32/231 patients (13.85%) were classified as “Probable Lynch” (MSI, BRAF wildtype and MLH1 promoter unmethylated), which were enriched in EOCRC as compared to older patients (24% vs. 11.05%, p = 0.035). Nonetheless, 30/50 (76.00%) cases among the EOCRC cases were non-LS (sporadic) and were significantly associated with a left-sided tumour. The overall survival of both “Probable Lynch” and non-LS (sporadic) groups (n = 227) was comparable (p = 0.59), with follow up period of 0–1845 days/61.5 months. Stage, node status, histological grading and ECOG score were significantly associated with patient overall survival (p < 0.005), yet only ECOG was an independent factor for OS (HR: 4.38; 95% CI: 1.72–11.2; p = 0.002). In summary, this study is the first to reveal a potentially higher frequency of LS among CRC patients in Indonesia, which may partially contribute to the reported much higher number of EOCRC as compared to the incidence in the West.
Collapse
Affiliation(s)
- Susanti Susanti
- Molecular Pathology Research Group, Academic Unit of Translational Medical Science, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG72UH, UK;
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Purwokerto, Jawa Tengah 53182, Indonesia
- PathGen Diagnostik Teknologi, Center for Innovation and Utilization of Science and Technology, National Research and Innovation Agency (Badan Riset dan Inovasi Nasional/BRIN), Bogor 16911, Indonesia; (S.W.); (G.A.)
- Correspondence:
| | - Satrio Wibowo
- PathGen Diagnostik Teknologi, Center for Innovation and Utilization of Science and Technology, National Research and Innovation Agency (Badan Riset dan Inovasi Nasional/BRIN), Bogor 16911, Indonesia; (S.W.); (G.A.)
| | - Gilang Akbariani
- PathGen Diagnostik Teknologi, Center for Innovation and Utilization of Science and Technology, National Research and Innovation Agency (Badan Riset dan Inovasi Nasional/BRIN), Bogor 16911, Indonesia; (S.W.); (G.A.)
| | - Naomi Yoshuantari
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta 55281, Indonesia; (N.Y.); (D.S.H.)
| | - Didik Setyo Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta 55281, Indonesia; (N.Y.); (D.S.H.)
| | - Asep Muhamad Ridwanuloh
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia; (A.M.R.); (H.H.)
| | - Hariyatun Hariyatun
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia; (A.M.R.); (H.H.)
| | - Adeodatus Yuda Handaya
- Division of Digestive Surgeon, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta 55281, Indonesia;
| | - Johan Kurnianda
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta 55281, Indonesia; (J.K.); (S.H.H.)
| | - Susanna Hilda Hutajulu
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta 55281, Indonesia; (J.K.); (S.H.H.)
| | - Mohammad Ilyas
- Molecular Pathology Research Group, Academic Unit of Translational Medical Science, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG72UH, UK;
| |
Collapse
|