1
|
Taylor SE, Behr S, Cooper KL, Mahdi H, Fabian D, Gallion H, Ueland F, Vargo J, Orr B, Girda E, Courtney-Brooks M, Olawaiye AB, Randall LM, Richardson DL, Sullivan SA, Huang M, Christner SM, Beriwal S, Lin Y, Chauhan A, Chu E, Kohn EC, Kunos C, Ivy SP, Beumer JH. Dose finding, bioavailability, and PK-PD of oral triapine with concurrent chemoradiation for locally advanced cervical cancer and vaginal cancer (ETCTN 9892). Cancer Chemother Pharmacol 2024; 95:4. [PMID: 39673591 DOI: 10.1007/s00280-024-04720-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/16/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND The addition of IV triapine to chemoradiation appeared active in phase I and II studies but drug delivery is cumbersome. We examined PO triapine with cisplatin chemoradiation. METHODS We implemented a 3 + 3 design for PO triapine dose escalation with expansion, starting at 100 mg, five days a week for five weeks while receiving radiation with weekly IV cisplatin for locally advanced cervical or vaginal cancer. Maximum tolerated dose (MTD), dose limiting toxicity (DLT), adverse events, pharmacokinetics (PK), pharmacodynamics (PD), and metabolic complete response (mCR) were assessed. RESULTS 19/21 patients were DLT evaluable. DLTs included grade 4 neutropenia (n = 2), leukopenia (n = 2), lymphopenia (n = 2), and hypokalemia (n = 1). Grade 3 toxicities at least possibly related were as expected for cisplatin chemoradiation: lymphopenia (n = 12), anemia (n = 10), neutropenia (n = 4), leukopenia (n = 8), decreased platelets (n = 2), hypertension (n = 1), and hyponatremia (n = 1). MTD and RP2D were established at 100 mg. 8/13 evaluable patients had a mCR. Triapine had a bioavailability of 59%. Methemoglobin levels correlated with triapine exposure. Smoking almost doubled CYP1A2 mediated triapine clearance. CONCLUSIONS Oral triapine is safe when given with cisplatin chemoradiation, convenient, bioavailable. Exposure is negatively impacted by smoking, and methemoglobin is a biomarker of exposure. CLINICAL TRIAL REGISTRATION NCT02595879.
Collapse
Affiliation(s)
- Sarah E Taylor
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Sarah Behr
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kristine L Cooper
- Biostatistics Facility, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haider Mahdi
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cancer Immunology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | | | | | | | - John Vargo
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Brian Orr
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eugenia Girda
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Madeleine Courtney-Brooks
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexander B Olawaiye
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Leslie M Randall
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology and Massey Comprehensive Cancer Center, Virginia Commonwealth University Health, Richmond, VA, USA
| | - Debra L Richardson
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stephanie A Sullivan
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology and Massey Comprehensive Cancer Center, Virginia Commonwealth University Health, Richmond, VA, USA
| | - Marilyn Huang
- Division of Gynecologic Oncology, University of Virginia, Charlottesville, VA, USA
| | - Susan M Christner
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Sushil Beriwal
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yan Lin
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Biostatistics Facility, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aman Chauhan
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Edward Chu
- Montefiore Einstein Cancer Canter, Bronx, NY, USA
| | - Elise C Kohn
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Charles Kunos
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - S Percy Ivy
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Jan H Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, Pittsburgh, PA, USA.
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Kaya B, Gholam Azad M, Suleymanoglu M, Harmer JR, Wijesinghe TP, Richardson V, Zhao X, Bernhardt PV, Dharmasivam M, Richardson DR. Isosteric Replacement of Sulfur to Selenium in a Thiosemicarbazone: Promotion of Zn(II) Complex Dissociation and Transmetalation to Augment Anticancer Efficacy. J Med Chem 2024; 67:12155-12183. [PMID: 38967641 DOI: 10.1021/acs.jmedchem.4c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
We implemented isosteric replacement of sulfur to selenium in a novel thiosemicarbazone (PPTP4c4mT) to create a selenosemicarbazone (PPTP4c4mSe) that demonstrates potentiated anticancer efficacy and selectivity. Their design specifically incorporated cyclohexyl and styryl moieties to sterically inhibit the approach of their Fe(III) complexes to the oxy-myoglobin heme plane. Importantly, in contrast to the Fe(III) complexes of the clinically trialed thiosemicarbazones Triapine, COTI-2, and DpC, the Fe(III) complexes of PPTP4c4mT and PPTP4c4mSe did not induce detrimental oxy-myoglobin oxidation. Furthermore, PPTP4c4mSe demonstrated more potent antiproliferative activity than the homologous thiosemicarbazone, PPTP4c4mT, with their selectivity being superior or similar, respectively, to the clinically trialed thiosemicarbazone, COTI-2. An advantageous property of the selenosemicarbazone Zn(II) complexes relative to their thiosemicarbazone analogues was their greater transmetalation to Cu(II) complexes in lysosomes. This latter effect probably promoted their antiproliferative activity. Both ligands down-regulated multiple key receptors that display inter-receptor cooperation that leads to aggressive and resistant breast cancer.
Collapse
Affiliation(s)
- Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Mediha Suleymanoglu
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Fatih, Istanbul 34093, Turkey
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Tharushi P Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Vera Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Xiao Zhao
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
3
|
Huang S, Zhang D, Yi X, Liu C, Jian C, Yu A. 3-AP inhibits the growth of human osteosarcoma by decreasing the activity of the iron-dependent pathway. Med Oncol 2023; 40:353. [PMID: 37952032 DOI: 10.1007/s12032-023-02215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 11/14/2023]
Abstract
3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) has broad-spectrum antitumor activity. However, its role in osteosarcoma (OS) remains unclear. Therefore, this study explored the effects of 3-AP on OS in vitro and in vivo using three human OS cell lines (MG-63, U2-OS, and 143B) and a nude mice model generated by transplanting 143B cells. The cells and mice were treated with DMSO (control) or gradient concentrations of 3-AP. Then, various assays (e.g., cell counting kit-8, flow cytometry, immunohistochemistry, and western blotting) were performed to assess cell viability and apoptosis levels, as well as γH2A.X (DNA damage correlation), ribonucleotide reductase catalytic subunit M1 and M2 (RRM1 and RRM2, respectively) protein levels (iron-dependent correlation). 3-AP time- and dose-dependably suppressed growth and induced apoptosis in all three OS cell lines, and ferric ammonium citrate (FAC) blocked these effects. Moreover, 3-AP decreased RRM2 and total ribonucleotide reductase (RRM1 plus RRM2) protein expression but significantly increased γH2A.X expression; treatment did not affect RRM1 expression. Again, FAC treatment attenuated these effects. In vivo, the number of apoptotic cells in the tumor slices increased in the 3-AP-treated mice compared to the control mice. 3-AP treatment also decreased Ki-67 and p21 expression, suggesting inhibited OS growth. Furthermore, the expression of RRM1, RRM2, and transferrin receptor protein 1 (i.e., Tfr1) indicated that 3-AP inhibited OS growth via an iron-dependent pathway. In conclusion, 3-AP exhibits anticancer activity in OS by decreasing the activity of iron-dependent pathways, which could be a promising therapeutic strategy for OS.
Collapse
Affiliation(s)
- Siyuan Huang
- Department of Orthopedics, Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhan, 430071, Hubei, People's Republic of China
| | - Dong Zhang
- Department of Orthopedics, Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhan, 430071, Hubei, People's Republic of China
| | - Xinzeyu Yi
- Department of Orthopedics, Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhan, 430071, Hubei, People's Republic of China
| | - Changjiang Liu
- Department of Orthopedics, Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhan, 430071, Hubei, People's Republic of China
| | - Chao Jian
- Department of Orthopedics, Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhan, 430071, Hubei, People's Republic of China.
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China.
| | - Aixi Yu
- Department of Orthopedics, Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhan, 430071, Hubei, People's Republic of China.
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Fathy A, Ibrahim AB, Elkhalik SA, Villinger A, Abbas S. New iron(III) complexes with 2-formylpyridine thiosemicarbazones: Synthetic aspects, structural and spectral analyses and cytotoxicity screening against MCF-7 human cancer cells. Heliyon 2023; 9:e13008. [PMID: 36711299 PMCID: PMC9880397 DOI: 10.1016/j.heliyon.2023.e13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
2-Formylpyridine thiosemicarbazone - iron (III) chelates [F e L 2 ] C l • 2 H 2 O {L = L1 (C1) [HL 1 = 4-(4-Nitrophenyl)-1-((pyridin-2-yl)methylene)thiosemicarbazide] and L = L2 (C2) [HL 2 = 4-(2,5-Dimethoxyphenyl)-1-((pyridin-2-yl)methylene)thiosemicarbazide]} were prepared. The two ligand anions in each complex resulted in saturation of the iron coordination number and consequently the existence of these complexes as 1:1 electrolytes. As well, the iron in these complexes exhibits low-spin electronic configuration. X-ray crystallography of complex C1 indicated its triclinic crystal system and P1 ‾ space group. In addition, it proved the ligation through a thiol sulfur atom and two nitrogen atoms of pyridine and azomethine groups. This is while the presence of two water molecules of crystallization in the complex structure was also indicated. The ligand HL 1 was selected for cytotoxicity screening against human MCF-7, A-549, HEPG-2 and HCT-116 cancer cells and the most enhanced activities were detected against the breast cells. Against these cells, the compounds HL 1 , HL 2 , C1 and C2 induced cytotoxicity, respectively, with IC50 values of 52.4, 145.4, 34.3 and 62.0 μM. However, against the healthy BHK cells, HL 1 and HL 2 caused cytotoxicity, respectively, with IC50 values of 54.8 and 110.6 μM and cytotoxicity with percent viabilities of 56.7 and 55.4% of the BHK cells by the complexes (137.4 μM of C1 and 131.9 μM of C2) was determined. These activities against MCF-7 cells are less significant compared with the measured value for doxorubicin. But this standard is more toxic to normal cells than the thiosemicarbazones (IC50 (doxorubicin) = 9.66 μM against MCF-7 cells and 36.42 μM against BHK cells).
Collapse
Affiliation(s)
- Amany Fathy
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Ahmed B.M. Ibrahim
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - S. Abd Elkhalik
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - S.M. Abbas
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
5
|
Fathy A, Ibrahim ABM, Abd Elkhalik S, Meurer F, Bodensteiner M, Abbas SM. Thiosemicarbazones and Derived Antimony Complexes: Synthesis, Structural Analysis, and In Vitro Evaluation against Bacterial, Fungal, and Cancer Cells. INORGANICS 2022; 10:172. [DOI: 10.3390/inorganics10100172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Two antimony complexes {[Sb(L1)Cl2] C1 and [Sb(L2)Cl2] C2} with the thiosemicarbazone ligands {HL1 = 4-(2,4-dimethylphenyl)-1-((pyridin-2-yl)methylene)thiosemicarbazide and HL2 = 4-(2,5-dimethoxyphenyl)-1-((pyridin-2-yl)methylene)thiosemicarbazide} were introduced. The structures were elucidated on the basis of a CHNS analysis, spectroscopic techniques (UV-Vis and FT-IR), and DMF solution electrical conductivities. Single crystal X-ray diffraction analysis of complex C1 assigned the complex pseudo-octahedral geometry and triclinic P-1 space group. Only the ligand HL1 and its derived complex C1 displayed antifungal activities against Candida albicans and this activity was enhanced from 10 mm to 21 mm for the respective complex, which is the same activity given by the drug “Amphotericin B”. The ligands HL1 and HL2 gave inhibitions, respectively, of 14 and 10 mm against Staphylococcus aureus and 15 and 10 mm against Escherichia coli; however, complexes C1 and C2 increased these inhibitions to 36 and 32 mm against Staphylococcus aureus and 35 and 31 mm against Escherichia coli exceeding the activities given by the ampicillin standard (i.e., 21 mm against Staphylococcus aureus and 25 mm against Escherichia coli). Against MCF-7 human breast cancer cells, the IC50 values of HL1 (68.9 μM) and HL2 (145.4 μM) were notably enhanced to the values of 34.7 and 37.4 μM for both complexes, respectively. Further, the complexes induced less toxicity in normal BHK cells (HL1 (126.6 μM), HL2 (110.6 μM), C1 (>210.1 μM), and C2 (160.6 μM)). As a comparison, doxorubicin gave an IC50 value of 9.66 μM against MCF-7 cells and 36.42 μM against BHK cells.
Collapse
|
6
|
Aly AA, Abdallah EM, Ahmed SA, Rabee MM, Abdelhafez ESMN. Metal complexes of thiosemicarbazones derived by 2-quinolones with Cu(I), Cu(II) and Ni(II); Identification by NMR, IR, ESI mass spectra and in silico approach as potential tools against SARS-CoV-2. J Mol Struct 2022; 1265:133480. [PMID: 35698532 PMCID: PMC9179108 DOI: 10.1016/j.molstruc.2022.133480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 01/21/2023]
Abstract
Substituted thiosemicarbazones derived by 2-quinolone were synthesized to investigate their complexation capability towards Cu(I), Cu(II) and Ni(II) salts. The structure of the complexes was established by ESI, IR and NMR spectra in addition to elemental analyses. Monodetate Cu(I) quinoloyl-substituted ligands were observed, whereas Ni(II) and Cu(II) formed bidentate-thiosemicarbazone derived by 2-quinolones. Subsequently, molecular docking was used to evaluate each analog's binding affinity as well as the inhibition constant (ki) to RdRp complex of SARS-CoV-2. Docking results supported the ability of the tested complexes that potentially inhibit the RdRp of SARSCov-2 show binding energy higher than their corresponding ligands. Additionally, ADMET prediction revealed that some compounds stratify to Lipinski's rule, indicating a good oral absorption, high bioavailability good permeability, and transport via biological membranes. Therefore, these metals-based complexes are suggested to be potentially good candidates as anti-covid agents.
Collapse
Affiliation(s)
- Ashraf A Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Elham M Abdallah
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Salwa A Ahmed
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Mai M Rabee
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | | |
Collapse
|
7
|
Deng B, Xiang J, Liang Z, Luo L. Identification and validation of a ferroptosis-related gene to predict survival outcomes and the immune microenvironment in lung adenocarcinoma. Cancer Cell Int 2022; 22:292. [PMID: 36153508 PMCID: PMC9508770 DOI: 10.1186/s12935-022-02699-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Lung adenocarcinoma (LUAD) is a leading cause of cancer-related death worldwide. Ferroptosis, a form of cell death characterized by iron-dependent lipid peroxidation. However, the involvement of ferroptosis in the regulation of immune cell infiltration and its immunotherapeutic efficacy in LUAD remain unclear.
Methods
The Cancer Genome Atlas (TCGA) LUAD cohort was used to assess the survival prognosis of FRGs and construct a seven-gene risk signature. Correlation tests, difference tests, and a cluster analysis were performed to explore the role of FRGs in the immune microenvironment and their immunotherapeutic efficacy in LUAD. The effects of FRGs on LUAD cells were assessed by Western blot, iron assay, and lipid peroxidation assay.
Results
The seven-gene risk signatures of patients with LUAD were established and validated. FRG clustering based on 70 differentially expressed FRGs was associated with the immune microenvironment and indicated potential immune subtypes of LUAD. The seven-gene risk signature was an independent prognostic factor for LUAD and was used to divide the LUAD cohort into a high-risk and a low-risk group. Immunocyte infiltration levels, immune checkpoints, and immunotherapy response rates were significantly different between the two groups. Patients with high risk scores had lower overall levels of immunocyte infiltration but higher immunotherapy response rates. The key gene ribonucleotide reductase subunit M2 (RRM2) was associated with LUAD prognosis, which may be related to its ability to regulate the infiltration levels of activated mast cells and activated CD4 memory T cells. In addition, RRM2 was involved in ferroptosis, and its expression was up regulated in lung cancer tissues and the LUAD cell lines. Silencing RRM2 can inhibit the proliferation and induce ferroptosis of H1975 cells suggesting that silencing RRM2 could promote ferroptosis in H1975 cells.
Conclusion
Our results revealed RRM2 as a promising biomarker and therapeutic target associated with tumor immune infiltration in patients with LUAD.
Collapse
|
8
|
Fathy A, Ibrahim ABM, Abd Elkhalik S, Villinger A, Abbas SM. Trivalent Cobalt Complexes with NNS Tridentate Thiosemicarbazones: Preparation, Structural Study and Investigation of Antibacterial Activity and Cytotoxicity against Human Breast Cancer Cells. INORGANICS 2022; 10:145. [DOI: 10.3390/inorganics10090145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
New complexes of trivalent cobalt with substituted thiosemicarbazone ligands having an NNS donor system {HL1 = 4-(4-nitrophenyl)-1-((pyridin-2-yl)methylene)thiosemicarbazide and HL2 = 4-(2,5-dimethoxyphenyl)-1-((pyridin-2-yl)methylene)thiosemicarbazide} were synthesized via the in situ oxidation of divalent cobalt chloride accompanying its addition to the ligands. The complexes C1 and C2 were characterized via elemental (CHNS) analysis and 1H NMR, FT-IR and UV-Vis. spectroscopic data. Further, conductometric studies on the DMF solutions of the complexes indicated their 1:1 nature, and their diamagnetism revealed the low-spin trivalent oxidation state of the cobalt in the complexes. The X-ray diffraction analysis of complex C1 indicated that it crystallizes in the triclinic space group P-1. The metal exhibits an octahedral environment built by two anionic ligands bound via pyridine nitrogen, imine nitrogen and thiol sulfur atoms. The complex is counterbalanced by a chloride ion. In addition, two lattice water molecules were detected in the asymmetric unit of the unit cell. The ligand HL2 (20 mg/mL in DMSO) displayed inhibition zones of 10 mm against both S. aureus and E. coli, and the same concentration of the respective complex raised this activity to 15 and 12 mm against these bacterial strains, respectively. As a comparison, ampicillin inhibited these bacterial strains by 21 and 25 mm, respectively. Screening assay by HL1 on four human cancer cells revealed the most enhanced activity against the breast MCF-7 cells. The induced growth inhibitions in the MCF-7 cells by all compounds (0–100 μg/mL) have been detected. The ligands {HL1 and HL2} and complex C2 gave inhibitions with IC50 values of 52.4, 145.4 and 49.9 μM, respectively. These results are more meaningful in comparison with similar cobalt complexes, but less efficient compared with the inhibition with IC50 of 9.66 μM afforded by doxorubicin. In addition, doxorubicin, HL1 and HL2 induced cytotoxicity towards healthy BHK cells with IC50 values of 36.42, 54.8 and 110.6 μM, but surviving fractions of 66.1% and 62.7% of these cells were detected corresponding to a concentration of 100 μg/mL of the complexes (136.8 μM of C1 and 131.4 μM of C2).
Collapse
|
9
|
Huff SE, Winter JM, Dealwis CG. Inhibitors of the Cancer Target Ribonucleotide Reductase, Past and Present. Biomolecules 2022; 12:biom12060815. [PMID: 35740940 PMCID: PMC9221315 DOI: 10.3390/biom12060815] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/02/2023] Open
Abstract
Ribonucleotide reductase (RR) is an essential multi-subunit enzyme found in all living organisms; it catalyzes the rate-limiting step in dNTP synthesis, namely, the conversion of ribonucleoside diphosphates to deoxyribonucleoside diphosphates. As expression levels of human RR (hRR) are high during cell replication, hRR has long been considered an attractive drug target for a range of proliferative diseases, including cancer. While there are many excellent reviews regarding the structure, function, and clinical importance of hRR, recent years have seen an increase in novel approaches to inhibiting hRR that merit an updated discussion of the existing inhibitors and strategies to target this enzyme. In this review, we discuss the mechanisms and clinical applications of classic nucleoside analog inhibitors of hRRM1 (large catalytic subunit), including gemcitabine and clofarabine, as well as inhibitors of the hRRM2 (free radical housing small subunit), including triapine and hydroxyurea. Additionally, we discuss novel approaches to targeting RR and the discovery of new classes of hRR inhibitors.
Collapse
Affiliation(s)
- Sarah E. Huff
- Department of Pediatrics, University of California, San Diego, CA 92093, USA;
| | - Jordan M. Winter
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Akron, OH 44106, USA;
| | - Chris G. Dealwis
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
10
|
Zhou Y, Espenel S, Achkar S, Leary A, Gouy S, Chargari C. Combined modality including novel sensitizers in gynecological cancers. Int J Gynecol Cancer 2022; 32:389-401. [PMID: 35256428 DOI: 10.1136/ijgc-2021-002529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/06/2021] [Indexed: 01/05/2023] Open
Abstract
Standard treatment of locally advanced gynecological cancers relies mainly on platinum-based concurrent chemoradiotherapy followed by brachytherapy. Current chemotherapeutic drugs are only transiently effective and patients with advanced disease often develop resistance and subsequently, distant metastases despite significant initial responses of the primary tumor. In addition, some patients still develop local failure or progression, suggesting that there is still a place for increasing the anti-tumor radiation effect. Several strategies are being developed to increase the probability of curing patients. Vaginal cancer and vulva cancer are rare diseases, which resemble cervical cancer in their histology and pathogenesis. These gynecological cancers are predominantly associated with human papilloma virus infection. Treatment strategies in other unresectable gynecologic cancers are usually derived from evidence in locally advanced cervical cancers. In this review, we discuss mechanisms by which novel therapies could work synergistically with conventional chemoradiotherapy, from pre-clinical and ongoing clinical data. Trimodal, even quadrimodal treatment are currently being tested in clinical trials. Novel combinations derived from a metastatic setting, and being tested in locally advanced tumors, include anti-angiogenic agents, immunotherapy, tumor-infiltrating lymphocytes therapy, adoptive T-cell therapy and apoptosis inducers to enhance chemoradiotherapy efficacy through complementary molecular pathways. In parallel, radiosensitizers, such as nanoparticles and radiosensitizers of hypoxia aim to maximize the effect of radiotherapy locally.
Collapse
Affiliation(s)
- Yuedan Zhou
- Department of Radiation Oncology, CHU Amiens-Picardie, Amiens, Picardie, France
| | - Sophie Espenel
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Samir Achkar
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Alexandra Leary
- Departement of Medical Oncology, Gustave Roussy Cancer Center, Villejuif, France
| | - Sebastien Gouy
- Department of Surgery, Gustave Roussy Cancer Campus, Villejuif, France
| | - Cyrus Chargari
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| |
Collapse
|
11
|
Abdel-Rahman MA, Mahfouz M, Habashy HO. RRM2 expression in different molecular subtypes of breast cancer and its prognostic significance. Diagn Pathol 2022; 17:1. [PMID: 34986845 PMCID: PMC8734361 DOI: 10.1186/s13000-021-01174-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023] Open
Abstract
Background Breast cancer is one of the most common types of cancer. Ribonucleotide reductase (RNR) is a heterodimeric tetramer consisting of two Ribonucleoside-diphosphate reductase large subunits (RRM1) and two Ribonucleoside-diphosphate reductase small subunits (RRM2). RRM2 is the building subunit of RNR that is important for synthesis of Deoxynucleoside triphosphate (dNTP) during S phase of cell cycle during DNA replication. RRM2 is associated with poor prognosis in lung and colorectal cancer. In breast cancer, increased RRM2 protein level is strongly correlated with large tumour size, positive lymph node and relapse. In this study, we aimed to study expression of RRM2 in breast cancer and to correlate it with different clinicopathological parameters in Egyptian women. Material and methods This study was performed by investigating RRM2 protein expression in breast cancer and correlating the results with other clinicopathological variables using immunohistochemistry and tissue microarrays. Results About 77% of cases were RRM2 positive. High Ki67 was observed in cases with high RRM2 score. The majority of non-luminal cases expressed RRM2, however this was statistically insignificant. In ER positive group, RRM2 expression was associated with shorter disease free survival with borderline significance. Conclusion RRM2 protein expression can help in evaluating outcome of breast cancer patients and could be a potential therapeutic target.
Collapse
Affiliation(s)
- Manar Ahmed Abdel-Rahman
- Department of Pathology, Faculty of Medicine, Mansoura University, El-Gomhoria St., Mansoura, Dakahlia, Egypt
| | - Mena Mahfouz
- Department of Pathology, Faculty of Medicine, Mansoura University, El-Gomhoria St., Mansoura, Dakahlia, Egypt
| | - Hany Onsy Habashy
- Department of Pathology, Faculty of Medicine, Mansoura University, El-Gomhoria St., Mansoura, Dakahlia, Egypt.
| |
Collapse
|
12
|
Mourad AA, Rizzk YW, Zaki I, Mohammed FZ, El Behery M. Synthesis and cytotoxicity screening of some synthesized hybrid nitrogen molecules as anticancer agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
Wijesinghe TP, Dharmasivam M, Dai CC, Richardson DR. Innovative therapies for neuroblastoma: The surprisingly potent role of iron chelation in up-regulating metastasis and tumor suppressors and down-regulating the key oncogene, N-myc. Pharmacol Res 2021; 173:105889. [PMID: 34536548 DOI: 10.1016/j.phrs.2021.105889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022]
Abstract
Iron is an indispensable requirement for essential biological processes in cancer cells. Due to the greater proliferation of neoplastic cells, their demand for iron is considerably higher relative to normal cells, making them highly susceptible to iron depletion. Understanding this sensitive relationship led to research exploring the effect of iron chelation therapy for cancer treatment. The classical iron-binding ligand, desferrioxamine (DFO), has demonstrated effective anti-proliferative activity against many cancer-types, particularly neuroblastoma tumors, and has the surprising activity of down-regulating the potent oncogene, N-myc, which is a major oncogenic driver in neuroblastoma. Even more significant is the ability of DFO to simultaneously up-regulate the potent metastasis suppressor, N-myc downstream-regulated gene-1 (NDRG1), which plays a plethora of roles in suppressing a variety of oncogenic signaling pathways. However, DFO suffers the disadvantage of demonstrating poor membrane permeability and short plasma half-life, requiring administration by prolonged subcutaneous or intravenous infusions. Considering this, the specifically designed di-2-pyridylketone thiosemicarbazone (DpT) series of metal-binding ligands was developed in our laboratory. The lead agent from the first generation DpT series, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), showed exceptional anti-cancer properties compared to DFO. However, it exhibited cardiotoxicity in mouse models at higher dosages. Therefore, a second generation of agents was developed with the lead compound being di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) that progressed to Phase I clinical trials. Importantly, DpC showed better anti-proliferative activity than Dp44mT and no cardiotoxicity, demonstrating effective anti-cancer activity against neuroblastoma tumors in vivo.
Collapse
Affiliation(s)
- Tharushi P Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Charles C Dai
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
14
|
Ohmura S, Marchetto A, Orth MF, Li J, Jabar S, Ranft A, Vinca E, Ceranski K, Carreño-Gonzalez MJ, Romero-Pérez L, Wehweck FS, Musa J, Bestvater F, Knott MML, Hölting TLB, Hartmann W, Dirksen U, Kirchner T, Cidre-Aranaz F, Grünewald TGP. Translational evidence for RRM2 as a prognostic biomarker and therapeutic target in Ewing sarcoma. Mol Cancer 2021; 20:97. [PMID: 34315482 PMCID: PMC8314608 DOI: 10.1186/s12943-021-01393-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Shunya Ohmura
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ) & Hopp-Children's Cancer Center (KiTZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.,Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Aruna Marchetto
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Martin F Orth
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jing Li
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ) & Hopp-Children's Cancer Center (KiTZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Susanne Jabar
- Pediatrics III, West German Cancer Centre, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen, Essen, Germany
| | - Andreas Ranft
- Pediatrics III, West German Cancer Centre, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen, Essen, Germany
| | - Endrit Vinca
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ) & Hopp-Children's Cancer Center (KiTZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Katharina Ceranski
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ) & Hopp-Children's Cancer Center (KiTZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Martha J Carreño-Gonzalez
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ) & Hopp-Children's Cancer Center (KiTZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Laura Romero-Pérez
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ) & Hopp-Children's Cancer Center (KiTZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.,Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Fabienne S Wehweck
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Julian Musa
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ) & Hopp-Children's Cancer Center (KiTZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.,Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany.,Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Bestvater
- Light Microscopy Facility, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Maximilian M L Knott
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Tilman L B Hölting
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute for Pathology, University Hospital Münster, Münster, Germany
| | - Uta Dirksen
- Pediatrics III, West German Cancer Centre, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen, Essen, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Florencia Cidre-Aranaz
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ) & Hopp-Children's Cancer Center (KiTZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.,Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas G P Grünewald
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany. .,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ) & Hopp-Children's Cancer Center (KiTZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany. .,Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
15
|
Babak MV, Ahn D. Modulation of Intracellular Copper Levels as the Mechanism of Action of Anticancer Copper Complexes: Clinical Relevance. Biomedicines 2021; 9:biomedicines9080852. [PMID: 34440056 PMCID: PMC8389626 DOI: 10.3390/biomedicines9080852] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022] Open
Abstract
Copper (Cu) is a vital element required for cellular growth and development; however, even slight changes in its homeostasis might lead to severe toxicity and deleterious medical conditions. Cancer patients are typically associated with higher Cu content in serum and tumor tissues, indicating increased demand of cancer cells for this micronutrient. Cu is known to readily cycle between the +1 and +2 oxidation state in biological systems. The mechanism of action of Cu complexes is typically based on their redox activity and induction of reactive oxygen species (ROS), leading to deadly oxidative stress. However, there are a number of other biomolecular mechanisms beyond ROS generation that contribute to the activity of anticancer Cu drug candidates. In this review, we discuss how interfering with intracellular Cu balance via either diet modification or addition of inorganic Cu supplements or Cu-modulating compounds affects tumor development, progression, and sensitivity to treatment modalities. We aim to provide the rationale for the use of Cu-depleting and Cu-overloading conditions to generate the best possible patient outcome with minimal toxicity. We also discuss the advantages of the use of pre-formed Cu complexes, such as Cu-(bis)thiosemicarbazones or Cu-N-heterocyclic thiosemicarbazones, in comparison with the in situ formed Cu complexes with metal-binding ligands. In this review, we summarize available clinical and mechanistic data on clinically relevant anticancer drug candidates, including Cu supplements, Cu chelators, Cu ionophores, and Cu complexes.
Collapse
|
16
|
Abstract
Cancer cells accumulate iron to supplement their aberrant growth and metabolism. Depleting cells of iron by iron chelators has been shown to be selectively cytotoxic to cancer cells in vitro and in vivo. Iron chelators are effective at combating a range of cancers including those which are difficult to treat such as androgen insensitive prostate cancer and cancer stem cells. This review will evaluate the impact of iron chelation on cancer cell survival and the underlying mechanisms of action. A plethora of studies have shown iron chelators can reverse some of the major hallmarks and enabling characteristics of cancer. Iron chelators inhibit signalling pathways that drive proliferation, migration and metastasis as well as return tumour suppressive signalling. In addition to this, iron chelators stimulate apoptotic and ER stress signalling pathways inducing cell death even in cells lacking a functional p53 gene. Iron chelators can sensitise cancer cells to PARP inhibitors through mimicking BRCAness; a feature of cancers trademark genomic instability. Iron chelators target cancer cell metabolism, attenuating oxidative phosphorylation and glycolysis. Moreover, iron chelators may reverse the major characteristics of oncogenic transformation. Iron chelation therefore represent a promising selective mode of cancer therapy.
Collapse
|
17
|
Shakya B, Yadav PN. Thiosemicarbazones as Potent Anticancer Agents and their Modes of Action. Mini Rev Med Chem 2020; 20:638-661. [DOI: 10.2174/1389557519666191029130310] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/17/2019] [Accepted: 10/03/2019] [Indexed: 11/22/2022]
Abstract
:Thiosemicarbazones (TSCs) are a class of Schiff bases usually obtained by the condensation of thiosemicarbazide with a suitable aldehyde or ketone. TSCs have been the focus of chemists and biologists due to their wide range of pharmacological effects. One of the promising areas in which these excellent metal chelators are being developed is their use against cancer. TSCs have a wide clinical antitumor spectrum with efficacy in various tumor types such as leukemia, pancreatic cancer, breast cancer, non-small cell lung cancer, cervical cancer, prostate cancer and bladder cancer. To obtain better activity, different series of TSCs have been developed by modifying the heteroaromatic system in their molecules. These compounds possessed significant antineoplastic activity when the carbonyl attachment of the side chain was located at a position α to the ring nitrogen atom, whereas attachment of the side chain β or γ to the heterocyclic N atom resulted in inactive antitumor agents. In addition, replacement of the heterocyclic ring N with C also resulted in a biologically inactive compound suggesting that a conjugated N,N,S-tridentate donor set is essential for the biological activities of thiosemicarbazones. Several possible mechanisms have been implemented for the anticancer activity of thiosemicarbazones.
Collapse
Affiliation(s)
- Bhushan Shakya
- Amrit Campus, Tribhuvan University, Thamel, Kathmandu, Nepal
| | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
18
|
Synthesis and anticancer activities of thiosemicarbazones derivatives of thiochromanones and related scaffolds. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02503-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Selenotriapine – An isostere of the most studied thiosemicarbazone with pronounced pro-apoptotic activity, low toxicity and ability to challenge phenotype reprogramming of 3-D mammary adenocarcinoma tumors. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
20
|
New series of water-soluble thiosemicarbazones and their copper(II) complexes as potentially promising anticancer compounds. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Wang J, Wang YT, Fang Y, Lu YL, Li MX. Tin thiocarbonohydrazone complexes: synthesis, crystal structures and biological evaluation. Toxicol Res (Camb) 2019; 8:862-867. [PMID: 32206301 DOI: 10.1039/c9tx00109c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/27/2019] [Indexed: 12/25/2022] Open
Abstract
In this article, three organotin complexes formulated as [(Me)2Sn(H2L1)] (1), [(Ph)2Sn(H2L1)]·MeOH (2) and [(Me)2Sn(HL2)(OAc)]4(Me)2O (3) (H4L1 = bis(2-hydroxybenzaldehyde) thiocarbohydrazone and H2L2 = bis(2-acetylpyrazine) thiocarbonohydrazone) have been synthesized and structurally characterized. Growth inhibition assays indicated that both the proligands and the three complexes are capable of showing anticancer activity against the human hepatocellular carcinoma HepG2 cells with H2L2 and complex 3 showing much higher cytotoxic potential. Subsequent toxicity studies on normal QSG7701cells showed that complex 3 has the highest tumor cell selectivity, and its IC50 value on QSG7701 cells is 8.48 fold higher than that in HepG2 cells. In acute toxicity experiments, complex 3 produces a dose-dependent effect in NIH mice with a LD50 value of 17.2 mg kg-1.
Collapse
Affiliation(s)
- Jin Wang
- College of Life Science and Agronomy , Zhoukou Normal University , Zhoukou 466000 , Henan , P.R. China .
| | - Yu-Ting Wang
- College of Chemistry and Environment , Henan Institute of Finance and Banking , Zhengzhou , 450046 , Henan , P.R. China
| | - Yan Fang
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , Henan , P.R. China .
| | - Yan-Li Lu
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , Henan , P.R. China .
| | - Ming-Xue Li
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , Henan , P.R. China .
| |
Collapse
|
22
|
Kunos CA, Andrews SJ, Moore KN, Chon HS, Ivy SP. Randomized Phase II Trial of Triapine-Cisplatin-Radiotherapy for Locally Advanced Stage Uterine Cervix or Vaginal Cancers. Front Oncol 2019; 9:1067. [PMID: 31681600 PMCID: PMC6803528 DOI: 10.3389/fonc.2019.01067] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/30/2019] [Indexed: 11/13/2022] Open
Abstract
Uterine cervix or vaginal cancers have inherent overactivity of ribonucleotide reductase (RNR), making these cancers rational targets for therapy based on interruption of cisplatin-radiotherapy-induced DNA damage repair. We conducted a pilot, open-label randomized phase II trial to evaluate the efficacy and safety of cisplatin-radiotherapy with or without triapine, a small molecule with RNR-inhibitory activity, in patients with advanced-stage uterine cervix or vaginal cancers (NCT01835171), as a lead in to a randomized phase III study (NCT02466971). A total of 26 women were randomly assigned to receive 6 weeks of daily radiotherapy followed by brachytherapy (80 Gy) and once-weekly cisplatin (40 mg m−2)—with or without three-times weekly intravenous triapine (25 mg m−2)—in one 56-days cycle. Primary end points were metabolic complete response by positron emission tomography and safety. Additional end points included the rate of clinical response, rate of methemoglobinemia, and progression-free survival. The addition of triapine to cisplatin-radiotherapy improved the rate of metabolic complete response from 69 to 92% (P = 0.32) and raised the 3-year progression-free survival estimate from 77 to 92% (hazard ratio for progression, 0.30; P = 0.27). The most frequent grade 3 or 4 adverse events in either treatment group included reversible leukopenia, neutropenia, fatigue, or electrolyte abnormalities. No significant differences were seen between the two groups in the rate of adverse events. Symptomatic methemoglobinemia was not encountered after triapine infusion. In conclusion, the addition of triapine to cisplatin-radiotherapy improved the rate of metabolic complete response in patients with advanced-stage uterine cervix or vaginal cancers without significant toxicity. A phase III trial adequately powered to evaluate progression-free and overall survival is underway (NCT02466971).
Collapse
Affiliation(s)
- Charles A Kunos
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, United States
| | | | - Kathleen N Moore
- University of Oklahoma Stephenson Cancer Center, Oklahoma City, OK, United States
| | - Hye Sook Chon
- H. Lee Moffitt Cancer & Research Institute, Tampa, FL, United States
| | - S Percy Ivy
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
23
|
Nickel Complexes Bearing SNN and SS Donor Atom Ligands: Synthesis, Structural Characterization and Biological activity. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Antholine WE, Myers CR. Concentration of Fe(3+)-Triapine in BEAS-2B Cells. Int J Mol Sci 2019; 20:ijms20123062. [PMID: 31234559 PMCID: PMC6627071 DOI: 10.3390/ijms20123062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 11/16/2022] Open
Abstract
An electron paramagnetic resonance (EPR) method was used to determine the concentration of the antitumor agent Triapine in BEAS-2B cells when Triapine was bound to iron (Fe). Knowledge of the concentration of Fe-Triapine in tumor cells may be useful to adjust the administration of the drug or to adjust iron uptake in tumor cells. An EPR spectrum is obtained for Fe(3+)-Triapine, Fe(3+)(Tp)2+, in BEAS-2B cells after addition of Fe(3+)(Tp)2+. Detection of the low spin signal for Fe(3+)(Tp)2+ shows that the Fe(3+)(Tp)2+ complex is intact in these cells. It is proposed that Triapine acquires iron from transferrin in cells including tumor cells. Here, it is shown that iron from purified Fe-transferrin is transferred to Triapine after the addition of ascorbate. To our knowledge, this is the first time that the EPR method has been used to determine the concentration of an iron antitumor agent in cells.
Collapse
Affiliation(s)
- William E Antholine
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Charles R Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
25
|
Merlot AM, Kalinowski DS, Kovacevic Z, Jansson PJ, Sahni S, Huang MLH, Lane DJ, Lok H, Richardson DR. Exploiting Cancer Metal Metabolism using Anti-Cancer Metal- Binding Agents. Curr Med Chem 2019; 26:302-322. [DOI: 10.2174/0929867324666170705120809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023]
Abstract
Metals are vital cellular elements necessary for multiple indispensable biological processes of living organisms, including energy transduction and cell proliferation. Interestingly, alterations in metal levels and also changes in the expression of proteins involved in metal metabolism have been demonstrated in a variety of cancers. Considering this and the important role of metals for cell growth, the development of drugs that sequester metals has become an attractive target for the development of novel anti-cancer agents. Interest in this field has surged with the design and development of new generations of chelators of the thiosemicarbazone class. These ligands have shown potent anticancer and anti-metastatic activity in vitro and in vivo. Due to their efficacy and safe toxicological assessment, some of these agents have recently entered multi-center clinical trials as therapeutics for advanced and resistant tumors. This review highlights the role and changes in homeostasis of metals in cancer and emphasizes the pre-clinical development and clinical assessment of metal ion-binding agents, namely, thiosemicarbazones, as antitumor agents.
Collapse
Affiliation(s)
- Angelica M. Merlot
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Danuta S. Kalinowski
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Patric J. Jansson
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Michael L.-H. Huang
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Darius J.R. Lane
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Hiu Lok
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Des R. Richardson
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| |
Collapse
|
26
|
Heffeter P, Pape VFS, Enyedy ÉA, Keppler BK, Szakacs G, Kowol CR. Anticancer Thiosemicarbazones: Chemical Properties, Interaction with Iron Metabolism, and Resistance Development. Antioxid Redox Signal 2019; 30:1062-1082. [PMID: 29334758 DOI: 10.1089/ars.2017.7487] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE During the past decades, thiosemicarbazones were clinically developed for a variety of diseases, including tuberculosis, viral infections, malaria, and cancer. With regard to malignant diseases, the class of α-N-heterocyclic thiosemicarbazones, and here especially 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (Triapine), was intensively developed in multiple clinical phase I/II trials. Recent Advances: Very recently, two new derivatives, namely COTI-2 and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) have entered phase I evaluation. Based on the strong metal-chelating/metal-interacting properties of thiosemicarbazones, interference with the cellular iron (and copper) homeostasis is assumed to play an important role in their biological activity. CRITICAL ISSUES In this review, we summarize and analyze the data on the interaction of (α-N-heterocyclic) thiosemicarbazones with iron, with the special aim of bridging the current knowledge on their mode of action from chemistry to (cell) biology. In addition, we highlight the difference to classical iron(III) chelators such as desferrioxamine (DFO), which are used for the treatment of iron overload. FUTURE DIRECTIONS We want to emphasize that thiosemicarbazones are not solely removing iron from the cells/organism. In contrast, they should be considered as iron-interacting drugs influencing diverse biological pathways in a complex and multi-faceted mode of action. Consequently, in addition to the discussion of physicochemical properties (e.g., complex stability, redox activity), this review contains an overview on the diversity of cellular thiosemicarbazone targets and drug resistance mechanisms.
Collapse
Affiliation(s)
- Petra Heffeter
- 1 Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center of the Medical University, Medical University of Vienna , Vienna, Austria .,2 Research Cluster "Translational Cancer Therapy Research," Vienna, Austria
| | - Veronika F S Pape
- 3 Institute of Enzymology , Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary .,4 Department of Physiology, Faculty of Medicine, Semmelweis University , Budapest, Hungary
| | - Éva A Enyedy
- 5 Department of Inorganic and Analytical Chemistry, University of Szeged , Szeged, Hungary
| | - Bernhard K Keppler
- 2 Research Cluster "Translational Cancer Therapy Research," Vienna, Austria .,6 Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna , Vienna, Austria
| | - Gergely Szakacs
- 1 Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center of the Medical University, Medical University of Vienna , Vienna, Austria .,3 Institute of Enzymology , Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Christian R Kowol
- 2 Research Cluster "Translational Cancer Therapy Research," Vienna, Austria .,6 Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna , Vienna, Austria
| |
Collapse
|
27
|
Moussa RS, Park KC, Kovacevic Z, Richardson DR. Ironing out the role of the cyclin-dependent kinase inhibitor, p21 in cancer: Novel iron chelating agents to target p21 expression and activity. Free Radic Biol Med 2019; 133:276-294. [PMID: 29572098 DOI: 10.1016/j.freeradbiomed.2018.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/02/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
Abstract
Iron (Fe) has become an important target for the development of anti-cancer therapeutics with a number of Fe chelators entering human clinical trials for advanced and resistant cancer. An important aspect of the activity of these compounds is their multiple molecular targets, including those that play roles in arresting the cell cycle, such as the cyclin-dependent kinase inhibitor, p21. At present, the exact mechanism by which Fe chelators regulate p21 expression remains unclear. However, recent studies indicate the ability of chelators to up-regulate p21 at the mRNA level was dependent on the chelator and cell-type investigated. Analysis of the p21 promoter identified that the Sp1-3-binding site played a significant role in the activation of p21 transcription by Fe chelators. Furthermore, there was increased Sp1/ER-α and Sp1/c-Jun complex formation in melanoma cells, suggesting these complexes were involved in p21 promoter activation. Elucidating the mechanisms involved in the regulation of p21 expression in response to Fe chelator treatment in neoplastic cells will further clarify how these agents achieve their anti-tumor activity. It will also enhance our understanding of the complex roles p21 may play in neoplastic cells and lead to the development of more effective and specific anti-cancer therapies.
Collapse
Affiliation(s)
- Rayan S Moussa
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
28
|
Palamarciuc O, Milunović MNM, Sîrbu A, Stratulat E, Pui A, Gligorijevic N, Radulovic S, Kožíšek J, Darvasiová D, Rapta P, Enyedy EA, Novitchi G, Shova S, Arion VB. Investigation of the cytotoxic potential of methyl imidazole-derived thiosemicarbazones and their copper(ii) complexes with dichloroacetate as a co-ligand. NEW J CHEM 2019. [DOI: 10.1039/c8nj04041a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Investigation of the cytotoxic potential of imidazole-derived thiosemicarbazones and their copper(ii) complexes with CHCl2CO2− as a co-ligand.
Collapse
|
29
|
Kallus S, Uhlik L, van Schoonhoven S, Pelivan K, Berger W, Enyedy ÉA, Hofmann T, Heffeter P, Kowol CR, Keppler BK. Synthesis and biological evaluation of biotin-conjugated anticancer thiosemicarbazones and their iron(III) and copper(II) complexes. J Inorg Biochem 2019; 190:85-97. [PMID: 30384010 DOI: 10.1016/j.jinorgbio.2018.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/01/2018] [Accepted: 10/14/2018] [Indexed: 12/24/2022]
Abstract
Triapine, the most prominent anticancer drug candidate from the substance class of thiosemicarbazones, was investigated in >30 clinical phase I and II studies. However, the results were rather disappointing against solid tumors, which can be explained (at least partially) due to inefficient delivery to the tumor site. Hence, we synthesized the first biotin-functionalized thiosemicarbazone derivatives in order to increase tumor specificity and accumulation. Additionally, for Triapine and one biotin conjugate the iron(III) and copper(II) complexes were prepared. Subsequently, the novel compounds were biologically evaluated on a cell line panel with different biotin uptake. The metal-free biotin-conjugated ligands showed comparable activity to the reference compound Triapine. However, astonishingly, the metal complexes of the biotinylated derivative showed strikingly decreased anticancer activity. To further analyze possible differences between the metal complexes, detailed physico- and electrochemical experiments were performed. However, neither lipophilicity or complex solution stability, nor the reduction potential or behavior in the presence of biologically relevant reducing agents showed strong variations between the biotinylated and non-biotinylated derivatives (only some differences in the reduction kinetics were observed). Nonetheless, the metal-free biotin-conjugate of Triapine revealed distinct activity in a colon cancer mouse model upon oral application comparable to Triapine. Therefore, this type of biotin-conjugated thiosemicarbazone is of interest for further synthetic strategies and biological studies.
Collapse
Affiliation(s)
- Sebastian Kallus
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria
| | - Lukas Uhlik
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkeg. 8a, A-1090 Vienna, Austria
| | - Sushilla van Schoonhoven
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkeg. 8a, A-1090 Vienna, Austria
| | - Karla Pelivan
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkeg. 8a, A-1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", Vienna, Austria
| | - Éva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary
| | - Thilo Hofmann
- Department of Environmental Geosciences, University of Vienna, Althanstraße 14, A-1090, Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkeg. 8a, A-1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", Vienna, Austria.
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", Vienna, Austria.
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", Vienna, Austria
| |
Collapse
|
30
|
Pelivan K, Frensemeier L, Karst U, Koellensperger G, Bielec B, Hager S, Heffeter P, Keppler BK, Kowol CR. Understanding the metabolism of the anticancer drug Triapine: electrochemical oxidation, microsomal incubation and in vivo analysis using LC-HRMS. Analyst 2018; 142:3165-3176. [PMID: 28745337 DOI: 10.1039/c7an00902j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
α-N-Heterocyclic thiosemicarbazones are among the most promising ribonucleotide reductase inhibitors identified so far. Triapine, the most prominent representative of this class of substances, has been investigated in multiple phase I and II clinical trials. With regard to clinical practice, Triapine showed activity against hematological diseases, but ineffectiveness against a variety of solid tumors. However, the reasons are still vague and the amount of ADME (absorption, distribution, metabolism and excretion) data for Triapine available in the literature is very limited. Therefore, different analytical tools were used to investigate the metabolism of Triapine including electrochemical oxidations, liver microsomes and in vivo samples from mice. The main metabolic reactions, observed by all three methods, were dehydrogenation and hydroxylations, confirming that electrochemistry, as a purely instrumental approach, can be applied for the simulation of metabolic pathways. The dehydrogenated metabolite M1 was identified as a thiadiazole ring-closed oxidation product of Triapine. From a biological point of view, M1, as a key metabolite, is of interest since the crucial chemical property of α-N-heterocyclic thiosemicarbazones to bind metal ions is lost and cytotoxicity studies showed no anticancer activity of M1. The in vivo data of the urine samples revealed very high levels of the metabolites and Triapine itself already 15 min after treatment. This clearly indicates that Triapine is rapidly metabolised and excreted, which represents an important step forward to understand the possible reason for the inefficiency of Triapine against solid tumors.
Collapse
Affiliation(s)
- Karla Pelivan
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Das B, Roy J, Jain N, Mallick B. Tumor suppressive activity of PIWI-interacting RNA in human fibrosarcoma mediated through repression of RRM2. Mol Carcinog 2018; 58:344-357. [DOI: 10.1002/mc.22932] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Basudeb Das
- RNAi and Functional Genomics Lab; Department of Life Science; National Institute of Technology; Rourkela Odisha India
| | - Jyoti Roy
- RNAi and Functional Genomics Lab; Department of Life Science; National Institute of Technology; Rourkela Odisha India
| | - Neha Jain
- RNAi and Functional Genomics Lab; Department of Life Science; National Institute of Technology; Rourkela Odisha India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab; Department of Life Science; National Institute of Technology; Rourkela Odisha India
| |
Collapse
|
32
|
Sîrbu A, Palamarciuc O, Babak MV, Lim JM, Ohui K, Enyedy EA, Shova S, Darvasiová D, Rapta P, Ang WH, Arion VB. Copper(ii) thiosemicarbazone complexes induce marked ROS accumulation and promote nrf2-mediated antioxidant response in highly resistant breast cancer cells. Dalton Trans 2018; 46:3833-3847. [PMID: 28271099 DOI: 10.1039/c7dt00283a] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of water-soluble sodium salts of 3-formyl-4-hydroxybenzenesulfonic acid thiosemicarbazones (or sodium 5-sulfonate-salicylaldehyde thiosemicarbazones) containing different substituents at the terminal nitrogen atom (H, Me, Et, Ph) and their copper(ii) complexes have been prepared and characterised by elemental analysis, spectroscopic techniques (IR, UV-vis, 1H NMR), ESI mass spectrometry, X-ray crystallography and cyclic voltammetry. The proligands and their copper(ii) complexes exhibit moderate water solubility and good stability in aqueous environment, determined by investigating their proton dissociation and complex formation equilibria. The copper(ii) complexes showed moderate anticancer activity in established human cancer cell lines, while the proligands were devoid of cytotoxicity. The anticancer activity of the copper(ii) complexes correlates with their ability to induce ROS accumulation in cells, consistent with their redox potentials within the biological window, triggering the activation of antioxidation defense mechanisms in response to the ROS insult. These studies pave the way for the investigation of ROS-inducing copper(ii) complexes as prospective antiproliferative agents in cancer chemotherapy.
Collapse
Affiliation(s)
- Angela Sîrbu
- Moldova State University, Department of Chemistry, A. Mateevici Street 60, MD-2009, Chisinau, Republic of Moldova
| | - Oleg Palamarciuc
- Moldova State University, Department of Chemistry, A. Mateevici Street 60, MD-2009, Chisinau, Republic of Moldova
| | - Maria V Babak
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore.
| | - Jia Min Lim
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore.
| | - Kateryna Ohui
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria.
| | - Eva A Enyedy
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7., H-6720 Szeged, Hungary
| | - Sergiu Shova
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, Nr. 41A, 700487 Iasi, Romania
| | - Denisa Darvasiová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore.
| | - Vladimir B Arion
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria.
| |
Collapse
|
33
|
Kunos CA, Ivy SP. Triapine Radiochemotherapy in Advanced Stage Cervical Cancer. Front Oncol 2018; 8:149. [PMID: 29868473 PMCID: PMC5949312 DOI: 10.3389/fonc.2018.00149] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022] Open
Abstract
Clinical ribonucleotide reductase (RNR) inhibitors have reinvigorated enthusiasm for radiochemotherapy treatment of patients with regionally advanced stage cervical cancers. About two-thirds of patients outlive their cervical cancer (1), even though up to half of their tumors retain residual microscopic disease (2). The National Cancer Institute Cancer Therapy Evaluation Program conducted two prospective trials of triapine–cisplatin–radiation to improve upon this finding by precisely targeting cervical cancer’s overactive RNR. Triapine’s potent inactivation of RNR arrests cells at the G1/S cell cycle restriction checkpoint and enhances cisplatin–radiation cytotoxicity. In this article, we provide perspective on challenges encountered in and future potential of clinical development of a triapine–cisplatin–radiation combination for patients with regionally advanced cervical cancer. New trial results and review presented here suggest that a triapine–cisplatin–radiation combination may offer molecular cell cycle target control to maximize damage in cancers and to minimize injury to normal cells. A randomized trial now accrues patients with regionally advanced stage cervical cancer to evaluate triapine’s contribution to clinical benefit after cisplatin–radiation (clinicaltrials.gov, NCT02466971).
Collapse
Affiliation(s)
- Charles A Kunos
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, United States
| | - S Percy Ivy
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
34
|
Karlsson H, Fryknäs M, Strese S, Gullbo J, Westman G, Bremberg U, Sjöblom T, Pandzic T, Larsson R, Nygren P. Mechanistic characterization of a copper containing thiosemicarbazone with potent antitumor activity. Oncotarget 2018; 8:30217-30234. [PMID: 28415818 PMCID: PMC5444738 DOI: 10.18632/oncotarget.16324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/08/2017] [Indexed: 01/05/2023] Open
Abstract
Background The thiosemicarbazone CD 02750 (VLX50) was recently reported as a hit compound in a phenotype-based drug screen in primary cultures of patient tumor cells. We synthesized a copper complex of VLX50, denoted VLX60, and characterized its antitumor and mechanistic properties. Materials and Methods The cytotoxic effects and mechanistic properties of VLX60 were investigated in monolayer cultures of multiple human cell lines, in tumor cells from patients, in a 3-D spheroid cell culture system and in vivo and were compared with those of VLX50. Results VLX60 showed ≥ 3-fold higher cytotoxic activity than VLX50 in 2-D cultures and, in contrast to VLX50, retained its activity in the presence of additional iron. VLX60 was effective against non-proliferative spheroids and against tumor xenografts in vivo in a murine model. In contrast to VLX50, gene expression analysis demonstrated that genes associated with oxidative stress were considerably enriched in cells exposed to VLX60 as was induction of reactive oxygen. VLX60 compromised the ubiquitin-proteasome system and was more active in BRAF mutated versus BRAF wild-type colon cancer cells. Conclusions The cytotoxic effects of the copper thiosemicarbazone VLX60 differ from those of VLX50 and shows interesting features as a potential antitumor drug, notably against BRAF mutated colorectal cancer.
Collapse
Affiliation(s)
| | - Mårten Fryknäs
- Department of Medical Sciences, Uppsala University, Sweden
| | - Sara Strese
- Department of Medical Sciences, Uppsala University, Sweden
| | - Joachim Gullbo
- Department of Medical Sciences, Uppsala University, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Gunnar Westman
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ulf Bremberg
- Department of Medicinal Chemistry, Uppsala University, Sweden
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Tatjana Pandzic
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Rolf Larsson
- Department of Medical Sciences, Uppsala University, Sweden
| | - Peter Nygren
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| |
Collapse
|
35
|
Kunos CA, Kohn EC. Editorial: New Approaches to Radiation-Therapeutic Agent Cancer Care for Women. Front Oncol 2018; 7:276. [PMID: 29473016 PMCID: PMC5696330 DOI: 10.3389/fonc.2017.00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/03/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Charles A Kunos
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, United States
| | - Elise C Kohn
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
36
|
Comparison of metabolic pathways of different α-N-heterocyclic thiosemicarbazones. Anal Bioanal Chem 2018; 410:2343-2361. [PMID: 29476231 PMCID: PMC5849672 DOI: 10.1007/s00216-018-0889-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/20/2017] [Accepted: 01/16/2018] [Indexed: 12/16/2022]
Abstract
Clinical failure of novel drugs is often related to their rapid metabolism and excretion. This highlights the importance of elucidation of their pharmacokinetic profile already at the preclinical stage of drug development. Triapine, the most prominent representative of α-N-heterocyclic thiosemicarbazones, was investigated in more than 30 clinical phase I/II trials, but the results against solid tumors were disappointing. Recent investigations from our group suggested that this is, at least partially, based on the fast metabolism and excretion. In order to establish more detailed structure/activity/metabolism relationships, herein a panel of 10 different Triapine derivatives was investigated for their metabolic pathways. From the biological point of view, the panel consists of terminally dimethylated thiosemicarbazones with nanomolar IC50 values, derivatives with micromolar cytotoxicities comparable to Triapine and a completely inactive representative. To study the oxidative metabolism, a purely instrumental approach based on electrochemistry/mass spectrometry was applied and the results were compared to the data obtained from microsomal incubations. Overall, the investigated thiosemicarbazones underwent the phase I metabolic reactions dehydrogenation, hydroxylation, oxidative desulfuration (to semicarbazone and amidrazone) and demethylation. Notably, dehydrogenation resulted in a ring-closure reaction with formation of thiadiazoles. Although strong differences between the metabolic pathways of the different thiosemicarbazones were observed, they could not be directly correlated to their cytotoxicities. Finally, the metabolic pathways for the most cytotoxic compound were elucidated also in tissues collected from drug-treated mice, confirming the data obtained by electrochemical oxidation and microsomes. In addition, the in vivo experiments revealed a very fast metabolism and excretion of the compound. Structure/activity/metabolisation relationships for 10 anticancer thiosemicarbazones were established using electrochemical oxidation coupled to mass spectrometry (EC-MS) and human liver microsomes analyzed by LC-MS ![]()
Collapse
|
37
|
PAN-811 prevents chemotherapy-induced cognitive impairment and preserves neurogenesis in the hippocampus of adult rats. PLoS One 2018; 13:e0191866. [PMID: 29370277 PMCID: PMC5785016 DOI: 10.1371/journal.pone.0191866] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/13/2018] [Indexed: 12/29/2022] Open
Abstract
Chemotherapy-induced cognitive impairment (CICI) occurs in a substantial proportion of treated cancer patients, with no drug currently available for its therapy. This study investigated whether PAN-811, a ribonucleotide reductase inhibitor, can reduce cognitive impairment and related suppression of neurogenesis following chemotherapy in an animal model. Young adult rats in Chemo and Chemo+PAN-811 groups received 3 intraperitoneal (i.p.) injections of methotrexate (MTX) and 5-fluorouracil (5-FU), and those in Saline and Saline+PAN-811 groups received equal volumes of physiological saline at 10-day intervals. PAN-811 in saline was delivered through i.p. injection, 10 min following each saline (Saline+PAN-811 group) or MTX/5-FU (Chemo+PAN-811 group) treatment, while equal volumes of saline were delivered to Saline and Chemo groups. Over Days 31–66, rats were administered tests of spatial memory, nonmatching-to-sample rule learning, and discrimination learning, which are sensitive to dysfunction in hippocampus, frontal lobe and striatum, respectively. On Day 97, neurogenesis was immnunohistochemically evaluated by counting doublecortin-positive (DCX+) cells in the dentate gyrus (DG). The results demonstrated that the Chemo group was impaired on the three cognitive tasks, but co-administration of PAN-811 significantly reduced all MTX/5-FU-induced cognitive impairments. In addition, MTX/5-FU reduced DCX+ cells to 67% of that in Saline control rats, an effect that was completely blocked by PAN-811 co-administration. Overall, we present the first evidence that PAN-811 protects cognitive functions and preserves neurogenesis from deleterious effects of MTX/5-FU. The current findings provide a basis for rapid clinical translation to determine the effect of PAN-811 on CICI in human.
Collapse
|
38
|
Kunos CA, Coleman CN. Current and Future Initiatives for Radiation Oncology at the National Cancer Institute in the Era of Precision Medicine. Int J Radiat Oncol Biol Phys 2018; 102:18-25. [PMID: 29325810 DOI: 10.1016/j.ijrobp.2017.02.225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/07/2017] [Accepted: 02/28/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Charles A Kunos
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland.
| | - C Norman Coleman
- Radiation Research Program, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
39
|
Kunos CA, Chu E, Makower D, Kaubisch A, Sznol M, Ivy SP. Phase I Trial of Triapine-Cisplatin-Paclitaxel Chemotherapy for Advanced Stage or Metastatic Solid Tumor Cancers. Front Oncol 2017; 7:62. [PMID: 28421163 PMCID: PMC5378786 DOI: 10.3389/fonc.2017.00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/20/2017] [Indexed: 02/01/2023] Open
Abstract
Ribonucleotide reductase (RNR) is an enzyme involved in the de novo synthesis of deoxyribonucleotides, which are critical for DNA replication and DNA repair. Triapine is a small-molecule RNR inhibitor. A phase I trial studied the safety of triapine in combination with cisplatin–paclitaxel in patients with advanced stage or metastatic solid tumor cancers in an effort to capitalize on disrupted DNA damage repair. A total of 13 patients with various previously treated cancers were given a 96-h continuous intravenous (i.v.) infusion of triapine (40–120 mg/m2) on day 1, and then 3-h i.v. paclitaxel (80 mg/m2) followed by 1-h i.v. cisplatin (50–75 mg/m2) on day 3. This combination regimen was repeated every 21 days. The maximum tolerated dose (MTD) for each agent was identified to be triapine (80 mg/m2), cisplatin (50 mg/m2), and paclitaxel (80 mg/m2). Common grade 3 or 4 toxicities included reversible anemia, leukopenia, thrombocytopenia, or electrolyte abnormalities. The combination regimen of triapine–cisplatin–paclitaxel resulted in no objective responses; however, five (83%) of six patients treated at the MTD had stable disease between 1 and 8 months duration. This phase I study showed that the combination regimen of triapine–cisplatin–paclitaxel was safe and provides a rational basis for a follow-up phase II trial to evaluate efficacy and progression-free survival in women with metastatic or recurrent uterine cervix cancer.
Collapse
Affiliation(s)
- Charles A Kunos
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| | - Edward Chu
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | - Mario Sznol
- Yale University School of Medicine, Yale Cancer Center, New Haven, CT, USA
| | - Susan Percy Ivy
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
40
|
Bacher F, Dömötör O, Enyedy ÉA, Filipović L, Radulović S, Smith GS, Arion VB. Complex formation reactions of gallium(III) and iron(III/II) with l-proline-thiosemicarbazone hybrids: A comparative study. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.06.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Sestak V, Stariat J, Cermanova J, Potuckova E, Chladek J, Roh J, Bures J, Jansova H, Prusa P, Sterba M, Micuda S, Simunek T, Kalinowski DS, Richardson DR, Kovarikova P. Novel and potent anti-tumor and anti-metastatic di-2-pyridylketone thiosemicarbazones demonstrate marked differences in pharmacology between the first and second generation lead agents. Oncotarget 2016; 6:42411-28. [PMID: 26623727 PMCID: PMC4767442 DOI: 10.18632/oncotarget.6389] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/11/2015] [Indexed: 01/15/2023] Open
Abstract
Di(2-pyridyl)ketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di(2-pyridyl)ketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) are novel, highly potent and selective anti-tumor and anti-metastatic drugs. Despite their structural similarity, these agents differ in their efficacy and toxicity in-vivo. Considering this, a comparison of their pharmacokinetic and pharmaco/toxico-dynamic properties was conducted to reveal if these factors are involved in their differential activity. Both compounds were administered to Wistar rats intravenously (2 mg/kg) and their metabolism and disposition were studied using UHPLC-MS/MS. The cytotoxicity of both thiosemicarbazones and their metabolites was also examined using MCF-7, HL-60 and HCT116 tumor cells and 3T3 fibroblasts and H9c2 cardiac myoblasts. Their intracellular iron-binding ability was characterized by the Calcein-AM assay and their iron mobilization efficacy was evaluated. In contrast to DpC, Dp44mT undergoes rapid demethylation in-vivo, which may be related to its markedly faster elimination (T1/2 = 1.7 h for Dp44mT vs. 10.7 h for DpC) and lower exposure. Incubation of these compounds with cancer cells or cardiac myoblasts did not result in any significant metabolism in-vitro. The metabolism of Dp44mT in-vivo resulted in decreased anti-cancer activity and toxicity. In conclusion, marked differences in the pharmacology of Dp44mT and DpC were observed and highlight the favorable pharmacokinetics of DpC for cancer treatment.
Collapse
Affiliation(s)
- Vit Sestak
- Department of Pharmaceutical Chemistry and Drug Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Jan Stariat
- Department of Pharmaceutical Chemistry and Drug Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Jolana Cermanova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova, Hradec Kralove, Czech Republic
| | - Eliska Potuckova
- Department of Biochemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Jaroslav Chladek
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova, Hradec Kralove, Czech Republic
| | - Jaroslav Roh
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Jan Bures
- Department of Pharmaceutical Chemistry and Drug Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Hana Jansova
- Department of Biochemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Petr Prusa
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Martin Sterba
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova, Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova, Hradec Kralove, Czech Republic
| | - Tomas Simunek
- Department of Biochemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Petra Kovarikova
- Department of Pharmaceutical Chemistry and Drug Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| |
Collapse
|
42
|
Dobrova A, Platzer S, Bacher F, Milunovic MNM, Dobrov A, Spengler G, Enyedy ÉA, Novitchi G, Arion VB. Structure-antiproliferative activity studies on l-proline- and homoproline-4-N-pyrrolidine-3-thiosemicarbazone hybrids and their nickel(ii), palladium(ii) and copper(ii) complexes. Dalton Trans 2016; 45:13427-39. [PMID: 27485263 DOI: 10.1039/c6dt02784a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two water-soluble thiosemicarbazone-proline (H2L(1)) and thiosemicarbazone-homoproline hybrids (H2L(2)) were synthesised. By reaction of H2L(1) with NiCl2·6H2O, PdCl2 and CuCl2·2H2O in ethanol, the series of square-planar complexes [Ni(H2L(1))Cl]Cl·1.3H2O (1·1.3H2O), [Pd(H2L(1))Cl]Cl·H2O (2·H2O) and [Cu(H2L(1))Cl]Cl·0.7H2O (3·0.7H2O) was prepared, and starting from H2L(2) and CuCl2·2H2O in methanol, the complex [Cu(H2L(2))Cl2]·H2O (4·H2O) was obtained. The compounds have been characterised by elemental analysis, spectroscopic methods (IR, UV-vis and NMR spectroscopy), ESI mass spectrometry and single crystal X-ray crystallography (H2L(1), 1, 2 and 4). As a solid, 1 is diamagnetic, while it is paramagnetic in methanolic solution. The effective magnetic moment of 3.26 B.M. at room temperature indicates the change in coordination geometry from square-planar to octahedral upon dissolution. The in vitro anticancer potency of ligand precursors H2L(1) and H2L(2) and metal complexes 1-4 was studied in three human cancer cell lines (A549, CH1 and SW480) and in noncancerous murine embryonal fibroblasts (NIH/3T3), and the mechanism of cell death was also assayed by flow cytometry. Clear-cut structure-activity relationships have been established. The metal ions exert marked effects in a divergent manner: copper(ii) increases, whereas nickel(ii) and palladium(ii) decrease the cytotoxicity of the hybrids. The antiproliferative activity of H2L(1) and metal complexes 1-3 decreases in all three tumour cell lines in the following rank order: 3 > H2L(1) > 1 > 2. The role of square-planar geometry in the underlying mechanism of cytotoxicity of the metal complexes studied seems to be negligible, while structural modifications at the terminal amino group of thiosemicarbazide and proline moieties are significant for enhancing the antiproliferative activity of both hybrids and copper(ii) complexes.
Collapse
Affiliation(s)
- Aliona Dobrova
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Vutey V, Castelli S, D'Annessa I, Sâmia LBP, Souza-Fagundes EM, Beraldo H, Desideri A. Human topoisomerase IB is a target of a thiosemicarbazone copper(II) complex. Arch Biochem Biophys 2016; 606:34-40. [PMID: 27431056 DOI: 10.1016/j.abb.2016.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/30/2016] [Accepted: 07/12/2016] [Indexed: 02/03/2023]
Abstract
The human topoisomerase IB inhibition and the antiproliferative activity of 3-(4-bromophenyl)-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone HPyCT4BrPh alone and its copper(II) complex [Cu(PyCT4BrPh)Cl] was investigated. [Cu(PyCT4BrPh)Cl] inhibits both the DNA cleavage and religation step of the enzyme, whilst the ligand alone does not display any effect. In addition we show that coordination to copper(II) improves the cytotoxicity of HPyCT4BrPh against THP-1 leukemia and MCF-7 breast cancer cells. The data indicate that the copper(II) thiosemicarbazone complex may hit human topoisomerase IB and that metal coordination can be useful to improve cytotoxicity of this versatile class of compounds.
Collapse
Affiliation(s)
- Venn Vutey
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Castelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Ilda D'Annessa
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Luciana B P Sâmia
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine M Souza-Fagundes
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Heloisa Beraldo
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
44
|
Takebe N, Ahmed MM, Vikram B, Bernhard EJ, Zwiebel J, Norman Coleman C, Kunos CA. Radiation-Therapeutic Agent Clinical Trials: Leveraging Advantages of a National Cancer Institute Programmatic Collaboration. Semin Radiat Oncol 2016; 26:271-80. [PMID: 27619249 DOI: 10.1016/j.semradonc.2016.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A number of oncology phase II radiochemotherapy trials with promising results have been conducted late in the overall experimental therapeutic agent development process. Accelerated development and approval of experimental therapeutic agents have stimulated further interest in much earlier radiation-agent studies to increase the likelihood of success in phase III trials. To sustain this interest, more forward-thinking preclinical radiobiology experimental designs are needed to improve discovery of promising radiochemotherapy plus agent combinations for clinical trial testing. These experimental designs should better inform next-step radiation-agent clinical trial dose, schedule, exposure, and therapeutic effect. Recognizing the need for a better strategy to develop preclinical data supporting radiation-agent phase I or II trials, the National Cancer Institute (NCI)-Cancer Therapy Evaluation Program (CTEP) and the NCI-Molecular Radiation Therapeutics Branch of the Radiation Research Program have partnered to promote earlier radiobiology studies of CTEP portfolio agents. In this Seminars in Radiation Oncology article, four key components of this effort are discussed. First, we outline steps for accessing CTEP agents for preclinical testing. Second, we propose radiobiology studies that facilitate transition from preclinical testing to early phase trial activation. Third, we navigate steps that walk through CTEP agent strategic development paths available for radiation-agent testing. Fourth, we highlight a new NCI-sponsored cooperative agreement grant supporting in vitro and in vivo radiation-CTEP agent testing that informs early phase trial designs. Throughout the article, we include contemporary examples of successful radiation-agent development initiatives.
Collapse
Affiliation(s)
- Naoko Takebe
- Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | - Mansoor M Ahmed
- Radiation Research Program, National Cancer Institute, Bethesda, MD
| | | | - Eric J Bernhard
- Radiation Research Program, National Cancer Institute, Bethesda, MD
| | - James Zwiebel
- Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - C Norman Coleman
- Radiation Research Program, National Cancer Institute, Bethesda, MD
| | - Charles A Kunos
- Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
45
|
Lui GYL, Kovacevic Z, Richardson V, Merlot AM, Kalinowski DS, Richardson DR. Targeting cancer by binding iron: Dissecting cellular signaling pathways. Oncotarget 2016; 6:18748-79. [PMID: 26125440 PMCID: PMC4662454 DOI: 10.18632/oncotarget.4349] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/12/2015] [Indexed: 12/30/2022] Open
Abstract
Newer and more potent therapies are urgently needed to effectively treat advanced cancers that have developed resistance and metastasized. One such strategy is to target cancer cell iron metabolism, which is altered compared to normal cells and may facilitate their rapid proliferation. This is supported by studies reporting the anti-neoplastic activities of the clinically available iron chelators, desferrioxamine and deferasirox. More recently, ligands of the di-2-pyridylketone thiosemicarbazone (DpT) class have demonstrated potent and selective anti-proliferative activity across multiple cancer-types in vivo, fueling studies aimed at dissecting their molecular mechanisms of action. In the past five years alone, significant advances have been made in understanding how chelators not only modulate cellular iron metabolism, but also multiple signaling pathways implicated in tumor progression and metastasis. Herein, we discuss recent research on the targeting of iron in cancer cells, with a focus on the novel and potent DpT ligands. Several key studies have revealed that iron chelation can target the AKT, ERK, JNK, p38, STAT3, TGF-β, Wnt and autophagic pathways to subsequently inhibit cellular proliferation, the epithelial-mesenchymal transition (EMT) and metastasis. These developments emphasize that these novel therapies could be utilized clinically to effectively target cancer.
Collapse
Affiliation(s)
- Goldie Y L Lui
- Department of Pathology and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Zaklina Kovacevic
- Department of Pathology and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Vera Richardson
- Department of Pathology and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Angelica M Merlot
- Department of Pathology and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Danuta S Kalinowski
- Department of Pathology and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Des R Richardson
- Department of Pathology and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
46
|
Merlot AM, Sahni S, Lane DJR, Fordham AM, Pantarat N, Hibbs DE, Richardson V, Doddareddy MR, Ong JA, Huang MLH, Richardson DR, Kalinowski DS. Potentiating the cellular targeting and anti-tumor activity of Dp44mT via binding to human serum albumin: two saturable mechanisms of Dp44mT uptake by cells. Oncotarget 2016; 6:10374-98. [PMID: 25848850 PMCID: PMC4496362 DOI: 10.18632/oncotarget.3606] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/14/2015] [Indexed: 12/31/2022] Open
Abstract
Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) demonstrates potent anti-cancer activity. We previously demonstrated that 14C-Dp44mT enters and targets cells through a carrier/receptor-mediated uptake process. Despite structural similarity, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT) and pyridoxal isonicotinoyl hydrazone (PIH) enter cells via passive diffusion. Considering albumin alters the uptake of many drugs, we examined the effect of human serum albumin (HSA) on the cellular uptake of Dp44mT, Bp4eT and PIH. Chelator-HSA binding studies demonstrated the following order of relative affinity: Bp4eT≈PIH>Dp44mT. Interestingly, HSA decreased Bp4eT and PIH uptake, potentially due to its high affinity for the ligands. In contrast, HSA markedly stimulated Dp44mT uptake by cells, with two saturable uptake mechanisms identified. The first mechanism saturated at 5-10 μM (Bmax:1.20±0.04 × 107 molecules/cell; Kd:33±3 μM) and was consistent with a previously identified Dp44mT receptor/carrier. The second mechanism was of lower affinity, but higher capacity (Bmax:2.90±0.12 × 107 molecules/cell; Kd:65±6 μM), becoming saturated at 100 μM and was only evident in the presence of HSA. This second saturable Dp44mT uptake process was inhibited by excess HSA and had characteristics suggesting it was mediated by a specific binding site. Significantly, the HSA-mediated increase in the targeting of Dp44mT to cancer cells potentiated apoptosis and could be important for enhancing efficacy.
Collapse
Affiliation(s)
- Angelica M Merlot
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Ashleigh M Fordham
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Namfon Pantarat
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - David E Hibbs
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Vera Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | | | - Jennifer A Ong
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Michael L H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
47
|
Liu W, Yue F, Zheng M, Merlot A, Bae DH, Huang M, Lane D, Jansson P, Lui GYL, Richardson V, Sahni S, Kalinowski D, Kovacevic Z, Richardson DR. The proto-oncogene c-Src and its downstream signaling pathways are inhibited by the metastasis suppressor, NDRG1. Oncotarget 2016; 6:8851-74. [PMID: 25860930 PMCID: PMC4496188 DOI: 10.18632/oncotarget.3316] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/08/2015] [Indexed: 11/25/2022] Open
Abstract
N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor that plays a key role in regulating signaling pathways involved in mediating cancer cell invasion and migration, including those derived from prostate, colon, etc. However, the mechanisms and molecular targets through which NDRG1 reduces cancer cell invasion and migration, leading to inhibition of cancer metastasis, are not fully elucidated. In this investigation, using NDRG1 over-expression models in three tumor cell-types (namely, DU145, PC3MM and HT29) and also NDRG1 silencing in DU145 and HT29 cells, we reveal that NDRG1 decreases phosphorylation of a key proto-oncogene, cellular Src (c-Src), at a well-characterized activating site (Tyr416). NDRG1-mediated down-regulation of EGFR expression and activation were responsible for the decreased phosphorylation of c-Src (Tyr416). Indeed, NDRG1 prevented recruitment of c-Src to EGFR and c-Src activation. Moreover, NDRG1 suppressed Rac1 activity by modulating phosphorylation of a c-Src downstream effector, p130Cas, and its association with CrkII, which acts as a "molecular switch" to activate Rac1. NDRG1 also affected another signaling molecule involved in modulating Rac1 signaling, c-Abl, which then inhibited CrkII phosphorylation. Silencing NDRG1 increased cell migration relative to the control and inhibition of c-Src signaling using siRNA, or a pharmacological inhibitor (SU6656), prevented this increase. Hence, the role of NDRG1 in decreasing cell migration is, in part, due to its inhibition of c-Src activation. In addition, novel pharmacological agents, which induce NDRG1 expression and are currently under development as anti-metastatic agents, markedly increase NDRG1 and decrease c-Src activation. This study leads to important insights into the mechanism involved in inhibiting metastasis by NDRG1 and how to target these pathways with novel therapeutics.
Collapse
Affiliation(s)
- Wensheng Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R.China.,Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Fei Yue
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R.China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R.China
| | - Angelica Merlot
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Patric Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Goldie Yuan Lam Lui
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Vera Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Danuta Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
48
|
Bacher F, Dömötör O, Chugunova A, Nagy NV, Filipović L, Radulović S, Enyedy ÉA, Arion VB. Strong effect of copper(II) coordination on antiproliferative activity of thiosemicarbazone-piperazine and thiosemicarbazone-morpholine hybrids. Dalton Trans 2016; 44:9071-90. [PMID: 25896351 DOI: 10.1039/c5dt01076d] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, 2-formylpyridine thiosemicarbazones and three different heterocyclic pharmacophores were combined to prepare thiosemicarbazone–piperazine mPip-FTSC (HL1) and mPip-dm-FTSC (HL2), thiosemicarbazone–morpholine Morph-FTSC (HL3) and Morph-dm-FTSC (HL4), thiosemicarbazone–methylpyrrole-2-carboxylate hybrids mPyrr-FTSC (HL5) and mPyrr-dm-FTSC (HL6) as well as their copper(II) complexes [CuCl(mPipH-FTSC-H)]Cl (1 + H)Cl, [CuCl(mPipH-dm-FTSC-H)]Cl (2 + H)Cl, [CuCl(Morph-FTSC-H)] (3), [CuCl(Morph-dm-FTSC-H)] (4), [CuCl(mPyrr-FTSC-H)(H2O)] (5) and [CuCl(mPyrr-dm-FTSC-H)(H2O)] (6). The substances were characterized by elemental analysis, one- and two-dimensional NMR spectroscopy (HL1–HL6), ESI mass spectrometry, IR and UV–vis spectroscopy and single crystal X-ray diffraction (1–5). All compounds were prepared in an effort to generate potential antitumor agents with an improved therapeutic index. In addition, the effect of structural alterations with organic hybrids on aqueous solubility and copper(II) coordination ability was investigated. Complexation of ligands HL2 and HL4 with copper(II) was studied in aqueous solution by pH-potentiometry, UV–vis spectrophotometry and EPR spectroscopy. Proton dissociation processes of HL2 and HL4 were also characterized in detail and microscopic constants for the Z/E isomers were determined. While the hybrids HL5, HL6 and their copper(II) complexes 5 and 6 proved to be insoluble in aqueous solution, precluding antiproliferative activity studies, the thiosemicarbazone–piperazine and thiosemicarbazone–morpholine hybrids HL1–HL4, as well as copper(II) complexes 1–4 were soluble in water enabling cytotoxicity assays. Interestingly, the metal-free hybrids showed very low or even a lack of cytotoxicity (IC50 values > 300 μM) in two human cancer cell lines HeLa (cervical carcinoma) and A549 (alveolar basal adenocarcinoma), whereas their copper(II) complexes were cytotoxic showing IC50 values from 25.5 to 65.1 μM and 42.8 to 208.0 μM, respectively in the same human cancer cell lines after 48 h of incubation. However, the most sensitive for HL4 and complexes 1–4 proved to be the human cancer cell line LS174 (colon carcinoma) as indicated by the calculated IC50 values varying from 13.1 to 17.5 μM.
Collapse
Affiliation(s)
- Felix Bacher
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:727-48. [PMID: 26844773 DOI: 10.1016/j.bbamcr.2016.01.026] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/29/2016] [Indexed: 12/12/2022]
Abstract
Essential metals, such as iron and copper, play a critical role in a plethora of cellular processes including cell growth and proliferation. However, concomitantly, excess of these metal ions in the body can have deleterious effects due to their ability to generate cytotoxic reactive oxygen species (ROS). Thus, the human body has evolved a very well-orchestrated metabolic system that keeps tight control on the levels of these metal ions. Considering their very high proliferation rate, cancer cells require a high abundance of these metals compared to their normal counterparts. Interestingly, new anti-cancer agents that take advantage of the sensitivity of cancer cells to metal sequestration and their susceptibility to ROS have been developed. These ligands can avidly bind metal ions to form redox active metal complexes, which lead to generation of cytotoxic ROS. Furthermore, these agents also act as potent metastasis suppressors due to their ability to up-regulate the metastasis suppressor gene, N-myc downstream regulated gene 1. This review discusses the importance of iron and copper in the metabolism and progression of cancer, how they can be exploited to target tumors and the clinical translation of novel anti-cancer chemotherapeutics.
Collapse
|
50
|
Myers CR. Enhanced targeting of mitochondrial peroxide defense by the combined use of thiosemicarbazones and inhibitors of thioredoxin reductase. Free Radic Biol Med 2016; 91:81-92. [PMID: 26686468 DOI: 10.1016/j.freeradbiomed.2015.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 11/22/2022]
Abstract
Peroxiredoxin-3 (Prx3) accounts for about 90% of mitochondrial peroxidase activity, and its marked upregulation in many cancers is important for cell survival. Prx3 oxidation can critically alter peroxide signaling and defense and can be a seminal event in promoting cell death. Here it is shown that this mechanism can be exploited pharmacologically by combinations of clinically available drugs that compromise Prx3 function in different ways. Clinically relevant levels of the thiosemicarbazone iron chelators triapine (Tp) and 2,2'-Dipyridyl-N,N-dimethylsemicarbazone (Dp44mT) promote selective oxidation of mitochondrial Prx3, but not cytosolic Prx1, in multiple human lung and ovarian cancer lines. Decreased cell survival closely correlates with Prx3 oxidation. However, Prx3 oxidation is not merely an indicator of cell death as cytotoxic concentrations of cisplatin do not cause Prx3 oxidation. The siRNA-mediated suppression of either Prx3 or thioredoxin-2, which supports Prx3, enhances Tp's cytotoxicity. Tp-mediated Prx3 oxidation is driven by enhanced peroxide generation, but not by nitric oxide. Many tumors overexpress thioredoxin reductase (TrxR) which supports Prx activity. Direct inhibitors of TrxR (e.g. auranofin, cisplatin) markedly enhanced Tp's cytotoxicity, and auranofin enhanced Prx3 oxidation by low dose Tp. Together, these results support an important role for Prx3 oxidation in the cytotoxicity of Tp, and demonstrate that TrxR inhibitors can significantly enhance Tp's cytotoxicity. Thiosemicarbazone-based regimens could prove effective for targeting Prx3 in a variety of cancers.
Collapse
Affiliation(s)
- Charles R Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|