1
|
Pienta KJ, Goodin PL, Amend SR. Defeating lethal cancer: Interrupting the ecologic and evolutionary basis of death from malignancy. CA Cancer J Clin 2025; 75:183-202. [PMID: 40057846 PMCID: PMC12061633 DOI: 10.3322/caac.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 05/11/2025] Open
Abstract
Despite the advances in cancer prevention, early detection, and treatments, all of which have led to improved cancer survival, globally, there is an increased incidence in cancer-related deaths. Although each patient and each tumor is wholly unique, the tipping point to incurable disease is common across all patients: the dual capacity for cancers to metastasize and resist systemic treatment. The discovery of genetic mutations and epigenetic variation that emerges during cancer progression highlights that evolutionary and ecology principles can be used to understand how cancer evolves to a lethal phenotype. By applying such an eco-evolutionary framework, the authors reinterpret our understanding of the metastatic process as one of an ecologic invasion and define the eco-evolutionary paths of evolving therapy resistance. With this understanding, the authors draw from successful strategies optimized in evolutionary ecology to define strategic interventions with the goal of altering the evolutionary trajectory of lethal cancer. Ultimately, studying, understanding, and treating cancer using evolutionary ecology principles provides an opportunity to improve the lives of patients with cancer.
Collapse
Affiliation(s)
- Kenneth J. Pienta
- Urology, Oncology, Pharmacology and Molecular Sciences, and Chemical and Biomolecular EngineeringCancer Ecology Center at the Brady Urological InstituteJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Sarah R. Amend
- Urology and OncologyCancer Ecology Center at the Brady Urological InstituteJohns Hopkins School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
2
|
Connell B, Hwang C, Folefac E, Lawlor C, Koethe B, Mathew P. Dose-Dense Docetaxel and Radium-223 in Bone-Dominant Metastatic Castration-Resistant Prostate Cancer. Clin Genitourin Cancer 2025:102368. [PMID: 40383703 DOI: 10.1016/j.clgc.2025.102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Disease progression in castration-resistant prostate cancer (CRPC) remains bone-dominant and docetaxel-responsive. Docetaxel and radium-223 would be a logical combination but myelosuppression is dose-limiting. Dose-dense schedules of docetaxel have comparable activity to bolus dosing with mitigated myelosuppression. We hypothesized that dose-dense docetaxel with standard radium-223 would be a feasible, safe and effective combination in bone-dominant metastatic CRPC. METHODS Subjects had progressive bone-predominant CRPC. Design was dose escalation plus expansion with 28-day cycles. Docetaxel was given every 2 weeks in a 4-week lead-in, then with Radium-223 every 4 weeks up to 6 cycles. Dose-levels (DL) included 1: docetaxel 40 mg/m2; 1a: docetaxel 40 mg/m2 with G-CSF on Day 16, 2a: docetaxel 50 mg/m2 with G-CSF on Day 16. The maximum tolerated dose (MTD) was defined as the highest (DL) of docetaxel achieved without dose-limiting toxicity (DLT). Markers of safety and efficacy were annotated. RESULTS Forty-three subjects were enrolled (NCT03737370). The patient population included 21% black, 9% Asians, 93% had prior intensified hormonal therapy, 67% had bone pain, and 76% had ≥ 4 bone metastases. Seven patients dropped out during the 4-week docetaxel lead in. Neutropenia at DL 1 limited combination therapy. No (DLT) occurred at DL 1a (n = 6) or DL 2a (n = 5). Twenty-two patients were enrolled to an expansion cohort with docetaxel 50 mg/m2 with G-CSF on Day 16 (DL 2a), the designated MTD. Among 35 patients treated with the combination, there were no febrile neutropenia events. One patient had dose-limiting Grade 3 anemia. PSA50 response was 51.4% and PSA90 was 25.7%. Median progression-free survival was 11.7 months, and median overall survival was 20.1 months. CONCLUSIONS A lead-in cycle and a dose-dense schedule of docetaxel with G-CSF enabled the combination with radium-223 in standard dose-intensities with minimal hematological toxicity. The regimen will likely combine logically and safely with hormone-intensification for study in high-risk/high-volume castration-sensitive metastatic disease.
Collapse
Affiliation(s)
- Brendan Connell
- Department of Hematology & Oncology, Tufts Medical Center, Boston, MA; Division of Hematology & Oncology, Lahey Hospital & Medical Center, Burlington, MA
| | - Clara Hwang
- Hematology/Oncology Division, Henry Ford Health, Detroit, MI
| | - Edmund Folefac
- Division of Medical Oncology, The Ohio State University, Columbus, OH
| | | | - Benjamin Koethe
- Biostatistics, Epidemiology, and Research Design (BERD) Center, Tufts Clinical and Translational Science Institute, Boston, MA
| | - Paul Mathew
- Department of Hematology & Oncology, Tufts Medical Center, Boston, MA.
| |
Collapse
|
3
|
Patke R, Harris AE, Woodcock CL, Thompson R, Santos R, Kumari A, Allegrucci C, Archer N, Gudas LJ, Robinson BD, Persson JL, Fray R, Jeyapalan J, Rutland CS, Rakha E, Madhusudan S, Emes RD, Muyangwa-Semenova M, Alsaleem M, de Brot S, Green W, Ratan H, Mongan NP, Lothion-Roy J. Epitranscriptomic mechanisms of androgen signalling and prostate cancer. Neoplasia 2024; 56:101032. [PMID: 39033689 PMCID: PMC11295630 DOI: 10.1016/j.neo.2024.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Prostate cancer (PCa) is the second most common cancer diagnosed in men. While radical prostatectomy and radiotherapy are often successful in treating localised disease, post-treatment recurrence is common. As the androgen receptor (AR) and androgen hormones play an essential role in prostate carcinogenesis and progression, androgen deprivation therapy (ADT) is often used to deprive PCa cells of the pro-proliferative effect of androgens. ADTs act by either blocking androgen biosynthesis (e.g. abiraterone) or blocking AR function (e.g. bicalutamide, enzalutamide, apalutamide, darolutamide). ADT is often effective in initially suppressing PCa growth and progression, yet emergence of castrate-resistant PCa and progression to neuroendocrine-like PCa following ADT are major clinical challenges. For this reason, there is an urgent need to identify novel approaches to modulate androgen signalling to impede PCa progression whilst also preventing or delaying therapy resistance. The mechanistic convergence of androgen and epitranscriptomic signalling offers a potential novel approach to treat PCa. The epitranscriptome involves covalent modifications of mRNA, notably, in the context of this review, the N(6)-methyladenosine (m6A) modification. m6A is involved in the regulation of mRNA splicing, stability, and translation, and has recently been shown to play a role in PCa and androgen signalling. The m6A modification is dynamically regulated by the METTL3-containing methyltransferase complex, and the FTO and ALKBH5 RNA demethylases. Given the need for novel approaches to treat PCa, there is significant interest in new therapies that target m6A that modulate AR expression and androgen signalling. This review critically summarises the potential benefit of such epitranscriptomic therapies for PCa patients.
Collapse
Affiliation(s)
- Rodhan Patke
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Anna E Harris
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Corinne L Woodcock
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Rachel Thompson
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Rute Santos
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Amber Kumari
- Biodiscovery Institute, University of Nottingham, UK
| | - Cinzia Allegrucci
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Nathan Archer
- School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Brian D Robinson
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Jenny L Persson
- Department of Molecular Biology, Umea University, Umea, Sweden
| | - Rupert Fray
- School of Biosciences, University of Nottingham, UK
| | - Jennie Jeyapalan
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Catrin S Rutland
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Emad Rakha
- School of Medicine, University of Nottingham, UK; Nottingham University NHS Trust, Nottingham, UK
| | - Srinivasan Madhusudan
- School of Medicine, University of Nottingham, UK; Nottingham University NHS Trust, Nottingham, UK
| | - Richard D Emes
- Research and Innovation, Nottingham Trent University, UK
| | | | - Mansour Alsaleem
- Biodiscovery Institute, University of Nottingham, UK; Unit of Scientific Research, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Simone de Brot
- Institute of Animal Pathology, University of Bern, Switzerland
| | - William Green
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Hari Ratan
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Nigel P Mongan
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| | - Jennifer Lothion-Roy
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK.
| |
Collapse
|
4
|
Asante DM, Sreekumar A, Nathani S, Lee TJ, Sharma A, Patel N, Simmons MN, Saini S. miR-410 Is a Key Regulator of Epithelial-to-Mesenchymal Transition with Biphasic Role in Prostate Cancer. Cancers (Basel) 2023; 16:48. [PMID: 38201476 PMCID: PMC10777946 DOI: 10.3390/cancers16010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The molecular basis of prostate cancer (PCa) progression from the primary disease to metastatic castration-resistant prostate cancer (CRPC) followed by therapy-induced neuroendocrine prostate cancer is not fully understood. In this study, we elucidate the role of miR-410, a little-studied microRNA located on chromosome 14q32.31 within the DLK1-DIO3 cluster, in PCa. miR-410 expression analyses in primary and metastatic PCa tissues and cell lines show that its levels are decreased in initial stages and increased in advanced PCa. Functional studies were performed in a series of PCa cell lines. In LNCaP cells, miR-410 overexpression led to decreases in cellular viability, proliferation, invasiveness, and migration. On the other hand, miR-410 overexpression in PC3 and C42B cells led to increased viability, proliferation, and invasiveness. Our data suggest that miR-410 represses epithelial-to-mesenchymal transition (EMT) in LNCaP cells by directly repressing SNAIL. However, it promotes EMT and upregulates PI3K/Akt signaling in PC3 and C42B cells. In vivo studies with PC3 xenografts support an oncogenic role of miR-410. These data suggest that miR-410 acts as a tumor suppressor in the initial stages of PCa and play an oncogenic role in advanced PCa. Our findings have important implications in understanding the molecular basis of PCa progression with potential translational implications.
Collapse
Affiliation(s)
- Diana M. Asante
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (D.M.A.); (A.S.); (S.N.)
| | - Amritha Sreekumar
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (D.M.A.); (A.S.); (S.N.)
| | - Sandip Nathani
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (D.M.A.); (A.S.); (S.N.)
| | - Tae Jin Lee
- Department of Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA; (T.J.L.); (A.S.)
| | - Ashok Sharma
- Department of Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA; (T.J.L.); (A.S.)
| | - Nikhil Patel
- Department of Pathology, Augusta University, Augusta, GA 30912, USA;
| | | | - Sharanjot Saini
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (D.M.A.); (A.S.); (S.N.)
| |
Collapse
|
5
|
Daniels H, Gilbert R, Bonin L. The diagnostic accuracy of 68Ga-PSMA PET/CT versus 99mTc-MDP bone scintigraphy for identifying bone metastases in persons with prostate cancer: A systematic review. J Med Imaging Radiat Sci 2023; 54:545-555. [PMID: 37211439 DOI: 10.1016/j.jmir.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/27/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Prostate cancer (PCa) is the second most common cause of cancer related death in men. Accurate diagnosis of bone metastases is essential to treatment decision-making and follow-up. Recent primary studies have compared the accuracy of 68Ga-PSMA PET/CT versus 99mTc-MDP bone scintigraphy in the detection of PCa bone metastases. These studies suggest 68Ga-PSMA PET/CT to be superior. Comprehensive syntheses of these studies are now warranted. PURPOSE To synthesize studies comparing the accuracy of 68Ga-PSMA PET/CT versus 99mTc-MDP bone scintigraphy, the most used modality in the identification of bone metastases in PCa patients. METHODS A systematic review was conducted evaluating diagnostic accuracy studies which compared 68Ga-PSMA PET/CT and 99mTc-MDP bone scintigraphy. Bias and quality were assessed using the QUADAS-2 tool. Searches in three databases using search terms: Positron-Emission Tomography, prostatic neoplasm, 68Ga, and bone were conducted. Image acquisitions between modalities had to be performed within 3 months of each other. RESULTS Five single-centered studies were included in this review. Across all measures of accuracy, 68Ga PSMA PET/CT was superior to 99mTc-MDP bone scintigraphy in the detection of skeletal metastases. Patient-based sensitivities and specificities across included studies ranged from (91%-100% vs. 50%-91%) and (88%-100% vs 19%-96%) for 68Ga-PSMA PET/CT and 99mTc-MDP bone scintigraphy respectively. The overall risk of bias was moderate primarily due to the retrospective nature of most included studies. CONCLUSION 68Ga-PSMA PET/CT was more accurate than 99mTc-MDP bone scintigraphy in the detection of PCa bone metastases. Future studies should seek to define the clinical relevance of these findings.
Collapse
Affiliation(s)
- Hannah Daniels
- School of Health Sciences, Faculty of Health, Dalhousie University, 1276 South Park St. Halifax, NS B3H 2Y9, Canada.
| | - Robert Gilbert
- School of Health Sciences, Faculty of Health, Dalhousie University, 1276 South Park St. Halifax, NS B3H 2Y9, Canada
| | - Lisa Bonin
- School of Health Sciences, Faculty of Health, Dalhousie University, 1276 South Park St. Halifax, NS B3H 2Y9, Canada
| |
Collapse
|
6
|
Gogola S, Rejzer M, Bahmad HF, Alloush F, Omarzai Y, Poppiti R. Anti-Cancer Stem-Cell-Targeted Therapies in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15051621. [PMID: 36900412 PMCID: PMC10000420 DOI: 10.3390/cancers15051621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Prostate cancer (PCa) is the second-most commonly diagnosed cancer in men around the world. It is treated using a risk stratification approach in accordance with the National Comprehensive Cancer Network (NCCN) in the United States. The main treatment options for early PCa include external beam radiation therapy (EBRT), brachytherapy, radical prostatectomy, active surveillance, or a combination approach. In those with advanced disease, androgen deprivation therapy (ADT) is considered as a first-line therapy. However, the majority of cases eventually progress while receiving ADT, leading to castration-resistant prostate cancer (CRPC). The near inevitable progression to CRPC has spurred the recent development of many novel medical treatments using targeted therapies. In this review, we outline the current landscape of stem-cell-targeted therapies for PCa, summarize their mechanisms of action, and discuss avenues of future development.
Collapse
Affiliation(s)
- Samantha Gogola
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Michael Rejzer
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Hisham F. Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Correspondence: or ; Tel.: +1-305-674-2277
| | - Ferial Alloush
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Yumna Omarzai
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Robert Poppiti
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| |
Collapse
|
7
|
Procoxacin bidirectionally inhibits osteoblastic and osteoclastic activity in bone and suppresses bone metastasis of prostate cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:45. [PMID: 36759880 PMCID: PMC9909988 DOI: 10.1186/s13046-023-02610-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/21/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Bone is the most common site of metastasis of prostate cancer (PCa). PCa invasion leads to a disruption of osteogenic-osteolytic balance and causes abnormal bone formation. The interaction between PCa and bone stromal cells, especially osteoblasts (OB), is considered essential for the disease progression. However, drugs that effectively block the cancer-bone interaction and regulate the osteogenic-osteolytic balance remain undiscovered. METHODS A reporter gene system was constructed to screen compounds that could inhibit PCa-induced OB activation from 631 compounds. Then, the pharmacological effects of a candidate drug, Procoxacin (Pro), on OBs, osteoclasts (OCs) and cancer-bone interaction were studied in cellular models. Intratibial inoculation, micro-CT and histological analysis were used to explore the effect of Pro on osteogenic and osteolytic metastatic lesions. Bioinformatic analysis and experiments including qPCR, western blotting and ELISA assay were used to identify the effector molecules of Pro in the cancer-bone microenvironment. Virtual screening, molecular docking, surface plasmon resonance assay and RNA knockdown were utilized to identify the drug target of Pro. Experiments including co-IP, western blotting and immunofluorescence were performed to reveal the role of Pro binding to its target. Intracardiac inoculation metastasis model and survival analysis were used to investigate the therapeutic effect of Pro on metastatic cancer. RESULTS Luciferase reporter gene consisted of Runx2 binding sequence, OSE2, and Alp promotor could sensitively reflect the intensity of PCa-OB interaction. Pro best matched the screening criteria among 631 compounds in drug screening. Further study demonstrated that Pro effectively inhibited the PCa-induced osteoblastic changes without killing OBs or PCa cells and directly killed OCs or suppressed osteoclastic functions at very low concentrations. Mechanism study revealed that Pro broke the feedback loop of TGF-β/C-Raf/MAPK pathway by sandwiching into 14-3-3ζ/C-Raf complex and prevented its disassociation. Pro treatment alleviated both osteogenic and osteolytic lesions in PCa-involved bones and reduced the number of metastases of PCa in vivo. CONCLUSIONS In summary, our study provides a drug screening strategy based on the cancer-host microenvironment and demonstrates that Pro effectively inhibits both osteoblastic and osteoclastic lesions in PCa-involved bones, which makes it a promising therapeutic agent for PCa bone metastasis.
Collapse
|
8
|
Ying J, Wang B, Han S, Song J, Liu K, Chen W, Sun X, Mao Y, Ye D. Genetically predicted iron status was associated with the risk of prostate cancer. Front Oncol 2022; 12:959892. [PMID: 36561528 PMCID: PMC9763611 DOI: 10.3389/fonc.2022.959892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Observational studies have reported a relationship between iron status and the risk of prostate cancer. However, it remains uncertain whether the association is causal or due to confounding or reverse causality. To further clarify the underlying causal relationship, we conducted a Mendelian randomization (MR) analysis. Methods We selected three genetic variants (rs1800562, rs1799945, and rs855791) closely correlated with four iron status biomarkers (serum iron, log-transformed ferritin, transferrin saturation, and transferrin) as instrumental variables. Summary statistics for prostate cancer were obtained from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome consortium including 79,148 cases and 61,106 controls of European ancestry. The inverse-variance weighted (IVW) method was conducted primarily to estimate the association of genetically predicted iron status and the risk of prostate cancer, supplemented with simple-median, weighted-median and maximum-likelihood methods as sensitivity analysis. MR-Egger regression was used to detect directional pleiotropy. We also conducted a meta-analysis of observational studies to assess the associations between iron status and the risk of prostate cancer. Results Genetically predicted increased iron status was associated with the decreased risk of prostate cancer, with odds ratio of 0.91 [95% confidence interval (CI): 0.84, 0.99; P = 0.035] for serum iron, 0.81 (95% CI: 0.65, 1.00; P = 0.046) for log- transformed ferritin, 0.94 (95% CI: 0.88, 0.99; P = 0.029) for transferrin saturation, and 1.15 (95% CI: 0.98, 1.35; P = 0.084) for transferrin (with higher transferrin levels representing lower systemic iron status), using the inverse-variance weighted method. Sensitivity analyses produced consistent associations, and MR-Egger regression indicated no potential pleiotropy. Our replication analysis based on FinnGen research project showed compatible results with our main analysis. Results from our meta-analysis similarly showed that serum ferritin [standardized mean difference (SMD): -1.25; 95% CI: -2.34, -0.16; P = 0.024] and transferrin saturation (SMD: -1.19; 95% CI: -2.34, -0.05; P = 0.042) were lower in patients with prostate cancer compared with that in controls. Discussion Our study suggests a protective role of iron in the risk of prostate cancer, further investigations are required to clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Jiacheng Ying
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Binyan Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuyang Han
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Song
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ke Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weiwei Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaohui Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingying Mao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China,*Correspondence: Ding Ye, ; Yingying Mao,
| | - Ding Ye
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China,*Correspondence: Ding Ye, ; Yingying Mao,
| |
Collapse
|
9
|
Sachdeva A, Hart CA, Kim K, Tawadros T, Oliveira P, Shanks J, Brown M, Clarke N. Non-canonical EphA2 activation underpins PTEN-mediated metastatic migration and poor clinical outcome in prostate cancer. Br J Cancer 2022; 127:1254-1262. [PMID: 35869144 PMCID: PMC9519535 DOI: 10.1038/s41416-022-01914-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/23/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background The key process of mesenchymal to amoeboid transition (MAT), which enables prostate cancer (PCa) transendothelial migration and subsequent development of metastases in red bone marrow stroma, is driven by phosphorylation of EphA2S897 by pAkt, which is induced by the omega-6 polyunsaturated fatty acid arachidonic acid. Here we investigate the influence of EphA2 signalling in PCa progression and long-term survival. Methods The mechanisms underpinning metastatic biopotential of altered EphA2 signalling in relation to PTEN status were assessed in vitro using canonical (EphA2D739N) and non-canonical (EphA2S897G) PC3-M mutants, interrogation of publicly available PTEN-stratified databases and clinical validation using a PCa TMA (n = 177) with long-term follow-up data. Spatial heterogeneity of EphA2 was assessed using a radical prostatectomy cohort (n = 67). Results Non-canonical EphA2 signalling via pEphA2S897 is required for PCa transendothelial invasion of bone marrow endothelium. High expression of EphA2 or pEphA2S897 in a PTENlow background is associated with poor overall survival. Expression of EphA2, pEphA2S897 and the associated MAT marker pMLC2 are spatially regulated with the highest levels found within lesion areas within 500 µm of the prostate margin. Conclusion EphA2 MAT-related signalling confers transendothelial invasion. This is associated with a substantially worse prognosis in PTEN-deficient PCa.
Collapse
|
10
|
He N, Jiang J. Contribution of immune cells to bone metastasis pathogenesis. Front Endocrinol (Lausanne) 2022; 13:1019864. [PMID: 36246916 PMCID: PMC9556850 DOI: 10.3389/fendo.2022.1019864] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Bone metastasis is closely related to the survival rate of cancer patients and reduces their quality of life. The bone marrow microenvironment contains a complex immune cell component with a local microenvironment that is conducive to tumor formation and growth. In this unique immune environment, a variety of immune cells, including T cells, natural killer cells, macrophages, dendritic cells, and myeloid-derived suppressor cells, participate in the process of bone metastasis. In this review, we will introduce the interactions between immune cells and cancer cells in the bone microenvironment, obtain the details of their contributions to the implications of bone metastasis, and discuss immunotherapeutic strategies targeting immune cells in cancer patients with bone metastasis.
Collapse
Affiliation(s)
- Ningning He
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Oncology, Yangzhou University, Yangzhou, China
- Department of Oncology, First People’s Hospital of Changzhou, Changzhou, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Oncology, First People’s Hospital of Changzhou, Changzhou, China
- *Correspondence: Jingting Jiang,
| |
Collapse
|
11
|
Abstract
A type of evolutionarily conserved, noncoding, small, endogenous, single-stranded RNA, miRNAs are widely distributed in eukaryotes, where they participate in various biological processes as critical regulatory molecules. miR-1299 has mainly been investigated in cancers. miR-1299 is a tumor suppressor that regulates the expression of its target genes, activating or inhibiting the transcription of genes regulating biological activities including cell proliferation, migration, survival and programmed cell death. miR-1299 has become a hotspot in research of disease mechanisms and biomarkers; elucidation of the regulatory roles of miR-1299 in tumorigenesis, proliferation, apoptosis, invasion, migration and angiogenesis may provide a new perspective for understanding its biological functions as a tumor suppressor. As key regulatory molecules, microRNAs participate in various biological processes and have become a widespread research focus. This article discusses how the microRNA miR-1299 plays a role as a tumor suppressor and participates in the regulation of tumor pathogenesis. We provide an overview of the role of miR-1299 in tumor diseases and discuss the pathogenesis and regulation mechanisms of miR-1299 in different specific cancers.
Collapse
Affiliation(s)
- Deng Kaiyuan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University, 150086, China
| | - Huang Lijuan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University, 150086, China
| | - Sun Xueyuan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University, 150086, China
| | - Zang Yunhui
- Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University, 150086, China
| |
Collapse
|
12
|
Pan H, Rui X, Wei W, Shao S, Zhu Y. Prognostic value of miR-339-5p in patients with prostate cancer and its effects on tumor progression. Exp Ther Med 2021; 21:390. [PMID: 33680112 DOI: 10.3892/etm.2021.9821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer places a serious health burden on males. The present study aimed to explore the potential prognostic significance and biological function of microRNA (miR)-339-5p in patients with prostate cancer. The expression of miR-339-5p was detected in prostate cancer tissues and cell lines by using reverse transcription-quantitative PCR. Kaplan-Meier survival curves and Cox regression analyses were used to investigate the prognostic significance of miR-339-5p in prostate cancer. The Cell Counting Kit-8 assay was used to determine the effect of miR-339-5p on prostate cancer cell proliferation. Transwell assays were used to assess the effect of miR-339-5p on cell migration and invasion. The results indicated that the expression of miR-339-5p was downregulated in prostate cancer tissues and cell lines. Downregulation of miR-339-5p was significantly associated with the Gleason score, lymph node metastasis and TNM stage. Patients with high miR-339-5p expression levels had a longer survival time than those with low expression levels. Multivariate Cox regression analysis indicated that miR-339-5p may be an independent prognostic factor for the overall survival of patients with prostate cancer. Overexpression of miR-339-5p inhibited the proliferation, migration and invasion of prostate cancer cells. Taken together, these results indicated that miR-339-5p functions as a suppressor gene in prostate cancer and acts by inhibiting cell proliferation, migration and invasion of prostate cancer cells. miR-339-5p may serve as an independent prognostic biomarker and therapeutic target for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Huafeng Pan
- Department of Urology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315021, P.R. China
| | - Xin Rui
- Department of Urology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315021, P.R. China
| | - Wei Wei
- Department of Urology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315021, P.R. China
| | - Siliang Shao
- Department of Urology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315021, P.R. China
| | - Yudi Zhu
- Department of Urology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315021, P.R. China
| |
Collapse
|
13
|
Yamashita S, Katsumi H, Shimizu E, Nakao Y, Yoshioka A, Fukui M, Kimura H, Sakane T, Yamamoto A. Dendrimer-based micelles with highly potent targeting to sites of active bone turnover for the treatment of bone metastasis. Eur J Pharm Biopharm 2020; 157:85-96. [PMID: 33039547 DOI: 10.1016/j.ejpb.2020.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 01/29/2023]
Abstract
Bone-drug targeting therapies using nanoparticles based on targeting ligands remain challenging due to their uptake clearance at non-target sites such as the liver, kidney, and spleen. Furthermore, the distribution sites of nanoparticles in bones have not been fully investigated, thus halting the development of more effective bone metastasis treatment strategies. In this study, we developed nanoparticles self-assembled from cholesterol-terminated, polyethylene glycol-conjugated, aspartic acid (Asp)-modified polyamidoamine dendrimer (Asp-PAMAM-Micelles) with targeting to active bone turnover sites associated with bone metastasis pathogenesis. On analysis through whole-body single photon emission computed tomography/computed tomography (SPECT/CT) imaging, 111In-Asp-PAMAM-Micelles showed high specificity to active bone turnover sites (especially the joints in the lower limbs, shoulder, and pelvis) after intravenous injection in mice. The lower limb bone uptake clearance for 111In-Asp-PAMAM-Micelles encapsulating paclitaxel (PTX) was 3.5-fold higher than that for 111In-unmodified PAMAM-Micelles (PTX). 3H-PTX encapsulated Asp-PAMAM-Micelles effectively accumulated in the lower limb bones in a similar manner as the 111In-Asp-PAMAM-Micelles (PTX). In a bone metastatic tumor mouse model, the tumor growth in the lower limb bones was significantly inhibited by injection of Asp-PAMAM-Micelles (PTX) compared to unmodified PAMAM-Micelles (PTX). Our results demonstrate that Asp-PAMAM-Micelles are sophisticated drug delivery systems for highly potent targeting to active bone turnover sites.
Collapse
Affiliation(s)
- Shugo Yamashita
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Erika Shimizu
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yuto Nakao
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Ayane Yoshioka
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Minako Fukui
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hiroyuki Kimura
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Toshiyasu Sakane
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan; Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
14
|
Palanisamy N, Yang J, Shepherd PDA, Li-Ning-Tapia EM, Labanca E, Manyam GC, Ravoori MK, Kundra V, Araujo JC, Efstathiou E, Pisters LL, Wan X, Wang X, Vazquez ES, Aparicio AM, Carskadon SL, Tomlins SA, Kunju LP, Chinnaiyan AM, Broom BM, Logothetis CJ, Troncoso P, Navone NM. The MD Anderson Prostate Cancer Patient-derived Xenograft Series (MDA PCa PDX) Captures the Molecular Landscape of Prostate Cancer and Facilitates Marker-driven Therapy Development. Clin Cancer Res 2020; 26:4933-4946. [PMID: 32576626 PMCID: PMC7501166 DOI: 10.1158/1078-0432.ccr-20-0479] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/08/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Advances in prostate cancer lag behind other tumor types partly due to the paucity of models reflecting key milestones in prostate cancer progression. Therefore, we develop clinically relevant prostate cancer models. EXPERIMENTAL DESIGN Since 1996, we have generated clinically annotated patient-derived xenografts (PDXs; the MDA PCa PDX series) linked to specific phenotypes reflecting all aspects of clinical prostate cancer. RESULTS We studied two cell line-derived xenografts and the first 80 PDXs derived from 47 human prostate cancer donors. Of these, 47 PDXs derived from 22 donors are working models and can be expanded either as cell lines (MDA PCa 2a and 2b) or PDXs. The histopathologic, genomic, and molecular characteristics (androgen receptor, ERG, and PTEN loss) maintain fidelity with the human tumor and correlate with published findings. PDX growth response to mouse castration and targeted therapy illustrate their clinical utility. Comparative genomic hybridization and sequencing show significant differences in oncogenic pathways in pairs of PDXs derived from different areas of the same tumor. We also identified a recurrent focal deletion in an area that includes the speckle-type POZ protein-like (SPOPL) gene in PDXs derived from seven human donors of 28 studied (25%). SPOPL is a SPOP paralog, and SPOP mutations define a molecular subclass of prostate cancer. SPOPL deletions are found in 7% of The Cancer Genome Atlas prostate cancers, which suggests that our cohort is a reliable platform for targeted drug development. CONCLUSIONS The MDA PCa PDX series is a dynamic resource that captures the molecular landscape of prostate cancers progressing under novel treatments and enables optimization of prostate cancer-specific, marker-driven therapy.
Collapse
Affiliation(s)
- Nallasivam Palanisamy
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
- Department of Pathology, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Jun Yang
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter D A Shepherd
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elsa M Li-Ning-Tapia
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Estefania Labanca
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Murali K Ravoori
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vikas Kundra
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John C Araujo
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eleni Efstathiou
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Louis L Pisters
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xinhai Wan
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xuemei Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elba S Vazquez
- CONICET-Universidad de Buenos Aires. Instituto de Quimica Biologica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Ana M Aparicio
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shannon L Carskadon
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
- Department of Pathology, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Scott A Tomlins
- Department of Pathology, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Lakshmi P Kunju
- Department of Pathology, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Arul M Chinnaiyan
- Department of Pathology, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Bradley M Broom
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nora M Navone
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
15
|
Connell B, Kopach P, Ren W, Joshi R, Naber S, Zhou M, Mathew P. Aberrant integrin αv and α5 expression in prostate adenocarcinomas and bone-metastases is consistent with a bone-colonizing phenotype. Transl Androl Urol 2020; 9:1630-1638. [PMID: 32944524 PMCID: PMC7475658 DOI: 10.21037/tau-19-763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background Collaborative signaling between fibronectin-binding αv and α5 integrins has been implicated in the lethal dissemination of prostate cancer in the bone-metastatic niche, the major source of morbidity and mortality in the disease. Methods We assessed the frequency and pattern of expression of these integrins in primary high-grade adenocarcinomas and bone metastases compared to the physiological gland. Formalin-fixed paraffin-embedded (FFPE) radical prostatectomy (RP) samples (n=25) containing ≥ Gleason grade 4 cancer and decalcified surgical or diagnostic bone metastatic samples from 10 patients were stained for integrin αv (ITGAV) and integrin α5 (ITGA5) expression. Antibody optimization and antigen-retrieval was performed beforehand. Results ITGAV was exclusively expressed in the basal layer of physiological prostate glands whereas αv expression was invariably recapitulated in the malignant gland and bone metastases (100%) in multiple distinct patterns: epithelial membranous, basilar/luminal membranous, punctate cytoplasmic, intense foci as single cells or clusters, and rim stromal layers. The luminal/basilar layer of ITGAV expression was striking in cribriform carcinomas, suggestive of a role in molecular pathogenesis. ITGA5 infrequently highlighted the basal layer of the physiological gland, was absent in primary adenocarcinoma, but was expressed with ITGAV exclusively in bone metastases (71%). Conclusions We conclude that ITGAV expression is aberrantly expressed in high frequency in high-grade prostatic adenocarcinomas in patterns suggestive of recapitulated basal cell functions, consistent with a stem-regulatory role that has been proposed. Co-expression and enrichment of αv and α5 in osseous metastases supports their proposed collaborative role in colonization of the bone microenvironment and as candidate targets for therapy.
Collapse
Affiliation(s)
- Brendan Connell
- Division of Hematology-Oncology, Tufts Medical Center, Boston, MA, USA.,Department of Hematology-Oncology, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Pavel Kopach
- Department of Pathology, Tufts Medical Center, Boston, MA, USA.,Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Wenying Ren
- Division of Hematology-Oncology, Tufts Medical Center, Boston, MA, USA
| | - Raghav Joshi
- Division of Hematology-Oncology, Tufts Medical Center, Boston, MA, USA
| | - Stephen Naber
- Department of Pathology, Tufts Medical Center, Boston, MA, USA
| | - Ming Zhou
- Department of Pathology, Tufts Medical Center, Boston, MA, USA
| | - Paul Mathew
- Division of Hematology-Oncology, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
16
|
Labanca E, Vazquez ES, Corn PG, Roberts JM, Wang F, Logothetis CJ, Navone NM. Fibroblast growth factors signaling in bone metastasis. Endocr Relat Cancer 2020; 27:R255-R265. [PMID: 32369771 PMCID: PMC7274538 DOI: 10.1530/erc-19-0472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
Many solid tumors metastasize to bone, but only prostate cancer has bone as a single, dominant metastatic site. Recently, the FGF axis has been implicated in cancer progression in some tumors and mounting evidence indicate that it mediates prostate cancer bone metastases. The FGF axis has an important role in bone biology and mediates cell-to-cell communication. Therefore, we discuss here basic concepts of bone biology, FGF signaling axis, and FGF axis function in adult bone, to integrate these concepts in our current understanding of the role of FGF axis in bone metastases.
Collapse
Affiliation(s)
- Estefania Labanca
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elba S Vazquez
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Paul G Corn
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Justin M Roberts
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fen Wang
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nora M Navone
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Correspondence should be addressed to N M Navone:
| |
Collapse
|
17
|
Jin W, Fei X, Wang X, Song Y, Chen F. Detection and Prognosis of Prostate Cancer Using Blood-Based Biomarkers. Mediators Inflamm 2020; 2020:8730608. [PMID: 32454797 PMCID: PMC7218965 DOI: 10.1155/2020/8730608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is second only to lung cancer as a cause of death. Clinical assessment of patients and treatment efficiency therefore depend on the disease being diagnosed as early as possible. However, due to issues regarding the use of prostate-specific antigen (PSA) for screening purposes, PCa management is among the most contentious of healthcare matters. PSA screening is problematic primarily because of diagnosis difficulties and the high rate of false-positive biopsies. Novel PCa biomarkers, such as the Prostate Health Index (PHI) and the 4Kscore, have been proposed in recent times to improve PSA prediction accuracy and have shown higher performance by preventing redundant biopsies. The 4Kscore also shows high precision in determining the risk of developing high-grade PCa, whereas elevated PHI levels suggest that the tumor is aggressive. Some evidence also supports the effectiveness of miRNAs as biomarkers for distinguishing PCa from benign prostatic hyperplasia and for assessing the aggressiveness of the disease. A number of miRNAs that possibly act as tumor inhibitors or oncogenes are impaired in PCa. These new biomarkers are comprehensively reviewed in the present study in terms of their potential use in diagnosing and treating PCa.
Collapse
Affiliation(s)
- Wei Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiang Fei
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yan Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fangjie Chen
- Department of Medical Genetics, School of Life Sciences, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Li B, Guo Z, Liang Q, Zhou H, Luo Y, He S, Lin Z. lncRNA DGCR5 Up-Regulates TGF-β1, Increases Cancer Cell Stemness and Predicts Survival of Prostate Cancer Patients. Cancer Manag Res 2019; 11:10657-10663. [PMID: 31920375 PMCID: PMC6939399 DOI: 10.2147/cmar.s231112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/14/2019] [Indexed: 11/24/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) DiGeorge syndrome critical region gene 5 (DGCR5) plays different roles in different types of human cancer, but its role in prostate cancer (PC) has not been reported. Methods DGCR5 and TGF-β1 expression in paired tumor and adjacent healthy tissues from 64 PC patients was analyzed by performing RT-qPCR. A 5-year follow-up study was performed to analyze the prognostic value of DGCR5 for PC. The interaction between DGCR5 and TGF-β1 was analyzed by overexpression experiments. Cell stemness was analyzed by cell stemness assay. Results In our study, we found that DGCR5 was down-regulated in tumor tissues than in adjacent healthy tissues of PC patients, but TGF-β1 was up-regulated in the tumor tissues. DGCR5 expression was not affected by clinical stages, but low DGCR5 level in the tumor was correlated with poor survival. DGCR5 and TGF-β1 were inversely correlated in tumor tissues but not in adjacent healthy tissues. DGCR5 over-expression resulted in down-regulation of TGF-β1, while TGF-β1 treatment did not significantly affect DGCR5 expression. DGCR5 over-expression led to decreased stemness of PC cells, but TGF-β1 treatment played a reverse role and attenuated the effects of DGCR5 over-expression. DGCR5 may decrease the stemness of PC cells by down-regulating TGF-β1.
Collapse
Affiliation(s)
- Bin Li
- Department of Urology, The First Peoples' Hospital of Foshan, Foshan City, Guangdong Province 528000, People's Republic of China
| | - Zhirui Guo
- Department of Radiology, The First Peoples' Hospital of Foshan, Foshan City, Guangdong Province 528000, People's Republic of China
| | - Quan Liang
- Department of Urology, The First Peoples' Hospital of Foshan, Foshan City, Guangdong Province 528000, People's Republic of China
| | - Huiling Zhou
- Department of Infectious Disease, The First Peoples' Hospital of Foshan, Foshan City, Guangdong Province 528000, People's Republic of China
| | - Yanping Luo
- Department of Anesthesiology Surgery, The First Peoples' Hospital of Foshan, Foshan City, Guangdong Province 528000, People's Republic of China
| | - Shuyun He
- Department of Radiology, The First Peoples' Hospital of Foshan, Foshan City, Guangdong Province 528000, People's Republic of China
| | - Zhe Lin
- Department of Urology, The First Peoples' Hospital of Foshan, Foshan City, Guangdong Province 528000, People's Republic of China
| |
Collapse
|
19
|
Jiang Z, Zhang Y, Chen X, Wu P, Chen D. Inactivation of the Wnt/β-catenin signaling pathway underlies inhibitory role of microRNA-129-5p in epithelial-mesenchymal transition and angiogenesis of prostate cancer by targeting ZIC2. Cancer Cell Int 2019; 19:271. [PMID: 31649488 PMCID: PMC6805653 DOI: 10.1186/s12935-019-0977-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
Background Prostate cancer (PCa) is a common disease that often occurs among older men and a frequent cause of malignancy associated death in this group. microRNA (miR)-129-5p has been identified as an essential regulator with a significant role in the prognosis of PC. Therefore, this study aimed to investigate roles of miR-129-5p in PCa. Methods Microarray analysis was conducted to identify PCa-related genes. The expression of miR-129-5p and ZIC2 in PCa tissues was investigated. To understand the role of miR-129-5p and ZIC2 in PCa, DU145 cells were transfected with mimic or inhibitor of miR-129-5p, or si-ZIC2 and the expression of Wnt, β-catenin, E-cadherin, vimentin, N-cadherin, vascular endothelial growth factor (VEGF), and CD31, as well as the extent of β-catenin phosphorylation was determined. In addition, cell proliferation, migration, invasion, angiogenesis, apoptosis and tumorigenesis were detected. Results miR-129-5p was poorly expressed and ZIC2 was highly expressed in PCa tissues. Down-regulation of ZIC2 or overexpression of miR-129-5p reduced the expression of ZIC2, Wnt, β-catenin, N-cadherin, vimentin, and β-catenin phosphorylation but increased the expression of E-cadherin. Importantly, miR-129-5p overexpression significantly reduced cell migration, invasion, angiogenesis and tumorigenesis while increasing cell apoptosis. Conclusions The findings of the present study indicated that overexpression of miR-129-5p or silencing of ZIC2 could inhibit epithelial–mesenchymal transition (EMT) and angiogenesis in PCa through blockage of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zhenming Jiang
- 1Department of Urology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China
| | - Yuxi Zhang
- 1Department of Urology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China.,Department of Urology, People's Hospital of Datong Hui and Tu Autonomous County, No. 1, Wenhua Road, Qiaotou Town, Datong Hui and Tu Autonomous County, Xining, 810100 Qinghai People's Republic of China
| | - Xi Chen
- 3Department of Pharmacy, The First Hospital of China Medical University, Shenyang, 110001 People's Republic of China
| | - Pingeng Wu
- 1Department of Urology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China
| | - Dong Chen
- 4Central Lab, The First Hospital of China Medical University, Shenyang, 110001 People's Republic of China
| |
Collapse
|
20
|
Bhagirath D, Yang TL, Tabatabai ZL, Shahryari V, Majid S, Dahiya R, Tanaka Y, Saini S. Role of a novel race-related tumor suppressor microRNA located in frequently deleted chromosomal locus 8p21 in prostate cancer progression. Carcinogenesis 2019; 40:633-642. [PMID: 30874288 PMCID: PMC7331454 DOI: 10.1093/carcin/bgz058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/07/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
The prostate cancer (PCa) genome is characterized by deletions of chromosome 8p21-22 region that increase significantly with tumor grade and are associated with poor prognosis. We proposed and validated a novel, paradigm-shifting hypothesis that this region is associated with a set of microRNA genes-miR-3622, miR-3622b, miR-383-that are lost in PCa and play important mechanistic roles in PCa progression and metastasis. Extending our hypothesis, in this study, we evaluated the role of a microRNA gene located in chromosome 8p-miR-4288-by employing clinical samples and cell lines. Our data suggests that (i) miR-4288 is widely downregulated in primary prostate tumors and cell lines; (ii) miR-4288 expression is lost in metastatic castration-resistant PCa; (ii) miR-4288 downregulation is race-related PCa alteration that is prevalent in Caucasian patients and not in African Americans; (iii) in Caucasians, miR-4288 was found to be associated with increasing tumor grade and high serum prostate-specific antigen, suggesting that miR-4288 downregulation/loss may be associated with tumor progression specifically in Caucasians; (iv) miR-4288 possess significant potential as a molecular biomarker to predict aggressiveness/metastasis; and (v) miR-4288 is anti-proliferative, is anti-invasive and inhibits epithelial-to-mesenchymal transition; and (vi) miR-4288 directly represses expression of metastasis/invasion-associated genes MMP16 and ROCK1. Thus, the present study demonstrates a tumor suppressor role for a novel miRNA located with a frequently lost region in PCa, strengthening our hypothesis that this locus is causally related to PCa disease progression via loss of microRNA genes. Our study suggests that miR-4288 may be a novel biomarker and therapeutic target, particularly in Caucasians.
Collapse
Affiliation(s)
- Divya Bhagirath
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Thao Ly Yang
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Z Laura Tabatabai
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Varahram Shahryari
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Shahana Majid
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Rajvir Dahiya
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Yuichiro Tanaka
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Sharanjot Saini
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| |
Collapse
|
21
|
Weidle UH, Epp A, Birzele F, Brinkmann U. The Functional Role of Prostate Cancer Metastasis-related Micro-RNAs. Cancer Genomics Proteomics 2019; 16:1-19. [PMID: 30587496 DOI: 10.21873/cgp.20108] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/08/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023] Open
Abstract
The mortality of patients with hormone-resistant prostate cancer can be ascribed to a large degree to metastasis to distant organs, predominantly to the bones. In this review, we discuss the contribution of micro-RNAs (miRs) to the metastatic process of prostate cancer. The criteria for selection of miRs for this review were the availability of preclinical in vivo metastasis-related data in conjunction with prognostic clinical data. Depending on their function in the metastatic process, the corresponding miRs are up- or down-regulated in prostate cancer tissues when compared to matching normal tissues. Up-regulated miRs preferentially target suppressors of cytokine signaling or tumor suppressor-related genes and metastasis-inhibitory transcription factors. Down-regulated miRs promote epithelial-mesenchymal transition or mesenchymal-epithelial transition and diverse pro-metastatic signaling pathways. Some of the discussed miRs exert their function by simultaneously targeting epigenetic pathways as well as cell-cycle-related, anti-apoptotic and signaling-promoting targets. Finally, we discuss potential therapeutic options for the treatment of prostate cancer-related metastases by substitution or inhibition of miRs.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Alexandra Epp
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
22
|
Roy S, Axelrod HD, Valkenburg KC, Amend S, Pienta KJ. Optimization of prostate cancer cell detection using multiplex tyramide signal amplification. J Cell Biochem 2019; 120:4804-4812. [PMID: 30390333 PMCID: PMC6519224 DOI: 10.1002/jcb.28016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/12/2018] [Indexed: 11/12/2022]
Abstract
Approximately 29 000 men die of prostate cancer (PCa) each year in the United States, and 90% to 100% of them are due to incurable bone metastasis. It is difficult to determine (1) when PCa disseminates in the natural history of the disease; (2) where cancer cell disseminates before becoming overt metastatic lesions; and (3) which tumors are aggressive and which are indolent. Tumor tissue and liquid (blood and bone marrow) biopsies provide important information to answer these questions, but significant limitations exist for immunostaining strategies that assess protein expression in these tissues. Classic immunohistochemistry (IHC) assays can typically assess expression of one or two proteins per tissue section. We have developed a novel immunofluorescence staining protocol to detect a panel of seven proteins on PCa tissue from primary tumor biopsies and metastatic lesion autopsy tissue, as well as cancer cells from liquid biopsies. We used a tyramide-based system to amplify the true signal and optimized the protocol to reduce background signal, thereby boosting the signal-to-noise ratio. Any protein-specific antibody in this protocol can be exchanged for a different validated antibody. This protocol therefore, represents a highly informative and flexible assay that can be used to provide important information about cancer tissue for the purpose of improving detection, diagnosis, and treatment.
Collapse
Affiliation(s)
- Sounak Roy
- The Johns Hopkins University, The Krieger School of Arts & SciencesBaltimoreMaryland
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins University School of MedicineBaltimoreMaryland
| | - Haley D. Axelrod
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins University School of MedicineBaltimoreMaryland
- The Cellular and Molecular Medicine ProgramJohns Hopkins School of MedicineBaltimoreMaryland
| | - Kenneth C. Valkenburg
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins University School of MedicineBaltimoreMaryland
| | - Sarah Amend
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins University School of MedicineBaltimoreMaryland
| | - Kenneth J. Pienta
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins University School of MedicineBaltimoreMaryland
| |
Collapse
|
23
|
Xiang L, Gilkes DM. The Contribution of the Immune System in Bone Metastasis Pathogenesis. Int J Mol Sci 2019; 20:ijms20040999. [PMID: 30823602 PMCID: PMC6412551 DOI: 10.3390/ijms20040999] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Bone metastasis is associated with significant morbidity for cancer patients and results in a reduced quality of life. The bone marrow is a fertile soil containing a complex composition of immune cells that may actually provide an immune-privileged niche for disseminated tumor cells to colonize and proliferate. In this unique immune milieu, multiple immune cells including T cells, natural killer cells, macrophages, dendritic cells, myeloid-derived suppressor cells, and neutrophils are involved in the process of bone metastasis. In this review, we will discuss the crosstalk between immune cells in bone microenvironment and their involvement with cancer cell metastasis to the bone. Furthermore, we will highlight the anti-tumoral and pro-tumoral function of each immune cell type that contributes to bone metastasis. We will end with a discussion of current therapeutic strategies aimed at sensitizing immune cells.
Collapse
Affiliation(s)
- Lisha Xiang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu 610041, China.
| | - Daniele M Gilkes
- Breast & Ovarian Cancer Program, Department of Oncology, The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA.
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
24
|
Jones JD, Sinder BP, Paige D, Soki FN, Koh AJ, Thiele S, Shiozawa Y, Hofbauer LC, Daignault S, Roca H, McCauley LK. Trabectedin Reduces Skeletal Prostate Cancer Tumor Size in Association with Effects on M2 Macrophages and Efferocytosis. Neoplasia 2018; 21:172-184. [PMID: 30591422 PMCID: PMC6314218 DOI: 10.1016/j.neo.2018.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/30/2022] Open
Abstract
Macrophages play a dual role in regulating tumor progression. They can either reduce tumor growth by secreting antitumorigenic factors or promote tumor progression by secreting a variety of soluble factors. The purpose of this study was to define the monocyte/macrophage population prevalent in skeletal tumors, explore a mechanism employed in supporting prostate cancer (PCa) skeletal metastasis, and examine a novel therapeutic target. Phagocytic CD68+ cells were found to correlate with Gleason score in human PCa samples, and M2-like macrophages (F4/80+CD206+) were identified in PCa bone resident tumors in mice. Induced M2-like macrophages in vitro were more proficient at phagocytosis (efferocytosis) of apoptotic tumor cells than M1-like macrophages. Moreover, soluble factors released from efferocytic versus nonefferocytic macrophages increased PC-3 prostate cancer cell numbers in vitro. Trabectedin exposure reduced M2-like (F4/80+CD206+) macrophages in vivo. Trabectedin administration after PC-3 cell intracardiac inoculation reduced skeletal metastatic tumor growth. Preventative pretreatment with trabectedin 7 days prior to PC-3 cell injection resulted in reduced M2-like macrophages in the marrow and reduced skeletal tumor size. Together, these findings suggest that M2-like monocytes and macrophages promote PCa skeletal metastasis and that trabectedin represents a candidate therapeutic target.
Collapse
Affiliation(s)
- J D Jones
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - B P Sinder
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - D Paige
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - F N Soki
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - A J Koh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - S Thiele
- Department of Endocrinology, Diabetes, and Bone Disease, Technische Universität Dresden Medical Center, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Y Shiozawa
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI; Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC
| | - L C Hofbauer
- Department of Endocrinology, Diabetes, and Bone Disease, Technische Universität Dresden Medical Center, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S Daignault
- Department of Biostatistics, Center for Cancer Biostatistics, University of Michigan, Ann Arbor, MI
| | - H Roca
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - L K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI.
| |
Collapse
|
25
|
Song C, Chen H. Predictive significance of TMRPSS2- ERG fusion in prostate cancer: a meta-analysis. Cancer Cell Int 2018; 18:177. [PMID: 30459527 PMCID: PMC6233278 DOI: 10.1186/s12935-018-0672-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/31/2018] [Indexed: 11/23/2022] Open
Abstract
Background Prostate cancer is a major malignancy in males. TMPRSS2-ERG is a high-frequency fusion gene expressed in prostate cancer and plays a vital role in carcinogenesis. Recent studies showed that TMPRSS2-ERG is a potential predictive biomarker for prostate cancer. However, the predictive value of TMPRSS2-ERG fusion is yet unclear. Methods A total of 76 relevant articles, published from 2015 to 2017, were obtained from PubMed, Web of Science, EMBASE, Scopus, the Cochrane Library, and CNKI databases to investigate the predictive significance of TMPRSS2-ERG fusion in prostate cancer. Pooled odds ratio (ORs) with 95% confidence intervals (CIs) were calculated to estimate the correlation between TMPRSS2-ERG fusion gene and tumor features. Results The pooled or stratified analysis showed that the TMPRSS2-ERG fusion gene had a highly predictive potential. First, TMPRSS2-ERG fusion was associated with T-stage at diagnosis (T3–4 vs. T1–2 OR: 1.40; 95% CI 1.33–1.48) and metastasis (M1 vs. M0 OR: 1.35; 95% CI 1.02–1.78) but not with biochemical recurrence or prostate cancer-specific mortality. Furthermore, the subgroup analysis found that the TMPRSS2-ERG fusion gene was correlated with Gleason (G) scores, and the fusion was common in prostate cancer with G ≤ 7. Additionally, the meta-analysis demonstrated that the fusion was likely to occur in young patients (> 65 vs. ≤ 65 OR: 0.68; 95% CI 0.52–0.89), in patients with high PSA levels (> 10 vs. ≤ 10 OR: 1.30; 95% CI 1.21–1.38), and in patients with peripheral involvement (positive vs. negative OR: 1.17; 95% CI 1.08–1.28), while not associated with tumor volume. Finally, the subgroup analysis of different fusion types demonstrated that the deletion-type fusion was significantly associated with the malignant degree of prostate cancer (pooled OR: 5.67; 95% CI 2.85–11.28). Moreover, the deletion-type was common in Africa patients, followed by Caucasian patients, and no significant difference was observed in the incidence of different fusion types in the Asian population. Conclusions The meta-analysis findings suggested that the TMPRSS2-ERG fusion gene might be a predictive marker for prostate cancer patients, and might be valuable for assessing the characteristics of prostate cancer for individualized treatment and prognosis evaluation. Electronic supplementary material The online version of this article (10.1186/s12935-018-0672-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunjiao Song
- 1Medical Research Center, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing Bei Road, Shaoxing, 312000 Zhejiang People's Republic of China
| | - Huan Chen
- 2Zhejiang Institute of Microbiology (Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province), Hangzhou, Zhejiang China
| |
Collapse
|
26
|
Mantsiou A, Vlahou A, Zoidakis J. Tissue proteomics studies in the investigation of prostate cancer. Expert Rev Proteomics 2018; 15:593-611. [DOI: 10.1080/14789450.2018.1491796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Anna Mantsiou
- Biotechnology Division,Biomedical Research Foundation Academy of Athens, Greece
| | - Antonia Vlahou
- Biotechnology Division,Biomedical Research Foundation Academy of Athens, Greece
| | - Jerome Zoidakis
- Biotechnology Division,Biomedical Research Foundation Academy of Athens, Greece
| |
Collapse
|
27
|
Vanacore D, Boccellino M, Rossetti S, Cavaliere C, D'Aniello C, Di Franco R, Romano FJ, Montanari M, La Mantia E, Piscitelli R, Nocerino F, Cappuccio F, Grimaldi G, Izzo A, Castaldo L, Pepe MF, Malzone MG, Iovane G, Ametrano G, Stiuso P, Quagliuolo L, Barberio D, Perdonà S, Muto P, Montella M, Maiolino P, Veneziani BM, Botti G, Caraglia M, Facchini G. Micrornas in prostate cancer: an overview. Oncotarget 2018; 8:50240-50251. [PMID: 28445135 PMCID: PMC5564846 DOI: 10.18632/oncotarget.16933] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/25/2017] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is the second highest cause of cancer mortality after lung tumours. In USA it affects about 2.8 million men and the incidence increases with age in many countries. Therefore, early diagnosis is a very important step for patient clinical evaluation and for a selective and efficient therapy. The study of miRNAs' functions and molecular mechanisms has brought new knowledge in biological processes of cancer. In prostate cancer there is a deregulation of several miRNAs that may function as tumour suppressors or oncogenes. The aim of this review is to analyze the progress made to our understanding of the role of miRNA dysregulation in prostate cancer tumourigenesis.
Collapse
Affiliation(s)
- Daniela Vanacore
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Mariarosaria Boccellino
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Sabrina Rossetti
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Carla Cavaliere
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Department of Onco-Ematology Medical Oncology, S.G. Moscati Hospital of Taranto, Taranto, Italy
| | - Carmine D'Aniello
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Medical Oncology, A.O.R.N. dei COLLI "Ospedali Monaldi-Cotugno-CTO", Napoli, Italy
| | - Rossella Di Franco
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Francesco Jacopo Romano
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy
| | - Micaela Montanari
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Elvira La Mantia
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Raffaele Piscitelli
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Pharmacy Unit, Istituto Nazionale Tumori, Istituto Nazionale Tumori-Fondazione G. Pascale, Naples, Italy
| | - Flavia Nocerino
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Epidemiology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Francesca Cappuccio
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Psicology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Giovanni Grimaldi
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Alessandro Izzo
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Luigi Castaldo
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Maria Filomena Pepe
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Maria Gabriella Malzone
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Gelsomina Iovane
- Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Gianluca Ametrano
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Paola Stiuso
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Lucio Quagliuolo
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Daniela Barberio
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Psicology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Sisto Perdonà
- Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Paolo Muto
- Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Maurizio Montella
- Epidemiology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Piera Maiolino
- Pharmacy Unit, Istituto Nazionale Tumori, Istituto Nazionale Tumori-Fondazione G. Pascale, Naples, Italy
| | - Bianca Maria Veneziani
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy.,Scientific Directorate, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Gaetano Facchini
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| |
Collapse
|
28
|
Novel tumor suppressor microRNA at frequently deleted chromosomal region 8p21 regulates epidermal growth factor receptor in prostate cancer. Oncotarget 2018; 7:70388-70403. [PMID: 27611943 PMCID: PMC5342560 DOI: 10.18632/oncotarget.11865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/13/2016] [Indexed: 12/22/2022] Open
Abstract
Genomic loss of chromosome (chr) 8p21 region, containing prostate-specific NKX3.1 gene, is a frequent alteration of the prostate cancer (PCa) oncogenome. We propose a novel, paradigm shifting hypothesis that this frequently deleted locus is also associated with a cluster of microRNA genes- miR-3622a/b- that are lost in PCa and play an important mechanistic role in progression and metastasis. In this study, we demonstrate the role of miR-3622b in prostate cancer. Expression analyses in a cohort of PCa clinical specimens and cell lines show that miR-3622b expression is frequently lost in prostate cancer. Low miR-3622b expression was found to be associated with tumor progression and poor biochemical recurrence-free survival. Further, our analyses suggest that miR-3622b expression is a promising prostate cancer diagnostic biomarker that exhibits 100% specificity and 66% sensitivity. Restoration of miR-3622b expression in PCa cell lines led to reduced cellular viability, proliferation, invasiveness, migration and increased apoptosis. miR-3622b overexpression in vivo induced regression of established prostate tumor xenografts pointing to its therapeutic potential. Further, we found that miR-3622b directly represses Epidermal Growth Factor Receptor (EGFR). In conclusion, our study suggests that miR-3622b plays a tumor suppressive role and is frequently downregulated in prostate cancer, leading to EGFR upregulation. Importantly, miR-3622b has associated diagnostic, prognostic and therapeutic potential. Considering the association of chr8p21 loss with poor prognosis, our findings are highly significant and support a novel concept that associates a long standing observation of frequent loss of a chromosomal region with a novel miRNA in prostate cancer.
Collapse
|
29
|
Sekhon K, Bucay N, Majid S, Dahiya R, Saini S. MicroRNAs and epithelial-mesenchymal transition in prostate cancer. Oncotarget 2018; 7:67597-67611. [PMID: 27588490 PMCID: PMC5341899 DOI: 10.18632/oncotarget.11708] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is a leading cause of male cancer-related deaths. A significant fraction of prostate tumors are very aggressive, often metastasizing to bone, causing significant morbidity and mortality. Also, PCa is associated with high rates of recurrence, often attributed to the existence of cancer stem cells. Epithelial-mesenchymal transition (EMT), a process characterized by decreased expression of epithelial genes and increased expression of mesenchymal genes, plays a critical role in tumor invasion, metastasis and recurrence. In PCa, EMT has been implicated particularly in the context of metastatic disease and microRNAs have emerged as critical post-transcriptional regulators of PCa EMT. In this review, we summarize the role of miRNAs in PCa EMT that play a role in progression, metastasis and recurrence. Studies till date suggest that microRNAs mediate efficient and reversible control of PCa EMT via multiple mechanisms including either by (i) directly repressing single or multiple EMT-TFs or regulating cytoskeletal components (epithelial/mesenchymal genes) or (ii) regulating key signaling pathways involved in EMT. Oncogenic microRNAs often act as EMT promoters by repressing epithelial characteristics and tumor suppressive miRNAs act by inhibiting mesenchymal progression. Further, EMT is mechanistically linked to stem cell signatures in PCa and several miRNAs implicated in EMT have been reported to influence PCa stem cells. Loss of EMT-inhibiting miRNAs and/or gain of EMT promoting miRNAs lead to induction of PCa EMT, leading to tumor progression, metastasis and recurrence. Restoring expression of tumor suppressive miRNAs and inhibiting oncogenic miRNAs represent potential therapeutic opportunities to prevent disease metastasis and recurrence.
Collapse
Affiliation(s)
- Kirandeep Sekhon
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, CA, USA
| | - Nathan Bucay
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, CA, USA
| | - Shahana Majid
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, CA, USA
| | - Rajvir Dahiya
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, CA, USA
| | - Sharanjot Saini
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, CA, USA
| |
Collapse
|
30
|
Bhagirath D, Yang TL, Bucay N, Sekhon K, Majid S, Shahryari V, Dahiya R, Tanaka Y, Saini S. microRNA-1246 Is an Exosomal Biomarker for Aggressive Prostate Cancer. Cancer Res 2018; 78:1833-1844. [PMID: 29437039 DOI: 10.1158/0008-5472.can-17-2069] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/26/2017] [Accepted: 01/29/2018] [Indexed: 12/13/2022]
Abstract
Because of high heterogeneity, molecular characterization of prostate cancer based on biopsy sampling is often challenging. Hence, a minimally invasive method to determine the molecular imprints of a patient's tumor for risk stratification would be advantageous. In this study, we employ a novel, digital amplification-free quantification method using the nCounter technology (NanoString Technologies) to profile exosomal serum miRNAs (ex-miRNA) from aggressive prostate cancer cases, benign prostatic hyperplasia, and disease-free controls. We identified several dysregulated miRNAs, one of which was the tumor suppressor miR-1246. miR-1246 was downregulated in prostate cancer clinical tissues and cell lines and was selectively released into exosomes. Overexpression of miR-1246 in a prostate cancer cell line significantly inhibited xenograft tumor growth in vivo and increased apoptosis and decreased proliferation, invasiveness, and migration in vitro miR-1246 inhibited N-cadherin and vimentin activities, thereby inhibiting epithelial-mesenchymal transition. Ex-miR-1246 expression correlated with increasing pathologic grade, positive metastasis, and poor prognosis. Our analyses suggest ex-miR-1246 as a promising prostate cancer biomarker with diagnostic potential that can predict disease aggressiveness.Significance: Dysregulation of exosomal miRNAs in aggressive prostate cancer leads to alteration of key signaling pathways associated with metastatic prostate cancer. Cancer Res; 78(7); 1833-44. ©2018 AACR.
Collapse
Affiliation(s)
- Divya Bhagirath
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Thao Ly Yang
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Nathan Bucay
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Kirandeep Sekhon
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Shahana Majid
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Varahram Shahryari
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Rajvir Dahiya
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Yuichiro Tanaka
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Sharanjot Saini
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California.
| |
Collapse
|
31
|
Song CJ, Chen H, Chen LZ, Ru GM, Guo JJ, Ding QN. The potential of microRNAs as human prostate cancer biomarkers: A meta-analysis of related studies. J Cell Biochem 2017; 119:2763-2786. [PMID: 29095529 PMCID: PMC5814937 DOI: 10.1002/jcb.26445] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/17/2017] [Indexed: 12/15/2022]
Abstract
Prostate cancer (PC) is a very important kind of male malignancies. When PC evolves into a stage of hormone resistance or metastasis, the fatality rate is very high. Currently, discoveries and advances in miRNAs as biomarkers have opened the potential for the diagnosis of PC, especially early diagnosis. miRNAs not only can noninvasively or minimally invasively identify PC, but also can provide the data for optimization and personalization of therapy. Moreover, miRNAs have been shown to play an important role to predict prognosis of PC. The purpose of this meta‐analysis is to integrate the currently published expression profile data of miRNAs in PC, and evaluate the value of miRNAs as biomarkers for PC. All of relevant records were selected via electronic databases: Pubmed, Embase, Cochrane, and CNKI based on the assessment of title, abstract, and full text. we extracted mean ± SD or fold change of miRNAs expression levels in PC versus BPH or normal controls. Pooled hazard ratios (HRs) with 95% confidence intervals (CI) for overall survival (OS) and recurrence‐free survival (RFS), were also calculated to detect the relationship between high miRNAs expression and PC prognosis. Selected 104 articles were published in 2007‐2017. According to the inclusion criteria, 104 records were included for this meta‐analysis. The pooled or stratified analyze showed 10 up‐regulated miRNAs (miR‐18a, miR‐34a, miR‐106b, miR‐141, miR‐182, miR‐183, miR‐200a/b, miR‐301a, and miR‐375) and 14 down‐regulated miRNAs (miR‐1, miR‐23b/27b, miR‐30c, miR‐99b, miR‐139‐5p, miR‐152, miR‐187, miR‐204, miR‐205, miR‐224, miR‐452, miR‐505, and let‐7c) had relatively good diagnostic and predictive potential to discriminate PC from BPH/normal controls. Furthermore, high expression of miR‐32 and low expression of let‐7c could be used to differentiate metastatic PC from local/primary PC. Additional interesting findings were that the expression profiles of five miRNAs (miR‐21, miR‐30c, miR‐129, miR‐145, and let‐7c) could predict poor RFS of PC, while the evaluation of miR‐375 was associated with worse OS. miRNAs are important regulators in PC progression. Our results indicate that miRNAs are suitable for predicting the different stages of PC. The detection of miRNAs is an effective way to control patient's prognosis and evaluate therapeutic efficacy. However, large‐scale detections based on common clinical guidelines are still necessary to further validate our conclusions, due to the bias induced by molecular heterogeneity and differences in study design and detection methods.
Collapse
Affiliation(s)
- Chun-Jiao Song
- Medical Research Center, Shaoxing people's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Huan Chen
- Zhejiang Institute of Microbiology, Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, China
| | - Li-Zhong Chen
- Medical Research Center, Shaoxing people's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Guo-Mei Ru
- Medical Research Center, Shaoxing people's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Jian-Jun Guo
- Medical Research Center, Shaoxing people's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Qian-Nan Ding
- Medical Research Center, Shaoxing people's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| |
Collapse
|
32
|
Navone NM, Labanca E. Modeling Cancer Metastasis. PATIENT-DERIVED XENOGRAFT MODELS OF HUMAN CANCER 2017. [DOI: 10.1007/978-3-319-55825-7_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Ranjan A, Benjamin CJ, Negussie AH, Chokshi S, Chung PH, Volkin D, Yeram N, Linehan WM, Dreher MR, Pinto PA, Wood BJ. Biodistribution and Efficacy of Low Temperature-Sensitive Liposome Encapsulated Docetaxel Combined with Mild Hyperthermia in a Mouse Model of Prostate Cancer. Pharm Res 2016; 33:2459-69. [PMID: 27343000 PMCID: PMC7641880 DOI: 10.1007/s11095-016-1971-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/09/2016] [Indexed: 01/21/2023]
Abstract
PURPOSE Low temperature sensitive liposome (LTSL) encapsulated docetaxel were combined with mild hyperthermia (40-42°C) to investigate in vivo biodistribution and efficacy against a castrate resistant prostate cancer. METHOD Female athymic nude mice with human prostate PC-3 M-luciferase cells grown subcutaneously into the right hind leg were randomized into six groups: saline (+/- heat), free docetaxel (+/- heat), and LTSL docetaxel (+/- heat). Treatment (15 mg docetaxel/kg) was administered via tail vein once tumors reached a size of 200-300 mm(3). Mice tumor volumes and body weights were recorded for up to 60 days. Docetaxel concentrations of harvested tumor and organ/tissue homogenates were determined by LC-MS. Histological evaluation (Mean vessel density, Ki67 proliferation, Caspase-3 apoptosis) of saline, free Docetaxel and LTSL docetaxel (+/- heat n = 3-5) was performed to determine molecular mechanism responsible for tumor cell killing. RESULT LTSL/heat resulted in significantly higher tumor docetaxel concentrations (4.7-fold greater compared to free docetaxel). Adding heat to LTSL Docetaxel or free docetaxel treatment resulted in significantly greater survival and growth delay compared to other treatments (p < 0.05). Differences in body weight between all Docetaxel treatments were not reduced by >10% and were not statistically different from each other. Molecular markers such as caspase-3 were upregulated, and Ki67 expression was significantly decreased in the chemo-hyperthermia group. Vessel density was similar post treatment, but the heated group had reduced vessel area, suggesting thermal enhancement in efficacy by reduction in functional perfusion. CONCLUSION This technique of hyperthermia sensitization and enhanced docetaxel delivery has potential for clinical translation for prostate cancer treatment.
Collapse
Affiliation(s)
- Ashish Ranjan
- Center for Interventional Oncology, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, MSC 1182- building 10- room 1c -341, 10 Center Drive, Bethesda, Maryland, 20892, USA
| | - Compton J Benjamin
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ayele H Negussie
- Center for Interventional Oncology, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, MSC 1182- building 10- room 1c -341, 10 Center Drive, Bethesda, Maryland, 20892, USA
| | - Saurin Chokshi
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul H Chung
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dmitry Volkin
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nitin Yeram
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - W Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew R Dreher
- Center for Interventional Oncology, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, MSC 1182- building 10- room 1c -341, 10 Center Drive, Bethesda, Maryland, 20892, USA
| | - Peter A Pinto
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Bradford J Wood
- Center for Interventional Oncology, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, MSC 1182- building 10- room 1c -341, 10 Center Drive, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
34
|
Joshi R, Goihberg E, Ren W, Pilichowska M, Mathew P. Proteolytic fragments of fibronectin function as matrikines driving the chemotactic affinity of prostate cancer cells to human bone marrow mesenchymal stromal cells via the α5β1 integrin. Cell Adh Migr 2016; 11:305-315. [PMID: 27715399 DOI: 10.1080/19336918.2016.1212139] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The haematopoietic niche is contributed to by bone marrow-resident mesenchymal stromal cells (BM-MSCs) and subverted by prostate cancer cells. To study mechanisms by which BM-MSCs and prostate cancer cells may interact, we assessed the migration, invasion, adhesion and proliferation of bone-derived prostate cancer cells (PC-3) in co-culture with pluripotent human BM-MSCs. We observed a strong adhesive, migratory and invasive phenotype of PC-3 cells with BM- MSC-co-culture and set out to isolate and characterize the bioactive principle. Initial studies indicated that chemotaxis was secondary to a protein residing in the >100kDa fraction. Size-exclusion chromatography (SEC) recovered peak activity in a high-molecular weight fraction containing thrombospondin-1 (TSP1). While TSP1 immunodepletion decreased activity, put-back with purified TSP1 did not reproduce bioactivity. Further purification of the TSP1-containing high-molecular weight fraction of the BM-MSC secretome with heparin-affinity chromatography recovered bioactivity with highly restricted bands on polyacrylamide gel electrophoresis, determined by mass spectroscopy to be proteolytic fragments of fibronectin (FN). Put-back experiments with full-length FN permitted adhesion but failed to induce migration. Monospecific antibodies to FN blocked adhesion. Proteolytic cleavage of FN generated FN fragments which now induced migration. Neutralizing monoclonal antibodies to FN receptors α5 and β1 integrins, and α5 knockdown specifically blocked migration and adhesion. CONCLUSION Fibronectin fragments (FNFr) function as matrikines driving the chemotactic affinity of prostate cancer cells via the α5β1 integrin. Taken together with the high-frequency of α5β1 expression in disseminated prostate cancer cells in bone marrow aspirates from patients, the FNFr/FN-α5β1 interaction warrants further study as a therapeutic target.
Collapse
Affiliation(s)
- Raghav Joshi
- a Molecular Oncology Research Institute , Tufts Medical Center , Boston , MA , USA
| | - Edi Goihberg
- a Molecular Oncology Research Institute , Tufts Medical Center , Boston , MA , USA
| | - Wenying Ren
- a Molecular Oncology Research Institute , Tufts Medical Center , Boston , MA , USA
| | | | - Paul Mathew
- a Molecular Oncology Research Institute , Tufts Medical Center , Boston , MA , USA
| |
Collapse
|
35
|
Abstract
BACKGROUND The use of biomarkers for prostate cancer screening, diagnosis and prognosis has the potential to improve the clinical management of the patients. Owing to inherent limitations of the biomarker prostate-specific antigen (PSA), intensive efforts are currently directed towards a search for alternative prostate cancer biomarkers, particularly those that can predict disease aggressiveness and drive better treatment decisions. METHODS A literature search of Medline articles focused on recent and emerging advances in prostate cancer biomarkers was performed. The most promising biomarkers that have the potential to meet the unmet clinical needs in prostate cancer patient management and/or that are clinically implemented were selected. CONCLUSIONS With the advent of advanced genomic and proteomic technologies, we have in recent years seen an enormous spurt in prostate cancer biomarker research with several promising alternative biomarkers being discovered that show an improved sensitivity and specificity over PSA. The new generation of biomarkers can be tested via serum, urine, or tissue-based assays that have either received regulatory approval by the US Food and Drug Administration or are available as Clinical Laboratory Improvement Amendments-based laboratory developed tests. Additional emerging novel biomarkers for prostate cancer, including circulating tumor cells, microRNAs and exosomes, are still in their infancy. Together, these biomarkers provide actionable guidance for prostate cancer risk assessment, and are expected to lead to an era of personalized medicine.
Collapse
Affiliation(s)
- Sharanjot Saini
- Department of Urology, Urology Research (112J), Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121, USA.
- University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
36
|
Koo KC, Park SU, Kim KH, Rha KH, Hong SJ, Yang SC, Chung BH. Prognostic Impacts of Metastatic Site and Pain on Progression to Castrate Resistance and Mortality in Patients with Metastatic Prostate Cancer. Yonsei Med J 2015; 56:1206-12. [PMID: 26256961 PMCID: PMC4541648 DOI: 10.3349/ymj.2015.56.5.1206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/27/2014] [Accepted: 11/14/2014] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To investigate predictors of progression to castration-resistant prostate cancer (CRPC) and cancer-specific mortality (CSM) in patients with metastatic prostate cancer (mPCa). MATERIALS AND METHODS A retrospective analysis was performed on 440 consecutive treatment-naïve patients initially diagnosed with mPCa between August 2000 and June 2012. Patient age, body mass index (BMI), Gleason score, prostate-specific antigen (PSA), PSA nadir, American Joint Committee on Cancer stage, Visual Analogue Scale pain score, Eastern Cooperative Oncology Group performance score (ECOG PS), PSA response to hormone therapy, and metastatic sites were assessed. Cox-proportional hazards regression analyses were used to evaluate survivals and predictive variables of men with bone metastasis stratified according to the presence of pain, compared to men with visceral metastasis. RESULTS Metastases were most often found in bone (75.4%), followed by lung (16.3%) and liver (8.3%) tissues. Bone metastasis, pain, and high BMI were associated with increased risks of progression to CRPC, and bone metastasis, pain, PSA nadir, and ECOG PS≥1 were significant predictors of CSM. During the median follow-up of 32.0 (interquartile range 14.7-55.9) months, patients with bone metastasis with pain and patients with both bone and visceral metastases showed the worst median progression to CRPC-free and cancer-specific survivals, followed by men with bone metastasis without pain. Patients with visceral metastasis had the best median survivals. CONCLUSION Metastatic spread and pain patterns confer different prognosis in patients with mPCa. Bone may serve as a crucial microenvironment in the development of CRPC and disease progression.
Collapse
Affiliation(s)
- Kyo Chul Koo
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Un Park
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ki Hong Kim
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Koon Ho Rha
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Joon Hong
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Choul Yang
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Byung Ha Chung
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
37
|
Sung SY, Wu IH, Chuang PH, Petros JA, Wu HC, Zeng HJ, Huang WC, Chung LWK, Hsieh CL. Targeting L1 cell adhesion molecule expression using liposome-encapsulated siRNA suppresses prostate cancer bone metastasis and growth. Oncotarget 2015; 5:9911-29. [PMID: 25294816 PMCID: PMC4259447 DOI: 10.18632/oncotarget.2478] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The L1 cell adhesion molecule (L1CAM) has been implicated in tumor progression of many types of cancers, but its role in prostate cancer and its application in targeted gene therapy have not been investigated. Herein, we demonstrated that the L1CAM was expressed in androgen-insensitive and highly metastatic human prostate cancer cell lines. The correlation between L1CAM expression and prostate cancer metastasis was also validated in serum samples of prostate cancer patients. Knockdown of L1CAM expression in prostate cancer cells by RNA interference significantly decreased their aggressive behaviors, including colony formation, migration and invasion in vitro, and tumor formation in a metastatic murine model. These anti-malignant phenotypes of L1CAM-knockdown cancer cells were accompanied by G0/G1 cell cycle arrest and suppression of matrix metalloproteinase (MMP)-2 and MMP-9 expression and nuclear factor NF-κB activation. In vivo targeting of L1CAM expression using liposome-encapsulated L1CAM siRNAs effectively inhibited prostate cancer growth in mouse bone, which was associated with decreased L1CAM expression and cell proliferation by tumor cells. These results provide the first evidence for L1CAM being a major contributor to prostate cancer metastasis and translational application of siRNA-based L1CAM-targeted therapy.
Collapse
Affiliation(s)
- Shian-Ying Sung
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan. These authors contributed equally to this work
| | - I-Hui Wu
- Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan. These authors contributed equally to this work
| | - Pei-Hsin Chuang
- Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan. These authors contributed equally to this work
| | - John A Petros
- Department of Urology, Emory University, Atlanta, GA, USA. Department of Urology, Atlanta VA Medical Center, Decatur GA, USA
| | - Hsi-Chin Wu
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Hong-Jie Zeng
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Leland W K Chung
- Department of Urology, Emory University, Atlanta, GA, USA. Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Chia-Ling Hsieh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan. Department of Urology, Emory University, Atlanta, GA, USA. Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| |
Collapse
|
38
|
Abstract
Knowledge of the molecular events that contribute to prostate cancer progression has created opportunities to develop novel therapy strategies. It is now well established that c-Src, a non-receptor tyrosine kinase, regulates a complex signaling network that drives the development of castrate-resistance and bone metastases, events that signal the lethal phenotype of advanced disease. Preclinical studies have established a role for c-Src and Src Family Kinases (SFKs) in proliferation, angiogenesis, invasion and bone metabolism, thus implicating Src signaling in both epithelial and stromal mechanisms of disease progression. A number of small molecule inhibitors of SFK now exist, many of which have demonstrated efficacy in preclinical models and several that have been tested in patients with metastatic castrate-resistant prostate cancer. These agents have demonstrated provocative clinic activity, particularly in modulating the bone microenvironment in a therapeutically favorable manner. Here, we review the discovery and basic biology of c-Src and further discuss the role of SFK inhibitors in the treatment of advanced prostate cancer.
Collapse
|
39
|
Abstract
The treatment of bone-metastatic cancer now takes advantage of the unique biology of this clinical state. The complex interplay between the cancer cells and the bone microenvironment leads to a host of therapeutic targets, with agents in various stages of clinical use or study. Targets include interactions between the cancer cells and osteoclasts, osteoblasts, endothelial cells, stromal cells, hematopoietic progenitor cells, cells of the immune system, and the bone matrix. Efforts at understanding specific mechanisms of drug resistance in the bone are also ongoing. Successful clinical outcomes will be the result of co-targeting and interrupting the various tumor-supportive elements and cooperating pathways at the level of the tumor cell, the primary and metastatic microenvironments, and systemic cancer effects, leading to a "scaled network disruption" to undermine the disease state.
Collapse
Affiliation(s)
- Daniel F Camacho
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, 7431 CCC 1500 E Medical Ctr, Ann Arbor, MI, 48109, USA
| | | |
Collapse
|
40
|
Liang J, Li Y, Daniels G, Sfanos K, De Marzo A, Wei J, Li X, Chen W, Wang J, Zhong X, Melamed J, Zhao J, Lee P. LEF1 Targeting EMT in Prostate Cancer Invasion Is Regulated by miR-34a. Mol Cancer Res 2015; 13:681-8. [PMID: 25587085 DOI: 10.1158/1541-7786.mcr-14-0503] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/30/2014] [Indexed: 12/16/2022]
Abstract
UNLABELLED The microRNA-34a (miR-34a), a tumor-suppressive microRNA (miRNA), is implicated in epithelial-mesenchymal transition (EMT) and cancer stem cells. Lymphoid enhancer-binding factor-1 (LEF1) is a key transcription factor in the Wnt signaling pathway, and has been suggested to be involved in regulation of cell proliferation and invasion. Here, the molecular mechanism of miR-34a and LEF1 in cooperatively regulating prostate cancer cell invasion is described. Molecular profiling analysis of miRNA levels in prostate cancer cells revealed a negative correlation between miR-34a and LEF1 expression, and the downregulation of LEF1 by miR-34a was confirmed by luciferase assays. Furthermore, miR-34a specifically repressed LEF1 expression through direct binding to its 3'-untranslated regions (3'-UTR). miR-34a modulated the levels of LEF1 to regulate EMT in prostate cancer cells. Functionally, miR-34a negatively correlated with the migration and invasion of prostate cancer cells through LEF1. An analysis of miR-34a expression levels in matched human tumor and benign tissues demonstrated consistent and statistically significant downregulation of miR-34a in primary prostate cancer specimens. These data strongly suggest that miR-34a/LEF1 regulation of EMT plays an important role in prostate cancer migration and invasion. IMPLICATIONS The miR-34a-LEF1 axis represents a potential molecular target for novel therapeutic strategies in prostate cancer.
Collapse
Affiliation(s)
- Jiaqian Liang
- Department of Pathology, New York University School of Medicine, New York, New York. Department of Urology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yirong Li
- Department of Pathology, New York University School of Medicine, New York, New York
| | - Garrett Daniels
- Department of Pathology, New York University School of Medicine, New York, New York
| | - Karen Sfanos
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Angelo De Marzo
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Jianjun Wei
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Xin Li
- NYU Cancer Institute, New York University School of Medicine, New York, New York. Department of Urology, New York University School of Medicine, New York, New York. Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Wenqiang Chen
- Pediatric Lab of Medical Science Experiment Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinhua Wang
- NYU Cancer Institute, New York University School of Medicine, New York, New York
| | - Xuelin Zhong
- Department of Pathology, New York University School of Medicine, New York, New York
| | - Jonathan Melamed
- Department of Pathology, New York University School of Medicine, New York, New York
| | - Jun Zhao
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Peng Lee
- Department of Pathology, New York University School of Medicine, New York, New York. NYU Cancer Institute, New York University School of Medicine, New York, New York. Department of Urology, New York University School of Medicine, New York, New York. New York Harbor Healthcare System, New York University School of Medicine, New York, New York.
| |
Collapse
|
41
|
Wan X, Corn PG, Yang J, Palanisamy N, Starbuck MW, Efstathiou E, Li Ning Tapia EM, Tapia EMLN, Zurita AJ, Aparicio A, Ravoori MK, Vazquez ES, Robinson DR, Wu YM, Cao X, Iyer MK, McKeehan W, Kundra V, Wang F, Troncoso P, Chinnaiyan AM, Logothetis CJ, Navone NM. Prostate cancer cell-stromal cell crosstalk via FGFR1 mediates antitumor activity of dovitinib in bone metastases. Sci Transl Med 2014; 6:252ra122. [PMID: 25186177 PMCID: PMC4407499 DOI: 10.1126/scitranslmed.3009332] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bone is the most common site of prostate cancer (PCa) progression to a therapy-resistant, lethal phenotype. We found that blockade of fibroblast growth factor receptors (FGFRs) with the receptor tyrosine kinase inhibitor dovitinib has clinical activity in a subset of men with castration-resistant PCa and bone metastases. Our integrated analyses suggest that FGF signaling mediates a positive feedback loop between PCa cells and bone cells and that blockade of FGFR1 in osteoblasts partially mediates the antitumor activity of dovitinib by improving bone quality and by blocking PCa cell-bone cell interaction. These findings account for clinical observations such as reductions in lesion size and intensity on bone scans, lymph node size, and tumor-specific symptoms without proportional declines in serum prostate-specific antigen concentration. Our findings suggest that targeting FGFR has therapeutic activity in advanced PCa and provide direction for the development of therapies with FGFR inhibitors.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Apoptosis/genetics
- Benzimidazoles/pharmacology
- Benzimidazoles/therapeutic use
- Bone Neoplasms/drug therapy
- Bone Neoplasms/pathology
- Bone Neoplasms/secondary
- Bone and Bones/drug effects
- Bone and Bones/metabolism
- Cell Line, Tumor
- Disease Models, Animal
- Fibroblast Growth Factor 2/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Male
- Mice
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/pathology
- Osteoblasts/drug effects
- Osteoblasts/metabolism
- Prostatic Neoplasms/blood supply
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms, Castration-Resistant/pathology
- Quinolones/pharmacology
- Quinolones/therapeutic use
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Stromal Cells/drug effects
- Stromal Cells/pathology
- Tumor Microenvironment/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xinhai Wan
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul G Corn
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yang
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nallasivam Palanisamy
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael W Starbuck
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. The Rolanette and Berdon Lawrence Bone Disease Program of Texas, Houston, TX 77030, USA
| | - Eleni Efstathiou
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. University of Athens Greece School of Medicine, Athens 11528, Greece
| | | | - Elsa M Li-Ning Tapia
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amado J Zurita
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Murali K Ravoori
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elba S Vazquez
- Department of Biological Chemistry, University of Buenos Aires-National Research Council of Argentina (CONICET-IQUIBICEN), Ciudad Autonoma de Buenos Aires C1428EGA, Argentina
| | - Dan R Robinson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew K Iyer
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wallace McKeehan
- Center for Cancer and Stem Cell Biology, IBT-Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Vikas Kundra
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fen Wang
- Center for Cancer and Stem Cell Biology, IBT-Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nora M Navone
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Shuliang S, Lei C, Guangwu J, Changjie L. Involvement of ubiquitin-conjugating enzyme E2C in proliferation and invasion of prostate carcinoma cells. Oncol Res 2014; 21:121-7. [PMID: 24512726 DOI: 10.3727/096504013x13832473329953] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ubiquitin-conjugating enzyme E2C (UBE2C) has been found to participate in the process of several cancers. However, the role of UBE2C in prostate cancer has not been reported. To investigate the function of UBE2C in prostate cancer, several methods were used. UBE2C promoted the proliferation and viability of prostate cancer cells through MTT and colony formation assay and increased the number of invaded or migrated cells in Matrigel or Transwell assay based on its function of inducing EMT. UBE2C also promoted tumor formation in vivo. Our results suggest that UBE2C acts as an oncogene in prostate cancer progression and may be a candidate marker of diagnosis for this disease.
Collapse
Affiliation(s)
- Song Shuliang
- Shandong University School of Ocean, Weihai, Shandong, China
| | | | | | | |
Collapse
|
43
|
Saini S, Majid S, Shahryari V, Tabatabai ZL, Arora S, Yamamura S, Tanaka Y, Dahiya R, Deng G. Regulation of SRC kinases by microRNA-3607 located in a frequently deleted locus in prostate cancer. Mol Cancer Ther 2014; 13:1952-63. [PMID: 24817628 DOI: 10.1158/1535-7163.mct-14-0017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genomic studies suggest that deletions at chromosome (chr) 5q region (particularly chr5q14-q23) are frequent in prostate cancer, implicating this region in prostate carcinogenesis. However, the genes within this region are largely unknown. Here, we report for the first time the widespread attenuation of miR-3607, an miRNA gene located at chr5q14 region, in prostate cancer. Expression analyses of miR-3607 in a clinical cohort of prostate cancer specimens showed that miR-3607 is significantly attenuated and low miR-3607 expression is correlated with tumor progression and poor survival outcome in prostate cancer. Our analyses suggest that miR-3607 expression may be a clinically significant parameter with an associated diagnostic potential. We examined the functional significance of miR-3607 in prostate cancer cell lines and found that miR-3607 overexpression led to significantly decreased proliferation, apoptosis induction, and decreased invasiveness. Furthermore, our results suggest that miR-3607 directly represses oncogenic SRC family kinases LYN and SRC in prostate cancer. In view of our results, we propose that miR-3607 plays a tumor-suppressive role in prostate cancer by regulating SRC kinases that in turn regulates prostate carcinogenesis. To our knowledge, this is the first report that: (i) identifies a novel role for miR-3607 located in a frequently deleted region of prostate cancer and (ii) defines novel miRNA-mediated regulation of SRC kinases in prostate cancer. Because SRC kinases play a central role in prostate cancer progression and metastasis and are attractive targets, this study has potential implications in the design of better therapeutic modalities for prostate cancer management.
Collapse
Affiliation(s)
- Sharanjot Saini
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Shahana Majid
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Varahram Shahryari
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Z Laura Tabatabai
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Sumit Arora
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Soichiro Yamamura
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Yuichiro Tanaka
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Rajvir Dahiya
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| | - Guoren Deng
- Authors' Affiliation: Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California
| |
Collapse
|
44
|
Mertz KD, Pathria G, Wagner C, Saarikangas J, Sboner A, Romanov J, Gschaider M, Lenz F, Neumann F, Schreiner W, Nemethova M, Glassmann A, Lappalainen P, Stingl G, Small JV, Fink D, Chin L, Wagner SN. MTSS1 is a metastasis driver in a subset of human melanomas. Nat Commun 2014; 5:3465. [PMID: 24632752 DOI: 10.1038/ncomms4465] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/18/2014] [Indexed: 12/21/2022] Open
Abstract
In cancers with a highly altered genome, distinct genetic alterations drive subsets rather than the majority of individual tumours. Here we use a sequential search across human tumour samples for transcript outlier data points with associated gene copy number variations that correlate with patient's survival to identify genes with pro-invasive functionality. Employing loss and gain of function approaches in vitro and in vivo, we show that one such gene, MTSS1, promotes the ability of melanocytic cells to metastasize and engages actin dynamics via Rho-GTPases and cofilin in this process. Indeed, high MTSS1 expression defines a subgroup of primary melanomas with unfavourable prognosis. These data underscore the biological, clinical and potential therapeutic implications of molecular subsets within genetically complex cancers.
Collapse
Affiliation(s)
- Kirsten D Mertz
- 1] Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria [2] [3]
| | - Gaurav Pathria
- 1] Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria [2]
| | - Christine Wagner
- 1] Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria [2]
| | - Juha Saarikangas
- 1] Institute of Biotechnology, University of Helsinki, 00100 Helsinki, Finland [2]
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York 10021, USA
| | - Julia Romanov
- Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Melanie Gschaider
- Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Lenz
- Section for Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria
| | - Friederike Neumann
- Section for Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Schreiner
- Section for Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria
| | - Maria Nemethova
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | | | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, 00100 Helsinki, Finland
| | - Georg Stingl
- Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - J Victor Small
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Dieter Fink
- Institute for Laboratory Animal Sciences, Department of Biomedical Sciences, University for Veterinary Medicine, 1210 Vienna, Austria
| | - Lynda Chin
- Department of Genomic Medicine and Institute for Applied Cancer Science, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Stephan N Wagner
- 1] Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria [2] Center for Molecular Medicine (CeMM), Austrian Academy of Sciences, 1090 Vienna, Austria
| |
Collapse
|
45
|
Brown M, Roulson JA, Hart CA, Tawadros T, Clarke NW. Arachidonic acid induction of Rho-mediated transendothelial migration in prostate cancer. Br J Cancer 2014; 110:2099-108. [PMID: 24595005 PMCID: PMC3992515 DOI: 10.1038/bjc.2014.99] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 01/23/2014] [Accepted: 01/28/2014] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Bone metastases in prostate cancer (CaP) result in CaP-related morbidity/mortality. The omega-6 polyunsaturated fatty acid (PUFA) arachidonic acid (AA) and lipophilic statins affect metastasis-like behaviour in CaP cells, regulating the critical metastatic step of CaP migration to the bone marrow stroma. METHODS Microscopic analysis and measurement of adhesion and invasion of CaP cells through bone marrow endothelial cells (BMEC) was undertaken with AA stimulation and/or simvastatin (SIM) treatment. Amoeboid characteristics of PC-3, PC3-GFP and DU-145 were analysed by western blotting and Rho assays. RESULTS The CaP cell lines PC-3, PC3-GFP and DU-145 share the ability to migrate across a BMEC layer. Specific amoeboid inhibition decreased transendothelial migration (TEM). AA stimulates amoeboid characteristics, driven by Rho signalling. Selective knock-down of components of the Rho pathway (RhoA, RhoC, Rho-associated protein kinase 1 (ROCK1) and ROCK2) showed that Rho signalling is crucial to TEM. Functions of these components were analysed, regarding adhesion to BMEC, migration in 2D and the induction of the amoeboid phenotype by AA. TEM was reduced by SIM treatment of PC3-GFP and DU-145, which inhibited Rho pathway signalling. CONCLUSIONS AA-induced TEM is mediated by the induction of a Rho-driven amoeboid phenotype. Inhibition of this cell migratory process may be an important therapeutic target in high-risk CaP.
Collapse
Affiliation(s)
- M Brown
- Genito Urinary Cancer Research Group, Institute of Cancer Sciences, Paterson Building, The University of Manchester, Manchester Academic Health Science Centre, Wilmslow Road, Manchester M20 4BX, UK
| | - J-A Roulson
- Genito Urinary Cancer Research Group, Institute of Cancer Sciences, Paterson Building, The University of Manchester, Manchester Academic Health Science Centre, Wilmslow Road, Manchester M20 4BX, UK
| | - C A Hart
- Genito Urinary Cancer Research Group, Institute of Cancer Sciences, Paterson Building, The University of Manchester, Manchester Academic Health Science Centre, Wilmslow Road, Manchester M20 4BX, UK
| | - T Tawadros
- Genito Urinary Cancer Research Group, Institute of Cancer Sciences, Paterson Building, The University of Manchester, Manchester Academic Health Science Centre, Wilmslow Road, Manchester M20 4BX, UK
| | - N W Clarke
- 1] Genito Urinary Cancer Research Group, Institute of Cancer Sciences, Paterson Building, The University of Manchester, Manchester Academic Health Science Centre, Wilmslow Road, Manchester M20 4BX, UK [2] Department of Urology, Salford Royal Hospital NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK
| |
Collapse
|
46
|
Tombal B, Lecouvet F. Diagnosis and Management of Metastatic Prostate Cancer. Prostate Cancer 2014. [DOI: 10.1002/9781118347379.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
47
|
|
48
|
Dayyani F, Varkaris A, Araujo JC, Song JH, Chatterji T, Trudel GC, Logothetis CJ, Gallick GE. Increased serum insulin-like growth factor-1 levels are associated with prolonged response to dasatinib-based regimens in metastatic prostate cancer. Prostate 2013; 73:979-85. [PMID: 23371521 PMCID: PMC4013833 DOI: 10.1002/pros.22645] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/08/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND Dasatinib, an inhibitor of Src-family kinases, combined with docetaxel in men with castrate-resistant prostate cancer (CRPC), affects bone turnover markers in a phase I/II clinical trial in metastatic CRPC. Only a subset of men benefit from this therapy, and predictive markers are lacking. We hypothesized a role for insulin-like growth factor-1 (IGF-1) as a predictive marker, since IGF-1 is important in both prostate cancer progression and bone development. Hence, we determined the association of IGF-1 expression to treatment response, and whether this expression resulted from tumor cells, the microenvironment, or their interactions. METHODS We measured serum IGF-1 levels in men with CRPC treated with dasatinib plus docetaxel. To investigate the source of IGF-1, we utilized two different mouse models harboring human prostate cancer cells, and used species-specific IGF-1 ELISA kits (mouse vs. human). RESULTS In men with CRPC, an increase in IGF-1 levels after one cycle of treatment with dasatinib and docetaxel is associated with a higher response rate and longer duration of treatment. Xenograft experiments with subcutaneous and intratibial injection of prostate cancer cells suggest that direct interaction of prostate cancer cells with bone microenvironment is necessary for IGF-1 induction, is entirely host-derived, and occurs only in mice that respond to dasatinib-based therapy. CONCLUSION Our results support a role for serum IGF-1 as a potential biomarker for benefit from dasatinib-based combination treatments in CRPC.
Collapse
Affiliation(s)
- Farshid Dayyani
- UT MD Anderson Cancer Center, Genitourinary Medical Oncology, Houston, TX
| | - Andreas Varkaris
- UT MD Anderson Cancer Center, Genitourinary Medical Oncology, Houston, TX
| | - John C. Araujo
- UT MD Anderson Cancer Center, Genitourinary Medical Oncology, Houston, TX
| | - Jian H. Song
- UT MD Anderson Cancer Center, Genitourinary Medical Oncology, Houston, TX
| | - Tanushree Chatterji
- UT MD Anderson Cancer Center, Genitourinary Medical Oncology, Houston, TX
- The University of Texas Graduate School of Biomedical Sciences at Houston, Program in Cancer Metastasis
| | | | | | - Gary E. Gallick
- UT MD Anderson Cancer Center, Genitourinary Medical Oncology, Houston, TX
- The University of Texas Graduate School of Biomedical Sciences at Houston, Program in Cancer Metastasis
- Corresponding author:Gary E Gallick, Ph.D.Department of Genitourinary Medical Oncology The University of Texas MD Anderson Cancer Center Clinical Research Building (T7.3891) 1515 Holcombe Blvd. Unit 0018 Houston, TX 77030 Phone: (713) 563-4919
| |
Collapse
|
49
|
Semenas J, Allegrucci C, Boorjian SA, Mongan NP, Persson JL. Overcoming drug resistance and treating advanced prostate cancer. Curr Drug Targets 2013; 13:1308-23. [PMID: 22746994 PMCID: PMC3474961 DOI: 10.2174/138945012802429615] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/10/2012] [Accepted: 06/13/2012] [Indexed: 01/06/2023]
Abstract
Most of the prostate cancers (PCa) in advanced stage will progress to castration-resistant prostate cancer (CRPC). Within CRPC group, 50-70% of the patients will develop bone metastasis in axial and other regions of the skeleton. Once PCa cells spread to the bone, currently, no treatment regimens are available to eradicate the metastasis, and cancer-related death becomes inevitable. In 2012, it is estimated that there will be 28,170 PCa deaths in the United States. Thus, PCa bone metastasis-associated clinical complications and treatment resistance pose major clinical challenges. In this review, we will present recent findings on the molecular and cellular pathways that are responsible for bone metastasis of PCa. We will address several novel mechanisms with a focus on the role of bone and bone marrow microenvironment in promoting PCa metastasis, and will further discuss why prostate cancer cells preferentially metastasize to the bone. Additionally, we will discuss novel roles of several key pathways, including angiogenesis and extracellular matrix remodeling in bone marrow and stem cell niches with their relationship to PCa bone metastasis and poor treatment response. We will evaluate how various chemotherapeutic drugs and radiation therapies may allow aggressive PCa cells to gain advantageous mutations leading to increased survival and rendering the cancer cells to become resistant to treatment. The novel concept relating several key survival and invasion signaling pathways to stem cell niches and treatment resistance will be reviewed. Lastly, we will provide an update of several recently developed novel drug candidates that target metastatic cancer microenvironments or niches, and discuss the advantages and significance provided by such therapeutic approaches in pursuit of overcoming drug resistance and treating advanced PCa.
Collapse
Affiliation(s)
- Julius Semenas
- Division of Experimental Cancer Research, Department of Laboratory Medicine, Lund University, Clinical ResearchCentre in Malmö, Malmo, Sweden
| | | | | | | | | |
Collapse
|
50
|
Wong KK, Piert M. Dynamic Bone Imaging with 99mTc-Labeled Diphosphonates and 18F-NaF: Mechanisms and Applications. J Nucl Med 2013; 54:590-9. [DOI: 10.2967/jnumed.112.114298] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|