1
|
Ondrák Fialová K, Ondrák L, Vlk M, Kozempel J, Nováková K, Nový Z, Hajduová K, Hajdúch M, Petřík M, Pruszynski M, Bruchertseifer F, Morgenstern A. In vitro and in vivo evaluation of anti-HER2 antibody conjugates labelled with 225Ac. EJNMMI Radiopharm Chem 2025; 10:16. [PMID: 40183827 PMCID: PMC11971111 DOI: 10.1186/s41181-025-00337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Overexpression of human epidermal growth factor receptor type 2 (HER2) occurs in multiple carcinomas. For example, up to 20% of breast cancer cases are classified as HER2 positive (HER2+). Treatment of this condition typically involves immunotherapy using monoclonal antibodies, such as trastuzumab or pertuzumab. The precise targeting of monoclonal antibodies to HER2+ tumour lesions can be used as well in radioimmunotherapy to deliver medical radionuclides exactly to the afflicted area and therefore minimize radiation exposure of healthy tissues. In this study, DOTA conjugates of monoclonal antibodies trastuzumab and pertuzumab were prepared and tested in vitro. One of these, 225Ac-DOTA-pertuzumab, was also the subject of an ex vivo biodistribution study with normal as well as HER2+ and HER2- tumour-xenografted mice. This radioconjugate has not been previously described. RESULTS Three DOTA-conjugates of HER2 targeting monoclonal antibodies, one of trastuzumab and two of pertuzumab, were prepared and radiolabelled with 225Ac in different molar ratios. This procedure led to an optimisation of the preparation and radiolabelling process. The radioconjugates were shown to be highly stable in vitro in both fetal bovine serum and phosphate buffered saline under room temperature and decreased temperature for 10 days. In vitro cell studies with HER2-overexpressing cell-line (SKOV-3) and low HER2-expressing cell line (MDA-MB-231) proved that radioconjugates of both antibodies have high binding specificity and affinity towards HER2 receptors. These findings were confirmed for a novel radioconjugate 225Ac-DOTA-pertuzumab in an ex vivo biodistribution study, where uptake in HER2+ tumour was 50 ± 14% ID/g and HER2- tumour showed uptake comparable with healthy tissues (max. 5.0 ± 1.7% ID/g). The high uptake observed in the spleen can be attributed to the elimination of the antibody, as well as the use of an immunedeficient mouse strain (SCID). CONCLUSIONS During this study, the optimization of preparation and radiolabelling of HER2 targeting antibodies with 225Ac was accomplished. Furthermore, the radioconjugate 225Ac-DOTA-pertuzumab was prepared and evaluated for the first time. The radioconjugates of both tested antibodies demonstrated excellent qualities in terms of stability and HER2 receptor affinity. Initial ex vivo studies indicated that especially the radioconjugate 225Ac-DOTA-pertuzumab is a very promising candidate for further more detailed in vivo studies.
Collapse
Affiliation(s)
- Kateřina Ondrák Fialová
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 87/7, 115 19, Prague, Czech Republic.
| | - Lukáš Ondrák
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 87/7, 115 19, Prague, Czech Republic
| | - Martin Vlk
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 87/7, 115 19, Prague, Czech Republic
| | - Ján Kozempel
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 87/7, 115 19, Prague, Czech Republic
| | - Kateřina Nováková
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo naměstí 542/2, 16000, Prague, Czech Republic
| | - Zbyněk Nový
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, 779 00, Olomouc, Czech Republic
| | - Katarína Hajduová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, 779 00, Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, 779 00, Olomouc, Czech Republic
| | - Miloš Petřík
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, 779 00, Olomouc, Czech Republic
| | - Marek Pruszynski
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland
- NOMATEN Centre of Excellence, National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400, Otwock, Poland
| | | | | |
Collapse
|
2
|
Kondo M, Cai Z, Chan C, Brown MK, Reilly RM. Preclinical Comparison of [ 111In]In- and [ 225Ac]Ac-DOTA-Trastuzumab IgG, F(ab') 2 and Fab for Theranostic SPECT/CT Imaging and α-Particle Radioimmunotherapy of HER2-Positive Human Breast Cancer. Mol Pharm 2025; 22:474-487. [PMID: 39666273 PMCID: PMC11708818 DOI: 10.1021/acs.molpharmaceut.4c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Radioimmunotherapy (RIT) with α-particle-emitting, 225Ac complexed to trastuzumab may offer an alternative treatment for patients who progress on HER2-targeted therapies. Moreover, RIT with [225Ac]Ac-DOTA-trastuzumab could be combined with SPECT/CT imaging with [111In]In-DOTA-trastuzumab in a theranostic approach. In this study, we compared DOTA-conjugated trastuzumab IgG, F(ab')2 or Fab complexed to 111In or 225Ac for SPECT/CT imaging and α-particle RIT of subcutaneous (s.c.) HER2-positive 164/8-1B/H2N.luc+ human BC tumors in NRG mice. SPECT/CT imaging and tumor and normal tissue uptake were compared in NRG or NOD-SCID mice coinjected i.v. with [111In]In-DOTA-trastuzumab IgG, F(ab')2 or Fab and [225Ac]Ac-DOTA-trastuzumab IgG, F(ab')2 or Fab. Radiation absorbed doses in the tumor and normal organs for [225Ac]Ac-DOTA-trastuzumab IgG, F(ab')2 or Fab were estimated based on the biodistribution of the [111In]In-DOTA-trastuzumab IgG, F(ab')2 or Fab. Normal tissue toxicity was assessed by hematology and blood biochemistry analyses and monitoring body weight in NRG mice injected i.v. with 2 and 4 kBq of [225Ac]Ac-DOTA-trastuzumab IgG, F(ab')2 or Fab separated by 8 d. RIT studies were performed in NRG mice with s.c. 164/8-1B/H2N.luc+ tumors injected i.v. with 2 kBq and 4 kBq of [225Ac]Ac-DOTA-trastuzumab IgG, F(ab')2 or Fab separated by 8 d or irrelevant [225Ac]Ac-DOTA-IgG1, two doses of unlabeled trastuzumab IgG or 0.9% NaCl. A tumor growth index (TGI) was plotted vs time (d) and Kaplan-Meier median survival estimated. [111In]In-DOTA-trastuzumab IgG or F(ab')2 exhibited 4.1-fold and 3.3-fold significantly greater tumor uptake at 2 d postinjection (p.i.) than Fab at 24 h p.i. However, spleen uptake at 2 d p.i. for [111In]In-DOTA-trastuzumab IgG was 3.3-fold significantly higher than F(ab')2 and 13.2-fold higher than Fab at 24 h p.i. [111In]In-DOTA-trastuzumab F(ab')2 and Fab exhibited higher kidney uptake than IgG. Tumors were imaged by SPECT/CT with [111In]In-DOTA-trastuzumab IgG and F(ab')2 but were not well-visualized with [111In]In-DOTA-trastuzumab Fab. The absorbed dose in the tumor was 2.2-fold greater for [225Ac]Ac-DOTA-trastuzumab F(ab')2 than IgG and 3.4-fold greater than Fab. Hematological toxicity was observed for [225Ac]Ac-DOTA-trastuzumab IgG but not for [225Ac]Ac-DOTA-trastuzumab F(ab')2 or Fab. No kidney or liver toxicity or decreased body weight was observed for any RIT agent. Tumor growth was significantly inhibited by [225Ac]Ac-DOTA-trastuzumab IgG, F(ab')2 or Fab but [225Ac]Ac-DOTA-trastuzumab F(ab')2 was most effective for increasing median survival (46 d vs 22 d for IgG and 29 d for Fab). We conclude that [111In]In- and [225Ac]Ac-DOTA-trastuzumab F(ab')2 exhibited superior properties for theranostic imaging and α-particle RIT of HER2-positive human BC xenografts in NRG mice.
Collapse
Affiliation(s)
- Misaki Kondo
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, ON M5S 3M2, Canada
| | - Zhongli Cai
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, ON M5S 3M2, Canada
| | - Conrad Chan
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, ON M5S 3M2, Canada
| | - Madeline K. Brown
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, ON M5S 3M2, Canada
| | - Raymond M. Reilly
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, ON M5S 3M2, Canada
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada
- Department
of Medical Imaging, Temerty Faculty of Medicine, University of Toronto, 263 McCaul St Fourth Floor, Toronto, ON M5S 1A8, Canada
- Joint
Department of Medical Imaging and Princess Margaret Cancer Centre, University Health Network, 610 University Ave, Toronto, Ontario M5G 2C1, Canada
| |
Collapse
|
3
|
Ding J, Qin S, Hou X, Zhang J, Yang M, Ma S, Zhu H, Feng Y, Yu F. Recent advances in emerging radiopharmaceuticals and the challenges in radiochemistry and analytical chemistry. Trends Analyt Chem 2025; 182:118053. [DOI: 10.1016/j.trac.2024.118053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Garaulet G, Báez BB, Medrano G, Rivas-Sánchez M, Sánchez-Alonso D, Martinez-Torrecuadrada JL, Mulero F. Radioimmunotheragnosis in Cancer Research. Cancers (Basel) 2024; 16:2896. [PMID: 39199666 PMCID: PMC11352548 DOI: 10.3390/cancers16162896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
The combination of immunoPET-where an antibody (Ab) is labeled with an isotope for PET imaging-and radioimmunotherapy (RIT), using the same antibody with a therapeutic isotope, offers significant advantages in cancer management. ImmunoPET allows non-invasive imaging of antigen expression, which aids in patient selection for subsequent radioimmunotherapy. It also facilitates the assessment of tumor response to therapy, allowing for treatment adjustments if necessary. In addition, immunoPET provides critical pharmacokinetic data, including antibody biodistribution and clearance rates, which are essential for dosimetry calculations and treatment protocol optimization. There are still challenges to overcome. Identifying appropriate target antigens that are selectively expressed on cancer cells while minimally expressed on normal tissues remains a major hurdle to reduce off-target toxicity. In addition, it is critical to optimize the pharmacokinetics of radiolabeled antibodies to maximize tumor uptake and minimize normal tissue uptake, particularly in vital organs such as the liver and kidney. This approach offers the potential for targeted and personalized cancer therapy with reduced systemic toxicity by exploiting the specificity of monoclonal antibodies and the cytotoxic effects of radiation. However, further research is needed to address remaining challenges and to optimize these technologies for clinical use.
Collapse
Affiliation(s)
- Guillermo Garaulet
- Molecular Imaging Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (G.G.); (B.B.B.); (G.M.)
| | - Bárbara Beatriz Báez
- Molecular Imaging Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (G.G.); (B.B.B.); (G.M.)
| | - Guillermo Medrano
- Molecular Imaging Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (G.G.); (B.B.B.); (G.M.)
| | - María Rivas-Sánchez
- Protein Production Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (M.R.-S.); (D.S.-A.)
| | - David Sánchez-Alonso
- Protein Production Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (M.R.-S.); (D.S.-A.)
| | | | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (G.G.); (B.B.B.); (G.M.)
| |
Collapse
|
5
|
Rathore Y, Lakhanpal T, Chakraborty S, Chakravarty R, Mittal BR, Irrinki RNS, Laroiya I, Kaur K, Shukla J. Targeting Breast Cancer Using 177 Lu-Labeled Trastuzumab and Trastuzumab Fragment : First-in-Human Clinical Experience. Clin Nucl Med 2024; 49:e258-e265. [PMID: 38579266 DOI: 10.1097/rlu.0000000000005208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
PURPOSE A monoclonal antibody, trastuzumab, is used for immunotherapy for HER2-expressing breast cancers. Large-sized antibodies demonstrate hepatobiliary clearance and slower pharmacokinetics. A trastuzumab fragment (Fab; 45 kDa) has been generated for theranostic use. PATIENTS AND METHODS Fab was generated by papain digestion. Trastuzumab and Fab have been radiolabelled with 177 Lu after being conjugated with a bifunctional chelating. The affinity and target specificity were studied in vitro. The first-in-human study was performed. RESULTS The bifunctional chelating agent conjugation of 1-2 molecules with trastuzumab and Fab was detected at the molar ratio 1:10 in bicarbonate buffer (0.5 M, pH 8) at 37°-40°C. However, 2-3 molecules of bifunctional chelating agent were conjugated when DMSO in PBS (0.1 M, pH 7) was used as a conjugation buffer at a molar ratio of 1:10. The radiolabelling yield of DOTA-conjugated Fab and trastuzumab at pH 5, 45°C to 50°C, with incubation time 2.5-3 hours was 80% and 41.67%, respectively. However, with DOTAGA-conjugated trastuzumab and Fab, the maximum radiolabelling yield at pH 5.5, 37°C, and at 2.5-3 hours was 80.83% and 83%, respectively. The calculated K d of DOTAGA Fab and trastuzumab with HER2-positive SKBR3 cells was 6.85 ± 0.24 × 10 -8 M and 1.71 ± 0.10 × 10 -8 M, respectively. DOTAGA-Fab and trastuzumab showed better radiolabelling yield at mild reaction conditions.177 Lu-DOTAGA-Fab demonstrated higher lesion uptake and lower liver retention as compared with 177 Lu-DOTAGA-trastuzumab. However, 177 Lu-DOTAGA-Fab as compared with 177 Lu-DOTAGA-trastuzumab showed a relatively early washout (5 days) from the lesion. CONCLUSIONS 177 Lu-DOTAGA-Fab and trastuzumab are suitable for targeting the HER2 receptors.
Collapse
Affiliation(s)
- Yogesh Rathore
- From the Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh
| | - Tamanna Lakhanpal
- From the Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh
| | | | | | - B R Mittal
- From the Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh
| | - R N Santhosh Irrinki
- Department of General Surgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ishita Laroiya
- Department of General Surgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Komalpreet Kaur
- From the Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh
| | - Jaya Shukla
- From the Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh
| |
Collapse
|
6
|
Mohr P, van Sluis J, Lub-de Hooge MN, Lammertsma AA, Brouwers AH, Tsoumpas C. Advances and challenges in immunoPET methodology. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1360710. [PMID: 39355220 PMCID: PMC11440922 DOI: 10.3389/fnume.2024.1360710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/05/2024] [Indexed: 10/03/2024]
Abstract
Immuno-positron emission tomography (immunoPET) enables imaging of specific targets that play a role in targeted therapy and immunotherapy, such as antigens on cell membranes, targets in the disease microenvironment, or immune cells. The most common immunoPET applications use a monoclonal antibody labeled with a relatively long-lived positron emitter such as 89Zr (T 1/2 = 78.4 h), but smaller antibody-based constructs labeled with various other positron emitting radionuclides are also being investigated. This molecular imaging technique can thus guide the development of new drugs and may have a pivotal role in selecting patients for a particular therapy. In early phase immunoPET trials, multiple imaging time points are used to examine the time-dependent biodistribution and to determine the optimal imaging time point, which may be several days after tracer injection due to the slow kinetics of larger molecules. Once this has been established, usually only one static scan is performed and semi-quantitative values are reported. However, total PET uptake of a tracer is the sum of specific and nonspecific uptake. In addition, uptake may be affected by other factors such as perfusion, pre-/co-administration of the unlabeled molecule, and the treatment schedule. This article reviews imaging methodologies used in immunoPET studies and is divided into two parts. The first part summarizes the vast majority of clinical immunoPET studies applying semi-quantitative methodologies. The second part focuses on a handful of studies applying pharmacokinetic models and includes preclinical and simulation studies. Finally, the potential and challenges of immunoPET quantification methodologies are discussed within the context of the recent technological advancements provided by long axial field of view PET/CT scanners.
Collapse
Affiliation(s)
- Philipp Mohr
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Gondry O, Caveliers V, Xavier C, Raes L, Vanhoeij M, Verfaillie G, Fontaine C, Glorieus K, De Grève J, Joris S, Luyten I, Zwaenepoel K, Vandenbroucke F, Waelput W, Thyparambil S, Vaneycken I, Cousaert J, Bourgeois S, Devoogdt N, Goethals L, Everaert H, De Geeter F, Lahoutte T, Keyaerts M. Phase II Trial Assessing the Repeatability and Tumor Uptake of [ 68Ga]Ga-HER2 Single-Domain Antibody PET/CT in Patients with Breast Carcinoma. J Nucl Med 2024; 65:178-184. [PMID: 38302159 PMCID: PMC10858381 DOI: 10.2967/jnumed.123.266254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/03/2023] [Indexed: 02/03/2024] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) status is used for decision-making in breast carcinoma treatment. The status is obtained through immunohistochemistry or in situ hybridization. These two methods have the disadvantage of necessitating tissue sampling, which is prone to error due to tumor heterogeneity or interobserver variability. Whole-body imaging might be a solution to map HER2 expression throughout the body. Methods: Twenty patients with locally advanced or metastatic breast carcinoma (5 HER2-positive and 15 HER2-negative patients) were included in this phase II trial to assess the repeatability of uptake quantification and the extended safety of the [68Ga]Ga-NOTA-anti-HER2 single-domain antibody (sdAb). The tracer was injected, followed by a PET/CT scan at 90 min. Within 8 d, the procedure was repeated. Blood samples were taken for antidrug antibody (ADA) assessment and liquid biopsies. On available tissues, immunohistochemistry, in situ hybridization, and mass spectrometry were performed to determine the correlation of HER2 status with uptake values measured on PET. If relevant preexisting [18F]FDG PET/CT images were available (performed as standard of care), a comparison was made. Results: With a repeatability coefficient of 21.8%, this imaging technique was repeatable. No clear correlation between PET/CT uptake values and pathology could be established, as even patients with low levels of HER2 expression showed moderate to high uptake. Comparison with [18F]FDG PET/CT in 16 patients demonstrated that in 7 patients, [68Ga]Ga-NOTA-anti-HER2 shows interlesional heterogeneity within the same patient, and [18F]FDG uptake did not show the same heterogeneous uptake in all patients. In some patients, the extent of disease was clearer with the [68Ga]Ga-NOTA-anti-HER2-sdAb. Sixteen adverse events were reported but all without a clear relationship to the tracer. Three patients with preexisting ADAs did not show adverse reactions. No new ADAs developed. Conclusion: [68Ga]Ga-NOTA-anti-HER2-sdAb PET/CT imaging shows similar repeatability to [18F]FDG. It is safe for clinical use. There is tracer uptake in cancer lesions, even in patients previously determined to be HER2-low or -negative. The tracer shows potential in the assessment of interlesional heterogeneity of HER2 expression. In a subset of patients, [68Ga]Ga-NOTA-anti-HER2-sdAb uptake was seen in lesions with no or low [18F]FDG uptake. These findings support further clinical development of [68Ga]Ga-NOTA-anti-HER2-sdAb as a PET/CT tracer in breast cancer patients.
Collapse
Affiliation(s)
- Odrade Gondry
- Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium;
- Department of Nuclear Medicine, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Vicky Caveliers
- Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Nuclear Medicine, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Catarina Xavier
- Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurens Raes
- Department of Nuclear Medicine, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Marian Vanhoeij
- Department of Surgical Oncology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Guy Verfaillie
- Department of Surgical Oncology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Christel Fontaine
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Katrien Glorieus
- Department of Surgical Oncology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jacques De Grève
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Sofie Joris
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Ine Luyten
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Karen Zwaenepoel
- Centre for Oncological Research, University of Antwerp, Wilrijk, Belgium
| | | | - Wim Waelput
- Department of Pathology, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Experimental Pathology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Ilse Vaneycken
- Department of Nuclear Medicine, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Julie Cousaert
- Department of Nuclear Medicine, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Sophie Bourgeois
- Department of Nuclear Medicine, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Nick Devoogdt
- Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lode Goethals
- Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Hendrik Everaert
- Department of Nuclear Medicine, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Frank De Geeter
- Department of Nuclear Medicine, Algemeen Ziekenhuis Sint-Jan Brugge Oostende, Bruges, Belgium
| | - Tony Lahoutte
- Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Nuclear Medicine, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Marleen Keyaerts
- Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium;
- Department of Nuclear Medicine, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
8
|
Mikail N, Chequer R, Imperiale A, Meisel A, Bengs S, Portmann A, Gimelli A, Buechel RR, Gebhard C, Rossi A. Tales from the future-nuclear cardio-oncology, from prediction to diagnosis and monitoring. Eur Heart J Cardiovasc Imaging 2023; 24:1129-1145. [PMID: 37467476 PMCID: PMC10501471 DOI: 10.1093/ehjci/jead168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
Cancer and cardiovascular diseases (CVD) often share common risk factors, and patients with CVD who develop cancer are at high risk of experiencing major adverse cardiovascular events. Additionally, cancer treatment can induce short- and long-term adverse cardiovascular events. Given the improvement in oncological patients' prognosis, the burden in this vulnerable population is slowly shifting towards increased cardiovascular mortality. Consequently, the field of cardio-oncology is steadily expanding, prompting the need for new markers to stratify and monitor the cardiovascular risk in oncological patients before, during, and after the completion of treatment. Advanced non-invasive cardiac imaging has raised great interest in the early detection of CVD and cardiotoxicity in oncological patients. Nuclear medicine has long been a pivotal exam to robustly assess and monitor the cardiac function of patients undergoing potentially cardiotoxic chemotherapies. In addition, recent radiotracers have shown great interest in the early detection of cancer-treatment-related cardiotoxicity. In this review, we summarize the current and emerging nuclear cardiology tools that can help identify cardiotoxicity and assess the cardiovascular risk in patients undergoing cancer treatments and discuss the specific role of nuclear cardiology alongside other non-invasive imaging techniques.
Collapse
Affiliation(s)
- Nidaa Mikail
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Renata Chequer
- Department of Nuclear Medicine, Bichat University Hospital, AP-HP, University Diderot, 75018 Paris, France
| | - Alessio Imperiale
- Nuclear Medicine, Institut de Cancérologie de Strasbourg Europe (ICANS), University Hospitals of Strasbourg, 67093 Strasbourg, France
- Molecular Imaging-DRHIM, IPHC, UMR 7178, CNRS/Unistra, 67093 Strasbourg, France
| | - Alexander Meisel
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Kantonsspital Glarus, Burgstrasse 99, 8750 Glarus, Switzerland
| | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Angela Portmann
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Alessia Gimelli
- Imaging Department, Fondazione CNR/Regione Toscana Gabriele Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Ronny R Buechel
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Cathérine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Cardiology, University Hospital Inselspital Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| |
Collapse
|
9
|
Bai JW, Qiu SQ, Zhang GJ. Molecular and functional imaging in cancer-targeted therapy: current applications and future directions. Signal Transduct Target Ther 2023; 8:89. [PMID: 36849435 PMCID: PMC9971190 DOI: 10.1038/s41392-023-01366-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Targeted anticancer drugs block cancer cell growth by interfering with specific signaling pathways vital to carcinogenesis and tumor growth rather than harming all rapidly dividing cells as in cytotoxic chemotherapy. The Response Evaluation Criteria in Solid Tumor (RECIST) system has been used to assess tumor response to therapy via changes in the size of target lesions as measured by calipers, conventional anatomically based imaging modalities such as computed tomography (CT), and magnetic resonance imaging (MRI), and other imaging methods. However, RECIST is sometimes inaccurate in assessing the efficacy of targeted therapy drugs because of the poor correlation between tumor size and treatment-induced tumor necrosis or shrinkage. This approach might also result in delayed identification of response when the therapy does confer a reduction in tumor size. Innovative molecular imaging techniques have rapidly gained importance in the dawning era of targeted therapy as they can visualize, characterize, and quantify biological processes at the cellular, subcellular, or even molecular level rather than at the anatomical level. This review summarizes different targeted cell signaling pathways, various molecular imaging techniques, and developed probes. Moreover, the application of molecular imaging for evaluating treatment response and related clinical outcome is also systematically outlined. In the future, more attention should be paid to promoting the clinical translation of molecular imaging in evaluating the sensitivity to targeted therapy with biocompatible probes. In particular, multimodal imaging technologies incorporating advanced artificial intelligence should be developed to comprehensively and accurately assess cancer-targeted therapy, in addition to RECIST-based methods.
Collapse
Affiliation(s)
- Jing-Wen Bai
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
| | - Si-Qi Qiu
- Diagnosis and Treatment Center of Breast Diseases, Clinical Research Center, Shantou Central Hospital, 515041, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, 515041, Shantou, China
| | - Guo-Jun Zhang
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
| |
Collapse
|
10
|
Biabani Ardakani J, Abedi SM, Mardanshahi A, Shojaee L, Zaboli E, Khorramimoghaddam A, Nosrati A, Sabahno H, Banimostafavi ES, Hosseinimehr SJ. Molecular Imaging of HER2 Expression in Breast Cancer patients Using the [ 99mTc] Tc-Labeled Small Peptide. Clin Breast Cancer 2023; 23:219-230. [PMID: 36581518 DOI: 10.1016/j.clbc.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE The accurate determination of human epidermal growth factor receptor 2 (HER2) status can predict response to treatment with HER2-targeted therapy for HER2-positive breast cancer patients. [99mTc]Tc-HYNIC-(Ser)3-LTVPWY ([99mTc]Tc-HYNIC-LY) is a small synthetic peptide molecule targeting of the HER2 receptor. This clinical study evaluated the pharmacokinetic, dosimetry, and efficacy of [99mTc]Tc-HYNIC-LY for determining the HER2 status in primary breast cancer patients. MATERIALS AND METHODS In total, 24 women with suspected primary breast cancer received an intravenous injection of approximately 20 µg (∼740 MBq) of [99mTc]Tc-HYNIC-LY. In the first 3 patients, blood levels of radioactivity were analyzed for pharmacokinetic evaluation and planar gamma camera imaging was conducted at 30 min and 1, 2, 4, and 24 hour after injection for dosimetry assessment. In the last 21 patients, planar imaging was performed at the baseline, as well as 1, 2, 3, and 4 hour, followed by single-photon emission computed tomography (SPECT) imaging after 4 hour to evaluate the tumor-targeting potential in primary lesions. RESULTS Injection of [99mTc]Tc-HYNIC-LY was safe and well tolerated. Fast blood clearance provided high-contrast HER2 imaging within 1 to 4 hour. The highest absorbed radiation dose was found for kidneys (6.78E-03 ± 2.62E-04 mSv/MBq), followed by the heart (3.73E-03 ± 1.98E-04 mSv/MBq). The [99mTc]Tc-HYNIC-LY peptide was able to detect HER2 status in primary tumors at an acceptable level. CONCLUSION The findings of this study indicated that [99mTc]Tc-HYNIC-LY SPECT is safe and feasible for the identification of HER2-positive lesions in primary breast cancer patients, and may provide an accurate and non-invasive modality for guiding HER2 targeted therapy.
Collapse
Affiliation(s)
- Javad Biabani Ardakani
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Alireza Mardanshahi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Leyla Shojaee
- Department of Surgery, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Zaboli
- Department of Oncology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Khorramimoghaddam
- Department of Radiology, Faculty of Allied Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anahita Nosrati
- Department of Pathology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamideh Sabahno
- Parsisotope Laboratory, Radioisotope Institute, Tehran, Iran
| | - Elahm Sadat Banimostafavi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
11
|
Suman SK, Mukherjee A, Pandey U, Chakraborty A, Rakshit S, Tawate M, Sarma HD. 68Ga-Labeled Trastuzumab Fragments for ImmunoPET Imaging of Human Epidermal Growth Factor Receptor 2 Expression in Solid Cancers. Cancer Biother Radiopharm 2023; 38:38-50. [PMID: 36413344 DOI: 10.1089/cbr.2022.0042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Trastuzumab, the first humanized antibody approved for therapeutic use has shown promising results for the treatment of patients with human epidermal growth factor receptor 2 (HER2) positive cancers. The aim of this study was to formulate immunoPET agents based on trastuzumab fragments and demonstrate their potential for early diagnosis of HER2-positive tumors. Materials and Methods: F(ab')2 and F(ab') fragments of trastuzumab were prepared by enzymatic digestion and conjugated with chelator NOTA for labeling with 68Ga. For comparison, intact trastuzumab was also radiolabeled. In vitro stability, immunoreactivity, and binding affinity of radio formulations toward HER2 receptors were evaluated by performing in vitro studies in cancer cell lines. Biodistribution and PET imaging studies were performed in animal model bearing tumors. Results: 68Ga-NOTA-F(ab')-trastuzumab, 68Ga-NOTA-F(ab')2-trastuzumab, and 68Ga-NOTA-trastuzumab could be prepared with >98% radiochemical purity (% RCP) and were found to be stable when studied up to 4 h. In vitro binding studies revealed high affinity and specificity of formulations toward HER2 receptors. Specific tumor uptake of 68Ga-NOTA-F(ab')-trastuzumab and 68Ga-NOTA-F(ab')2-trastuzumab in HER2-positive tumors was observed in biodistribution and PET imaging studies. Conclusions: This study describes optimization of protocol for the formulation of 68Ga-NOTA-F(ab')-trastuzumab and 68Ga-NOTA-F(ab')2-trastuzumab for targeting HER2-overexpressing tumors. Further studies with these radioformulations are warranted to confirm their potential as immunoPET agents for management of HER2-positive breast and other solid tumors.
Collapse
Affiliation(s)
- Shishu Kant Suman
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Usha Pandey
- Board of Radiation & Isotope Technology, Navi Mumbai, India
| | - Avik Chakraborty
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India.,Radiation Medicine Centre, BARC, Mumbai, India
| | | | | | - Haladhar Dev Sarma
- Radiation Biology & Health Science Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
| |
Collapse
|
12
|
Shi J, Du S, Wang R, Gao H, Luo Q, Hou G, Zhou Y, Zhu Z, Wang F. Molecular imaging of HER2 expression in breast cancer patients using a novel peptide-based tracer 99mTc-HP-Ark2: a pilot study. J Transl Med 2023; 21:19. [PMID: 36631812 PMCID: PMC9835228 DOI: 10.1186/s12967-022-03865-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Due to the temporal and spatial heterogeneity of human epidermal growth factor receptor 2 (HER2) expression in breast tumors, immunohistochemistry (IHC) cannot accurately reflect the HER2 status in real time, which may cause misguided treatment decisions. HER2-specific imaging can noninvasively determine HER2 status in primary and metastatic tumors. In this study, HER2 expression in breast cancer patients was determined in vivo by SPECT/CT of 99mTc-HP-Ark2, comparing with PET/CT of 18F-FDG lesion by lesion. METHODS A novel HER2-targeted peptide probe 99mTc-HP-Ark2 was constructed. Biodistribution and nanoScan SPECT/CT imaging were performed in mice models. The correlation between the quantified tumor uptake and HER2 expression in tumor cells was analyzed. In the pilot clinical study, a total of 34 breast cancer patients (mean age ± SD: 49 ± 10 y) suspected of having breast cancer according to mammography or ultrasonography were recruited at Peking Union Medical College Hospital, and 99mTc-HP-Ark2 SPECT/CT and 18F-FDG PET/CT were carried out with IHC and fluorescence in situ hybridization as validation. RESULTS Small animal SPECT/CT of 99mTc-HP-Ark2 clearly identified tumors with different HER2 expression. The quantified tumor uptake and tumor HER2 expression showed a significant linear correlation (r = 0.932, P < 0.01). Among the 36 primary lesions in the 34 patients, when IHC (2 +) or IHC (3 +) was used as the positive evaluation criterion, 99mTc-HP-Ark2 SPECT/CT imaging with a tumor-to-background ratio of 1.44 as the cutoff value reflected the HER2 status with sensitivity of 89.5% (17/19), specificity of 88.2% (15/17) and accuracy of 88.9% (32/36), while the 18F-FDG PET/CT showed sensitivity of 78.9% (15/19), specificity of 70.6% (12/17) and accuracy of 75.0% (27/36). In particular, 100% of IHC (3 +) tumors were all identified by 99mTc-HP-Ark2 SPECT/CT imaging. CONCLUSION 99mTc-HP-Ark2 SPECT/CT can provide a specific, noninvasive evaluation of HER2 expression in breast cancer, showing great potential to guide HER2-targeted therapies in clinical practice. CLINICALTRIALS gov Trial registration: NCT04267900. Registered 11th February 2020. Retrospectively registered, https://www. CLINICALTRIALS gov/ct2/results?pg=1&load=cart&id=NCT04267900 .
Collapse
Affiliation(s)
- Jiyun Shi
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191, China
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuaifan Du
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191, China
| | - Rongxi Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Hannan Gao
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191, China
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Luo
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Guozhu Hou
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Zhaohui Zhu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191, China.
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Guangzhou Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
13
|
Miladinova D. Molecular imaging of HER2 receptor: Targeting HER2 for imaging and therapy in nuclear medicine. Front Mol Biosci 2023; 10:1144817. [PMID: 36936995 PMCID: PMC10018203 DOI: 10.3389/fmolb.2023.1144817] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Targeting HER 2 for imaging and therapy in nuclear medicine has been used with a special emphasis on developing more powerful radiopharmaceuticals. Zirconium-89 plays an essential role in immune PET imaging so was used labeled with anti-HER2 antibody (Trastuzumab and Pertuzumab). Also there were attempts with other PET tracers as Cuprum-64 and Galium-68, as well as SPECT radiopharmaceuticals Indium-111 and Technetium- 99m. Regarding antibody pharmacokinetic that is not quite appropriate for imaging acquisition, several smaller molecules with shorter residence times have been developed. These molecules called nanobody, affibody, minibody do not compromize HER2 receptor affinity and specificity. Excess of Trastuzumab do not block the affinity of labeled affibodies. Silica nanoparticles have been conjugated to anti-HER2 antibodies to enable targeting of HER2 expressing cells with potential of drug delivery carry for antitumor agents and b(beta) or a(alfa) emitting radioisotopes commonly used for radionuclide therapy, as Iodine-131, Lutetium-177, Yttrium-90, Rhenium-188 and Thorium-277.
Collapse
|
14
|
Chan C, Prozzo V, Aghevlian S, Reilly RM. Formulation of a kit under Good Manufacturing Practices (GMP) for preparing [ 111In]In-BnDTPA-trastuzumab-NLS injection: a theranostic agent for imaging and Meitner-Auger Electron (MAE) radioimmunotherapy of HER2-positive breast cancer. EJNMMI Radiopharm Chem 2022; 7:33. [PMID: 36542157 PMCID: PMC9772372 DOI: 10.1186/s41181-022-00186-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND 111In[In]-BnDTPA-trastuzumab-NLS is a radiopharmaceutical with theranostic applications for imaging and Meitner-Auger electron (MAE) radioimmunotherapy (RIT) of HER2-positive breast cancer (BC). Nuclear localization sequence (NLS) peptides route the radiopharmaceutical to the nucleus of HER2-positive BC cells following receptor-mediated internalization for RIT with subcellular range MAEs. The γ-photons emitted by 111In permit tumour imaging by SPECT. Our aim was to formulate a kit under Good Manufacturing Practices conditions to prepare 111In[In]-BnDTPA-trastuzumab-NLS injection for a first-in-human clinical trial. RESULTS Trastuzumab was derivatized with p-SCN-BnDTPA to introduce Bn-DTPA for complexing 111In, then modified with maleimide groups for conjugation to the thiol on cysteine in NLS peptides [CGYGPKKKRKVGG]. BnDTPA-trastuzumab-NLS (5 mg in 1.0 mL of 0.05 M ammonium acetate buffer, pH 5.5) was dispensed into unit dose sterile glass vials to produce kits for labeling with 100-165 MBq of 111In[In]Cl3. The kits met specifications for protein concentration (4.5-5.5 mg/mL), volume (0.95-1.05 mL), pH (5.5-6.0), appearance (clear, pale-yellow, particulate-free), BnDTPA substitution level (2.0-7.0 BnDTPA/trastuzumab), purity and homogeneity (SDS-PAGE and SE-HPLC), 111In labeling efficiency (> 90%), binding to HER2-positive SK-BR-3 human breast cancer cells (Ka = 1-8 × 108 L/mmol; Bmax = 0.5-2 × 106 sites/cell), NLS peptide conjugation (upward band shift on SDS-PAGE), sterility (USP Sterility Test) and endotoxins (USP Bacterial Endotoxins Test). 111In-BnDTPA-trastuzumab-NLS injection met specifications for pH (5.5-6.5), radiochemical purity (≥ 90%), radionuclide purity (≥ 99%), appearance (clear, colourless, particle-free) and sterility (retrospective USP Sterility Test). Kits were stable stored at 2-8 °C for up to 661 days (d) meeting all key specifications. Protein concentration remained within or just slightly greater than the specification for up to 139 d. 111In[In]-BnDTPA-trastuzumab-NLS injection was stable for up to 24 h. An expiry of 180 d was assigned for the kits and 8 h for the final radiopharmaceutical. CONCLUSION A kit was formulated under GMP conditions for preparing 111In[In]-BnDTPA-trastuzumab-NLS injection. This radiopharmaceutical was safely administered to 4 patients with HER2-positive BC to trace the uptake of trastuzumab into brain metastases before and after MRI-guided focused ultrasound (MRIg-FUS) by SPECT imaging.
Collapse
Affiliation(s)
- Conrad Chan
- grid.17063.330000 0001 2157 2938Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON Canada
| | - Vanessa Prozzo
- grid.17063.330000 0001 2157 2938Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON Canada
| | - Sadaf Aghevlian
- grid.17063.330000 0001 2157 2938Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON Canada
| | - Raymond M. Reilly
- grid.17063.330000 0001 2157 2938Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON Canada ,grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Medical Imaging, University of Toronto, Toronto, ON Canada ,grid.231844.80000 0004 0474 0428Joint Department of Medical Imaging, University Health Network, Toronto, ON Canada
| |
Collapse
|
15
|
Ehsasatvatan M, Kohnehrouz BB, Gholizadeh A, Ofoghi H, Shanehbandi D. The production of the first functional antibody mimetic in higher plants: the chloroplast makes the DARPin G3 for HER2 imaging in oncology. Biol Res 2022; 55:32. [PMID: 36274167 PMCID: PMC9590205 DOI: 10.1186/s40659-022-00400-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/12/2022] [Indexed: 12/05/2022] Open
Abstract
Background Designed mimetic molecules are attractive tools in biopharmaceuticals and synthetic biology. They require mass and functional production for the assessment of upcoming challenges in the near future. The DARPin family is considered a mimetic pharmaceutical peptide group with high affinity binding to specific targets. DARPin G3 is designed to bind to the HER2 (human epidermal growth factor receptor 2) tyrosine kinase receptor. Overexpression of HER2 is common in some cancers, including breast cancer, and can be used as a prognostic and predictive tool for cancer. The chloroplasts are cost-effective alternatives, equal to, and sometimes better than, bacterial, yeast, or mammalian expression systems. This research examined the possibility of the production of the first antibody mimetic, DARPin G3, in tobacco chloroplasts for HER2 imaging in oncology. Results The chloroplast specific DARPin G3 expression cassette was constructed and transformed into N. tabacum chloroplasts. PCR and Southern blot analysis confirmed integration of transgenes as well as chloroplastic and cellular homoplasmy. The Western blot analysis and ELISA confirmed the production of DARPin G3 at the commercial scale and high dose with the rate of 20.2% in leaf TSP and 33.7% in chloroplast TSP. The functional analysis by ELISA confirmed the binding of IMAC purified chloroplast-made DARPin G3 to the extracellular domain of the HER2 receptor with highly effective picomolar affinities. The carcinoma cellular studies by flow cytometry and immunofluorescence microscopy confirmed the correct functioning by the specific binding of the chloroplast-made DARPin G3 to the HER2 receptor on the surface of HER2-positive cancer cell lines. Conclusion The efficient functional bioactive production of DARPin G3 in chloroplasts led us to introduce plant chloroplasts as the site of efficient production of the first antibody mimetic molecules. This report, as the first case of the cost-effective production of mimetic molecules, enables researchers in pharmaceuticals, synthetic biology, and bio-molecular engineering to develop tool boxes by producing new molecular substitutes for diverse purposes.
Collapse
|
16
|
Wang Y, Wang C, Huang M, Qin S, Zhao J, Sang S, Zheng M, Bian Y, Huang C, Zhang H, Guo L, Jiang J, Xu C, Dai N, Zheng Y, Han J, Yang M, Xu T, Miao L. Pilot study of a novel nanobody 68 Ga-NODAGA-SNA006 for instant PET imaging of CD8 + T cells. Eur J Nucl Med Mol Imaging 2022; 49:4394-4405. [PMID: 35829748 DOI: 10.1007/s00259-022-05903-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Positron emission tomography (PET) with specific diagnostic probes for quantifying CD8+ T cells has emerged as a powerful technique for monitoring the immune response. However, most CD8+ T cell radiotracers are based on antibodies or antibody fragments, which are slowly cleared from circulation. Herein, we aimed to develop and assess 68 Ga-NODAGA-SNA006 for instant PET (iPET) imaging of CD8+ T cells. METHODS A novel nanobody without a hexahistidine (His6) tag, SNA006-GSC, was designed, site-specifically conjugated with NODAGA-maleimide and radiolabelled with 68 Ga. The PET imaging profiles of 68 Ga-NODAGA-SNA006 were evaluated in BALB/c MC38-CD8+/CD8- tumour models and cynomolgus monkeys. Three volunteers with lung cancer underwent whole-body PET/CT imaging after 68 Ga-NODAGA-SNA006 administration. The biodistribution, pharmacokinetics and dosimetry of patients were also investigated. In addition, combined with immunohistochemistry (IHC), the quantitative performance of the tracer for monitoring CD8 expression was evaluated in BALB/c MC38-CD8+/CD8- and human subjects. RESULTS 68 Ga-NODAGA-SNA006 was prepared with RCP > 98% and SA > 100 GBq/μmol. 68 Ga-NODAGA-SNA006 exhibited specific uptake in MC38-CD8+ xenografts tumours, CD8-rich tissues (such as the spleen) in monkeys and CD8+ tumour lesions in patients within 1 h. Fast washout from circulation was observed in three volunteers (t1/2 < 20 min). A preliminary quantitative linear relationship (R2 = 0.9668, p < 0.0001 for xenografts and R2 = 0.7924, p = 0.0013 for lung patients) appeared between 68 Ga-NODAGA-SNA006 uptake and CD8 expression. 68 Ga-NODAGA-SNA006 was well tolerated by all patients. CONCLUSION 68 Ga-NODAGA-SNA006 PET imaging can instantly quantify CD8 expression with an ideal safety profile and is expected to be important for dynamically tracking CD8+ T cells and monitoring immune responses for individualised cancer immunotherapy. TRIAL REGISTRATION NCT05126927 (19 November 2021, retrospectively registered).
Collapse
Affiliation(s)
- Yan Wang
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, No. 899 Ping-Hai Rd., Jiangsu, 215006, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chao Wang
- Smart-Nuclide Biotech, No. 218 Xing-Hu Rd., Suzhou, 215125, Jiangsu, China
| | - Minzhou Huang
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, No. 899 Ping-Hai Rd., Jiangsu, 215006, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Songbing Qin
- Department of Radiotherapy, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shibiao Sang
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Meng Zheng
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, No. 899 Ping-Hai Rd., Jiangsu, 215006, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yicong Bian
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, No. 899 Ping-Hai Rd., Jiangsu, 215006, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chenrong Huang
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, No. 899 Ping-Hai Rd., Jiangsu, 215006, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Hua Zhang
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, No. 899 Ping-Hai Rd., Jiangsu, 215006, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Lingchuan Guo
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiwei Jiang
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Chun Xu
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Na Dai
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yushuang Zheng
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiajun Han
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qian-Rong Rd., Wuxi, 214063, Jiangsu, China.
| | - Tao Xu
- Smart-Nuclide Biotech, No. 218 Xing-Hu Rd., Suzhou, 215125, Jiangsu, China.
| | - Liyan Miao
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, No. 899 Ping-Hai Rd., Jiangsu, 215006, Suzhou, China. .,Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
17
|
Kurth J, Potratz M, Heuschkel M, Krause BJ, Schwarzenböck SM. GRPr Theranostics: Current Status of Imaging and Therapy using GRPr Targeting Radiopharmaceuticals. Nuklearmedizin 2022; 61:247-261. [PMID: 35668669 DOI: 10.1055/a-1759-4189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Addressing molecular targets, that are overexpressed by various tumor entities, using radiolabeled molecules for a combined diagnostic and therapeutic (theranostic) approach is of increasing interest in oncology. The gastrin-releasing peptide receptor (GRPr), which is part of the bombesin family, has shown to be overexpressed in a variety of tumors, therefore, serving as a promising target for those theranostic applications. A large amount of differently radiolabeled bombesin derivatives addressing the GRPr have been evaluated in the preclinical as well as clinical setting showing fast blood clearance and urinary excretion with selective GRPr-binding. Most of the available studies on GRPr-targeted imaging and therapy have evaluated the theranostic approach in prostate and breast cancer applying bombesin derivatives tagged with the predominantly used theranostic pair of 68Ga/177Lu which is the focus of this review.
Collapse
Affiliation(s)
- Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Madlin Potratz
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Martin Heuschkel
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Bernd J Krause
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | | |
Collapse
|
18
|
Bragina OD, Deyev SM, Chernov VI, Tolmachev VM. The Evolution of Targeted Radionuclide Diagnosis of HER2-Positive Breast Cancer. Acta Naturae 2022; 14:4-15. [PMID: 35923562 PMCID: PMC9307982 DOI: 10.32607/actanaturae.11611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/18/2022] [Indexed: 12/24/2022] Open
Abstract
This review examines the evolution of the radionuclide diagnosis of HER2-positive breast cancer using various compounds as a targeting module in clinical practice: from full-length antibodies to a new group of small synthetic proteins called alternative scaffold proteins. This topic is of especial relevance today in view of the problems attendant to the detection of breast cancer with HER2/neu overexpression, which, in most cases, introduce errors in the treatment of patients. The results of clinical studies of radiopharmaceuticals based on affibody molecules, ADAPTs, and DARPins for SPECT and PET have demonstrated good tolerability of the compounds, their rapid excretion from the body, and the possibility to differentiate tumor sites depending on the HER2/neu status. This indicates that targeted radionuclide diagnosis holds promise and the need to continue research in this direction.
Collapse
Affiliation(s)
- O D Bragina
- Tomsk National Research Medical Center of the Russian Academy of Sciences Cancer Research institute, Tomsk, 634009 Russia
- National Research Tomsk Polytechnic University, Tomsk, 634050 Russia
| | - S M Deyev
- National Research Tomsk Polytechnic University, Tomsk, 634050 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - V I Chernov
- Tomsk National Research Medical Center of the Russian Academy of Sciences Cancer Research institute, Tomsk, 634009 Russia
- National Research Tomsk Polytechnic University, Tomsk, 634050 Russia
| | - V M Tolmachev
- National Research Tomsk Polytechnic University, Tomsk, 634050 Russia
- Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Review: Radionuclide Molecular Imaging Targeting HER2 in Breast Cancer with a Focus on Molecular Probes into Clinical Trials and Small Peptides. Molecules 2021; 26:molecules26216482. [PMID: 34770887 PMCID: PMC8588233 DOI: 10.3390/molecules26216482] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
As the most frequently occurring cancer worldwide, breast cancer (BC) is the leading cause of cancer-related death in women. The overexpression of HER2 (human epidermal growth factor receptor 2) is found in about 15% of BC patients, and it is often associated with a poor prognosis due to the effect on cell proliferation, migration, invasion, and survival. As a result of the heterogeneity of BC, molecular imaging with HER2 probes can non-invasively, in real time, and quantitatively reflect the expression status of HER2 in tumors. This will provide a new approach for patients to choose treatment options and monitor treatment response. Furthermore, radionuclide molecular imaging has the potential of repetitive measurements, and it can help solve the problem of heterogeneous expression and conversion of HER2 status during disease progression or treatment. Different imaging probes of targeting proteins, such as monoclonal antibodies, antibody fragments, nanobodies, and affibodies, are currently in preclinical and clinical development. Moreover, in recent years, HER2-specific peptides have been widely developed for molecular imaging techniques for HER2-positive cancers. This article summarized different types of molecular probes targeting HER2 used in current clinical applications and the developmental trend of some HER2-specific peptides.
Collapse
|
20
|
Kiraga Ł, Kucharzewska P, Paisey S, Cheda Ł, Domańska A, Rogulski Z, Rygiel TP, Boffi A, Król M. Nuclear imaging for immune cell tracking in vivo – Comparison of various cell labeling methods and their application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Miranda ACC, dos Santos SN, Fuscaldi LL, Balieiro LM, Bellini MH, Guimarães MICC, de Araújo EB. Radioimmunotheranostic Pair Based on the Anti-HER2 Monoclonal Antibody: Influence of Chelating Agents and Radionuclides on Biological Properties. Pharmaceutics 2021; 13:971. [PMID: 34198999 PMCID: PMC8309196 DOI: 10.3390/pharmaceutics13070971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
The oncogene HER2 is an important molecular target in oncology because it is associated with aggressive disease and the worst prognosis. The development of non-invasive imaging techniques and target therapies using monoclonal antibodies is a rapidly developing field. Thus, this work proposes the study of the radioimmunotheranostic pair, [111In]In-DTPA-trastuzumab and [177Lu]Lu-DOTA-trastuzumab, evaluating the influence of the chelating agents and radionuclides on the biological properties of the radioimmunoconjugates (RICs). The trastuzumab was immunoconjugated with the chelators DTPA and DOTA and radiolabeled with [111In]InCl3 and [177Lu]LuCl3, respectively. The stability of the RICs was evaluated in serum, and the immunoreactive and internalization fractions were determined in SK-BR-3 breast cancer cells. The in vivo pharmacokinetics and dosimetry quantification and the ex vivo biodistribution were performed in normal and SK-BR-3 tumor-bearing mice. The data showed that there was no influence of the chelating agents and radionuclides on the immunoreactive and internalization fractions of RICs. In contrast, they influenced the stability of RICs in serum, as well as the pharmacokinetics, dosimetry and biodistribution profiles. Therefore, the results showed that the nature of the chelating agent and radionuclide could influence the biological properties of the radioimmunotheranostic pair.
Collapse
Affiliation(s)
- Ana Cláudia Camargo Miranda
- Hospital Israelita Albert Einstein, Instituto Israelita de Ensino e Pesquisa, Sao Paulo 05652-900, Brazil
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Sao Paulo 05508-000, Brazil; (S.N.d.S.); (L.M.B.); (M.H.B.); (E.B.d.A.)
| | - Sofia Nascimento dos Santos
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Sao Paulo 05508-000, Brazil; (S.N.d.S.); (L.M.B.); (M.H.B.); (E.B.d.A.)
| | - Leonardo Lima Fuscaldi
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, Sao Paulo 01221-020, Brazil;
| | - Luiza Mascarenhas Balieiro
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Sao Paulo 05508-000, Brazil; (S.N.d.S.); (L.M.B.); (M.H.B.); (E.B.d.A.)
| | - Maria Helena Bellini
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Sao Paulo 05508-000, Brazil; (S.N.d.S.); (L.M.B.); (M.H.B.); (E.B.d.A.)
| | - Maria Inês Calil Cury Guimarães
- Instituto de Radiologia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-911, Brazil;
| | - Elaine Bortoleti de Araújo
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Sao Paulo 05508-000, Brazil; (S.N.d.S.); (L.M.B.); (M.H.B.); (E.B.d.A.)
| |
Collapse
|
22
|
Rinne SS, Orlova A, Tolmachev V. PET and SPECT Imaging of the EGFR Family (RTK Class I) in Oncology. Int J Mol Sci 2021; 22:ijms22073663. [PMID: 33915894 PMCID: PMC8036874 DOI: 10.3390/ijms22073663] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The human epidermal growth factor receptor family (EGFR-family, other designations: HER family, RTK Class I) is strongly linked to oncogenic transformation. Its members are frequently overexpressed in cancer and have become attractive targets for cancer therapy. To ensure effective patient care, potential responders to HER-targeted therapy need to be identified. Radionuclide molecular imaging can be a key asset for the detection of overexpression of EGFR-family members. It meets the need for repeatable whole-body assessment of the molecular disease profile, solving problems of heterogeneity and expression alterations over time. Tracer development is a multifactorial process. The optimal tracer design depends on the application and the particular challenges of the molecular target (target expression in tumors, endogenous expression in healthy tissue, accessibility). We have herein summarized the recent preclinical and clinical data on agents for Positron Emission Tomography (PET) and Single Photon Emission Tomography (SPECT) imaging of EGFR-family receptors in oncology. Antibody-based tracers are still extensively investigated. However, their dominance starts to be challenged by a number of tracers based on different classes of targeting proteins. Among these, engineered scaffold proteins (ESP) and single domain antibodies (sdAb) show highly encouraging results in clinical studies marking a noticeable trend towards the use of smaller sized agents for HER imaging.
Collapse
Affiliation(s)
- Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
- Correspondence: ; Tel.: +46-704-250-782
| |
Collapse
|
23
|
Ansheles AA, Sergienko IV, Prus YA, Sergienko VB. Nuclear imaging of chemotherapy-induced cardiotoxicity. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2021. [DOI: 10.15829/1728-8800-2021-2537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The high efficiency of modern chemotherapy has made it possible to achieve great success in the treatment of cancer. Cardiovascular adverse effects are a major disadvantage of anticancer therapy, often requiring low and less effective doses or even drug withdrawal. Nuclear imaging techniques are the most sensitive in early detection of left ventricular damage and dysfunction during chemotherapy. This review presents modern data on the potential of nuclear imaging of cardiotoxicity.
Collapse
Affiliation(s)
| | | | - Yu. A. Prus
- National Medical Research Center of Cardiology
| | | |
Collapse
|
24
|
Oroujeni M, Rinne SS, Vorobyeva A, Loftenius A, Feldwisch J, Jonasson P, Chernov V, Orlova A, Frejd FY, Tolmachev V. Preclinical Evaluation of 99mTc-ZHER2:41071, a Second-Generation Affibody-Based HER2-Visualizing Imaging Probe with a Low Renal Uptake. Int J Mol Sci 2021; 22:ijms22052770. [PMID: 33803361 PMCID: PMC7967187 DOI: 10.3390/ijms22052770] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
Radionuclide imaging of HER2 expression in tumours may enable stratification of patients with breast, ovarian, and gastroesophageal cancers for HER2-targeting therapies. A first-generation HER2-binding affibody molecule [99mTc]Tc-ZHER2:V2 demonstrated favorable imaging properties in preclinical studies. Thereafter, the affibody scaffold has been extensively modified, which increased its melting point, improved storage stability, and increased hydrophilicity of the surface. In this study, a second-generation affibody molecule (designated ZHER2:41071) with a new improved scaffold has been prepared and characterized. HER2-binding, biodistribution, and tumour-targeting properties of [99mTc]Tc-labelled ZHER2:41071 were investigated. These properties were compared with properties of the first-generation affibody molecules, [99mTc]Tc-ZHER2:V2 and [99mTc]Tc-ZHER2:2395. [99mTc]Tc-ZHER2:41071 bound specifically to HER2 expressing cells with an affinity of 58 ± 2 pM. The renal uptake for [99mTc]Tc-ZHER2:41071 and [99mTc]Tc-ZHER2:V2 was 25–30 fold lower when compared with [99mTc]Tc-ZHER2:2395. The uptake in tumour and kidney for [99mTc]Tc-ZHER2:41071 and [99mTc]Tc-ZHER2:V2 in SKOV-3 xenografts was similar. In conclusion, an extensive re-engineering of the scaffold did not compromise imaging properties of the affibody molecule labelled with 99mTc using a GGGC chelator. The new probe, [99mTc]Tc-ZHER2:41071 provided the best tumour-to-blood ratio compared to HER2-imaging probes for single photon emission computed tomography (SPECT) described in the literature so far. [99mTc]Tc-ZHER2:41071 is a promising candidate for further clinical translation studies.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/chemistry
- Antineoplastic Agents, Immunological/pharmacokinetics
- Antineoplastic Agents, Immunological/pharmacology
- Cell Line, Tumor
- Female
- Humans
- Kidney/diagnostic imaging
- Kidney/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasms, Experimental/diagnostic imaging
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Radiopharmaceuticals/chemical synthesis
- Radiopharmaceuticals/chemistry
- Radiopharmaceuticals/pharmacokinetics
- Radiopharmaceuticals/pharmacology
- Receptor, ErbB-2/metabolism
- Technetium/chemistry
- Technetium/pharmacokinetics
- Technetium/pharmacology
- Tissue Distribution
- Tomography, Emission-Computed, Single-Photon
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.O.); (A.V.); (F.Y.F.); (V.T.)
| | - Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden;
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.O.); (A.V.); (F.Y.F.); (V.T.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | | | | | - Per Jonasson
- Affibody AB, 171 65 Solna, Sweden; (A.L.); (J.F.); (P.J.)
| | - Vladimir Chernov
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia;
- Nuclear Medicine Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden;
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia;
- Correspondence: ; Tel.: +46-073-9922846
| | - Fredrik Y. Frejd
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.O.); (A.V.); (F.Y.F.); (V.T.)
- Affibody AB, 171 65 Solna, Sweden; (A.L.); (J.F.); (P.J.)
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.O.); (A.V.); (F.Y.F.); (V.T.)
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden;
| |
Collapse
|
25
|
Bacteriophages as Therapeutic and Diagnostic Vehicles in Cancer. Pharmaceuticals (Basel) 2021; 14:ph14020161. [PMID: 33671476 PMCID: PMC7923149 DOI: 10.3390/ph14020161] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Evolution of nanomedicine is the re-design of synthetic and biological carriers to implement novel theranostic platforms. In recent years, bacteriophage research favors this process, which has opened up new roads in drug and gene delivery studies. By displaying antibodies, peptides, or proteins on the surface of different bacteriophages through the phage display technique, it is now possible to unravel specific molecular determinants of both cancer cells and tumor-associated microenvironmental molecules. Downstream applications are manifold, with peptides being employed most of the times to functionalize drug carriers and improve their therapeutic index. Bacteriophages themselves were proven, in this scenario, to be good carriers for imaging molecules and therapeutics as well. Moreover, manipulation of their genetic material to stably vehiculate suicide genes within cancer cells substantially changed perspectives in gene therapy. In this review, we provide examples of how amenable phages can be used as anticancer agents, especially because their systemic administration is possible. We also provide some insights into how their immunogenic profile can be modulated and exploited in immuno-oncology for vaccine production.
Collapse
|
26
|
Kotecha R, Tonse R, Rubens M, McDermott MW, Odia Y, Appel H, Mehta MP. Systematic review and meta-analysis of breast cancer brain metastasis and primary tumor receptor expression discordance. Neurooncol Adv 2021; 3:vdab010. [PMID: 33898990 PMCID: PMC8055057 DOI: 10.1093/noajnl/vdab010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Change in hormone receptor (estrogen [ER] and progesterone [PR]) and/or human epidermal growth factor receptor type 2 (HER2) status during the evolutionary course of metastatic breast cancer and the effect of tumor classification subtype switching remain understudied and underappreciated in brain metastasis patients. Methods Using preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, a systematic review of series published prior to April 2020 obtained from the Medline database of biopsied or resected breast cancer brain metastasis (BCBM) was performed. Weighted random effects models were used to calculate pooled estimates. Results 15 full-text articles were included with receptor expression analyses on 1373 patients who underwent biopsy or resection of at least one intracranial lesion to compare to the primary tumor. Primary tumor receptor expression immunophenotypes were 45.0% ER+, 41.0% ER−, 31.0% PR+, 51.0% PR−, 35% HER2+, and 47.0% HER2−. Corresponding BCBM immunophenotypes were 19.0% ER+, 31.0% ER−, 13.0% PR+, 40.0% PR−, 21.0% HER2+, and 26.0% HER2−. On primary/BCBM comparison, 540 patients (42.6%) exhibited discordance in any receptor with 17.0% (95% CI: 13.0%–23.0%) discordant on ER, 23.0% (95% CI: 18.0%–30.0%) discordant on PR, and 12.0% (95% CI: 8.0%–16.0%) discordant on HER2 status. The most common receptor conversions found in BCBM were ER loss 11.0% (95% CI: 8.0%–16.0%), PR loss 15.0% (95% CI: 11.0%–21.0%), and HER2 gain 9.0% (95% CI: 7.0%–11.0%). Conclusions BCBM exhibits significant receptor expression discordance in comparison to primary tumors in approximately 40% of patients. Classification patterns need to be analyzed to determine factors predictive of BCBM/primary tumor discordance. Overall, tumor subtype switching and its effect on clinical management remains underappreciated.
Collapse
Affiliation(s)
- Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA.,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Raees Tonse
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Muni Rubens
- Office of Clinical Research, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Michael W McDermott
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.,Miami Neuroscience Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Yazmin Odia
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.,Miami Neuroscience Institute, Baptist Health South Florida, Miami, Florida, USA.,Department of Neuro-Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Haley Appel
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA.,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| |
Collapse
|
27
|
Tolmachev V, Orlova A, Sörensen J. The emerging role of radionuclide molecular imaging of HER2 expression in breast cancer. Semin Cancer Biol 2021; 72:185-197. [PMID: 33465471 DOI: 10.1016/j.semcancer.2020.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Targeting of human epidermal growth factor type 2 (HER2) using monoclonal antibodies, antibody-drug conjugates and tyrosine kinase inhibitors extends survival of patients with HER2-expressing metastatic breast cancer. High expression of HER2 is a predictive biomarker for such specific treatment. Accurate determination of HER2 expression level is necessary for stratification of patients to targeted therapy. Non-invasive in vivo radionuclide molecular imaging of HER2 has a potential of repetitive measurements, addressing issues of heterogeneous expression and conversion of HER2 status during disease progression or in response to therapy. Imaging probes based of several classes of targeting proteins are currently in preclinical and early clinical development. Both preclinical and clinical data suggest that the most promising are imaging agents based on small proteins, such as single domain antibodies or engineered scaffold proteins. These agents permit a very specific high-contrast imaging at the day of injection.
Collapse
Affiliation(s)
- Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia.
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia; Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jens Sörensen
- Division of Radiology and Nuclear Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Mankoff DA. PET Imaging in Cancer Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
29
|
Biabani Ardakani J, Akhlaghi M, Nikkholgh B, Hosseinimehr SJ. Targeting and imaging of HER2 overexpression tumor with a new peptide-based 68Ga-PET radiotracer. Bioorg Chem 2020; 106:104474. [PMID: 33246602 DOI: 10.1016/j.bioorg.2020.104474] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/14/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) overexpression, as a predictive biomarker, is associated with more tumor aggressiveness and worse clinical outcomes in cancer, whereas it's accurate identification has led to the choice of effective treatments in many patients. In this study, a peptide-based PET probe (68Ga-DOTA-(Ser)3-LTVSPWY) was developed for imaging HER2 expression in tumors. The DOTA-(Ser)3-LTVSPWY was labeled with 68Ga and then was evaluated in vitro with HER2-positive SKOV-3 cell line; moreover, the in vivo biodistribution and PET/CT imaging were performed in xenografted tumor-bearing nude mice. The 68Ga-DOTA-(Ser)3-LTVSPWY displayed the high radiochemical purity greater than 95% and good stability in normal saline and human serum. The cellular binding experiments showed that the cell uptake in HER2-positive ovarian cancer cells could be effectively blocked by non-labeled peptide. The Kd and Bmax values for radiolabeled peptide were obtained at 2.5 ± 0.6 nM and (3.4 ± 0.2) × 105 sites per cell, respectively. Biodistribution study demonstrated that tumor-to-blood and tumor-to-muscle ratios were about 1.73 ± 0.36 and 3.78 ± 0.17 at 120 min after the injection of the radiolabeled peptide, respectively. Tumor imaging by PET/CT exhibited high contrast tumor image at 60 min after injection in animal models. Consequently, the results were indicative of the specific accumulation of 68Ga-DOTA-(Ser)3-LTVSPWY peptide in HER2-positive tumors and the suitability of its application as a PET probe for the diagnosis of HER2-overexpression tumor.
Collapse
Affiliation(s)
- Javad Biabani Ardakani
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Akhlaghi
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Nikkholgh
- Khatam PET/CT Center, Specialty and Subspecialty Hospital of Khatam ol-Anbia, Tehran, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
30
|
Abstract
Imaging has played a critical role in the management of patients with cancer. Novel therapies are emerging rapidly; however, they are effective only in some patients. With the advent of new targeted therapeutics and immunotherapy, the limitations of conventional imaging methods are becoming more evident. FDG-PET imaging is restricted to the optimal assessment of immune therapies. There is a critical unmet need for pharmacodynamic and prognostic imaging biomarkers. Radiolabeled antibodies or small molecules can allow for specific assessment of targets in expression and concentration. Several such imaging agents have been under preclinical development. Early human studies with radiolabeled monoclonal antibodies or small molecules targeted to the epidermal growth factor receptor pathway have shown potential; targeted imaging of CA19.9 and CA-IX and are being further explored. Immune-directed imaging agents are highly desirable as biomarkers and preliminary studies with radiolabeled antibodies targeting immune mechanisms appear promising. While novel agents are being developed, larger well-designed studies are needed to validate the role of these agents as biomarkers in the clinical management of patients.
Collapse
Affiliation(s)
- Neeta Pandit-Taskar
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY.
| | - Michael A Postow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
31
|
Heesch A, Maurer J, Stickeler E, Beheshti M, Mottaghy FM, Morgenroth A. Development of Radiotracers for Breast Cancer-The Tumor Microenvironment as an Emerging Target. Cells 2020; 9:cells9102334. [PMID: 33096754 PMCID: PMC7590199 DOI: 10.3390/cells9102334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
Molecular imaging plays an increasingly important role in the diagnosis and treatment of different malignancies. Radiolabeled probes enable the visualization of the primary tumor as well as the metastases and have been also employed in targeted therapy and theranostic approaches. With breast cancer being the most common malignancy in women worldwide it is of special interest to develop novel targeted treatments. However, tumor microenvironment and escape mechanisms often limit their therapeutic potential. Addressing tumor stroma associated targets provides a promising option to inhibit tumor growth and angiogenesis and to disrupt tumor tissue architecture. This review describes recent developments on radiolabeled probes used in diagnosis and treatment of breast cancer especially in triple negative type with the focus on potential targets offered by the tumor microenvironment, like tumor associated macrophages, cancer associated fibroblasts, and endothelial cells.
Collapse
Affiliation(s)
- Amelie Heesch
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany; (A.H.); (M.B.); (F.M.M.)
| | - Jochen Maurer
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), 52074 Aachen, Germany; (J.M.); (E.S.)
| | - Elmar Stickeler
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), 52074 Aachen, Germany; (J.M.); (E.S.)
| | - Mohsen Beheshti
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany; (A.H.); (M.B.); (F.M.M.)
- Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany; (A.H.); (M.B.); (F.M.M.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6202 Maastricht, The Netherlands
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany; (A.H.); (M.B.); (F.M.M.)
- Correspondence:
| |
Collapse
|
32
|
Dewulf J, Adhikari K, Vangestel C, Wyngaert TVD, Elvas F. Development of Antibody Immuno-PET/SPECT Radiopharmaceuticals for Imaging of Oncological Disorders-An Update. Cancers (Basel) 2020; 12:E1868. [PMID: 32664521 PMCID: PMC7408676 DOI: 10.3390/cancers12071868] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 01/12/2023] Open
Abstract
Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are molecular imaging strategies that typically use radioactively labeled ligands to selectively visualize molecular targets. The nanomolar sensitivity of PET and SPECT combined with the high specificity and affinity of monoclonal antibodies have shown great potential in oncology imaging. Over the past decades a wide range of radio-isotopes have been developed into immuno-SPECT/PET imaging agents, made possible by novel conjugation strategies (e.g., site-specific labeling, click chemistry) and optimization and development of novel radiochemistry procedures. In addition, new strategies such as pretargeting and the use of antibody fragments have entered the field of immuno-PET/SPECT expanding the range of imaging applications. Non-invasive imaging techniques revealing tumor antigen biodistribution, expression and heterogeneity have the potential to contribute to disease diagnosis, therapy selection, patient stratification and therapy response prediction achieving personalized treatments for each patient and therefore assisting in clinical decision making.
Collapse
Affiliation(s)
- Jonatan Dewulf
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Karuna Adhikari
- Faculty of Pharmaceutical Biomedical and Veterinary Sciences, Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium;
| | - Christel Vangestel
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Tim Van Den Wyngaert
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Filipe Elvas
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| |
Collapse
|
33
|
Guo X, Zhou N, Chen Z, Liu T, Xu X, Lei X, Shen L, Gao J, Yang Z, Zhu H. Construction of 124I-trastuzumab for noninvasive PET imaging of HER2 expression: from patient-derived xenograft models to gastric cancer patients. Gastric Cancer 2020; 23:614-626. [PMID: 31919745 DOI: 10.1007/s10120-019-01035-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Here, we sought to develop a PET radioligand based on trastuzumab labeled with 124I, 124I-trastuzumab, to evaluate its distribution, internal dosimetry, and initial PET images of HER2-positive lesions in gastric cancer (GC) patients. METHODS In animal studies, micro-PET imaging and bio-distribution were performed to examine the specificity of 124I-trastuzumab in HER2-positive and HER2-negative mouse models. Subsequently, 124I-trastuzumab was applied in human clinic trial. Six gastric cancer patients with metastases underwent 124I-trastuzumab PET imaging, with 18F-FDG PET/CT in each to compare. RESULTS In animal studies, PET imaging of 124I-trastuzumab showed significant higher tumor uptake than that of 124I-IgG1 in HER2-positive PDX mouse models at 24 h. The low tumor uptake of 124I-trastuzumab in HER2-negative PDX models further confirmed the specificity. In human clinical studies, 18 HER2-positive lesions and 11 HER2-negative lesions were evaluated in PET imaging analysis. The detection sensitivity of 124I-trastuzumab was 100% (18/18) at 24 h. The PET images showed significant difference in tumor uptake between HER2-positive and HER2-negative lesions at 24 h (SUVmax 7.83 ± 0.55 vs. 1.75 ± 0.29, p < 0.0001). Quite striking difference in tumor uptake was observed between 124I-trastuzumab and 18F-FDG (SUVmax 1.75 ± 0.29 vs. 6.46 ± 0.44, p < 0.0001) in HER2-negative lesions, further confirming the specific binding of 124I-trastuzumab in HER2-positive lesions. The radiation-absorbed dose was calculated to be 0.3011 ± 0.005 mSv/MBq. No toxicities or adverse effects were observed in any of the patients. CONCLUSION The findings described here demonstrated that 124I-trastuzumab was feasible to detect HER2-positive lesions in primary and metastatic gastric cancer patients and to differentiate HER2-positive and HER2-negative lesions quantitatively.
Collapse
Affiliation(s)
- Xiaoyi Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, No. 52 Fucheng Rd., Beijing, 100142, China
| | - Nina Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, No. 52 Fucheng Rd., Beijing, 100142, China
| | - Zuhua Chen
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Teli Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, No. 52 Fucheng Rd., Beijing, 100142, China
| | - Xiaoxia Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, No. 52 Fucheng Rd., Beijing, 100142, China
| | - Xia Lei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, No. 52 Fucheng Rd., Beijing, 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Jing Gao
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, No. 52 Fucheng Rd., Beijing, 100142, China.
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, No. 52 Fucheng Rd., Beijing, 100142, China.
| |
Collapse
|
34
|
Imaging using radiolabelled targeted proteins: radioimmunodetection and beyond. EJNMMI Radiopharm Chem 2020; 5:16. [PMID: 32577943 PMCID: PMC7311618 DOI: 10.1186/s41181-020-00094-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
The use of radiolabelled antibodies was proposed in 1970s for staging of malignant tumours. Intensive research established chemistry for radiolabelling of proteins and understanding of factors determining biodistribution and targeting properties. The use of radioimmunodetection for staging of cancer was not established as common practice due to approval and widespread use of [18F]-FDG, which provided a more general diagnostic use than antibodies or their fragments. Expanded application of antibody-based therapeutics renewed the interest in radiolabelled antibodies. RadioimmunoPET emerged as a powerful tool for evaluation of pharmacokinetics of and target engagement by biotherapeutics. In addition to monoclonal antibodies, new radiolabelled engineered proteins have recently appeared, offering high-contrast imaging of expression of therapeutic molecular targets in tumours shortly after injection. This creates preconditions for noninvasive determination of a target expression level and stratification of patients for targeted therapies. Radiolabelled proteins hold great promise to play an important role in development and implementation of personalised targeted treatment of malignant tumours. This article provides an overview of biodistribution and tumour-seeking features of major classes of targeting proteins currently utilized for molecular imaging. Such information might be useful for researchers entering the field of the protein-based radionuclide molecular imaging.
Collapse
|
35
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
36
|
Makavos G, Ikonomidis I, Palios J, Rigopoulos A, Katogiannis K, Parissis J, Paraskevaidis I, Noutsias M. Cardiac imaging in cardiotoxicity: a focus on clinical practice. Heart Fail Rev 2020; 26:1175-1187. [PMID: 32306221 DOI: 10.1007/s10741-020-09952-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cancer therapeutics induced cardiotoxicity has emerged as an important factor of long-term adverse cardiovascular outcomes in survivors of various malignant diseases. Early detection of myocardial injury in the setting of cancer treatment is important for the initiation of targeted cardioprotective therapy, in order to prevent irreversible cardiac dysfunction and heart failure, while not withholding a potentially life-saving cancer therapy. Cardiac imaging techniques including echocardiography, cardiac magnetic resonance, and nuclear cardiac imaging are the main tools for the identification of cardiotoxicity. There is also growing evidence for the detection of subclinical cardiac dysfunction in cancer patients by speckle tracking echocardiography. In this review article, we focus on current and emerging data regarding the role of cardiac imaging for the detection of changes in myocardial function related with cancer treatment in clinical practice.
Collapse
Affiliation(s)
- George Makavos
- 2nd Department of Cardiology, "Attikon" Hospital, National and Kapodistrian University of Athens Medical School, Rimini 1, Haidari, 12462, Athens, Greece.
| | - Ignatios Ikonomidis
- 2nd Department of Cardiology, "Attikon" Hospital, National and Kapodistrian University of Athens Medical School, Rimini 1, Haidari, 12462, Athens, Greece
| | - John Palios
- 2nd Department of Cardiology, "Attikon" Hospital, National and Kapodistrian University of Athens Medical School, Rimini 1, Haidari, 12462, Athens, Greece
| | - Angelos Rigopoulos
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| | - Konstantinos Katogiannis
- 2nd Department of Cardiology, "Attikon" Hospital, National and Kapodistrian University of Athens Medical School, Rimini 1, Haidari, 12462, Athens, Greece
| | - John Parissis
- 2nd Department of Cardiology, "Attikon" Hospital, National and Kapodistrian University of Athens Medical School, Rimini 1, Haidari, 12462, Athens, Greece
| | - Ioannis Paraskevaidis
- Department of Clinical Therapeutics, "Alexandra" Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Michel Noutsias
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| |
Collapse
|
37
|
Sharma R, Kameswaran M, Dash A. Comparative In Vitro Cytotoxicity Studies of 177Lu-CHX-A″-DTPA-Trastuzumab and 177Lu-CHX-A″-DTPA-F(ab') 2-Trastuzumab in HER2-Positive Cancer Cell Lines. Cancer Biother Radiopharm 2020; 35:177-189. [PMID: 32196365 DOI: 10.1089/cbr.2019.2882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Human epidermal growth factor receptor 2 (HER2) is found to be amplified in ∼15%-20% of breast cancers. In this study, the authors report the synthesis and comparative in vitro therapeutic efficacy of 177Lu-CHX-A″-DTPA-trastuzumab and 177Lu-CHX-A″-DTPA-F(ab')2-trastuzumab to determine their potential as theranostic agents for patients with breast cancer. Materials and Methods: Bivalent F(ab')2-trastuzumab was produced by enzymatic digestion of trastuzumab, conjugated with p-SCN-Bn-CHX-A″-DTPA and subsequently radiolabeled with 177Lu. Cell viability, membrane toxicity assays, and apoptosis analysis were carried out with 177Lu-CHX-A″-DTPA-trastuzumab and 177Lu-CHX-A″-DTPA-F(ab')2-trastuzumab in HER2-positive ovarian (SK-OV-3) and breast cancer (SK-BR-3 and MDA-MB-453) cells. Results: In vitro cell binding studies showed ∼20%-25% binding of 177Lu-CHX-A″-DTPA-trastuzumab and 177Lu-CHX-A″-DTPA-F(ab')2-trastuzumab to SK-OV-3, SK-BR-3, and MDA-MB-453 cells. The cells exhibited similar degree of membrane integrity and cellular toxicity when treated with same amount (activity) of 177Lu-CHX-A″-DTPA-F(ab')2-trastuzumab and 177Lu-CHX-A″-DTPA-trastuzumab, and the toxicity was dose dependent. The mode of cell death was predominantly by apoptosis and necrosis with both the radioimmunoconjugates. Conclusions: The results indicated that the efficacy of both the radioimmunoconjugates, in terms of inducing cell death, was similar thereby ascertaining their potential as good therapeutic agents for patients with breast cancer.
Collapse
Affiliation(s)
- Rohit Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Mythili Kameswaran
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
38
|
(Radio)Theranostic Patient Management in Oncology Exemplified by Neuroendocrine Neoplasms, Prostate Cancer, and Breast Cancer. Pharmaceuticals (Basel) 2020; 13:ph13030039. [PMID: 32151049 PMCID: PMC7151671 DOI: 10.3390/ph13030039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022] Open
Abstract
The role of nuclear medicine in the management of oncological patients has expanded during last two decades. The number of radiopharmaceuticals contributing to the realization of theranostics/radiotheranostics in the context of personalized medicine is increasing. This review is focused on the examples of targeted (radio)pharmaceuticals for the imaging and therapy of neuroendocrine neoplasms (NENs), prostate cancer, and breast cancer. These examples strongly demonstrate the tendency of nuclear medicine development towards personalized medicine.
Collapse
|
39
|
Korhonen KE, Pantel AR, Mankoff DA. 18F-FDG-PET/CT in Breast and Gynecologic Cancer. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Dammes N, Peer D. Monoclonal antibody-based molecular imaging strategies and theranostic opportunities. Theranostics 2020; 10:938-955. [PMID: 31903161 PMCID: PMC6929980 DOI: 10.7150/thno.37443] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/26/2019] [Indexed: 01/13/2023] Open
Abstract
Molecular imaging modalities hold great potential as less invasive techniques for diagnosis and management of various diseases. Molecular imaging combines imaging agents with targeting moieties to specifically image diseased sites in the body. Monoclonal antibodies (mAbs) have become increasingly popular as novel therapeutics against a variety of diseases due to their specificity, affinity and serum stability. Because of the same properties, mAbs are also exploited in molecular imaging to target imaging agents such as radionuclides to the cell of interest in vivo. Many studies investigated the use of mAb-targeted imaging for a variety of purposes, for instance to monitor disease progression and to predict response to a specific therapeutic agent. Herein, we highlighted the application of mAb-targeted imaging in three different types of pathologies: autoimmune diseases, oncology and cardiovascular diseases. We also described the potential of molecular imaging strategies in theranostics and precision medicine. Due to the nearly infinite repertoire of mAbs, molecular imaging can change the future of modern medicine by revolutionizing diagnostics and response prediction in practically any disease.
Collapse
Affiliation(s)
- Niels Dammes
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel
- School of Molecular Cell Biology and Biotechnology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, and Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel
- School of Molecular Cell Biology and Biotechnology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, and Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
41
|
Shahsavari S, Shaghaghi Z, Abedi SM, Hosseinimehr SJ. Evaluation of 99mTc-HYNIC-(ser)3-LTVPWY peptide for glioblastoma imaging. Int J Radiat Biol 2019; 96:502-509. [DOI: 10.1080/09553002.2020.1704906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Shima Shahsavari
- Faculty of Pharmacy, Department of Radiopharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Faculty of Pharmacy, Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Shaghaghi
- Faculty of Pharmacy, Department of Radiopharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Nuclear Medicine and Molecular Imaging, Clinical Development Research Unit of Farshchian Heart Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Mohammad Abedi
- Faculty of Medicine, Department of Radiology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Faculty of Pharmacy, Department of Radiopharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
42
|
Deken MM, Bos DL, Tummers WSFJ, March TL, van de Velde CJH, Rijpkema M, Vahrmeijer AL. Multimodal image-guided surgery of HER2-positive breast cancer using [ 111In]In-DTPA-trastuzumab-IRDye800CW in an orthotopic breast tumor model. EJNMMI Res 2019; 9:98. [PMID: 31754913 PMCID: PMC6872692 DOI: 10.1186/s13550-019-0564-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/25/2019] [Indexed: 01/23/2023] Open
Abstract
Background Combining modalities using dual-labeled antibodies may allow preoperative and intraoperative tumor localization and could be used in image-guided surgery to improve complete tumor resection. Trastuzumab is a monoclonal antibody against the human epidermal growth factor-2 (HER2) receptor and dual-labeled trastuzumab with both a fluorophore (IRDye800CW) and a radioactive label (111In) can be used for multimodal imaging of HER2-positive breast cancer. The aim of this study was to demonstrate the feasibility of HER2-targeted multimodal imaging using [111In]In-DTPA-trastuzumab-IRDye800CW in an orthotopic breast cancer model. Methods Trastuzumab was conjugated with p-isothiocyanatobenzyl (ITC)-diethylenetriaminepentaacetic acid (DTPA) and IRDye800CW-NHS ester and subsequently labeled with 111In. In a dose escalation study, the biodistribution of 10, 30, and 100 μg [111In]In-DTPA-trastuzumab-IRDye800CW was determined 48 h after injection in BALB/c nude mice with orthotopic high HER2-expressing tumors. Also, a biodistribution study was performed in a low HER2-expressing breast cancer model. In addition, multimodal image-guided surgery was performed in each group. Autoradiography, fluorescence microscopy, and immunohistochemically stained slices of the tumors were compared for co-localization of tumor tissue, HER2 expression, fluorescence, and radiosignal. Results Based on the biodistribution data, a 30 μg dose of dual-labeled trastuzumab (tumor-to-blood ratio 13 ± 2) was chosen for all subsequent studies. [111In]In-DTPA-trastuzumab-IRDye800CW specifically accumulated in orthotopic HER2-positive BT474 tumors (101 ± 7 %IA/g), whereas uptake in orthotopic low HER2-expressing MCF7 tumor was significantly lower (1.2 ± 0.2 %IA/g, p = 0.007). BT474 tumors could clearly be visualized with both micro-SPECT/CT, fluorescence imaging and subsequently, image-guided resection was performed. Immunohistochemical analyses of BT474 tumors demonstrated correspondence in fluorescence, radiosignal, and high HER2 expression. Conclusions Dual-labeled trastuzumab showed specific accumulation in orthotopic HER2-positive BT474 breast tumors with micro-SPECT/CT and fluorescence imaging and enabled image-guided tumor resection. In the clinical setting, [111In]In-DTPA-trastuzumab-IRDye800CW could be valuable for preoperative detection of (metastatic) tumors by SPECT/CT imaging, and intraoperative localization by using a gamma probe and fluorescence image-guided surgery to improve radical resection of tumor tissue in patients with HER2-positive tumors.
Collapse
Affiliation(s)
- Marion M Deken
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| | - Desirée L Bos
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Taryn L March
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Mark Rijpkema
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
43
|
Chitneni SK, Koumarianou E, Vaidyanathan G, Zalutsky MR. Observations on the Effects of Residualization and Dehalogenation on the Utility of N-Succinimidyl Ester Acylation Agents for Radioiodination of the Internalizing Antibody Trastuzumab. Molecules 2019; 24:molecules24213907. [PMID: 31671554 PMCID: PMC6864793 DOI: 10.3390/molecules24213907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 11/16/2022] Open
Abstract
Trastuzumab is an antibody used for the treatment of human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancers. Since trastuzumab is an internalizing antibody, two factors could play an important role in achieving high uptake and prolonged retention of radioactivity in HER2-positive tumors after radioiodination-residualizing capacity after receptor-mediated internalization and susceptibility to dehalogenation. To evaluate the contribution of these two factors, trastuzumab was radiolabeled using the residualizing reagent N-succinimidyl 4-guanidinomethyl-3-[*I]iodobenzoate ([*I]SGMIB) and the nonresidualizing reagent N-succinimidyl-3-[*I]iodobenzoate ([*I]SIB), both of which are highly dehalogenation-resistant. Paired-label uptake and intracellular retention of [125I]SGMIB-trastuzumab and [131I]SIB-trastuzumab was compared on HER2-expressing BT474 human breast carcinoma cells. Tumor uptake and normal tissue distribution characteristics for the two labeled conjugates were assessed in mice bearing BT474M1 xenografts. The internalization and intracellular retention of initially-bound radioactivity in BT474 cells was similar for the two labeled conjugates up to 4 h, but were significantly higher for [125I]SGMIB-trastuzumab at 6 and 24 h. Similarly, [*I]SGMIB labeling resulted in significantly higher uptake and retention of radioactivity in BT474M1 xenografts at all studied time points. Moreover, tumor-to-tissue ratios for [125I]SGMIB-trastuzumab were consistently higher than those for [131I]SIB-trastuzumab starting at 12 h postinjection. Thus, optimal targeting of HER2-positive breast cancers with a radioiodinated trastuzumab conjugate requires an acylation agent that imparts residualizing capacity in addition to high stability towards dehalogenation in vivo.
Collapse
Affiliation(s)
- Satish K Chitneni
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Eftychia Koumarianou
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA.
- ABX-CRO Advanced Pharmaceutical Services, D-01307 Dresden, Germany.
| | | | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
44
|
Recent Advances in Nuclear Imaging of Receptor Expression to Guide Targeted Therapies in Breast Cancer. Cancers (Basel) 2019; 11:cancers11101614. [PMID: 31652624 PMCID: PMC6826563 DOI: 10.3390/cancers11101614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
Breast cancer remains the most frequent cancer in women with different patterns of disease progression and response to treatments. The identification of specific biomarkers for different breast cancer subtypes has allowed the development of novel targeting agents for imaging and therapy. To date, patient management depends on immunohistochemistry analysis of receptor status on bioptic samples. This approach is too invasive, and in some cases, not entirely representative of the disease. Nuclear imaging using receptor tracers may provide whole-body information and detect any changes of receptor expression during disease progression. Therefore, imaging is useful to guide clinicians to select the best treatments for each patient and to evaluate early response thus reducing unnecessary therapies. In this review, we focused on the development of novel tracers that are ongoing in preclinical and/or clinical studies as promising tools to lead treatment decisions for breast cancer management.
Collapse
|
45
|
Wei W, Ni D, Ehlerding EB, Luo QY, Cai W. PET Imaging of Receptor Tyrosine Kinases in Cancer. Mol Cancer Ther 2019; 17:1625-1636. [PMID: 30068751 DOI: 10.1158/1535-7163.mct-18-0087] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/19/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022]
Abstract
Overexpression and/or mutations of the receptor tyrosine kinase (RTK) subfamilies, such as epidermal growth factor receptors (EGFR) and vascular endothelial growth factor receptors (VEGFR), are closely associated with tumor cell growth, differentiation, proliferation, apoptosis, and cellular invasiveness. Monoclonal antibodies (mAb) and tyrosine kinase inhibitors (TKI) specifically inhibiting these RTKs have shown remarkable success in improving patient survival in many cancer types. However, poor response and even drug resistance inevitably occur. In this setting, the ability to detect and visualize RTKs with noninvasive diagnostic tools will greatly refine clinical treatment strategies for cancer patients, facilitate precise response prediction, and improve drug development. Positron emission tomography (PET) agents using targeted radioactively labeled antibodies have been developed to visualize tumor RTKs and are changing clinical decisions for certain cancer types. In the present review, we primarily focus on PET imaging of RTKs using radiolabeled antibodies with an emphasis on the clinical applications of these immunoPET probes. Mol Cancer Ther; 17(8); 1625-36. ©2018 AACR.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Radiology, University of Wisconsin-Madison, Wisconsin
| | - Dalong Ni
- Department of Radiology, University of Wisconsin-Madison, Wisconsin
| | - Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin-Madison, Wisconsin
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Wisconsin. .,Department of Medical Physics, University of Wisconsin-Madison, Wisconsin.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| |
Collapse
|
46
|
Sterjova M, Džodić P, Ruskovska T, Apostolova P, Risteski M, Janevik-Ivanovska E. PREPARATION AND INTEGRITY EXAMINATION OF FREEZE DRIED KIT OF TRASTUZUMAB-IMMUNOCONJUGATES AND COLD LABELED IMMUNOCONJUGATES BY APPLYING SDS-PAGE ELECTROPHORESIS. ACTA MEDICA MEDIANAE 2019. [DOI: 10.5633/amm.2019.0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Decline in Left Ventricular Ejection Fraction Following Anthracyclines Predicts Trastuzumab Cardiotoxicity. JACC-HEART FAILURE 2019; 7:795-804. [PMID: 31401102 DOI: 10.1016/j.jchf.2019.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/19/2019] [Accepted: 04/02/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVES The aim of CATS (Cardiotoxicity of Adjuvant Trastuzumab Study) was to prospectively assess clinical, biochemical, and genomic predictors of trastuzumab-related cardiotoxicity (TRC). BACKGROUND Cardiac dysfunction is a common adverse effect of trastuzumab. Studies to identify predictive biomarkers for TRC have enrolled heterogeneous populations and yielded mixed results. METHODS A total of 222 patients with early-stage human epidermal growth factor receptor 2-positive breast cancer scheduled to receive adjuvant anthracyclines followed by 12 months of trastuzumab were prospectively recruited from 17 centers. Left ventricular ejection fraction (LVEF), troponin T, and N-terminal prohormone of brain natriuretic peptide were measured at baseline, post-anthracycline, and every 3 months during trastuzumab. Germline single-nucleotide polymorphisms in ERBB2, FCGR2A, and FCGR3A were analyzed. TRC was defined as symptomatic heart failure; cardiac death, arrhythmia, or infarction; a decrease in LVEF of >15% from baseline; or a decrease in LVEF of >10% to <50%. RESULTS TRC occurred in 18 of 217 subjects (8.3%). Lower pre-anthracycline LVEF and greater interval decline in LVEF from pre- to post-anthracycline were each associated with TRC on multivariate analyses (odds ratio: 3.9 [p = 0.0001] and 7.9 [p < 0.0001] for a 5% absolute change in LVEF). Higher post-anthracycline N-terminal prohormone of brain natriuretic peptide level was associated with TRC on univariate but not multivariate analyses. There were no associations between troponin T or ERBB2/FGCR polymorphisms and TRC. Baseline LVEF and LVEF change post-anthracycline were used to generate a "low-risk TRC score" to identify patients with low TRC incidence. CONCLUSIONS Low baseline LVEF and greater LVEF decline post-anthracycline were both independent predictors of TRC. The other biomarkers did not further improve the ability to predict TRC. (Cardiotoxicity of Adjuvant Trastuzumab [CATS]; NCT00858039).
Collapse
|
48
|
Puttemans J, Lahoutte T, D'Huyvetter M, Devoogdt N. Beyond the Barrier: Targeted Radionuclide Therapy in Brain Tumors and Metastases. Pharmaceutics 2019; 11:pharmaceutics11080376. [PMID: 31374991 PMCID: PMC6723032 DOI: 10.3390/pharmaceutics11080376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 01/10/2023] Open
Abstract
Brain tumors are notoriously difficult to treat. The blood-brain barrier provides a sanctuary site where residual and metastatic cancer cells can evade most therapeutic modalities. The delicate nature of the brain further complicates the decision of eliminating as much tumorous tissue as possible while protecting healthy tissue. Despite recent advances in immunotherapy, radiotherapy and systemic treatments, prognosis of newly diagnosed patients remains dismal, and recurrence is still a universal problem. Several strategies are now under preclinical and clinical investigation to optimize delivery and maximize the cytotoxic potential of pharmaceuticals with regards to brain tumors. This review provides an overview of targeted radionuclide therapy approaches for the treatment of primary brain tumors and brain metastases, with an emphasis on biological targeting moieties that specifically target key biomarkers involved in cancer development.
Collapse
Affiliation(s)
- Janik Puttemans
- In Vivo Cellular and Molecular Imaging Lab, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Tony Lahoutte
- In Vivo Cellular and Molecular Imaging Lab, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
- Nuclear Medicine Department, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Matthias D'Huyvetter
- In Vivo Cellular and Molecular Imaging Lab, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Lab, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
49
|
Advances in the strategies for designing receptor-targeted molecular imaging probes for cancer research. J Control Release 2019; 305:1-17. [DOI: 10.1016/j.jconrel.2019.04.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/09/2019] [Accepted: 04/21/2019] [Indexed: 12/24/2022]
|
50
|
Tocchetti CG, Cadeddu C, Di Lisi D, Femminò S, Madonna R, Mele D, Monte I, Novo G, Penna C, Pepe A, Spallarossa P, Varricchi G, Zito C, Pagliaro P, Mercuro G. From Molecular Mechanisms to Clinical Management of Antineoplastic Drug-Induced Cardiovascular Toxicity: A Translational Overview. Antioxid Redox Signal 2019; 30:2110-2153. [PMID: 28398124 PMCID: PMC6529857 DOI: 10.1089/ars.2016.6930] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Antineoplastic therapies have significantly improved the prognosis of oncology patients. However, these treatments can bring to a higher incidence of side-effects, including the worrying cardiovascular toxicity (CTX). Recent Advances: Substantial evidence indicates multiple mechanisms of CTX, with redox mechanisms playing a key role. Recent data singled out mitochondria as key targets for antineoplastic drug-induced CTX; understanding the underlying mechanisms is, therefore, crucial for effective cardioprotection, without compromising the efficacy of anti-cancer treatments. Critical Issues: CTX can occur within a few days or many years after treatment. Type I CTX is associated with irreversible cardiac cell injury, and it is typically caused by anthracyclines and traditional chemotherapeutics. Type II CTX is generally caused by novel biologics and more targeted drugs, and it is associated with reversible myocardial dysfunction. Therefore, patients undergoing anti-cancer treatments should be closely monitored, and patients at risk of CTX should be identified before beginning treatment to reduce CTX-related morbidity. Future Directions: Genetic profiling of clinical risk factors and an integrated approach using molecular, imaging, and clinical data may allow the recognition of patients who are at a high risk of developing chemotherapy-related CTX, and it may suggest methodologies to limit damage in a wider range of patients. The involvement of redox mechanisms in cancer biology and anticancer treatments is a very active field of research. Further investigations will be necessary to uncover the hallmarks of cancer from a redox perspective and to develop more efficacious antineoplastic therapies that also spare the cardiovascular system.
Collapse
Affiliation(s)
| | - Christian Cadeddu
- 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Daniela Di Lisi
- 3 Biomedical Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Saveria Femminò
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Rosalinda Madonna
- 5 Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy.,6 Department of Internal Medicine, The Texas Heart Institute and Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Donato Mele
- 7 Cardiology Unit, Emergency Department, University Hospital of Ferrara, Ferrara, Italy
| | - Ines Monte
- 8 Department of General Surgery and Medical-Surgery Specialities, University of Catania, Catania, Italy
| | - Giuseppina Novo
- 3 Biomedical Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Claudia Penna
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia Pepe
- 9 U.O.C. Magnetic Resonance Imaging, Fondazione Toscana G. Monasterio C.N.R., Pisa, Italy
| | - Paolo Spallarossa
- 10 Clinic of Cardiovascular Diseases, IRCCS San Martino IST, Genova, Italy
| | - Gilda Varricchi
- 1 Department of Translational Medical Sciences, Federico II University, Naples, Italy.,11 Center for Basic and Clinical Immunology Research (CISI) - Federico II University, Naples, Italy
| | - Concetta Zito
- 12 Division of Cardiology, Clinical and Experimental Department of Medicine and Pharmacology, Policlinico "G. Martino" University of Messina, Messina, Italy
| | - Pasquale Pagliaro
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giuseppe Mercuro
- 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|