1
|
Pray B, Baiocchi E, Leon S, Barta B, Koirala S, Tsyba L, Hinterschied C, Carvajal-Moreno J, Hout I, Nishat S, Jindal U, Jain N, Singh S, Sehgal L, Chan WK, Hanel W, Yalowich J, Baiocchi RA, Alinari L. Targeting the DNA damage response through TBL1X in mantle cell lymphoma. Blood Adv 2025; 9:2006-2018. [PMID: 40009753 PMCID: PMC12034073 DOI: 10.1182/bloodadvances.2024015769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
ABSTRACT Mantle cell lymphoma (MCL) is an incurable B-cell lymphoma characterized by significant genomic instability. Patients with MCL who progress on targeted therapies have a short survival; thus, novel therapeutic strategies are urgently needed. Overexpression of transducin β-like protein 1 X-linked (TBL1X) has been documented in several types of cancer and associated with poor prognosis. TBL1X is a critical regulator of multiple oncogenic networks; however, its function in MCL has not been explored. Our data show that, unlike normal B cells, MCL cells express abundant levels of TBL1X and that genetic knockdown of TBL1X and treatment with tegavivint (Iterion), a first-in-class small molecule targeting TBL1X, promote MCL cell death in vitro and in vivo. Moreover, TBL1X controls the stability of key MCL oncogenic drivers, cyclin D1 and RAD51; and targeting TBL1X results in significant DNA damage, cell cycle arrest, and ultimately cell death. Combining tegavivint with poly(adenosine 5'-diphosphate-ribose) polymerase-1/2 inhibitor talazoparib results in synergistic MCL cell death in vitro, and in vivo this combination significantly prolongs the survival of a patient-derived MCL xenograft. Together, our results define the role of TBL1X in maintaining genomic stability in MCL and establish targeting TBL1X as a novel therapeutic strategy for patients with this incurable disease.
Collapse
Affiliation(s)
- Betsy Pray
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Ethan Baiocchi
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Sydney Leon
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Brian Barta
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Shirsha Koirala
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Liudmyla Tsyba
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Claire Hinterschied
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Jessika Carvajal-Moreno
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Ian Hout
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Shamama Nishat
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Udita Jindal
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Neeraj Jain
- Division of Cancer Biology, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Satishkumar Singh
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Lalit Sehgal
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Wing Keung Chan
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Walter Hanel
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Jack Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| |
Collapse
|
2
|
Khan N, Gupta M, Masamha CP. Characterization and molecular targeting of CFIm25 (NUDT21/CPSF5) mRNA using miRNAs. FASEB J 2025; 39:e70324. [PMID: 39812508 PMCID: PMC11760631 DOI: 10.1096/fj.202402184r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/07/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Changes in protein levels of the mammalian cleavage factor, CFIm25, play a role in regulating pathological processes including neural dysfunction, fibrosis, and tumorigenesis. However, despite these effects, little is known about how CFIm25 (NUDT21) expression is regulated at the RNA level. A potential regulator of NUDT21 mRNA are small non-coding microRNAs (miRNAs). In general, miRNAs bind to the 3'untranslated regions (3'UTRs) and can target the bound mRNA for degradation or inhibit translation thus affecting the levels of protein in cells. Interestingly, a mechanism known as alternative polyadenylation (APA) enables mRNAs to escape miRNA regulation by generating mRNAs with 3'UTRs of different sizes. As many miRNA target sites are located within the 3'UTR, shortening the 3'UTR allows mRNAs to evade miRNAs targeting this region. The differences in the lengths and the sequence composition of the 3'UTRs may also impact the mRNA's translatability and subcellular localization. APA has been reported to regulate over 70% of protein coding genes, thus increasing the transcript repertoire. Several proteins, including mammalian cleavage factor, CFIm25 (NUDT21), have been shown to regulate APA. In this study we wanted to determine whether CFIm25 (NUDT21), itself a regulator of APA, undergoes APA to evade miRNA regulation. We used the blood cancer mantle cell lymphoma (MCL) cells as a model and showed that in these cells, NUDT21 is relatively stable with a long half-life. In addition, the NUDT21 pre-mRNA undergoes alternative APA within the same terminal exon. The three different sized NUDT21 mRNAs have different 3'UTR lengths and they each use a different canonical polyadenylation signal, AAUAAA, for 3'end cleavage and polyadenylation. Use of miRNA mimics and inhibitors showed that miR-23a, miR-222, and miR-323a play a significant role in regulating NUDT21 expression. Hence, these results suggest that NUDT21 mRNA is stable and the different 3'UTRs generated through APA of NUDT21 play an important role in evading miRNA regulation and offers insights into how levels of CFIm25 (NUDT21) may be fine-tuned as needed under different physiological and pathological conditions.
Collapse
Affiliation(s)
- Naazneen Khan
- Department of Pharmaceutical SciencesButler UniversityIndianapolisIndianaUSA
- Department of NeurologyIndiana UniversityIndianapolisIndianaUSA
| | - Mahesh Gupta
- Department of Pharmaceutical SciencesButler UniversityIndianapolisIndianaUSA
| | | |
Collapse
|
3
|
Hu D, Cao J, Yu H, Ding N, Mi L, Ye Y, Li M, Wang D, Wu J, Wang X, Song Y, Zhu J, Ping L. PI3K inhibitor idelalisib enhances the anti-tumor effects of CDK4/6 inhibitor palbociclib via PLK1 in B-cell lymphoma. Cancer Lett 2024; 597:216996. [PMID: 38815797 DOI: 10.1016/j.canlet.2024.216996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Relapsed or refractory diffuse large B cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) patients still faced with poor survival, representing an unmet clinical need. In-depth research into the disease's pathogenesis and the development of targeted treatment strategies are urgently needed. Here, we conducted a comprehensive bioinformatic analysis of gene mutation and expression using data from our center and public databases. Cell cycle-related genes especially for CDKN2A/B-CDK4/6/CCND1 machinery altered frequently in DLBCL and MCL. Clinically, high CDK4 and CDK6 expression were correlated with poor prognosis of DLBCL and MCL patients. Furthermore, we also validated the pharmacological efficacy of CDK4/6 inhibitor palbociclib and its synergy effect with PI3K inhibitor idelalisib utilizing in vitro cell lines and in vivo cell-derived xenograft (CDX) and patient-derived xenograft (PDX) mouse models. Our results provided sufficient pre-clinical evidence to support the potential combination of palbociclib and idelalisib for DLBCL and MCL patients.
Collapse
MESH Headings
- Humans
- Purines/pharmacology
- Animals
- Piperazines/pharmacology
- Pyridines/pharmacology
- Quinazolinones/pharmacology
- Cyclin-Dependent Kinase 6/antagonists & inhibitors
- Cyclin-Dependent Kinase 6/metabolism
- Mice
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Cyclin-Dependent Kinase 4/antagonists & inhibitors
- Cyclin-Dependent Kinase 4/metabolism
- Drug Synergism
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Lymphoma, Mantle-Cell/drug therapy
- Lymphoma, Mantle-Cell/pathology
- Lymphoma, Mantle-Cell/genetics
- Phosphoinositide-3 Kinase Inhibitors/pharmacology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Proliferation/drug effects
- Female
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Dingyao Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiaowu Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hui Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Ning Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lan Mi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yingying Ye
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Miaomiao Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Dedao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiajin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaogan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yuqin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Lingyan Ping
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
4
|
Silkenstedt E, Salles G, Campo E, Dreyling M. B-cell non-Hodgkin lymphomas. Lancet 2024; 403:1791-1807. [PMID: 38614113 DOI: 10.1016/s0140-6736(23)02705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 07/31/2023] [Accepted: 11/30/2023] [Indexed: 04/15/2024]
Abstract
B-cell lymphomas occur with an incidence of 20 new cases per 100 000 people per year in high-income countries. They can affect any organ and are characterised by heterogeneous clinical presentations and courses, varying from asymptomatic, to indolent, to very aggressive cases. Since the topic of B-cell non-Hodgkin lymphomas was last reviewed in The Lancet in 2017, a deeper understanding of the biological background of this heterogeneous group of malignancies, the availability of new diagnostic methods, and the development and implementation of new targeted and immunotherapeutic approaches have improved our ability to treat patients. This Seminar provides an overview of the pathobiology, classification, and prognostication of B-cell non-Hodgkin lymphomas and summarises the current knowledge and standard of care regarding biology and clinical management of the most common subtypes of mature B-cell non-Hodgkin lymphomas. It also highlights new findings in deciphering the molecular background of disease development and the implementation of new therapeutic approaches, particularly those targeting the immune system.
Collapse
Affiliation(s)
| | - Gilles Salles
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Elias Campo
- Department of Pathology, Hospital Clinic, Institute for Biomedical Research August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
5
|
Ma YN, Zou YD, Liu ZL, Wu GX, Zhou YZ, Luo CX, Huang XT, Xie ML, Xu SN, Li X. SENP3 Promotes Mantle Cell Lymphoma Development through Regulating Wnt10a Expression. Curr Med Sci 2024; 44:134-143. [PMID: 38273178 DOI: 10.1007/s11596-024-2829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
OBJECTIVE SUMO-specific protease 3 (SENP3), a member of the SUMO-specific protease family, reverses the SUMOylation of SUMO-2/3 conjugates. Dysregulation of SENP3 has been proven to be involved in the development of various tumors. However, its role in mantle cell lymphoma (MCL), a highly aggressive lymphoma, remains unclear. This study was aimed to elucidate the effect of SENP3 in MCL. METHODS The expression of SENP3 in MCL cells and tissue samples was detected by RT-qPCR, Western blotting or immunohistochemistry. MCL cells with stable SENP3 knockdown were constructed using short hairpin RNAs. Cell proliferation was assessed by CCK-8 assay, and cell apoptosis was determined by flow cytometry. mRNA sequencing (mRNA-seq) was used to investigate the underlying mechanism of SENP3 knockdown on MCL development. A xenograft nude mouse model was established to evaluate the effect of SENP3 on MCL growth in vivo. RESULTS SENP3 was upregulated in MCL patient samples and cells. Knockdown of SENP3 in MCL cells inhibited cell proliferation and promoted cell apoptosis. Meanwhile, the canonical Wnt signaling pathway and the expression of Wnt10a were suppressed after SENP3 knockdown. Furthermore, the growth of MCL cells in vivo was significantly inhibited after SENP3 knockdown in a xenograft nude mouse model. CONCLUSION SENP3 participants in the development of MCL and may serve as a therapeutic target for MCL.
Collapse
Affiliation(s)
- Yan-Ni Ma
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Hematology, the Third Affiliated Hospital (Daping Hospital), Third Military Medical University (Army Medical University), Chongqing, 400042, China
| | - Yun-Ding Zou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhi-Long Liu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Gui-Xian Wu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuan-Ze Zhou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Cheng-Xin Luo
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiang-Tao Huang
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ming-Ling Xie
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shuang-Nian Xu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xi Li
- Department of Hematology, the Third Affiliated Hospital (Daping Hospital), Third Military Medical University (Army Medical University), Chongqing, 400042, China.
| |
Collapse
|
6
|
Sloan SL, Brown F, Long M, Weigel C, Koirala S, Chung JH, Pray B, Villagomez L, Hinterschied C, Sircar A, Helmig-Mason J, Prouty A, Brooks E, Youssef Y, Hanel W, Parekh S, Chan WK, Chen Z, Lapalombella R, Sehgal L, Vaddi K, Scherle P, Chen-Kiang S, Di Liberto M, Elemento O, Meydan C, Foox J, Butler D, Mason CE, Baiocchi RA, Alinari L. PRMT5 supports multiple oncogenic pathways in mantle cell lymphoma. Blood 2023; 142:887-902. [PMID: 37267517 PMCID: PMC10517215 DOI: 10.1182/blood.2022019419] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023] Open
Abstract
Mantle cell lymphoma (MCL) is an incurable B-cell malignancy with an overall poor prognosis, particularly for patients that progress on targeted therapies. Novel, more durable treatment options are needed for patients with MCL. Protein arginine methyltransferase 5 (PRMT5) is overexpressed in MCL and plays an important oncogenic role in this disease via epigenetic and posttranslational modification of cell cycle regulators, DNA repair genes, components of prosurvival pathways, and RNA splicing regulators. The mechanism of targeting PRMT5 in MCL remains incompletely characterized. Here, we report on the antitumor activity of PRMT5 inhibition in MCL using integrated transcriptomics of in vitro and in vivo models of MCL. Treatment with a selective small-molecule inhibitor of PRMT5, PRT-382, led to growth arrest and cell death and provided a therapeutic benefit in xenografts derived from patients with MCL. Transcriptional reprograming upon PRMT5 inhibition led to restored regulatory activity of the cell cycle (p-RB/E2F), apoptotic cell death (p53-dependent/p53-independent), and activation of negative regulators of B-cell receptor-PI3K/AKT signaling (PHLDA3, PTPROt, and PIK3IP1). We propose pharmacologic inhibition of PRMT5 for patients with relapsed/refractory MCL and identify MTAP/CDKN2A deletion and wild-type TP53 as biomarkers that predict a favorable response. Selective targeting of PRMT5 has significant activity in preclinical models of MCL and warrants further investigation in clinical trials.
Collapse
Affiliation(s)
- Shelby L. Sloan
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Fiona Brown
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Mackenzie Long
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Christoph Weigel
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Shirsha Koirala
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Ji-Hyun Chung
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Betsy Pray
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Lynda Villagomez
- Division of Hematology and Oncology, Department of Pediatrics, The Ohio State University and Nationwide Children’s Hospital, Columbus, OH
| | - Claire Hinterschied
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Anuvrat Sircar
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - JoBeth Helmig-Mason
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Alexander Prouty
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Eric Brooks
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Youssef Youssef
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Walter Hanel
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Samir Parekh
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Wing Keung Chan
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Zhengming Chen
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Lalit Sehgal
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | | | | | - Selina Chen-Kiang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Maurizio Di Liberto
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Cem Meydan
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Jonathan Foox
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Daniel Butler
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
7
|
Shen J, Wang Q, Mao Y, Gao W, Duan S. Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e288. [PMID: 37256211 PMCID: PMC10225743 DOI: 10.1002/mco2.288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Tumor suppressor p53 can transcriptionally activate downstream genes in response to stress, and then regulate the cell cycle, DNA repair, metabolism, angiogenesis, apoptosis, and other biological responses. p53 has seven functional domains and 12 splice isoforms, and different domains and subtypes play different roles. The activation and inactivation of p53 are finely regulated and are associated with phosphorylation/acetylation modification and ubiquitination modification, respectively. Abnormal activation of p53 is closely related to the occurrence and development of cancer. While targeted therapy of the p53 signaling pathway is still in its early stages and only a few drugs or treatments have entered clinical trials, the development of new drugs and ongoing clinical trials are expected to lead to the widespread use of p53 signaling-targeted therapy in cancer treatment in the future. TRIAP1 is a novel p53 downstream inhibitor of apoptosis. TRIAP1 is the homolog of yeast mitochondrial intermembrane protein MDM35, which can play a tumor-promoting role by blocking the mitochondria-dependent apoptosis pathway. This work provides a systematic overview of recent basic research and clinical progress in the p53 signaling pathway and proposes that TRIAP1 is an important therapeutic target downstream of p53 signaling.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Wei Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|
8
|
Chen Y, Yang P, Wang J, Gao S, Xiao S, Zhang W, Zhu M, Wang Y, Ke X, Jing H. p53 directly downregulates the expression of CDC20 to exert anti-tumor activity in mantle cell lymphoma. Exp Hematol Oncol 2023; 12:28. [PMID: 36882855 PMCID: PMC9990225 DOI: 10.1186/s40164-023-00381-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Cell cycle dysregulation characterized by cyclin D1 overexpression is common in mantle cell lymphoma (MCL), while mitotic disorder was less studied. Cell division cycle 20 homologue (CDC20), an essential mitotic regulator, was highly expressed in various tumors. Another common abnormality in MCL is p53 inactivation. Little was known about the role of CDC20 in MCL tumorigenesis and the regulatory relationship between p53 and CDC20 in MCL. METHODS CDC20 expression was detected in MCL patients and MCL cell lines harboring mutant p53 (Jeko and Mino cells) and wild-type p53 (Z138 and JVM2 cells). Z138 and JVM2 cells were treated with CDC20 inhibitor apcin, p53 agonist nutlin-3a, or in combination, and then cell proliferation, cell apoptosis, cell cycle, cell migration and invasion were determined by CCK-8, flow cytometry and Transwell assays. The regulatory mechanism between p53 and CDC20 was revealed by dual-luciferase reporter gene assay and CUT&Tag technology. The anti-tumor effect, safety and tolerability of nutlin-3a and apcin were investigated in vivo in the Z138-driven xenograft tumor model. RESULTS CDC20 was overexpressed in MCL patients and cell lines compared with their respective controls. The typical immunohistochemical marker of MCL patients, cyclin D1, was positively correlated with CDC20 expression. CDC20 high expression indicated unfavorable clinicopathological features and poor prognosis in MCL patients. In Z138 and JVM2 cells, either apcin or nutlin-3a treatment could inhibit cell proliferation, migration and invasion, and induce cell apoptosis and cell cycle arrest. GEO analysis, RT-qPCR and WB results showed that p53 expression was negatively correlated with CDC20 expression in MCL patients, Z138 and JVM2 cells, while this relationship was not observed in p53-mutant cells. Dual-luciferase reporter gene assay and CUT&Tag assay revealed mechanistically that CDC20 was transcriptionally repressed by p53 through directly binding p53 to CDC20 promoter from - 492 to + 101 bp. Moreover, combined treatment of nutlin-3a and apcin showed better anti-tumor effect than single treatment in Z138 and JVM2 cells. Administration of nutlin-3a/apcin alone or in combination confirmed their efficacy and safety in tumor-bearing mice. CONCLUSIONS Our study validates the essential role of p53 and CDC20 in MCL tumorigenesis, and provides a new insight for MCL therapeutics through dual-targeting p53 and CDC20.
Collapse
Affiliation(s)
- Yingtong Chen
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Ping Yang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Jing Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Shuang Gao
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Shiyu Xiao
- Department of Gastroenterology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Mingxia Zhu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Yanfang Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Xiaoyan Ke
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China.
| | - Hongmei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
9
|
Li J, Yu H, Wang X, Ye Y, Fang W, Ding N, Mi L, Ping L, Wang X, Song Y, Zhu J. The Serum- and Glucocorticoid-Inducible Kinase 1 (SGK1) as a Novel Therapeutic Target in Mantle Cell Lymphoma. Cancer Control 2022; 29:10732748221143881. [PMID: 36519740 PMCID: PMC9761230 DOI: 10.1177/10732748221143881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Mantle cell lymphoma (MCL) is an aggressive and incurable B-cell-derived malignant disease. MCL is treated using general chemotherapy; however, disease progression and relapse are common; thus, the development of novel therapeutic targets for treatment of MCL is urgently required. Serum- and glucocorticoid-inducible kinase 1 (SGK1) is involved in various cellular activities, and its dysregulation contributes to the pathogenesis of multiple types of cancer. However, little is known regarding its functional roles and associated molecular mechanisms in MCL. METHODS SGK1 inhibition mediated by either shRNA or treatment with SGK1 inhibitor (GSK650394) was conducted in MCL cell lines. Western blotting analysis was performed to figure out the expression of related proteins. MCL-cell-derived xenograft models were constructed to evaluate the anti-tumor effects of SGK1 inhibition or/and Bruton's tyrosine kinase (BTK) inhibition in vivo. RESULTS In this study, it was shown that inhibition of SGK1 significantly reduced cell proliferation, invasion and migration, increased apoptosis and blocked cell cycle progression in MCL cells. Furthermore, SGK1 inhibition significantly reduced the activation of ERK, AKT/mTOR, JAK2/STAT3 and the NF-κB signaling pathways. Using MCL-cell-derived xenograft mice models, SGK1 inhibition decreased tumor cell proliferation and tumor growth. Importantly, SGK1 overexpression significantly promoted xenograft tumor growth. Moreover, simultaneous inhibition of SGK1 and Bruton tyrosine kinase (BTK) resulted in synergistic anti-tumor effects on MCL both in vitro and in vivo. CONCLUSION SGK1 may be a novel candidate therapeutic target and simultaneous inhibition of SGK1 and BTK may be a promising therapeutic strategy for MCL patients. Further pre-clinical and even clinical studies of SGK1 inhibitor or combination with BTK inhibitor are essential.
Collapse
Affiliation(s)
- Jiao Li
- Key Laboratory of Carcinogenesis
and Translational Research (Ministry of Education), Department of lymphoma,
Peking
University Cancer Hospital, Institute,
Beijing, China
| | - Hui Yu
- Key Laboratory of Carcinogenesis
and Translational Research (Ministry of Education), Department of lymphoma,
Peking
University Cancer Hospital, Institute,
Beijing, China
| | - Xing Wang
- Key Laboratory of Carcinogenesis
and Translational Research (Ministry of Education), Department of lymphoma,
Peking
University Cancer Hospital, Institute,
Beijing, China
| | - Yingying Ye
- Key Laboratory of Carcinogenesis
and Translational Research (Ministry of Education), Department of lymphoma,
Peking
University Cancer Hospital, Institute,
Beijing, China
| | - Wei Fang
- Key Laboratory of Carcinogenesis
and Translational Research (Ministry of Education), Department of lymphoma,
Peking
University Cancer Hospital, Institute,
Beijing, China
| | - Ning Ding
- Key Laboratory of Carcinogenesis
and Translational Research (Ministry of Education), Department of lymphoma,
Peking
University Cancer Hospital, Institute,
Beijing, China
| | - Lan Mi
- Key Laboratory of Carcinogenesis
and Translational Research (Ministry of Education), Department of lymphoma,
Peking
University Cancer Hospital, Institute,
Beijing, China
| | - Lingyan Ping
- Key Laboratory of Carcinogenesis
and Translational Research (Ministry of Education), Department of lymphoma,
Peking
University Cancer Hospital, Institute,
Beijing, China
| | - Xiaogan Wang
- Key Laboratory of Carcinogenesis
and Translational Research (Ministry of Education), Department of lymphoma,
Peking
University Cancer Hospital, Institute,
Beijing, China
| | - Yuqin Song
- Key Laboratory of Carcinogenesis
and Translational Research (Ministry of Education), Department of lymphoma,
Peking
University Cancer Hospital, Institute,
Beijing, China
| | - Jun Zhu
- Key Laboratory of Carcinogenesis
and Translational Research (Ministry of Education), Department of lymphoma,
Peking
University Cancer Hospital, Institute,
Beijing, China,Jun Zhu and Yuqin Song, Key Laboratory of
Carcinogenesis and Translational Research (Ministry of Education), Department of
Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road,
Haidian, Beijing 100142, China. ;
| |
Collapse
|
10
|
Batayneh O, Lin A, Abu-Jaradeh O, Wu P, Villamar MF, Sharma P. Symptomatic leptomeningeal carcinomatosis: a rare presentation of chronic lymphocytic leukaemia relapse. BMJ Case Rep 2022; 15:e249940. [PMID: 35675961 PMCID: PMC9185480 DOI: 10.1136/bcr-2022-249940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2022] [Indexed: 11/03/2022] Open
Abstract
Central nervous system (CNS) involvement in patients with chronic lymphocytic leukaemia (CLL) is very rare and, when present, it is frequently asymptomatic. Rather, CNS involvement is more common in other haematological malignancies such as mantle cell lymphoma or diffuse large B cell lymphoma. The paucity of literature on CNS involvement in CLL underscores the importance of increasing awareness about its presentation, diagnosis and optimal management. We describe a case of symptomatic leptomeningeal leukaemic involvement as an atypical presentation of CLL relapse. A favourable clinical response was observed following systemic monotherapy with venetoclax.
Collapse
MESH Headings
- Adult
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Mantle-Cell
- Meningeal Carcinomatosis/diagnosis
- Neoplasm Recurrence, Local
Collapse
Affiliation(s)
- Osama Batayneh
- Department of Medicine, Kent Hospital/ The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Amy Lin
- OMS-III, University of New England College of Osteopathic Medicine, Warwick, RI, USA
| | - Omar Abu-Jaradeh
- Department of Medicine, Kent Hospital/ The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Peter Wu
- Department of Pathology, Kent Hospital, Warwick, RI, USA
| | - Mauricio F Villamar
- Department of Neurology, The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Medicine, Kent Hospital, Warwick, RI, USA
| | - Purva Sharma
- Department of Hematology and Oncology, Kent Hospital, Warwick, RI, USA
| |
Collapse
|
11
|
Lu Z, Wang Z, Tu Z, Liu H. HSP90 Inhibitor Ganetespib Enhances the Sensitivity of Mantle Cell Lymphoma to Bruton’s Tyrosine Kinase Inhibitor Ibrutinib. Front Pharmacol 2022; 13:864194. [PMID: 35721157 PMCID: PMC9204102 DOI: 10.3389/fphar.2022.864194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a highly aggressive and heterogeneous B-cell lymphoma. Though Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib has shown great efficacy as a single agent for MCL treatment, the real-world use of ibrutinib is still subject to limitations. Our previous study has shown the treatment with HSP90 inhibitor ganetespib can attack major targets of MCL, luckily complementary to ibrutinib’s targets. In this study, transient ganetespib treatment sensitizes MCL cells to ibrutinib as manifested by the significant decrease of IC50 values, percentages of EdU (5-Ethynyl-2′-deoxyuridine) positive cells, and levels of p-AKT and NF-κB after combinational treatment. Additionally, pretreatment with ganetespib enhanced cell cycle arrest induced by ibrutinib at G0/G1 phase and significantly decreased levels of cell cycle promoting proteins CDK2, 4, and 6. Pretreatment with ganetespib also enhanced cell apoptosis induced by ibrutinib through the upregulation of cleaved-caspase 9 and downregulation of BCL-2 in MCL cells at the molecular level. The sequential administration of ganetespib and ibrutinib had similar effects on increasing DNA damage as the transient treatment with ganetespib as demonstrated by the improved percentage of γH2AX and 53BP1 foci. Furthermore, ganetespib significantly increased inhibition of tumor growth mediated by ibrutinib in vivo, confirmed by the changes of the expression levels of Ki-67 and BCL-2 through immunohistochemistry assays. This study indicates that HSP90 inhibitor ganetespib maybe ideal for the combinational use with BTK inhibitor ibrutinib to target major pathogenesis-associated signaling pathways for MCL treatment which may help identify new possibilities for clinical trials.
Collapse
Affiliation(s)
- Ziwen Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhixin Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- *Correspondence: Zhigang Tu, ; Hanqing Liu,
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- *Correspondence: Zhigang Tu, ; Hanqing Liu,
| |
Collapse
|
12
|
Jatiani SS, Christie S, Leshchenko VV, Jain R, Kapoor A, Bisignano P, Lee C, Kaniskan HÜ, Edwards D, Meng F, Laganà A, Youssef Y, Wiestner A, Alinari L, Jin J, Filizola M, Aggarwal AK, Parekh S. SOX11 Inhibitors Are Cytotoxic in Mantle Cell Lymphoma. Clin Cancer Res 2021; 27:4652-4663. [PMID: 34158358 PMCID: PMC8364871 DOI: 10.1158/1078-0432.ccr-20-5039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/19/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Mantle cell lymphoma (MCL) is a fatal subtype of non-Hodgkin lymphoma. SOX11 transcription factor is overexpressed in the majority of nodal MCL. We have previously reported that B cell-specific overexpression of SOX11 promotes MCL pathogenesis via critically increasing BCR signaling in vivo. SOX11 is an attractive target for MCL therapy; however, no small-molecule inhibitor of SOX11 has been identified to date. Although transcription factors are generally considered undruggable, the ability of SOX11 to bind to the minor groove of DNA led us to hypothesize that there may exist cavities at the protein-DNA interface that are amenable to targeting by small molecules. EXPERIMENTAL DESIGN Using a combination of in silico predictions and experimental validations, we report here the discovery of three structurally related compounds (SOX11i) that bind SOX11, perturb its interaction with DNA, and effect SOX11-specific anti-MCL cytotoxicity. RESULTS We find mechanistic validation of on-target activity of these SOX11i in the inhibition of BCR signaling and the transcriptional modulation of SOX11 target genes, specifically, in SOX11-expressing MCL cells. One of the three SOX11i exhibits relatively superior in vitro activity and displays cytotoxic synergy with ibrutinib in SOX11-expressing MCL cells. Importantly, this SOX11i induces cytotoxicity specifically in SOX11-positive ibrutinib-resistant MCL patient samples and inhibits Bruton tyrosine kinase phosphorylation in a xenograft mouse model derived from one of these subjects. CONCLUSIONS Taken together, our results provide a foundation for therapeutically targeting SOX11 in MCL by a novel class of small molecules.
Collapse
Affiliation(s)
- Shashidhar S Jatiani
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Stephanie Christie
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Violetta V Leshchenko
- Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rinku Jain
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Abhijeet Kapoor
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paola Bisignano
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Clement Lee
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - H Ümit Kaniskan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Donna Edwards
- Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fanye Meng
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alessandro Laganà
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Youssef Youssef
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Lapo Alinari
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Jian Jin
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Samir Parekh
- Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
13
|
Liao H, Song P, Qi Q, Jiang Y, Han S, Pan Y, Liu Y. Synchronous primary malignancy of colon cancer and mantle cell lymphoma: A case report. Open Med (Wars) 2021. [DOI: 10.1515/med-2020-0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Multiple primary malignancies in a single patient are relatively rare; however, the frequency of this has increased significantly in recent decades. Here, we retrospectively reported an unusual case of a 70-year-old man who was admitted to the hospital with mantle cell lymphoma (MCL) and colon cancer and aimed to explore measures to reduce missed diagnosis. Based on the data, the investigation of the related literatures, colonoscopy examination, and abdominal computed tomography (CT) scan were conducted for the detection of colon cancer. Following this, a precise diagnosis of MCL was confirmed by immunohistochemistry and bone marrow biopsy, which were performed to analyze the clinical characteristics and essentials for the diagnosis and differential of the disease. The results of colonoscopy showed that the patient had colon cancer, while the abdominal CT scan demonstrated colon cancer accompanied by multiple lymphadenopathy throughout the entire body. Besides, the results of immunohistochemistry confirmed that the patient suffered from MCL. The bone marrow biopsy revealed the active hematopoietic tissue hyperplasia but no tumor issue involvement in the bone marrow. In conclusion, our study combined the analysis and summary of the diagnosis and treatment of the colon cancer with MCL to provide clinical guidance for the rare multiple primary malignancy.
Collapse
Affiliation(s)
- Haihong Liao
- Department of Medical Oncology, Huzhou Central Hospital , Huzhou 313000 , Zhejiang , China
- Department of Medical Oncology, Affiliated Central Hospital Huzhou University , Huzhou 313000 , Zhejiang , China
| | - Pengtao Song
- Department of Medical Oncology, Huzhou Central Hospital , Huzhou 313000 , Zhejiang , China
| | - Quan Qi
- Department of Medical Oncology, Huzhou Central Hospital , Huzhou 313000 , Zhejiang , China
| | - Yizhen Jiang
- Department of Medical Oncology, Huzhou Central Hospital , Huzhou 313000 , Zhejiang , China
| | - Shuwen Han
- Department of Medical Oncology, Huzhou Central Hospital , Huzhou 313000 , Zhejiang , China
| | - Yuefen Pan
- Department of Medical Oncology, Huzhou Central Hospital , Huzhou 313000 , Zhejiang , China
| | - Yulong Liu
- Department of Oncology, The Second Affiliated Hospital of Soochow University , Suzhou 215004 , Jiangsu , China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University , Suzhou 215123 , Jiangsu , China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , Jiangsu , China
| |
Collapse
|
14
|
Silkenstedt E, Linton K, Dreyling M. Mantle cell lymphoma - advances in molecular biology, prognostication and treatment approaches. Br J Haematol 2021; 195:162-173. [PMID: 33783838 DOI: 10.1111/bjh.17419] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mantle cell lymphoma (MCL) is clinically characterised by its heterogenous behaviour with courses ranging from indolent cases that do not require therapy for years to highly aggressive MCL with a very limited prognosis. A better understanding of the complex biology of MCL has already led to the approval of several innovative agents, expanding the landscape of MCL therapies and improving therapeutic options especially for refractory/relapsed (R/R) disease. Nevertheless, to further optimise MCL treatment, early identification of individual risk profile and risk-adapted, patient-tailored choice of therapeutic strategy needs to be prospectively incorporated into clinical patient management. The present review highlights recent advances in deciphering the molecular background of MCL, the definition of prognostically relevant factors and the identification of potential druggable targets and summarises current treatment recommendations for primary and R/R MCL including novel targeted therapies.
Collapse
Affiliation(s)
| | - Kim Linton
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | | |
Collapse
|
15
|
Wright MD, Abraham MJ. Preclinical discovery and development of abemaciclib used to treat breast cancer. Expert Opin Drug Discov 2021; 16:485-496. [PMID: 33280445 DOI: 10.1080/17460441.2021.1853097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Cyclin-dependent kinase (CDK) 4/6 inhibitors have altered the standard-of-care treatment for patients with ER-positive, HER2-negative metastatic breast cancer. One such inhibitor, abemaciclib, a reversible ATP-competitive CDK4/6 inhibitor developed by Eli Lilly and Company, was approved by the FDA for ER-positive, HER2-negative metastatic breast cancer.Areas covered: Preclinical studies revealed abemaciclib's distinct structure, efficacy as monotherapy, and ability to penetrate the Central Nervous System. In this review, the authors have examined the literature regarding the development of CDK 4/6 inhibitors before providing a focused review on the preclinical discovery and development of abemaciclib. The authors then conclude their manuscript by providing their expert opinion and future perspectives.Expert opinion: Understanding the genesis and evolution from concept to approval and beyond will allow one to analyze the impact of abemaciclib. With its unique characteristics, abemaciclib has provided a meaningful addition to the therapeutic arsenal for metastatic breast cancer. There is, however, a need for predictive biomarkers to identify patients who may not benefit from or may develop resistance to CDK4/6 inhibition.
Collapse
Affiliation(s)
- Matthew D Wright
- Department of Hematology Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Md Jame Abraham
- Department of Hematology Oncology, Taussig Cancer Institute; Lerner College of Medicine, Cleveland Clinic, Cleveland
| |
Collapse
|
16
|
Bröckelmann PJ, de Jong MRW, Jachimowicz RD. Targeting DNA Repair, Cell Cycle, and Tumor Microenvironment in B Cell Lymphoma. Cells 2020; 9:E2287. [PMID: 33066395 PMCID: PMC7602196 DOI: 10.3390/cells9102287] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 01/07/2023] Open
Abstract
The DNA double-strand break (DSB) is the most cytotoxic lesion and compromises genome stability. In an attempt to efficiently repair DSBs, cells activate ATM kinase, which orchestrates the DNA damage response (DDR) by activating cell cycle checkpoints and initiating DSB repair pathways. In physiological B cell development, however, programmed DSBs are generated as intermediates for effective immune responses and the maintenance of genomic integrity. Disturbances of these pathways are at the heart of B cell lymphomagenesis. Here, we review the role of DNA repair and cell cycle control on B cell development and lymphomagenesis. In addition, we highlight the intricate relationship between the DDR and the tumor microenvironment (TME). Lastly, we provide a clinical perspective by highlighting treatment possibilities of defective DDR signaling and the TME in mantle cell lymphoma, which serves as a blueprint for B cell lymphomas.
Collapse
Affiliation(s)
- Paul J. Bröckelmann
- Max Planck Research Group Mechanisms of DNA Repair, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany;
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University of Cologne, 50937 Cologne, Germany
| | - Mathilde R. W. de Jong
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Ron D. Jachimowicz
- Max Planck Research Group Mechanisms of DNA Repair, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany;
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
17
|
Zhang L, Yao Y, Zhang S, Liu Y, Guo H, Ahmed M, Bell T, Zhang H, Han G, Lorence E, Badillo M, Zhou S, Sun Y, Di Francesco ME, Feng N, Haun R, Lan R, Mackintosh SG, Mao X, Song X, Zhang J, Pham LV, Lorenzi PL, Marszalek J, Heffernan T, Draetta G, Jones P, Futreal A, Nomie K, Wang L, Wang M. Metabolic reprogramming toward oxidative phosphorylation identifies a therapeutic target for mantle cell lymphoma. Sci Transl Med 2020; 11:11/491/eaau1167. [PMID: 31068440 DOI: 10.1126/scitranslmed.aau1167] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/02/2018] [Accepted: 03/29/2019] [Indexed: 12/30/2022]
Abstract
Metabolic reprogramming is linked to cancer cell growth and proliferation, metastasis, and therapeutic resistance in a multitude of cancers. Targeting dysregulated metabolic pathways to overcome resistance, an urgent clinical need in all relapsed/refractory cancers, remains difficult. Through genomic analyses of clinical specimens, we show that metabolic reprogramming toward oxidative phosphorylation (OXPHOS) and glutaminolysis is associated with therapeutic resistance to the Bruton's tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma (MCL), a B cell lymphoma subtype with poor clinical outcomes. Inhibition of OXPHOS with a clinically applicable small molecule, IACS-010759, which targets complex I of the mitochondrial electron transport chain, results in marked growth inhibition in vitro and in vivo in ibrutinib-resistant patient-derived cancer models. This work suggests that targeting metabolic pathways to subvert therapeutic resistance is a clinically viable approach to treat highly refractory malignancies.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yixin Yao
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shaojun Zhang
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Liu
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui Guo
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Makhdum Ahmed
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Taylor Bell
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui Zhang
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangchun Han
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth Lorence
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Badillo
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shouhao Zhou
- Department of Biostatistics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuting Sun
- Institute for Applied Cancer Science and Center for Co-Clinical Trials, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - M Emilia Di Francesco
- Institute for Applied Cancer Science and Center for Co-Clinical Trials, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ningping Feng
- Institute for Applied Cancer Science and Center for Co-Clinical Trials, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Randy Haun
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Renny Lan
- Department of Biochemistry and Molecular Biology and Proteomics Core Facility, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology and Proteomics Core Facility, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xizeng Mao
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xingzhi Song
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lan V Pham
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip L Lorenzi
- Proteomics and Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph Marszalek
- Institute for Applied Cancer Science and Center for Co-Clinical Trials, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tim Heffernan
- Institute for Applied Cancer Science and Center for Co-Clinical Trials, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Giulio Draetta
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Institute for Applied Cancer Science and Center for Co-Clinical Trials, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip Jones
- Institute for Applied Cancer Science and Center for Co-Clinical Trials, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Futreal
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Krystle Nomie
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Linghua Wang
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Michael Wang
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. .,Department of Stem Cell Transplantation and Cellular Therapy, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
18
|
Zhu L, Zhang B, Luo J, Dong S, Zang K, Wu Y. Ampelopsin-sodium induces apoptosis in human lung adenocarcinoma cell lines by promoting tubulin polymerization in vitro. Oncol Lett 2019; 18:189-196. [PMID: 31289488 PMCID: PMC6540484 DOI: 10.3892/ol.2019.10288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/28/2019] [Indexed: 11/30/2022] Open
Abstract
Previous studies have demonstrated that ampelopsin (AMP), a type of flavonoid isolated from the stems and leaves of Ampelopsis grossedentata, exhibits anti-cancer activity in various types of cancer. Conversion of AMP into its sodium salt (AMP-Na) conferred enhanced solubility and stability to it. The present study aimed to evaluate the anti-cancer activity of AMP-Na in human lung adenocarcinoma cell lines and to investigate its mechanisms of action. Cell proliferation and viability were assessed by MTT and colony formation assays, and cell migration was determined using a scratch wound healing assay. The cell cycle distribution, apoptosis rate and tubulin immunofluorescence intensity were analyzed using flow cytometry, the cell ultra-microstructure was examined using transmission electron microscopy and the accumulation of tubulin was determined using laser confocal microscopy. The results demonstrated that AMP-Na significantly inhibited the proliferation, clonogenicity and migration of human lung adenocarcinoma cells. Furthermore, AMP-Na induced SPC-A-1 cell apoptosis, and promoted tubulin polymerization. The results suggested that the underlying mechanisms of AMP-Na may involve targeting of microtubules and tubulin polymerization to subsequently disrupt mitosis and induce cell cycle arrest at the S-phase.
Collapse
Affiliation(s)
- Lijuan Zhu
- Department of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Department of Pharmacology, College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Baolai Zhang
- Department of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jianyun Luo
- Department of Drug Policy and Essential Medicine, Xi'an Municipal Health Commission, Xi'an, Shaanxi 710000, P.R. China
| | - Shuhong Dong
- Department of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Kaihong Zang
- Department of Pharmacology, College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Yongjie Wu
- Department of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
19
|
Albano D, Bosio G, Bianchetti N, Pagani C, Re A, Tucci A, Giubbini R, Bertagna F. Prognostic role of baseline 18F-FDG PET/CT metabolic parameters in mantle cell lymphoma. Ann Nucl Med 2019; 33:449-458. [DOI: 10.1007/s12149-019-01354-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
|
20
|
Schettini F, De Santo I, Rea CG, De Placido P, Formisano L, Giuliano M, Arpino G, De Laurentiis M, Puglisi F, De Placido S, Del Mastro L. CDK 4/6 Inhibitors as Single Agent in Advanced Solid Tumors. Front Oncol 2018; 8:608. [PMID: 30631751 PMCID: PMC6315195 DOI: 10.3389/fonc.2018.00608] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinases (CDK) 4/6 inhibitors, namely abemaciclib, palbociclib, and ribociclib, interfere with cell cycle progression, induce cell senescence and might promote cancer cell disruption by a cytotoxic T cells-mediated effect. Phase III randomized clinical trials have proven that CDK4/6 inhibitors (CDK4/6i) in combination with several endocrine agents improve treatment efficacy over endocrine agents alone for hormone receptor positive (HR+) HER2 negative (HER2-) metastatic breast cancer (MBC). Based on such results, these combinations have been approved for clinical use. Preclinical studies in cell cultures and mouse models proved that CDK4/6i are active against a broad spectrum of solid tumors other than breast cancer, including liposarcoma, rhabdomyosarcoma, non-small cell lung cancer, glioblastoma multiforme, esophageal cancer, and melanoma. The role of CDK4/6i in monotherapy in several solid tumors is currently under evaluation in phase I, II, and III trials. Nowadays, abemaciclib is the only of the three inhibitors that has received approval as single agent therapy for pretreated HR+ HER2- MBC. Here we review biological, preclinical and clinical data on the role of CDK4/6 inhibitors as single agents in advanced solid tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Mario Giuliano
- University of Naples Federico II, Naples, Italy
- Baylor College of Medicine, Houston, TX, United States
| | | | | | - Fabio Puglisi
- Department of Medicine, University of Udine, Udine, Italy
- IRCCS Centro di Riferimento Oncologico Aviano, Aviano, Italy
| | | | - Lucia Del Mastro
- Policlinico San Martino-IST, Genova, Italy
- University of Genova, Genova, Italy
| |
Collapse
|
21
|
Chaturvedi NK, Hatch ND, Sutton GL, Kling M, Vose JM, Joshi SS. A novel approach to eliminate therapy-resistant mantle cell lymphoma: synergistic effects of Vorinostat with Palbociclib. Leuk Lymphoma 2018; 60:1214-1223. [PMID: 30424705 DOI: 10.1080/10428194.2018.1520986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mantle cell lymphoma (MCL) represents an aggressive B-cell lymphoma with frequent relapse and poor survival. Recently, dysregulated histone-deacetylases (HDACs) and cell cycle CDK-Rb pathway have been shown to be commonly associated with MCL pathogenesis, and are considered promising targets for relapsed-lymphoma therapy. Therefore, we investigated the single agents and combination efficacy of HDACs inhibitor Vorinostat, CDK4/6 dual-inhibitor Palbociclib on MCL cell growth/survival and underlying molecular mechanism(s) using MCL cell lines including therapy-resistant MCL cell lines. Our results showed that both inhibitors as single agents or combined, significantly suppressed the cell growth and induced apoptosis in therapy-resistant and parental MCL lines. In addition, the combination of Vorinostat and Palbociclib significantly inhibited the activation of the key molecules of the CDK4/6-Rb pathway and HDAC activity and subsequently decreased the expression of Cyclin-D1 and Bcl-2. These studies demonstrated the potential for combining these two inhibitors as a novel therapeutic approach in refractory MCL therapy.
Collapse
Affiliation(s)
- Nagendra K Chaturvedi
- a Department of Pediatrics, Hematology and Oncology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Nathan D Hatch
- b Department Genetics, Cell Biology and Anatomy , University of Nebraska Medical Center , Omaha , NE , USA
| | - Garrett L Sutton
- b Department Genetics, Cell Biology and Anatomy , University of Nebraska Medical Center , Omaha , NE , USA
| | - Matthew Kling
- b Department Genetics, Cell Biology and Anatomy , University of Nebraska Medical Center , Omaha , NE , USA
| | - Julie M Vose
- c Internal Medicine, Section of Hematology and Oncology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Shantaram S Joshi
- b Department Genetics, Cell Biology and Anatomy , University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
22
|
Heine S, Kleih M, Giménez N, Böpple K, Ott G, Colomer D, Aulitzky WE, van der Kuip H, Silkenstedt E. Cyclin D1-CDK4 activity drives sensitivity to bortezomib in mantle cell lymphoma by blocking autophagy-mediated proteolysis of NOXA. J Hematol Oncol 2018; 11:112. [PMID: 30180865 PMCID: PMC6123978 DOI: 10.1186/s13045-018-0657-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mantle cell lymphoma (MCL) is an aggressive B-non-Hodgkin lymphoma with generally poor outcome. MCL is characterized by an aberrantly high cyclin D1-driven CDK4 activity. New molecular targeted therapies such as inhibitors of the ubiquitin-proteasome system (UPS) have shown promising results in preclinical studies and MCL patients. Our previous research revealed stabilization of the short-lived pro-apoptotic NOXA as a critical determinant for sensitivity to these inhibitors. It is currently unclear how cyclin D1 overexpression and aberrant CDK4 activity affect NOXA stabilization and treatment efficacy of UPS inhibitors in MCL. METHODS The effect of cyclin D1-driven CDK4 activity on response of MCL cell lines and primary cells to proteasome inhibitor treatment was investigated using survival assays (Flow cytometry, AnnexinV/PI) and Western blot analysis of NOXA protein. Half-life of NOXA protein was determined by cycloheximide treatment and subsequent Western blot analysis. The role of autophagy was analyzed by LC3-II protein expression and autophagolysosome detection. Furthermore, silencing of autophagy-related genes was performed using siRNA and MCL cells were treated with autophagy inhibitors in combination with proteasome and CDK4 inhibition. RESULTS In this study, we show that proteasome inhibitor-mediated cell death in MCL depends on cyclin D1-driven CDK4 activity. Inhibition of cyclin D1/CDK4 activity significantly reduced proteasome inhibitor-mediated stabilization of NOXA protein, mainly driven by an autophagy-mediated proteolysis. Bortezomib-induced cell death was significantly potentiated by compounds that interfere with autophagosomal function. Combined treatment with bortezomib and autophagy inhibitors enhanced NOXA stability leading to super-induction of NOXA protein. In addition to established autophagy modulators, we identified the fatty acid synthase inhibitor orlistat to be an efficient autophagy inhibitor when used in combination with bortezomib. Accordingly, this combination synergistically induced apoptosis both in MCL cell lines and in patient samples. CONCLUSION Our data demonstrate that CDK4 activity in MCL is critical for NOXA stabilization upon treatment with UPS inhibitors allowing preferential induction of cell death in cyclin D transformed cells. Under UPS blocked conditions, autophagy appears as the critical regulator of NOXA induction. Therefore, inhibitors of autophagy are promising candidates to increase the activity of proteasome inhibitors in MCL.
Collapse
Affiliation(s)
- Simon Heine
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Markus Kleih
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Neus Giménez
- Hematopathology Unit, Hospital Clínic – Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona, Spain
| | - Kathrin Böpple
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Dolors Colomer
- Hematopathology Unit, Hospital Clínic – Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona, Spain
| | - Walter E. Aulitzky
- Department of Hematology and Oncology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Heiko van der Kuip
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Elisabeth Silkenstedt
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Department of Hematology and Oncology, Robert-Bosch-Hospital, Stuttgart, Germany
- LMU Klinikum der Universität München, Med. Klinik und Poliklinik III, Munich, Germany
- University of Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
SOX11 augments BCR signaling to drive MCL-like tumor development. Blood 2018; 131:2247-2255. [PMID: 29615403 DOI: 10.1182/blood-2018-02-832535] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/23/2018] [Indexed: 11/20/2022] Open
Abstract
Mantle cell lymphoma (MCL) is characterized by increased B-cell receptor (BCR) signaling, and BTK inhibition is an effective therapeutic intervention in MCL patients. The mechanisms leading to increased BCR signaling in MCL are poorly understood, as mutations in upstream regulators of BCR signaling such as CD79A, commonly observed in other lymphomas, are rare in MCL. The transcription factor SOX11 is overexpressed in the majority (78% to 93%) of MCL patients and is considered an MCL-specific oncogene. So far, attempts to understand SOX11 function in vivo have been hampered by the lack of appropriate animal models, because germline deletion of SOX11 is embryonically lethal. We have developed a transgenic mouse model (Eμ-SOX11-EGFP) in the C57BL/6 background expressing murine SOX11 and EGFP under the control of a B-cell-specific IgH-Eμ enhancer. The overexpression of SOX11 exclusively in B cells exhibits oligoclonal B-cell hyperplasia in the spleen, bone marrow, and peripheral blood, with an immunophenotype (CD5+CD19+CD23-) identical to human MCL. Furthermore, phosphocytometric time-of-flight analysis of the splenocytes from these mice shows hyperactivation of pBTK and other molecules in the BCR signaling pathway, and serial bone marrow transplant from transgenic donors produces lethality with decreasing latency. We report here that overexpression of SOX11 in B cells promotes BCR signaling and a disease phenotype that mimics human MCL.
Collapse
|
24
|
Cisatracurium-induced proliferation impairment and death of colorectal cancer cells, HCT116 is mediated by p53 dependent intrinsic apoptotic pathway in vitro. Biomed Pharmacother 2017; 91:320-329. [DOI: 10.1016/j.biopha.2017.04.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 01/18/2023] Open
|
25
|
Sarkar A, Balakrishnan K, Chen J, Patel V, Neelapu SS, McMurray JS, Gandhi V. Molecular evidence of Zn chelation of the procaspase activating compound B-PAC-1 in B cell lymphoma. Oncotarget 2016; 7:3461-76. [PMID: 26658105 PMCID: PMC4823120 DOI: 10.18632/oncotarget.6505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023] Open
Abstract
The resistance of apoptosis in cancer cells is pivotal for their survival and is typically ruled by mutations or dysregulation of core apoptotic cascade. Mantle cell lymphoma (MCL) is a non-Hodgkin's B-cell malignancy expressing higher anti-apoptotic proteins providing survival advantage. B-PAC-1, a procaspase activating compound, induces apoptosis by sequestering Zn bound to procaspase-3, but the amino acids holding Zn in Caspase-3 is not known. Here we show that reintroduction of WT caspase-3 or 7 in Caspase3-7 double knock-out (DKO) mouse embryonic fibroblasts (MEF) promoted B-PAC-1 to induce apoptosis (27-43%), but not in DKO MEFs or MEFs expressing respective Casp3-7 catalytic mutants (12-13%). Using caspase-6 and -9 exosite analysis, we identified and mutated predicted Zn-ligands in caspase-3 (H108A, C148S and E272A) and overexpressed into DKO MEFs. Mutants carrying E272A abrogated Zn-reversal of apoptosis induced by B-PAC-1 via higher XIAP and smac expressions but not in H108A or C148S mutants. Co-immunoprecipitation analysis revealed stronger XIAP-caspase-3 interaction suggesting a novel mechanism of impulsive apoptosis resistance by disrupting predicted Zn-ligands in caspase-3. B-PAC-1 sponsored apoptosis in MCL cell lines (30-73%) via caspase-3 and PARP cleavages accompanied by loss of Mcl-1 and IAPs including XIAP while Zn substantially abrogated B-PAC-1-driven apoptosis (18-36%). In contrary, Zn is dispensable to inhibit staurosporin, bendamustine, ABT199 or MK206-induced apoptosis. Consistent to cell lines, B-PAC-1 stimulated cell death in primary B-lymphoma cells via caspase-3 cleavage with decline in both Mcl-1 and XIAP. This study underscores the first genetic evidence that B-PAC-1 driven apoptosis is mediated via Zn chelation.
Collapse
Affiliation(s)
- Aloke Sarkar
- Department of Experimental Therapeutics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Kumudha Balakrishnan
- Department of Experimental Therapeutics, The University of Texas Health Science Center, Houston, Texas, USA.,Department of Leukemia, UT MD Anderson Cancer Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, USA
| | - Jefferson Chen
- Department of Experimental Therapeutics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Viralkumar Patel
- Department of Experimental Therapeutics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas Health Science Center, Houston, Texas, USA
| | - John S McMurray
- Department of Experimental Therapeutics, The University of Texas Health Science Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas Health Science Center, Houston, Texas, USA.,Department of Leukemia, UT MD Anderson Cancer Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
26
|
Mansouri L, Rosenquist R. Unraveling the DNA Methylome in Mantle Cell Lymphoma: New Insights into the Cellular Origin. Cancer Cell 2016; 30:665-667. [PMID: 27846388 DOI: 10.1016/j.ccell.2016.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Our understanding of the DNA methylome and its impact on cancer evolution and disease progression is rapidly evolving. In this issue of Cancer Cell, Queirós et al. provide a detailed characterization of the DNA methylome in mantle cell lymphoma and reveal novel molecular subtypes, potentially with different cellular origins.
Collapse
Affiliation(s)
- Larry Mansouri
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden.
| |
Collapse
|
27
|
Li Z, Wang JW, Wang WZ, Zhi XF, Zhang Q, Li BW, Wang LJ, Xie KL, Tao JQ, Tang J, Wei S, Zhu Y, Xu H, Zhang DC, Yang L, Xu ZK. Natriuretic peptide receptor A inhibition suppresses gastric cancer development through reactive oxygen species-mediated G2/M cell cycle arrest and cell death. Free Radic Biol Med 2016; 99:593-607. [PMID: 27634171 DOI: 10.1016/j.freeradbiomed.2016.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/11/2016] [Accepted: 08/14/2016] [Indexed: 12/15/2022]
Abstract
Natriuretic peptide receptor A (NPRA), the major receptor for atrial natriuretic peptide (ANP), has been implicated in tumorigenesis; however, the role of ANP-NPRA signaling in the development of gastric cancer remains unclear. Immunohistochemical analyses indicated that NPRA expression was positively associated with gastric tumor size and cancer stage. NPRA inhibition by shRNA induced G2/M cell cycle arrest, cell death, and autophagy in gastric cancer cells, due to accumulation of reactive oxygen species (ROS). Either genetic or pharmacologic inhibition of autophagy led to caspase-dependent cell death. Therefore, autophagy induced by NPRA silencing may represent a cytoprotective mechanism. ROS accumulation activated c-Jun N-terminal kinase (JNK) and AMP-activated protein kinase (AMPK). ROS-mediated activation of JNK inhibited cell proliferation by disturbing cell cycle and decreased cell viability. In addition, AMPK activation promoted autophagy in NPRA-downregulated cancer cells. Overall, our results indicate that the inhibition of NPRA suppresses gastric cancer development and targeting NPRA may represent a promising strategy for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ji-Wei Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei-Zhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Fei Zhi
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, China
| | - Qun Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bo-Wen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin-Jun Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kun-Ling Xie
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Qiu Tao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Song Wei
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dian-Cai Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ze-Kuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
28
|
Davis MI, Pragani R, Fox JT, Shen M, Parmar K, Gaudiano EF, Liu L, Tanega C, McGee L, Hall MD, McKnight C, Shinn P, Nelson H, Chattopadhyay D, D'Andrea AD, Auld DS, DeLucas LJ, Li Z, Boxer MB, Simeonov A. Small Molecule Inhibition of the Ubiquitin-specific Protease USP2 Accelerates cyclin D1 Degradation and Leads to Cell Cycle Arrest in Colorectal Cancer and Mantle Cell Lymphoma Models. J Biol Chem 2016; 291:24628-24640. [PMID: 27681596 DOI: 10.1074/jbc.m116.738567] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/04/2016] [Indexed: 12/11/2022] Open
Abstract
Deubiquitinases are important components of the protein degradation regulatory network. We report the discovery of ML364, a small molecule inhibitor of the deubiquitinase USP2 and its use to interrogate the biology of USP2 and its putative substrate cyclin D1. ML364 has an IC50 of 1.1 μm in a biochemical assay using an internally quenched fluorescent di-ubiquitin substrate. Direct binding of ML364 to USP2 was demonstrated using microscale thermophoresis. ML364 induced an increase in cellular cyclin D1 degradation and caused cell cycle arrest as shown in Western blottings and flow cytometry assays utilizing both Mino and HCT116 cancer cell lines. ML364, and not the inactive analog 2, was antiproliferative in cancer cell lines. Consistent with the role of cyclin D1 in DNA damage response, ML364 also caused a decrease in homologous recombination-mediated DNA repair. These effects by a small molecule inhibitor support a key role for USP2 as a regulator of cell cycle, DNA repair, and tumor cell growth.
Collapse
Affiliation(s)
- Mindy I Davis
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Rajan Pragani
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Jennifer T Fox
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Min Shen
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Kalindi Parmar
- the Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, and
| | - Emily F Gaudiano
- the Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, and
| | - Li Liu
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Cordelle Tanega
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Lauren McGee
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Matthew D Hall
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Crystal McKnight
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Paul Shinn
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Henrike Nelson
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Debasish Chattopadhyay
- the Center for Structural Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Alan D D'Andrea
- the Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, and
| | - Douglas S Auld
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Larry J DeLucas
- the Center for Structural Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Zhuyin Li
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892
| | - Matthew B Boxer
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892,.
| | - Anton Simeonov
- From the NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20892,.
| |
Collapse
|
29
|
[Anti-tumor effects of 13-cis-retinoic acid combined with interferon α-2b in animal model of mantle cell lymphoma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 37:784-789. [PMID: 27719722 PMCID: PMC7342114 DOI: 10.3760/cma.j.issn.0253-2727.2016.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
目的 评估13-顺式维甲酸(13cRA)和IFN-α-2b单用,以及二者联合应用对套细胞淋巴瘤(MCL)动物模型的抗肿瘤效应,并探讨其作用机制。 方法 构建MCL细胞株Jeko-1细胞重症联合免疫缺陷小鼠模型,将荷瘤小鼠随机分成阴性对照组(溶剂),高(200 mg/kg)、中(100 mg/kg)、低(50 mg/kg)13cRA剂量组,IFN-α-2b组,不同剂量13cRA联合IFN-α-2b组,阳性对照组(硼替佐米+利妥昔单抗+环磷酰胺),同时进行干预治疗。定期观察荷瘤小鼠肿瘤体积变化,计算相对肿瘤增殖率、抑瘤率。采用免疫组化法检测Ki-67的表达。采用缺口末端标记法检测肿瘤组织细胞凋亡情况。采用Western blot法检测Cyclin D1、caspase-9及视网膜神经胶质瘤蛋白(Rb)等的表达水平。 结果 ①中、高剂量13cRA组及中、高剂量13cRA联合IFN-α-2b组的相对肿瘤增殖率分别为30%、37%、32%和33%。②低、中、高剂量13cRA组或其联合IFN-α-2b组的抑瘤率均较阴性对照组明显增高(P<0.05),不同剂量13cRA组间、单用IFN-α-2b组抑瘤率与阴性对照组比较差异均无统计学意义(P值均>0.05)。中剂量13cRA组或其联合IFN-α-2b组抑瘤率最高,分别为59.2%、62.6%,与阳性对照组(69.4%)差异无统计学意义(P>0.05)。③Ki-67在各组的表达差异无统计学意义(P=0.342)。④不同剂量13cRA组及其联合IFN-α-2b组凋亡细胞数均较阴性对照组明显增加(P<0.05),与阳性对照组差异无统计学意义(P=0.170);阴性对照组凋亡细胞数与IFN-α-2b组差异无统计学意义(P=0.098)。⑤不同剂量13cRA联合IFN-α-2b组与阴性对照组比较,cycling D1及procaspase-9降低,cleaved caspase-9升高,与阳性对照组表达相当;不同剂量13cRA组与阴性对照组比较,则未见明显差异。 结论 在MCL动物模型中IFN-α-2b单用并未显示出疗效;13cRA单用及其与IFN-α-2b联合应用均显示出抑制肿瘤生长效应,其作用机制可能为通过下调Cyclin D1的表达而抑制细胞增殖或者激活caspase-9诱导凋亡。
Collapse
|
30
|
Restelli V, Chilà R, Lupi M, Rinaldi A, Kwee I, Bertoni F, Damia G, Carrassa L. Characterization of a mantle cell lymphoma cell line resistant to the Chk1 inhibitor PF-00477736. Oncotarget 2016; 6:37229-40. [PMID: 26439697 PMCID: PMC4741926 DOI: 10.18632/oncotarget.5954] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/17/2015] [Indexed: 12/24/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma characterized by the chromosomal translocation t(11;14) that leads to constitutive expression of cyclin D1, a master regulator of the G1-S phase. Chk1 inhibitors have been recently shown to be strongly effective as single agents in MCL. To investigate molecular mechanisms at the basis of Chk1 inhibitor activity, a MCL cell line resistant to the Chk1 inhibitor PF-00477736 (JEKO-1 R) was obtained and characterized. The JEKO-1 R cell line was cross resistant to another Chk1 inhibitor (AZD-7762) and to the Wee1 inhibitor MK-1775. It displayed a shorter doubling time than parental cell line, likely due to a faster S phase. Cyclin D1 expression levels were decreased in resistant cell line and its re-overexpression partially re-established PF-00477736 sensitivity. Gene expression profiling showed an enrichment in gene sets involved in pro-survival pathways in JEKO-1 R. Dasatinib treatment partly restored PF-00477736 sensitivity in resistant cells suggesting that the pharmacological interference of pro-survival pathways can overcome the resistance to Chk1 inhibitors. These data further corroborate the involvement of the t(11;14) in cellular sensitivity to Chk1 inhibitors, fostering the clinical testing of Chk1 inhibitors as single agents in MCL.
Collapse
Affiliation(s)
- Valentina Restelli
- Laboratory of Molecular Pharmacology and Laboratory of Cancer Pharmacology, Department of Oncology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Rosaria Chilà
- Laboratory of Molecular Pharmacology and Laboratory of Cancer Pharmacology, Department of Oncology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Monica Lupi
- Laboratory of Molecular Pharmacology and Laboratory of Cancer Pharmacology, Department of Oncology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Andrea Rinaldi
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, Switzerland
| | - Ivo Kwee
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, Switzerland.,Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Francesco Bertoni
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, Switzerland.,Lymphoma Unit, IOSI Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Giovanna Damia
- Laboratory of Molecular Pharmacology and Laboratory of Cancer Pharmacology, Department of Oncology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Laura Carrassa
- Laboratory of Molecular Pharmacology and Laboratory of Cancer Pharmacology, Department of Oncology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| |
Collapse
|
31
|
Hamilton E, Infante JR. Targeting CDK4/6 in patients with cancer. Cancer Treat Rev 2016; 45:129-38. [PMID: 27017286 DOI: 10.1016/j.ctrv.2016.03.002] [Citation(s) in RCA: 312] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/31/2022]
Abstract
The cyclin D-cyclin dependent kinase (CDK) 4/6-inhibitor of CDK4 (INK4)-retinoblastoma (Rb) pathway controls cell cycle progression by regulating the G1-S checkpoint. Dysregulation of the cyclin D-CDK4/6-INK4-Rb pathway results in increased proliferation, and is frequently observed in many types of cancer. Pathway activation can occur through a variety of mechanisms, including gene amplification or rearrangement, loss of negative regulators, epigenetic alterations, and point mutations in key pathway components. Due to the importance of CDK4/6 activity in cancer cells, CDK4/6 inhibitors have emerged as promising candidates for cancer treatment. Moreover, combination of a CDK4/6 inhibitor with other targeted therapies may help overcome acquired or de novo treatment resistance. Ongoing studies include combinations of CDK4/6 inhibitors with endocrine therapy and phosphatidylinositol 3-kinase (PI3K) pathway inhibitors for hormone receptor-positive (HR+) breast cancers, and with selective RAF and MEK inhibitors for tumors with alterations in the mitogen activated protein kinase (MAPK) pathway such as melanoma. In particular, the combination of CDK4/6 inhibitors with endocrine therapy, such as palbociclib's recent first-line approval in combination with letrozole, is expected to transform the treatment of HR+ breast cancer. Currently, three selective CDK4/6 inhibitors have been approved or are in late-stage development: palbociclib (PD-0332991), ribociclib (LEE011), and abemaciclib (LY2835219). Here we describe the current preclinical and clinical data for these novel agents and discuss combination strategies with other agents for the treatment of cancer.
Collapse
Affiliation(s)
- Erika Hamilton
- Sarah Cannon Research Institute/Tennessee Oncology PLLC, 250 25th Avenue North, Nashville, TN 37203, United States.
| | - Jeffrey R Infante
- Sarah Cannon Research Institute/Tennessee Oncology PLLC, 250 25th Avenue North, Nashville, TN 37203, United States.
| |
Collapse
|
32
|
Mantle Cell Lymphoma: First-line Therapy in Patients Not Eligible for Stem Cell Transplantation. Curr Treat Options Oncol 2016; 16:29. [PMID: 25975443 DOI: 10.1007/s11864-015-0343-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OPINION STATEMENT Mantle cell lymphoma is a distinct subtype of non-Hodgkin's lymphoma, which has historically been associated with a poor prognosis. It is now recognized as a heterogeneous disease with variable biologic and clinical behavior. Treatment paradigms have evolved along two lines. Younger, fit mantle cell lymphoma (MCL) patients are generally treated with intensive strategies and older less fit patients with non-intensive strategies. Most of the published literature has focused on intensive strategies, which appear to result in more durable remissions, but with an unclear impact on overall survival. The literature is more sparse for the roughly 50% of patients who are not candidates for intensive strategies, and no "standard" approach has been established for this patient population. However, clues are emerging. Randomized clinical trials have (a) established that bendamustine-rituximab (BR) is more efficacious and less toxic than rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP); (b) established that bortezomib should replace vincristine if using an R-CHOP backbone; and (c) established that maintenance rituximab (MR) is beneficial after an R-CHOP induction. In our opinion, it is reasonable to extrapolate the data supporting MR after R-CHOP and apply MR after a BR induction. In our practice, we recommend BR followed by MR for 2 years to MCL patients not eligible for intensive therapy. An ongoing US intergroup trial is testing the addition of bortezomib to the BR backbone and the addition of lenalidomide to MR. This trial may establish a standard of care in the older MCL population. In addition, exciting options for relapsed MCL have emerged in the last few years, with the introduction of the Bruton tyrosine kinase (BTK) inhibitor ibrutinib and the development of the lenalidomide-rituximab combination. In this article, we will discuss the current available options for these older MCL patients and the evidence supporting those options.
Collapse
|
33
|
Gupta AK, Sharma S, Dahiya N, Brashier DBS. Palbociclib: A breakthrough in breast carcinoma in women. Med J Armed Forces India 2016; 72:S37-S42. [PMID: 28050067 DOI: 10.1016/j.mjafi.2015.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 11/01/2015] [Indexed: 01/22/2023] Open
Abstract
Breast cancer (BC) is the most common cancer and leading cause of death in women worldwide. Cellular proliferation, growth, and division are tightly controlled by the cell-cycle regulatory machinery. An important pathway is cyclin-dependent kinases (CDKs) which regulate cell cycle and thus control transcriptional processes. In human cancer, multiple CDK family members are commonly deregulated. The cyclin D-CDK4/6-retinoblastoma (RB) protein-INK4 axis is particularly affected in many solid tumors which leads to cancer cell proliferation. This has led to long-standing interest in targeting CDK4/6 as an anticancer strategy. Different investigational agents that have been tested which inhibit multiple cell cycle and transcriptional CDKs but have carried excessive toxicity thus failed to stand the rational of human use. Amongst several selective and potent inhibitors of CDK4/6, palbociclib is the first to be accessed suitable for human use having explicit selectivity toward CDK4/6. Its mechanism is to arrest cells in G1 phase by blocking RB phosphorylation at CDK4/6-specfic sites without affecting the growth of cells which are RB-deficient. Studies conducted in patients of BC having cells with advanced RB-expression demonstrated acceptable side effects but dose-limiting toxicities primarily neutropenia and thrombocytopenia, with prolonged stable disease in patients.
Collapse
Affiliation(s)
- Ajay Kumar Gupta
- Associate Professor, Dept of Pharmacology, Armed Forces Medical College, Pune 411040, India
| | - Sushil Sharma
- Associate Professor, Dept of Pharmacology, Armed Forces Medical College, Pune 411040, India
| | - Navdeep Dahiya
- Associate Professor, Dept of Pharmacology, Armed Forces Medical College, Pune 411040, India
| | - D B S Brashier
- Associate Professor, Dept of Pharmacology, Armed Forces Medical College, Pune 411040, India
| |
Collapse
|
34
|
High-dose cytarabine does not overcome the adverse prognostic value of CDKN2A and TP53 deletions in mantle cell lymphoma. Blood 2015; 126:604-11. [DOI: 10.1182/blood-2015-02-628792] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/24/2015] [Indexed: 12/25/2022] Open
Abstract
Key Points
CDKN2A and TP53 deletions remain of bad prognostic value in younger MCL patients treated according to the current standard of care. CDKN2A and TP53 deletions have independent deleterious effects and should be considered for treatment decisions in addition to MIPI and Ki-67 index.
Collapse
|
35
|
Hosein PJ, Sandoval-Sus JD, Goodman D, Arteaga AG, Reis I, Hoffman J, Stefanovic A, Rosenblatt JD, Lossos IS. Updated survival analysis of two sequential prospective trials of R-MACLO-IVAM followed by maintenance for newly diagnosed mantle cell lymphoma. Am J Hematol 2015; 90:E111-6. [PMID: 25737247 DOI: 10.1002/ajh.23996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/06/2015] [Accepted: 02/27/2015] [Indexed: 11/11/2022]
Abstract
A phase II trial of R-MACLO-IVAM followed by thalidomide maintenance for mantle cell lymphoma (MCL) demonstrated promising progression-free survival (PFS) and overall survival (OS) rates. Thalidomide maintenance was associated with significant toxicity and was subsequently modified to rituximab maintenance. Herein, we present updated results and follow-up. Two sequential phase II trials included chemotherapy-naïve patients with MCL up to 75 years old. Four cycles of R-MACLO-IVAM chemotherapy were delivered as previously described. Patients who achieved complete responses (CR) were eligible for thalidomide or rituximab maintenance therapy. Among 36 patients enrolled, the MCL International Prognostic Index (MIPI) was low in 53%, intermediate in 36% and high in 11%. Thirty-five patients completed at least 2 cycles of chemotherapy; 34 (94%) achieved a CR. After a median follow-up of 74.4 months, the 5-year PFS was 51% (95% CI 33-68%) and the 5-year OS was 85% (95% CI 73-97%). Two deaths occurred during the chemotherapy phase due to disease progression and neutropenic sepsis, respectively. One patient developed secondary acute myeloid leukemia after 7 years. R-MACLO-IVAM chemotherapy is effective for patients with newly diagnosed MCL.
Collapse
Affiliation(s)
- Peter J. Hosein
- Department of Medicine; Markey Cancer Center; University of Kentucky; Lexington Kentucky
- Division of Medical Oncology, Markey Cancer Center; University of Kentucky; Lexington Kentucky
| | - Jose D. Sandoval-Sus
- Division of Hematological Malignancies; H. Lee Moffitt Cancer Center; Tampa Florida
| | - Deborah Goodman
- Department of Medicine; Sylvester Comprehensive Cancer Center; University of Miami Miller School of Medicine; Miami Florida
- Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center; University of Miami Miller School of Medicine; Miami Florida
| | - Alexandra Gomez Arteaga
- Department of Medicine; Sylvester Comprehensive Cancer Center; University of Miami Miller School of Medicine; Miami Florida
- Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center; University of Miami Miller School of Medicine; Miami Florida
| | - Isildinha Reis
- Department of Public Health Sciences; Sylvester Comprehensive Cancer Center; University of Miami Miller School of Medicine; Miami Florida
- Division of Biostatistics, Sylvester Comprehensive Cancer Center; University of Miami Miller School of Medicine; Miami Florida
| | - James Hoffman
- Department of Medicine; Sylvester Comprehensive Cancer Center; University of Miami Miller School of Medicine; Miami Florida
- Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center; University of Miami Miller School of Medicine; Miami Florida
| | - Alexandra Stefanovic
- Department of Medicine; Sylvester Comprehensive Cancer Center; University of Miami Miller School of Medicine; Miami Florida
- Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center; University of Miami Miller School of Medicine; Miami Florida
| | - Joseph D. Rosenblatt
- Department of Medicine; Sylvester Comprehensive Cancer Center; University of Miami Miller School of Medicine; Miami Florida
- Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center; University of Miami Miller School of Medicine; Miami Florida
| | - Izidore S. Lossos
- Department of Medicine; Sylvester Comprehensive Cancer Center; University of Miami Miller School of Medicine; Miami Florida
- Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center; University of Miami Miller School of Medicine; Miami Florida
- Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center; University of Miami Miller School of Medicine; Miami Florida
| |
Collapse
|
36
|
Abstract
Primary gastrointestinal (GI) lymphomas are uncommon diseases that can involve the whole GI tract. The etiologies of the disease remain unclear, and potential risk factors include celiac disease, Helicobacter pylori infection, use of immunosuppressive agents, human immunodeficiency virus (HIV) or Epstein-Barr virus (EBV) infection and inflammatory bowel disease, etc. Diffuse large B-cell lymphoma (DLBCL) and mucosa-associated lymphoid tissue (MALT) lymphoma are the most common subtypes of GI lymphomas. B-cell lymphomas of the GI tract are more common in Western countries, while in Asia-Pacific region T-cell lymphomas are more frequently reported. In this review, lymphomas in the esophagus, stomach and intestine are described, including their epidemiology, histology, clinical manifestations, endoscopic findings, radiological features and treatment.
Collapse
Affiliation(s)
- Jiang Chen Peng
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai Inflammatory Bowel Disease Research Center, Shanghai, China
| | | | | |
Collapse
|
37
|
Blaker YN, Brodtkorb M, Maddison J, Hveem TS, Nesheim JA, Mohn HM, Kolstad A, Geisler CH, Liestøl K, Smeland EB, Holte H, Delabie J, Danielsen H. Computerized image analysis of the Ki-67 proliferation index in mantle cell lymphoma. Histopathology 2015; 67:62-9. [PMID: 25431344 DOI: 10.1111/his.12624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/22/2014] [Indexed: 11/27/2022]
Abstract
AIMS Manual counting of the fraction of Ki-67-positive cells (the Ki-67 index) in 1000 tumour cells is considered the 'gold standard' to predict prognosis in mantle cell lymphoma (MCL). This time-consuming method is replaced by the faster, but less accurate, semiquantitative estimation in routine practice. The aim of this study was to investigate the use of computerized image analysis software for scoring of Ki-67 in MCL. METHODS AND RESULTS We developed an automated method for determining the Ki-67 index by computerized image analysis and tested it using a cohort of 62 MCL patients. The data were compared to Ki-67 scores obtained by semiquantitative estimation and image-based manual counting. When using the Ki-67 index as a continuous parameter, both image-based manual counting and computerized image analysis were related inversely to survival (P = 0.020 and P = 0.025, respectively). Ki-67 index obtained by semiquantitative estimation was not associated significantly with survival (P = 0.093). The results were validated in a second patient cohort with similar results. CONCLUSION Computerized image analysis of the Ki-67 index in MCL is an attractive alternative to semiquantitative estimation and can be introduced easily in a routine diagnostic setting for risk stratification in MCL.
Collapse
Affiliation(s)
- Yngvild N Blaker
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Marianne Brodtkorb
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Oncology, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Oslo, Norway
| | - John Maddison
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Tarjei S Hveem
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.,Department of Informatics, University of Oslo, Oslo, Norway
| | - John Arne Nesheim
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Hans Martin Mohn
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Arne Kolstad
- Department of Oncology, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Oslo, Norway
| | | | - Knut Liestøl
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Erlend B Smeland
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Harald Holte
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Oncology, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Oslo, Norway
| | - Jan Delabie
- Department of Pathology, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Oslo, Norway.,Department of Pathology, University of Toronto, Toronto, Canada
| | - Håvard Danielsen
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.,Department of Informatics, University of Oslo, Oslo, Norway.,Nuffield Division of Clinical and Laboratory Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Mahe E, Akhter A, Le A, Street L, Pournaziri P, Kosari F, Shabani-Rad MT, Stewart D, Mansoor A. PARP1 expression in mantle cell lymphoma: the utility of PARP1 immunohistochemistry and its relationship with markers of DNA damage. Hematol Oncol 2014; 33:159-65. [PMID: 25143154 DOI: 10.1002/hon.2160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 11/05/2022]
Abstract
Mantle cell lymphoma (MCL) is an aggressive disease with poor overall survival, attributable in part to frequent defects of the DNA repair genes. In such malignancies, additional inhibition of the ubiquitous DNA damage repair protein, poly-ADP ribose polymerase-1 (PARP1) has shown enhanced cytotoxicity (so-called synthetic lethality). We studied PARP1 expression in a series of clinical cases of MCL, with the secondary aim to ascertain the relationship between PARP1 expression and DNA repair gene expression (namely ATM and p53) by immunohistochemical methods. We also examined the relationship between PARP1 expression and the well-established prognostic biomarker Ki-67, in addition to correlating PARP1 expression with the overall survival. From amongst our series of 79 unselected cases of MCL, we detected PARP1 expression in all but two cases with variable intensity. We also noted correlations between PARP1 expression and ATM and p53 expression. As described in previous studies, we identified a significant survival difference on the basis of Ki-67 and p53 expression. When digital H-score analysis of PARP1 expression was performed, there was a distinct survival advantage noted in patients with lower levels of expression. When our biomarker data were assessed by Cox regression, furthermore, the dominant effects of p53 and PARP1 expression were highlighted. Our data support the need for further research into the potential utility of PARP1 as a biomarker in MCL and for the potential direction of future PARP1 inhibitor-targeted therapy studies.
Collapse
Affiliation(s)
- Etienne Mahe
- Department of Pathology & Laboratory Medicine, University of Calgary/Calgary Laboratory Services, Calgary, AB, Canada
| | - Ariz Akhter
- Department of Pathology & Laboratory Medicine, University of Calgary/Calgary Laboratory Services, Calgary, AB, Canada
| | - Anne Le
- Department of Pathology & Laboratory Medicine, University of Calgary/Calgary Laboratory Services, Calgary, AB, Canada
| | - Lelsey Street
- Division of Hematology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Payam Pournaziri
- Department of Pathology & Laboratory Medicine, University of Calgary/Calgary Laboratory Services, Calgary, AB, Canada
| | - Farid Kosari
- Department of Pathology & Laboratory Medicine, University of Calgary/Calgary Laboratory Services, Calgary, AB, Canada
| | - Meer-Taher Shabani-Rad
- Department of Pathology & Laboratory Medicine, University of Calgary/Calgary Laboratory Services, Calgary, AB, Canada
| | - Douglas Stewart
- Division of Hematology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Adnan Mansoor
- Department of Pathology & Laboratory Medicine, University of Calgary/Calgary Laboratory Services, Calgary, AB, Canada
| |
Collapse
|
39
|
Tian F, Wang Y, Seiler M, Hu Z. Functional characterization of breast cancer using pathway profiles. BMC Med Genomics 2014; 7:45. [PMID: 25041817 PMCID: PMC4113668 DOI: 10.1186/1755-8794-7-45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 07/09/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The molecular characteristics of human diseases are often represented by a list of genes termed "signature genes". A significant challenge facing this approach is that of reproducibility: signatures developed on a set of patients may fail to perform well on different sets of patients. As diseases are resulted from perturbed cellular functions, irrespective of the particular genes that contribute to the function, it may be more appropriate to characterize diseases based on these perturbed cellular functions. METHODS We proposed a profile-based approach to characterize a disease using a binary vector whose elements indicate whether a given function is perturbed based on the enrichment analysis of expression data between normal and tumor tissues. Using breast cancer and its four primary clinically relevant subtypes as examples, this approach is evaluated based on the reproducibility, accuracy and resolution of the resulting pathway profiles. RESULTS Pathway profiles for breast cancer and its subtypes are constructed based on data obtained from microarray and RNA-Seq data sets provided by The Cancer Genome Atlas (TCGA), and an additional microarray data set provided by The European Genome-phenome Archive (EGA). An average reproducibility of 68% is achieved between different data sets (TCGA microarray vs. EGA microarray data) and 67% average reproducibility is achieved between different technologies (TCGA microarray vs. TCGA RNA-Seq data). Among the enriched pathways, 74% of them are known to be associated with breast cancer or other cancers. About 40% of the identified pathways are enriched in all four subtypes, with 4, 2, 4, and 7 pathways enriched only in luminal A, luminal B, triple-negative, and HER2+ subtypes, respectively. Comparison of profiles between subtypes, as well as other diseases, shows that luminal A and luminal B subtypes are more similar to the HER2+ subtype than to the triple-negative subtype, and subtypes of breast cancer are more likely to be closer to each other than to other diseases. CONCLUSIONS Our results demonstrate that pathway profiles can successfully characterize both common and distinct functional characteristics of four subtypes of breast cancer and other related diseases, with acceptable reproducibility, high accuracy and reasonable resolution.
Collapse
Affiliation(s)
- Feng Tian
- Center for Advanced Genomic Technology, Boston University, Boston, MA 02215, USA
| | - Yajie Wang
- Core Laboratory for Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
- Department of Clinical Laboratory Diagnosis, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
| | - Michael Seiler
- Center for Advanced Genomic Technology, Boston University, Boston, MA 02215, USA
| | - Zhenjun Hu
- Center for Advanced Genomic Technology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
40
|
Gelbert LM, Cai S, Lin X, Sanchez-Martinez C, Del Prado M, Lallena MJ, Torres R, Ajamie RT, Wishart GN, Flack RS, Neubauer BL, Young J, Chan EM, Iversen P, Cronier D, Kreklau E, de Dios A. Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Invest New Drugs 2014; 32:825-37. [PMID: 24919854 PMCID: PMC4169866 DOI: 10.1007/s10637-014-0120-7] [Citation(s) in RCA: 429] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/23/2014] [Indexed: 11/22/2022]
Abstract
The G1 restriction point is critical for regulating the cell cycle and is controlled by the Rb pathway (CDK4/6-cyclin D1-Rb-p16/ink4a). This pathway is important because of its inactivation in a majority of human tumors. Transition through the restriction point requires phosphorylation of retinoblastoma protein (Rb) by CDK4/6, which are highly validated cancer drug targets. We present the identification and characterization of a potent CDK4/6 inhibitor, LY2835219. LY2835219 inhibits CDK4 and CDK6 with low nanomolar potency, inhibits Rb phosphorylation resulting in a G1 arrest and inhibition of proliferation, and its activity is specific for Rb-proficient cells. In vivo target inhibition studies show LY2835219 is a potent inhibitor of Rb phosphorylation, induces a complete cell cycle arrest and suppresses expression of several Rb-E2F-regulated proteins 24 hours after a single dose. Oral administration of LY2835219 inhibits tumor growth in human tumor xenografts representing different histologies in tumor-bearing mice. LY2835219 is effective and well tolerated when administered up to 56 days in immunodeficient mice without significant loss of body weight or tumor outgrowth. In calu-6 xenografts, LY2835219 in combination with gemcitabine enhanced in vivo antitumor activity without a G1 cell cycle arrest, but was associated with a reduction of ribonucleotide reductase expression. These results suggest LY2835219 may be used alone or in combination with standard-of-care cytotoxic therapy. In summary, we have identified a potent, orally active small-molecule inhibitor of CDK4/6 that is active in xenograft tumors. LY2835219 is currently in clinical development.
Collapse
Affiliation(s)
- Lawrence M Gelbert
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hsieh TH, Chien CL, Lee YH, Lin CI, Hsieh JY, Chao ME, Liu DJ, Chu SS, Chen W, Lin SC, Ho DMT, Liu RS, Lin CH, Wong TT, Wang HW. Downregulation of SUN2, a novel tumor suppressor, mediates miR-221/222-induced malignancy in central nervous system embryonal tumors. Carcinogenesis 2014; 35:2164-74. [DOI: 10.1093/carcin/bgu105] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
42
|
Benjamin AB, Zhou X, Isaac O, Zhao H, Song Y, Chi X, Sun B, Hao L, Zhang L, Liu L, Guan H, Shao S. PRP19 upregulation inhibits cell proliferation in lung adenocarcinomas by p21-mediated induction of cell cycle arrest. Biomed Pharmacother 2014; 68:463-70. [DOI: 10.1016/j.biopha.2014.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/04/2014] [Indexed: 11/25/2022] Open
|
43
|
Dengler MA, Weilbacher A, Gutekunst M, Staiger AM, Vöhringer MC, Horn H, Ott G, Aulitzky WE, van der Kuip H. Discrepant NOXA (PMAIP1) transcript and NOXA protein levels: a potential Achilles' heel in mantle cell lymphoma. Cell Death Dis 2014; 5:e1013. [PMID: 24457957 PMCID: PMC4040662 DOI: 10.1038/cddis.2013.552] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 01/08/2023]
Abstract
Mantle cell lymphoma (MCL) is an aggressive lymphoid neoplasm with transient response to conventional chemotherapy. We here investigated the role of the Bcl-2 homology domain 3-only protein NOXA for life–death decision in MCL. Surprisingly, NOXA (PMAIP1) mRNA and NOXA protein levels were extremely discrepant in MCL cells: NOXA mRNA was found to be highly expressed whereas NOXA protein levels were low. Chronic active B-cell receptor signaling and to a minor degree cyclin D1 overexpression contributed to high NOXA mRNA expression levels in MCL cells. The phoshatidyl-inositol-3 kinase/AKT/mammalian target of rapamycin pathway was identified as the major downstream signaling pathway involved in the maintenance of NOXA gene expression. Interestingly, MCL cells adapt to this constitutive pro-apoptotic signal by extensive ubiquitination and rapid proteasomal degradation of NOXA protein (T½∼15–30 min). In addition to the proteasome inhibitor Bortezomib, we identified the neddylation inhibitor MLN4924 and the fatty acid synthase inhibitor Orlistat as potent inducers of NOXA protein expression leading to apoptosis in MCL. All inhibitors targeted NOXA protein turnover. In contrast to Bortezomib, MLN4924 and Orlistat interfered with the ubiquitination process of NOXA protein thereby offering new strategies to kill Bortezomib-resistant MCL cells. Our data, therefore, highlight a critical role of NOXA in the balance between life and death in MCL. The discrepancy between NOXA transcript and protein levels is essential for sensitivity of MCL to ubiquitin-proteasome system inhibitors and could therefore provide a druggable Achilles' heel of MCL cells.
Collapse
Affiliation(s)
- M A Dengler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Auerbachstr. 112, Stuttgart 70376, Germany
| | - A Weilbacher
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Auerbachstr. 112, Stuttgart 70376, Germany
| | - M Gutekunst
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Auerbachstr. 112, Stuttgart 70376, Germany
| | - A M Staiger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Auerbachstr. 112, Stuttgart 70376, Germany
| | - M C Vöhringer
- Second Department of Internal Medicine, Oncology and Hematology, Robert-Bosch-Hospital, Auerbachstr. 110, Stuttgart 70376, Germany
| | - H Horn
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Auerbachstr. 112, Stuttgart 70376, Germany
| | - G Ott
- Department of Clinical Pathology, Robert-Bosch-Hospital, Auerbachstr. 110, Stuttgart 70376, Germany
| | - W E Aulitzky
- Second Department of Internal Medicine, Oncology and Hematology, Robert-Bosch-Hospital, Auerbachstr. 110, Stuttgart 70376, Germany
| | - H van der Kuip
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Auerbachstr. 112, Stuttgart 70376, Germany
| |
Collapse
|
44
|
The ATM-mediated DNA-damage response. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
45
|
Simmons JK, Patel J, Michalowski A, Zhang S, Wei BR, Sullivan P, Gamache B, Felsenstein K, Kuehl WM, Simpson RM, Zingone A, Landgren O, Mock BA. TORC1 and class I HDAC inhibitors synergize to suppress mature B cell neoplasms. Mol Oncol 2013; 8:261-72. [PMID: 24429254 DOI: 10.1016/j.molonc.2013.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 12/12/2022] Open
Abstract
Enhanced proliferative signaling and loss of cell cycle regulation are essential for cancer progression. Increased mitogenic signaling through activation of the mTOR pathway, coupled with deregulation of the Cyclin D/retinoblastoma (Rb) pathway is a common feature of lymphoid malignancies, including plasmacytoma (PCT), multiple myeloma (MM), Burkitt's lymphoma (BL), and mantle cell lymphoma (MCL). Here we evaluate the synergy of pharmacologically affecting both of these critical pathways using the mTOR inhibitor sirolimus and the histone deacetylase inhibitor entinostat. A dose-matrix screening approach found this combination to be highly active and synergistic in a panel of genetically diverse human MM cell lines. Synergy and activity was observed in mouse PCT and human BL and MCL cell lines tested in vitro, as well as in freshly isolated primary MM patient samples tested ex vivo. This combination had minimal effects on healthy donor cells and retained activity when tested in a co-culture system simulating the protective interaction of cancer cells with the tumor microenvironment. Combining sirolimus with entinostat enhanced cell cycle arrest and apoptosis. At the molecular level, entinostat increased the expression of cell cycle negative regulators including CDKN1A (p21) and CDKN2A (p16), while the combination decreased critical growth and survival effectors including Cyclin D, BCL-XL, BIRC5, and activated MAPK.
Collapse
Affiliation(s)
- John K Simmons
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, USA
| | - Jyoti Patel
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, USA
| | - Aleksandra Michalowski
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, USA
| | - Shuling Zhang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, USA
| | - Bih-Rong Wei
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, USA
| | - Patrick Sullivan
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, USA
| | - Ben Gamache
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, USA
| | - Kenneth Felsenstein
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, USA
| | - W Michael Kuehl
- Genetics Branch, National Cancer Institute, National Institutes of Health, USA
| | - R Mark Simpson
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, USA
| | - Adriana Zingone
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Ola Landgren
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, USA.
| |
Collapse
|
46
|
|
47
|
Larrubia JR, Lokhande MU, García-Garzón S, Miquel J, Subirá D, Sanz-de-Villalobos E. Role of T cell death in maintaining immune tolerance during persistent viral hepatitis. World J Gastroenterol 2013; 19:1877-1889. [PMID: 23569333 PMCID: PMC3613103 DOI: 10.3748/wjg.v19.i12.1877] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/07/2012] [Accepted: 12/27/2012] [Indexed: 02/06/2023] Open
Abstract
Virus-specific T cells play an important role in the resolution of hepatic infection. However, during chronic hepatitis infection these cells lack their effector functions and fail to control the virus. Hepatitis B virus and hepatitis C virus have developed several mechanisms to generate immune tolerance. One of these strategies is the depletion of virus-specific T cells by apoptosis. The immunotolerogenic liver has unique property to retain and activate naïve T cell to avoid the over reactivation of immune response against antigens which is exploited by hepatotropic viruses to persist. The deletion of the virus-specific T cells occurs by intrinsic (passive) apoptotic mechanism. The pro-apoptotic molecule Bcl-2 interacting mediator (Bim) has attracted increasing attention as a pivotal involvement in apoptosis, as a regulator of tissue homeostasis and an enhancer for the viral persistence. Here, we reviewed our current knowledge on the evidence showing critical role of Bim in viral-specific T cell death by apoptotic pathways and helps in the immune tolerance.
Collapse
|
48
|
P110α-mediated constitutive PI3K signaling limits the efficacy of p110δ-selective inhibition in mantle cell lymphoma, particularly with multiple relapse. Blood 2013; 121:2274-84. [PMID: 23341541 DOI: 10.1182/blood-2012-10-460832] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Phosphoinositide-3 kinase (PI3K) pathway activation contributes to mantle cell lymphoma (MCL) pathogenesis, but early-phase studies of the PI3K p110δ inhibitor GS-1101 have reported inferior responses in MCL compared with other non-Hodgkin lymphomas. Because the relative importance of the class IA PI3K isoforms p110α, p110β, and p110δ in MCL is not clear, we studied expression of these isoforms and assessed their contribution to PI3K signaling in this disease. We found that although p110δ was highly expressed in MCL, p110α showed wide variation and expression increased significantly with relapse. Loss of phosphatase and tensin homolog expression was found in 16% (22/138) of cases, whereas PIK3CA and PIK3R1 mutations were absent. Although p110δ inhibition was sufficient to block B-cell receptor-mediated PI3K activation, combined p110α and p110δ inhibition was necessary to abolish constitutive PI3K activation. In addition, GDC-0941, a predominantly p110α/δ inhibitor, was significantly more active compared with GS-1101 against MCL cell lines and primary samples. We found that a high PIK3CA/PIK3CD ratio identified a subset of primary MCLs resistant to GS-1101 and this ratio increased significantly with relapse. These findings support the use of dual p110α/p110δ inhibitors in MCL and suggest a role for p110α in disease progression.
Collapse
|
49
|
Abstract
Genomic profiling of mantle cell lymphoma (MCL) cells has enabled a better understanding of the complex mechanisms underlying the pathogenesis of disease. Besides the t(11;14)(q13;q32) leading to cyclin D1 overexpression, MCL exhibits a characteristic pattern of DNA copy number aberrations that differs from those detected in other B-cell lymphomas. These genomic changes disrupt selected oncogenes and suppressor genes that are required for lymphoma development and progression, many of which are components of cell cycle, DNA damage response and repair, apoptosis, and cell-signaling pathways. Additionally, some of them may represent effective therapeutic targets. A number of genomic and molecular abnormalities have been correlated with the clinical outcome of patients with MCL and are considered prognostic factors. However, only a few genomic markers have been shown to predict the response to current or novel targeted therapies. One representative example is the high-level amplification of the BCL2 gene, which predicts a good response to pro-apoptotic BH3 mimetic drugs. In summary, genomic analyses have contributed to the substantial advances made in the comprehension of the pathogenesis of MCL, providing a solid basis for the identification of optimal therapeutic targets and for the design of new molecular therapies aiming to cure this fatal disease.
Collapse
Affiliation(s)
- Melissa Rieger Menanteau
- Division of Oncology, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | |
Collapse
|
50
|
Sagaert X, Tousseyn T, Yantiss RK. Gastrointestinal B-cell lymphomas: From understanding B-cell physiology to classification and molecular pathology. World J Gastrointest Oncol 2012; 4:238-49. [PMID: 23443141 PMCID: PMC3581849 DOI: 10.4251/wjgo.v4.i12.238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/29/2012] [Accepted: 11/20/2012] [Indexed: 02/05/2023] Open
Abstract
The gut is the most common extranodal site where lymphomas arise. Although all histological lymphoma types may develop in the gut, small and large B-cell lymphomas predominate. The sometimes unexpected finding of a lymphoid lesion in an endoscopic biopsy of the gut may challenge both the clinician (who is not always familiar with lymphoma pathogenesis) and the pathologist (who will often be hampered in his/her diagnostic skill by the limited amount of available tissue). Moreover, the past 2 decades have spawned an avalanche of new data that encompasses both the function of the reactive B-cell as well as the pathogenic pathways that lead to its neoplastic counterpart, the B-cell lymphoma. Therefore, this review aims to offer clinicians an overview of B-cell lymphomas in the gut, and their pertinent molecular features that have led to new insights regarding lymphomagenesis. It addresses the question as how to incorporate all presently available information on normal and neoplastic B-cell differentiation, and how this knowledge can be applied in daily clinical practice (e.g., diagnostic tools, prognostic biomarkers or therapeutic targets) to optimalise the managment of this heterogeneous group of neoplasms.
Collapse
Affiliation(s)
- Xavier Sagaert
- Xavier Sagaert, Thomas Tousseyn, Department of Pathology University Hospitals Leuven, B-3000 Leuven, Belgium
| | | | | |
Collapse
|