1
|
Zheng Y, Pan L, Li J, Feng X, Li C, Zheng M, Mai H, Yang L, He Y, He X, Xu H, Wen H, Le S. Prognostic significance of multiparametric flow cytometry minimal residual disease at two time points after induction in pediatric acute myeloid leukemia. BMC Cancer 2024; 24:46. [PMID: 38195455 PMCID: PMC10775489 DOI: 10.1186/s12885-023-11784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Prompt response to induction chemotherapy is a prognostic factor in pediatric acute myeloid leukemia. In this study, we aimed to evaluate the prognostic significance of multiparametric flow cytometry-minimal residual disease (MFC-MRD), assessed at the end of the first and second induction courses. METHODS MFC-MRD was performed at the end of the first induction (TP1) in 524 patients and second induction (TP2) in 467 patients who were treated according to the modified Medical Research Council (UK) acute myeloid leukemia 15 protocol. RESULTS Using a 0.1% cutoff level, patients with MFC-MRD at the two time points had lower event-free survival and overall survival. Only the TP2 MFC-MRD level could predict the outcome in a separate analysis of high and intermediate risks based on European LeukemiaNet risk stratification and KMT2A rearrangement. The TP2 MFC-MRD level could further differentiate the prognosis of patients into complete remission or non-complete remission based on morphological evaluation. Multivariate analysis indicated the TP2 MFC-MRD level as an independent adverse prognostic factor for event-free survival and overall survival. When comparing patients with MFC-MRD ≥ 0.1%, those who underwent hematopoietic stem cell transplant during the first complete remission had significantly higher 5-year event-free survival and overall survival and lower cumulative incidence of relapse than those who only received consolidation chemotherapy. CONCLUSIONS The TP2 MFC-MRD level can predict the outcomes in pediatric patients with acute myeloid leukemia and help stratify post-remission treatment.
Collapse
Affiliation(s)
- Yongzhi Zheng
- Department of Pediatric Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory On Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lili Pan
- Department of Pediatric Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory On Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jian Li
- Department of Pediatric Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory On Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoqin Feng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunfu Li
- Nanfang-Chunfu Children's Institute of Hematology & Oncology, TaiXin Hospital, Dongguan, China
| | - Mincui Zheng
- Department of Pediatric Hematology/Oncology, Hematology and Oncology, Hunan Children's Hospital, Changsha, China
| | - Huirong Mai
- Department of Pediatric Hematology/Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Lihua Yang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yingyi He
- Department of Pediatric Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xiangling He
- People's Hospital of Hunan Province, Changsha, China
| | - Honggui Xu
- Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Hong Wen
- The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Shaohua Le
- Department of Pediatric Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory On Hematology, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
2
|
Tomizawa D, Tsujimoto SI. Risk-Stratified Therapy for Pediatric Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:4171. [PMID: 37627199 PMCID: PMC10452723 DOI: 10.3390/cancers15164171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is the second most common type of leukemia in children. Recent advances in high-resolution genomic profiling techniques have uncovered the mutational landscape of pediatric AML as distinct from adult AML. Overall survival rates of children with AML have dramatically improved in the past 40 years, currently reaching 70% to 80% in developed countries. This was accomplished by the intensification of conventional chemotherapy, improvement in risk stratification using leukemia-specific cytogenetics/molecular genetics and measurable residual disease, appropriate use of allogeneic hematopoietic stem cell transplantation, and improvement in supportive care. However, the principle therapeutic approach for pediatric AML has not changed substantially for decades and improvement in event-free survival is rather modest. Further refinements in risk stratification and the introduction of emerging novel therapies to contemporary therapy, through international collaboration, would be key solutions for further improvements in outcomes.
Collapse
Affiliation(s)
- Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children’s Cancer Center, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Shin-Ichi Tsujimoto
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan;
| |
Collapse
|
3
|
Ramos Elbal E, Fuster JL, Campillo JA, Galera AM, Cortés MB, Llinares ME, Jiménez I, Plaza M, Banaclocha HM, Galián JA, Blanquer Blanquer M, Martínez Sánchez MV, Muro M, Minguela A. Measurable residual disease study through three different methods can anticipate relapse and guide pre-emptive therapy in childhood acute myeloid leukemia. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1446-1454. [PMID: 36598635 DOI: 10.1007/s12094-022-03042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/04/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Although outcomes of children with acute myeloid leukemia (AML) have improved over the last decades, around one-third of patients relapse. Measurable (or minimal) residual disease (MRD) monitoring may guide therapy adjustments or pre-emptive treatments before overt hematological relapse. METHODS In this study, we review 297 bone marrow samples from 20 real-life pediatric AML patients using three MRD monitoring methods: multiparametric flow cytometry (MFC), fluorescent in situ hybridization (FISH) and polymerase chain reaction (PCR). RESULTS Patients showed a 3-year overall survival of 73% and a 3-year event-free survival of 68%. Global relapse rate was of 25%. All relapses were preceded by the reappearance of MRD detection by: (1) MFC (p = 0.001), (2) PCR and/or FISH in patients with an identifiable chromosomal translocation (p = 0.03) and/or (3) one log increase of Wilms tumor gene 1 (WT1) expression in two consecutive samples (p = 0.02). The median times from MRD detection to relapse were 26, 111, and 140 days for MFC, specific PCR and FISH, and a one log increment of WT1, respectively. CONCLUSIONS MFC, FISH and PCR are complementary methods that can anticipate relapse of childhood AML by weeks to several months. However, in our series, pre-emptive therapies were not able to prevent disease progression. Therefore, more sensitive MRD monitoring methods that further anticipate relapse and more effective pre-emptive therapies are needed.
Collapse
Affiliation(s)
- Eduardo Ramos Elbal
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - José Luis Fuster
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - José Antonio Campillo
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Ana María Galera
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Mar Bermúdez Cortés
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - María Esther Llinares
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Irene Jiménez
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Mercedes Plaza
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Helios Martínez Banaclocha
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - José Antonio Galián
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Miguel Blanquer Blanquer
- Haematology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - María Victoria Martínez Sánchez
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Manuel Muro
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Alfredo Minguela
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain.
| |
Collapse
|
4
|
Pessach I, Spyropoulos T, Lamprianidou E, Kotsianidis I. MRD Monitoring by Multiparametric Flow Cytometry in AML: Is It Time to Incorporate Immune Parameters? Cancers (Basel) 2022; 14:cancers14174294. [PMID: 36077826 PMCID: PMC9454571 DOI: 10.3390/cancers14174294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Measurable residual disease (MRD) is emerging as an important prognostic and predictive biomarker in acute myeloid leukemia (AML). However, its use is currently hampered by the disparity and lack of harmonization between the available MRD methodologies. In addition, the current assessment of MRD in AML focuses only on the quantification of the residual leukemic burden, without addressing the parallel alterations of the antineoplastic immune response that can critically affect the course and outcome of AML, often despite MRD persistence. Incorporating parameters of immune competence provides more consistency with the biological concept of MRD and may lead to higher accuracy. Multiparameter flow cytometry (MFC) is a highly efficacious and sensitive technology for the thorough and synchronous investigation of the kinetics of both antitumor immunity and the leukemic clone. MFC-based MRD provides the platform for the development of a composite leukemia- and immune-based biomarker which can outcompete the current MRD assessment. Abstract Acute myeloid leukemia (AML) is a heterogeneous group of clonal myeloid disorders characterized by intrinsic molecular variability. Pretreatment cytogenetic and mutational profiles only partially inform prognosis in AML, whereas relapse is driven by residual leukemic clones and mere morphological evaluation is insensitive for relapse prediction. Measurable residual disease (MRD), an independent post-diagnostic prognosticator, has recently been introduced by the European Leukemia Net as a new outcome definition. However, MRD techniques are not yet standardized, thus precluding its use as a surrogate endpoint for survival in clinical trials and MRD-guided strategies in real-life clinical practice. AML resistance and relapse involve a complex interplay between clonal and immune cells, which facilitates the evasion of the leukemic clone and which is not taken into account when merely quantifying the residual leukemia. Multiparameter flow cytometry (MFC) offers the possibility of capturing an overall picture of the above interactions at the single cell level and can simultaneously assess the competence of anticancer immune response and the levels of residual clonal cells. In this review, we focus on the current status of MFC-based MRD in diverse AML treatment settings and introduce a novel perspective of combined immune and leukemia cell profiling for MRD assessment in AML.
Collapse
Affiliation(s)
- Ilias Pessach
- Department of Hematology, Athens Medical Center, 11634 Athens, Greece
| | - Theodoros Spyropoulos
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, 69100 Alexandroupolis, Greece
| | - Eleftheria Lamprianidou
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, 69100 Alexandroupolis, Greece
| | - Ioannis Kotsianidis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, 69100 Alexandroupolis, Greece
- Correspondence: or ; Tel.: +30-25-5103-0320; Fax: +30-25-5107-6154
| |
Collapse
|
5
|
Hematopoietic Cell Transplantation in the Treatment of Pediatric Acute Myelogenous Leukemia and Myelodysplastic Syndromes: Guidelines from the American Society of Transplantation and Cellular Therapy. Transplant Cell Ther 2022; 28:530-545. [DOI: 10.1016/j.jtct.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/20/2022]
|
6
|
Allogeneic hematopoietic stem cell transplantation for pediatric acute myeloid leukemia in first complete remission: a meta-analysis. Ann Hematol 2022; 101:2497-2506. [PMID: 36038660 PMCID: PMC9546991 DOI: 10.1007/s00277-022-04965-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/19/2022] [Indexed: 11/01/2022]
Abstract
Identification of pediatric patients with acute myeloid leukemia (AML) candidates to receive allogeneic hematopoietic stem cell transplantation (allo-HSCT) in first complete remission (CR1) is still a matter of debate. Currently, transplantation is reserved to patients considered at high risk of relapse based on cytogenetics, molecular biology, and minimal residual disease (MRD) assessment. However, no randomized clinical trial exists in the literature comparing transplantation with other types of consolidation therapy. Here, we provide an up-to-date meta-analysis of studies comparing allo-HSCT in CR1 with chemotherapy alone as a post-remission treatment in high-risk pediatric AML. The literature search strategy identified 10 cohorts from 9 studies performing as-treated analysis. The quantitative synthesis showed improved overall survival (OS) (relative risk, 1.15; 95% confidence interval [CI], 1.06-1.24; P = 0.0006) and disease-free survival (relative risk, 1.31; 95% CI, 1.17-1.47; P = 0.0001) in the allo-HSCT group, with increased relapse rate in the chemotherapy group (relative risk, 1.26; 95% CI, 1.07-1.49; P = 0.006). Sensitivity analysis including prospective studies alone and excluding studies that reported the comparison only on intermediate-risk patients confirmed the benefit of allo-HSCT on OS. Further research should focus on individualizing allo-HSCT indications based on molecular stratification and MRD monitoring.
Collapse
|
7
|
Measurable residual disease (MRD) status before allogeneic hematopoietic cell transplantation impact on secondary acute myeloid leukemia outcome. A Study from the Acute Leukemia Working Party (ALWP) of the European society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant 2022; 57:1556-1563. [PMID: 35835997 DOI: 10.1038/s41409-022-01748-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 12/21/2022]
Abstract
Measurable residual disease (MRD) assessment before allogeneic hematopoietic cell transplantation (HCT) may help physicians to identify a subgroup of patients at high risk of relapse for de novo acute myeloid leukemia (AML) but its relevance among patients affected by secondary AML (sAML) is still unknown. We assessed the impact of MRD among 318 adult patients with sAML who received an allogeneic HCT in first complete remission. At the time of HCT, a total of 208 (65%) patients achieved MRD negativity, while 110 (35%) had positive MRD. 2-year overall survival (OS) was 58.8 % (95% CI 52.2-64.9) with leukemia-free survival (LFS) of 50.0 % (95% CI 43.7-56.1), relapse incidence of 34.2% (95% CI 28.4-40.1) and non-relapse mortality (NRM) of 23.3 % (95% CI 19-27.7) for the entire cohort. In multivariate analysis, HCT recipients with KPS ≥ 90 experienced less disease recurrence (HR 0.61, 95% CI 0.4-0.94) with better LFS (HR 0.63, 95% CI 0.44-0.89) and OS (HR 0.58, 95% CI 0.39-0.86). There were no differences in major clinical endpoints between patients with MRD-positive and MRD-negative status at the time of HCT. Pre-transplantation assessment of MRD was not informative on post-HCT outcomes in this retrospective registry-based analysis among patients affected by sAML.
Collapse
|
8
|
Cluzeau T, Lemoli RM, McCloskey J, Cooper T. Measurable Residual Disease in High-Risk Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:cancers14051278. [PMID: 35267586 PMCID: PMC8909238 DOI: 10.3390/cancers14051278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Assessment of measurable residual disease (MRD) identifies small numbers of acute myeloid leukemia (AML) cells that may remain after initiating treatment. The achievement of MRD negativity (no detectable AML cells remaining) typically predicts better outcomes for patients with AML. Some patients with AML have disease characteristics that put them at a higher risk of treatment failure or relapse; while outcomes for patients with high-risk AML are historically poor with traditional chemotherapy regimens, newer chemotherapy formulations (i.e., CPX-351) and targeted therapies may be more effective in achieving MRD negativity in these patients. Currently, there is no agreement on the best method for determining whether a patient has achieved MRD negativity, and the use of several different methods makes it difficult to compare outcomes across studies. Despite these challenges, regular monitoring of patients for the achievement of MRD negativity will become increasingly important in the routine management of patients with high-risk AML. Abstract Mounting evidence suggests measurable residual disease (MRD) assessments are prognostic in acute myeloid leukemia (AML). High-risk AML encompasses a subset of AML with poor response to therapy and prognosis, with features such as therapy-related AML, an antecedent hematologic disorder, extramedullary disease (in adults), and selected mutations and cytogenetic abnormalities. Historically, few patients with high-risk AML achieved deep and durable remission with conventional chemotherapy; however, newer agents might be more effective in achieving MRD-negative remission. CPX-351 (dual-drug liposomal encapsulation of daunorubicin/cytarabine at a synergistic ratio) demonstrated MRD-negativity rates of 36–64% across retrospective studies in adults with newly diagnosed high-risk AML and 84% in pediatric patients with first-relapse AML. Venetoclax (BCL2 inhibitor) demonstrated MRD-negativity rates of 33–53% in combination with hypomethylating agents for high-risk subgroups in studies of older adults with newly diagnosed AML who were ineligible for intensive therapy and 65% in combination with chemotherapy in pediatric patients with relapsed/refractory AML. However, there is no consensus on optimal MRD methodology in AML, and the use of different techniques, sample sources, sensitivity thresholds, and the timing of assessments limit comparisons across studies. Robust MRD analyses are needed in future clinical studies, and MRD monitoring should become a routine aspect of AML management.
Collapse
Affiliation(s)
- Thomas Cluzeau
- Service d’hématologie, Université Cote d’Azur, CHU de Nice, 06200 Nice, France
- Correspondence: ; Tel.: +33-492035841; Fax: +33-492035895
| | - Roberto M. Lemoli
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
- Clinic of Hematology, Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| | - James McCloskey
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA;
| | - Todd Cooper
- Division of Hematology/Oncology, Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA 98105, USA;
| |
Collapse
|
9
|
Pediatric Acute Myeloid Leukemia—Past, Present, and Future. J Clin Med 2022; 11:jcm11030504. [PMID: 35159956 PMCID: PMC8837075 DOI: 10.3390/jcm11030504] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
This review reports about the main steps of development in pediatric acute myeloid leukemia (AML) concerning diagnostics, treatment, risk groups, and outcomes. Finally, a short overview of present and future approaches is given.
Collapse
|
10
|
Hammel P, Carrier E, Carney M, Eisner M, Fleming T. A novel event-free survival endpoint in locally advanced pancreatic cancer. Ther Adv Med Oncol 2021; 13:17588359211059586. [PMID: 34868352 PMCID: PMC8640304 DOI: 10.1177/17588359211059586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The treatment paradigm for locally advanced pancreatic cancer (LAPC) is evolving rapidly. The development of neoadjuvant therapies composed of combination therapies and the evaluation of their impact on conversion to borderline resectable (BR) status, resection, and ultimately overall survival (OS) are presently being pursued. These efforts justify re-visiting study endpoints in order to better predict therapeutic effects on OS, by capturing not only the achievement of R0 resection at the end of induction therapy but also the long-term reductions in the rate of local and distal recurrence. The proposed herein event-free survival (EFS) endpoint, with its novel definition specific to LAPC, is formulated to achieve these objectives. It is an analog to disease-free survival (DFS) endpoint in the adjuvant setting applied to the neoadjuvant setting and may be a valuable surrogate endpoint for this patient population.
Collapse
Affiliation(s)
- Pascal Hammel
- Digestive and Medical Oncology Department, Hospital Paul Brousse, University Paris-Saclay, 94800 Villejuif, France
| | - Ewa Carrier
- Department of Clinical Development, FibroGen, Inc., San Francisco, CA, USA
| | - Mairead Carney
- Department of Clinical Development, FibroGen, Inc., San Francisco, CA, USA
| | - Mark Eisner
- Department of Clinical Development, FibroGen, Inc., San Francisco, CA, USA
| | - Thomas Fleming
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Recent Advances in the Management of Pediatric Acute Myeloid Leukemia-Report of the Hungarian Pediatric Oncology-Hematology Group. Cancers (Basel) 2021; 13:cancers13205078. [PMID: 34680225 PMCID: PMC8534106 DOI: 10.3390/cancers13205078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The outcome of pediatric AML improved considerably worldwide during the past few decades. Hereby, we summarize the therapeutic results of pediatric AML patients registered between 2012 and 2019 in Hungary. As compared to our previous results, improvement was registered in event-free (EFS) and overall (OS) survival, which can be attributed to the application of contemporary diagnostic and therapeutic guidelines, advanced supportation, and higher efficacy of hematopoietic stem cell transplantation. Between 2016 and 2019, a statistically significant increment of 2-year EFS was confirmed over the period between 2012 and 2015. The most prominent progress was observed in acute promyelocytic leukemia (APL). Multidimensional flow cytometry made possible the prompt introduction of ATRA in two cases with M3v, who also represent the first pediatric APL patients in Hungary to be treated with arsenic-trioxide. Besides joining multinational pediatric AML treatment groups, our future aims include the introduction of centralized treatment centers and diagnostic facilities. Abstract Outcome measures of pediatric acute myeloid leukemia (AML) improved considerably between 1990 and 2011 in Hungary. Since 2012, efforts of the Hungarian Pediatric Oncology-Hematology Group (HPOG) included the reduction in the number of treatment centers, contemporary diagnostic procedures, vigorous supportation, enhanced access to hematopoietic stem cell transplantation (HSCT), and to targeted therapies. The major aim of our study was to evaluate AML treatment results of HPOG between 2012 and 2019 with 92 new patients registered (52 males, 40 females, mean age 7.28 years). Two periods were distinguished: 2012–2015 and 2016–2019 (55 and 37 patients, respectively). During these periods, 2 y OS increased from 63.6% to 71.4% (p = 0.057), and the 2 y EFS increased significantly from 56.4% to 68.9% (p = 0.02). HSCT was performed in 37 patients (5 patients received a second HSCT). We demonstrate advances in the diagnosis and treatment of acute promyelocytic leukemia (APL) in two cases. Early diagnosis and follow-up were achieved by multidimensional flow cytometry and advanced molecular methods. Both patients were successfully treated with all-trans retinoic acid and arsenic-trioxide, in addition to chemotherapy. In order to meet international standards of pediatric AML management, HPOG will further centralize treatment centers and diagnostic facilities and join efforts with international study groups.
Collapse
|
12
|
Paiva B, Vidriales MB, Sempere A, Tarín F, Colado E, Benavente C, Cedena MT, Sánchez J, Caballero-Velazquez T, Cordón L, Garces JJ, Simoes C, Martínez-Cuadrón D, Bernal T, Botella C, Grille S, Serrano J, Rodríguez-Medina C, Algarra L, Alonso-Domínguez JM, Amigo ML, Barrios M, García-Boyero R, Colorado M, Pérez-Oteyza J, Pérez-Encinas M, Costilla-Barriga L, Sayas MJ, Pérez O, González-Díaz M, Pérez-Simón JA, Martínez-López J, Sossa C, Orfao A, San Miguel JF, Sanz MÁ, Montesinos P. Impact of measurable residual disease by decentralized flow cytometry: a PETHEMA real-world study in 1076 patients with acute myeloid leukemia. Leukemia 2021; 35:2358-2370. [PMID: 33526859 DOI: 10.1038/s41375-021-01126-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 01/07/2021] [Indexed: 01/29/2023]
Abstract
The role of decentralized assessment of measurable residual disease (MRD) for risk stratification in acute myeloid leukemia (AML) remains largely unknown, and so it does which methodological aspects are critical to empower the evaluation of MRD with prognostic significance, particularly if using multiparameter flow cytometry (MFC). We analyzed 1076 AML patients in first remission after induction chemotherapy, in whom MRD was evaluated by MFC in local laboratories of 60 Hospitals participating in the PETHEMA registry. We also conducted a survey on technical aspects of MRD testing to determine the impact of methodological heterogeneity in the prognostic value of MFC. Our results confirmed the recommended cutoff of 0.1% to discriminate patients with significantly different cumulative-incidence of relapse (-CIR- HR:0.71, P < 0.001) and overall survival (HR: 0.73, P = 0.001), but uncovered the limited prognostic value of MFC based MRD in multivariate and recursive partitioning models including other clinical, genetic and treatment related factors. Virtually all aspects related with methodological, interpretation, and reporting of MFC based MRD testing impacted in its ability to discriminate patients with different CIR. Thus, this study demonstrated that "real-world" assessment of MRD using MFC is prognostic in patients at first remission, and urges greater standardization for improved risk-stratification toward clinical decisions in AML.
Collapse
Affiliation(s)
- Bruno Paiva
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBER-ONC number CB16/12/00369, Pamplona, Spain
| | - María-Belen Vidriales
- Department of Hematology, University Hospital of Salamanca (HUS/IBSAL), CIBERONC (CB16/12/002333) and Center for Cancer Research-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Amparo Sempere
- Hospital Universitario y Politécnico La Fe, CIBER-ONC number CB16/12/00284, Valencia, Spain
| | - Fabián Tarín
- Hospital General Universitario de Alicante, Alicante, Spain
| | - Enrique Colado
- Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria y Universitario Oncológico del Principado de Asturias (ISPA / IUOPA), Oviedo, Spain
| | | | | | | | - Teresa Caballero-Velazquez
- Hopsital Universitario Virgen del Rocío, Instituto de Biomedicina (IBIS / CSIC / CIBERONC), Universidad de Sevilla, Sevilla, Spain
| | - Lourdes Cordón
- Hospital Universitario y Politécnico La Fe, CIBER-ONC number CB16/12/00284, Valencia, Spain
| | - Juan-Jose Garces
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBER-ONC number CB16/12/00369, Pamplona, Spain
| | - Catia Simoes
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBER-ONC number CB16/12/00369, Pamplona, Spain
| | - David Martínez-Cuadrón
- Hospital Universitario y Politécnico La Fe, CIBER-ONC number CB16/12/00284, Valencia, Spain
| | - Teresa Bernal
- Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria y Universitario Oncológico del Principado de Asturias (ISPA / IUOPA), Oviedo, Spain
| | - Carmen Botella
- Hospital General Universitario de Alicante, Alicante, Spain
| | - Sofia Grille
- Hospital de Clinicas. Montevideo, Uruguay, Spain
| | | | | | | | | | | | - Manuel Barrios
- Hospital Regional Universitario de Málaga, Malaga, Spain
| | | | | | | | | | | | | | - Olga Pérez
- Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Marcos González-Díaz
- Department of Hematology, University Hospital of Salamanca (HUS/IBSAL), CIBERONC (CB16/12/002333) and Center for Cancer Research-IBMCC (USAL-CSIC), Salamanca, Spain
| | - José A Pérez-Simón
- Hopsital Universitario Virgen del Rocío, Instituto de Biomedicina (IBIS / CSIC / CIBERONC), Universidad de Sevilla, Sevilla, Spain
| | | | | | - Alberto Orfao
- Cancer Research Center (IBMCC-CSIC/USAL-IBSAL); Cytometry Service (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain.,(USAL) Centro de Investigación Biomédica en Red de Cáncer, Instituto Carlos III, Salamanca, Spain.,CIBER-ONC number CB16/12/00400, Salamanca, Spain
| | - Jesús F San Miguel
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBER-ONC number CB16/12/00369, Pamplona, Spain
| | - Miguel-Ángel Sanz
- Hospital Universitario y Politécnico La Fe, CIBER-ONC number CB16/12/00284, Valencia, Spain
| | - Pau Montesinos
- Hospital Universitario y Politécnico La Fe, CIBER-ONC number CB16/12/00284, Valencia, Spain.
| | | |
Collapse
|
13
|
Abstract
Minimal or measurable residual disease (MRD) after therapy is the most important independent prognostic factor in acute myeloid leukemia. MRD measured by multiparametric flow cytometry and real-time quantitative polymerase chain reaction has been integrated into risk stratification and used to guide future treatment strategies. Recent technological advances have allowed the application of the novel molecular method, high-throughput sequencing, in MRD detection in clinical practice to improve sensitivity and specificity. Randomized studies are needed to address outstanding issues, including the optimal methods and timing of MRD testing and interlaboratory standardization to facilitate comparisons, to further improve MRD-directed interventions.
Collapse
Affiliation(s)
- Xueyan Chen
- Hematopathology, SCCA G7800, 825 Eastlake Ave E., Seattle, WA 98109, USA
| | - Sindhu Cherian
- Hematopathology, SCCA G7800, 825 Eastlake Ave E., Seattle, WA 98109, USA.
| |
Collapse
|
14
|
Egan G, Chopra Y, Mourad S, Chiang KY, Hitzler J. Treatment of acute myeloid leukemia in children: A practical perspective. Pediatr Blood Cancer 2021; 68:e28979. [PMID: 33844444 DOI: 10.1002/pbc.28979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/17/2021] [Accepted: 02/07/2021] [Indexed: 12/17/2022]
Abstract
Pediatric acute myeloid leukemia (AML) is a heterogeneous disease that requires a multifaceted treatment approach. Although outcomes for low-risk AML have improved significantly over recent decades, high-risk AML continues to be associated with an adverse prognosis. Recent advances in molecular diagnostics, risk stratification, and supportive care have contributed to improvements in outcomes in pediatric AML. Targeted approaches, for example, the use of tyrosine kinase inhibitors to treat FLT3-ITD AML, offer promise and are currently undergoing clinical investigation in pediatric patients. New approaches to hematopoietic stem cell transplantation, including the use of haploidentical donors, are significantly expanding donor options for patients with high-risk AML. This review provides an overview of recent advances in the treatment of pediatric AML that are likely to have clinical impact and reshape the standard of care.
Collapse
Affiliation(s)
- Grace Egan
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yogi Chopra
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephanie Mourad
- Division of Haematology/Oncology, Montreal Children's Hospital, Montreal, QC, Canada
| | - Kuang-Yueh Chiang
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Johann Hitzler
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| |
Collapse
|
15
|
Bernasconi P, Borsani O. Eradication of Measurable Residual Disease in AML: A Challenging Clinical Goal. Cancers (Basel) 2021; 13:3170. [PMID: 34202000 PMCID: PMC8268140 DOI: 10.3390/cancers13133170] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 12/18/2022] Open
Abstract
In non-promyelocytic (non-M3) AML measurable residual disease (MRD) detected by multi-parameter flow cytometry and molecular technologies, which are guided by Consensus-based guidelines and discover very low leukemic cell numbers far below the 5% threshold of morphological assessment, has emerged as the most relevant predictor of clinical outcome. Currently, it is well-established that MRD positivity after standard induction and consolidation chemotherapy, as well as during the period preceding an allogeneic hematopoietic stem cell transplant (allo-HSCT), portends to a significantly inferior relapse-free survival (RFS) and overall survival (OS). In addition, it has become absolutely clear that conversion from an MRD-positive to an MRD-negative state provides a favorable clinical outcome similar to that associated with early MRD negativity. Thus, the complete eradication of MRD, i.e., the clearance of the few leukemic stem cells-which, due to their chemo-radiotherapy resistance, might eventually be responsible of disease recurrence-has become an un-met clinical need in AML. Nowadays, this goal might potentially be achieved thanks to the development of novel innovative treatment strategies, including those targeting driver mutations, apoptosis, methylation patterns and leukemic proteins. The aim of this review is to analyze these strategies and to suggest any potential combination able to induce MRD negativity in the pre- and post-HSCT period.
Collapse
Affiliation(s)
- Paolo Bernasconi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Hematology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Oscar Borsani
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
16
|
Morphologic remission status is limited compared to ΔN flow cytometry: a Children's Oncology Group AAML0531 report. Blood Adv 2021; 4:5050-5061. [PMID: 33080007 DOI: 10.1182/bloodadvances.2020002070] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022] Open
Abstract
Risk stratification for acute myeloid leukemia (AML) uses molecular and cytogenetic abnormalities identified at diagnosis. Response to therapy informs risk, and morphology continues to be used more frequently than flow cytometry. Herein, the largest cohort of pediatric patients prospectively assessed for measurable residual disease (MRD) by flow cytometry (N = 784) is reported. The "difference from normal" (ΔN) technique was applied: 31% of all patients tested positive (AML range, 0.02% to 91%) after the first course of treatment on Children's Oncology Group study AAML0531. Detection of MRD following initial chemotherapy proved the strongest predicator of overall survival (OS) in univariable and multivariable analyses, and was predictive of relapse risk, disease-free survival, and treatment-related mortality. Clearance of MRD after a second round of chemotherapy did not improve survival. The morphologic definition of persistent disease (>15% AML) failed 27% of the time; those identified as MRD- had superior outcomes. Similarly, for patients not achieving morphologic remission (>5% blasts), 36% of patients were MRD- and had favorable outcomes compared with those who were MRD+ (P < .001); hence an increase in myeloid progenitor cells can be favorable when ΔN classifies them as phenotypically normal. Furthermore, ΔN reclassified 20% of patients in morphologic remission as having detectable MRD with comparable poor outcomes. Retrospective analysis using the relapse phenotype as a template demonstrated that 96% of MRD- patients had <0.02% of the relapse immunophenotype in their end of induction 1 marrow. Thus, the detection of abnormal myeloid progenitor cells by ΔN is both specific and sensitive, with a high predictive signal identifiable early in treatment. This trial was registered at www.clinicaltrials.gov as #NCT00372593.
Collapse
|
17
|
Zeng HM, Hu GH, Lu AD, Jia YP, Zuo YX, Zhang LP. Predictive impact of residual disease detected using multiparametric flow cytometry on risk stratification of paediatric acute myeloid leukaemia with normal karyotype. Int J Lab Hematol 2021; 43:752-759. [PMID: 33988302 DOI: 10.1111/ijlh.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Residual disease (RD) detected using multiparametric flow cytometry (MFC) is an independent predictive variable of relapse in acute myeloid leukaemia (AML). However, RD thresholds and optimal assessment time points remain to be validated. MATERIAL AND METHODS We investigated the significance of RD after induction therapy in paediatric AML with normal karyotype between June 2008 and June 2018. Bone marrow samples from 73 patients were collected at the end of the first (BMA-1) and second (BMA-2) induction courses to monitor RD using MFC. RESULTS Presence of RD after BMA-1 and/or BMA-2 correlated with poor relapse-free (RFS) and overall survival at 0.1% RD cutoff level. Receiver operating characteristic curve showed that RD cutoff levels of 1.3% and 0.5% after BMA-1 and BMA-2, respectively, predicted events with the highest sensitivity and specificity. In multivariable analysis, RD after BMA-2 was the strongest independent risk predictor for poor RFS (hazard ratio 2.934; 95% confidence interval: 1.106-7.782; P = .031). CONCLUSIONS Our study therefore suggests that an RD level ≥0.5% after BMA-2 has a significant predictive impact on the prognosis of AML patients having normal karyotype and thus guide the stratification of treatment strategies.
Collapse
Affiliation(s)
- Hui-Min Zeng
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Guan-Hua Hu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ai-Dong Lu
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Yue-Ping Jia
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Ying-Xi Zuo
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Le-Ping Zhang
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| |
Collapse
|
18
|
Measurable residual disease status and outcome of transplant in acute myeloid leukemia in second complete remission: a study by the acute leukemia working party of the EBMT. Blood Cancer J 2021; 11:88. [PMID: 33980810 PMCID: PMC8116335 DOI: 10.1038/s41408-021-00479-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/07/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Measurable residual disease (MRD) prior to hematopoietic cell transplant (HCT) for acute myeloid leukemia (AML) in first complete morphological remission (CR1) is an independent predictor of outcome, but few studies address CR2. This analysis by the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation registry assessed HCT outcomes by declared MRD status in a cohort of 1042 adult patients with AML CR2 at HCT. Patients were transplanted 2006–2016 from human leukocyte antigen (HLA) matched siblings (n = 719) or HLA 10/10 matched unrelated donors (n = 293). Conditioning was myeloablative (n = 610) or reduced-intensity (n = 432) and 566 patients (54%) had in-vivo T cell depletion. At HCT, 749 patients (72%) were MRD negative (MRD NEG) and 293 (28%) were MRD positive (MRD POS). Time from diagnosis to HCT was longer in MRD NEG than MRD POS patients (18 vs. 16 months (P < 0.001). Two-year relapse rates were 24% (95% CI, 21–28) and 40% (95% CI, 34–46) in MRD NEG and MRD POS groups (P < 0.001), respectively. Leukemia-free survival (LFS) was 57% (53–61) and 46% (40–52%), respectively (P = 0.001), but there was no difference in terms of overall survival. Prognostic factors for relapse and LFS were MRD NEG status, good risk cytogenetics, and longer time from diagnosis to HCT. In-vivo T cell depletion predicted relapse.
Collapse
|
19
|
Gadgeel M, AlQanber B, Buck S, Taub JW, Ravindranath Y, Savaşan S. Aberrant myelomonocytic CD56 expression in Down syndrome is frequent and not associated with leukemogenesis. Ann Hematol 2021; 100:1695-1700. [PMID: 33890142 DOI: 10.1007/s00277-021-04531-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022]
Abstract
Children with Down syndrome (DS) are at an increased risk of developing transient abnormal myelopoiesis (TAM) and acute leukemia. Aberrant expression of CD56 has been observed on myeloid leukemic blasts in DS patients. In general, CD56 expression in acute myeloid leukemia (AML) is considered a promoter of leukemogenesis. We did a retrospective flow cytometric study to investigate mature myelomonocytic cell CD56 expression patterns in TAM, non-TAM, and leukemia cases with DS. Flow cytometric analysis showed that granulocyte and monocyte aberrant/dysplastic CD56 expression is an inherent characteristic of most DS patients irrespective of the presence of TAM or leukemia. Increased CD56 expression in monocyte and granulocyte populations in DS could be multifactorial; greater expression of RUNX1 secondary to the gene dose effect of trisomy 21 along with the maturational state of the cells are the potential contributors. Unlike AML seen in non-DS patients, CD56 overexpression in DS AML cases does not appear to play a role in leukemogenesis.
Collapse
Affiliation(s)
- Manisha Gadgeel
- Children's Hospital of Michigan, Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Detroit, MI, USA
| | - Batool AlQanber
- Children's Hospital of Michigan, Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Detroit, MI, USA
| | - Steven Buck
- Children's Hospital of Michigan, Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Detroit, MI, USA
| | - Jeffrey W Taub
- Children's Hospital of Michigan, Division of Hematology/Oncology, Barbara Ann Karmanos Cancer Center, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yaddanapudi Ravindranath
- Children's Hospital of Michigan, Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Detroit, MI, USA.,Children's Hospital of Michigan, Division of Hematology/Oncology, Barbara Ann Karmanos Cancer Center, Wayne State University School of Medicine, Detroit, MI, USA
| | - Süreyya Savaşan
- Children's Hospital of Michigan, Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Detroit, MI, USA. .,Children's Hospital of Michigan, Division of Hematology/Oncology, Pediatric Blood and Marrow Transplant Program, Barbara Ann Karmanos Cancer Center, Central Michigan University College of Medicine, 3901 Beaubien Blvd., Detroit, MI, 48201, USA.
| |
Collapse
|
20
|
Segerink WH, de Haas V, Kaspers GJL. Measurable residual disease in pediatric acute myeloid leukemia: a systematic review. Expert Rev Anticancer Ther 2021; 21:451-459. [PMID: 33706635 DOI: 10.1080/14737140.2021.1860763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: A systematic review was performed to assess the prognostic value of Measurable Residual Disease (MRD) during treatment, for relapse and overall survival in pediatric acute myeloid leukemia (AML).Areas covered: A systematic search of available literature was performed to identify original full-text articles concerning MRD as prognostic for relapse and survival in pediatric AML. Thirteen studies were included, and in all studies, MRD positivity during treatment was associated with worse clinical outcome. MRD positivity was significantly associated with a higher probability of relapse in eleven studies. However, MRD negativity does not exclude the possibility of relapse in pediatric AML, while positivity early during therapy does not exclude cure.Expert opinion: MRD positivity during treatment has emerged as the most powerful prognostic factor in pediatric AML concerning relapse and overall survival and is useful for risk-group adapted treatment. Future studies should identify the optimal time-point(s) for MRD measurements and the optimal technique, to further improve its prognostic significance.
Collapse
Affiliation(s)
- W H Segerink
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584CS, The Netherlands
| | - V de Haas
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584CS, The Netherlands
| | - G J L Kaspers
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584CS, The Netherlands.,Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, The Netherlands
| |
Collapse
|
21
|
Short NJ, Zhou S, Fu C, Berry DA, Walter RB, Freeman SD, Hourigan CS, Huang X, Nogueras Gonzalez G, Hwang H, Qi X, Kantarjian H, Ravandi F. Association of Measurable Residual Disease With Survival Outcomes in Patients With Acute Myeloid Leukemia: A Systematic Review and Meta-analysis. JAMA Oncol 2020; 6:1890-1899. [PMID: 33030517 PMCID: PMC7545346 DOI: 10.1001/jamaoncol.2020.4600] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022]
Abstract
IMPORTANCE Measurable residual disease (MRD) refers to neoplastic cells that cannot be detected by standard cytomorphologic analysis. In patients with acute myeloid leukemia (AML), determining the association of MRD with survival may improve prognostication and inform selection of efficient clinical trial end points. OBJECTIVE To examine the association between MRD status and disease-free survival (DFS) and overall survival (OS) in patients with AML using scientific literature. DATA SOURCES Clinical studies on AML published between January 1, 2000, and October 1, 2018, were identified via searches of PubMed, Embase, and MEDLINE. STUDY SELECTION Literature search and study screening were performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Studies that assessed DFS or OS by MRD status in patients with AML were included. Reviews, non-English-language articles, and studies reporting only outcomes after hematopoietic cell transplantation or those with insufficient description of MRD information were excluded. DATA EXTRACTION AND SYNTHESIS Study sample size, median patient age, median follow-up time, MRD detection method, MRD assessment time points, AML subtype, specimen source, and survival outcomes were extracted. Meta-analyses were performed separately for DFS and OS using bayesian hierarchical modeling. MAIN OUTCOMES AND MEASURES Meta-analyses of survival probabilities and hazard ratios (HRs) were conducted for OS and DFS according to MRD status. RESULTS Eighty-one publications reporting on 11 151 patients were included. The average HR for achieving MRD negativity was 0.36 (95% bayesian credible interval [CrI], 0.33-0.39) for OS and 0.37 (95% CrI, 0.34-0.40) for DFS. The estimated 5-year DFS was 64% for patients without MRD and 25% for those with MRD, and the estimated OS was 68% for patients without MRD and 34% for those with MRD. The association of MRD negativity with DFS and OS was significant for all subgroups, with the exception of MRD assessed by cytogenetics or fluorescent in situ hybridization. CONCLUSIONS AND RELEVANCE The findings of this meta-analysis suggest that achievement of MRD negativity is associated with superior DFS and OS in patients with AML. The value of MRD negativity appears to be consistent across age groups, AML subtypes, time of MRD assessment, specimen source, and MRD detection methods. These results support MRD status as an end point that may allow for accelerated evaluation of novel therapies in AML.
Collapse
Affiliation(s)
- Nicholas J. Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston
| | - Shouhao Zhou
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Chenqi Fu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Donald A. Berry
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston
| | - Roland B. Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sylvie D. Freeman
- Institute of Infection and Immunity, University of Birmingham, Birmingham, United Kingdom
| | - Christopher S. Hourigan
- Laboratory of Myeloid Malignancies, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Xuelin Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston
| | | | - Hyunsoo Hwang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston
| | - Xinyue Qi
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
22
|
Patkar N, Kakirde C, Bhanshe P, Joshi S, Chaudhary S, Badrinath Y, Ghoghale S, Deshpande N, Kadechkar S, Chatterjee G, Kannan S, Shetty D, Gokarn A, Punatkar S, Bonda A, Nayak L, Jain H, Bagal B, Menon H, Sengar M, Khizer SH, Khattry N, Tembhare P, Gujral S, Subramanian P. Utility of Immunophenotypic Measurable Residual Disease in Adult Acute Myeloid Leukemia-Real-World Context. Front Oncol 2019; 9:450. [PMID: 31263671 PMCID: PMC6584962 DOI: 10.3389/fonc.2019.00450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023] Open
Abstract
Introduction: One of the mainstays of chemotherapy in acute myeloid leukemia (AML) is induction with a goal to achieve morphological complete remission (CR). However, not all patients by this remission criterion achieve long-term remission and a subset relapse. This relapse is explained by the presence of measurable residual disease (MRD). Methods: We accrued 451 consecutive patients of adult AML (from March 2012 to December 2017) after informed consent. All patients received standard chemotherapy. MRD testing was done at post-induction and, if feasible, post-consolidation using 8- and later 10-color FCM. Analysis of MRD was done using a combination of difference from normal and leukemia-associated immunophenotype approaches. Conventional karyotyping and FISH were done as per standard recommendations, and patients were classified into favorable, intermediate, and poor cytogenetic risk groups. The presence of FLT3-ITD, NPM1, and CEBPA mutations was detected by a fragment length analysis-based assay. Results: As compared to Western data, our cohort of patients was younger with a median age of 35 years. There were 62 induction deaths in this cohort (13.7%), and 77 patients (17.1%) were not in morphological remission. The median follow-up was 26.0 months. Poor-risk cytogenetics and the presence of FLT3-ITD were significantly associated with inferior outcome. The presence of post-induction MRD assessment was significantly associated with adverse outcome with respect to OS (p = 0.01) as well as RFS (p = 0.004). Among established genetic subgroups, detection of MRD in intermediate cytogenetic and NPM1 mutated groups was also highly predictive of inferior outcome. On multivariate analysis, immunophenotypic MRD at the end of induction and FLT3-ITD emerged as independent prognostic factors predictive for outcome. Conclusion: This is the first data from a resource-constrained real-world setting demonstrating the utility of AML MRD as well as long-term outcome of AML. Our data is in agreement with other studies that determination of MRD is extremely important in predicting outcome. AML MRD is a very useful guide for guiding post-remission strategies in AML and should be incorporated into routine treatment algorithms.
Collapse
Affiliation(s)
- Nikhil Patkar
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Chinmayee Kakirde
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Prasanna Bhanshe
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Swapnali Joshi
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Shruti Chaudhary
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India
| | | | - Sitaram Ghoghale
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Nilesh Deshpande
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Shraddha Kadechkar
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Gaurav Chatterjee
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Sadhana Kannan
- Biostatistics, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Dhanalaxmi Shetty
- Department of Cytogenetics, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Anant Gokarn
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Sachin Punatkar
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Avinash Bonda
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Lingaraj Nayak
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Hasmukh Jain
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Bhausaheb Bagal
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Hari Menon
- Haemato-Oncology, CyteCare Cancer Hospital, Bangalore, India
| | - Manju Sengar
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Syed Hasan Khizer
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Navin Khattry
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Prashant Tembhare
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Sumeet Gujral
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India
| | | |
Collapse
|
23
|
Park EG, Yi ES, Choi YB, Sung KW, Koo HH, Yoo KH. Unrelated donor hematopoietic stem cell transplantation for pediatric de novo acute myeloid leukemia with intermediate- or high-risk cytogenetics. Pediatr Transplant 2019; 23:e13397. [PMID: 30955250 DOI: 10.1111/petr.13397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/10/2018] [Accepted: 10/22/2018] [Indexed: 11/29/2022]
Abstract
The role of unrelated donor HSCT for children with de novo AML in CR1 is controversial. We performed this study to investigate the feasibility of unrelated donor HSCT who initially had intermediate- or high-risk cytogenetics. We retrospectively reviewed medical records of patients with AML who received unrelated HSCT in CR1 at Samsung Medical Center between November 2001 and January 2012. Patients were allocated based on karyotype at diagnosis as follows: (a) low-risk: inv(16), t(16;16), t(8;21), and t(15;17); (b) high-risk: -5, 5q-, -7, 3q abnormalities, t(8;16), t(6;9), t(6;11), t(6;21), t(10;11), complex karyotype (≥3 abnormalities), and acute megakaryocytic leukemia without t(1;22); and (c) IR: all the other karyotypes including normal. Patients in intermediate- or high-risk group who were transplanted with either unrelated CB or matched unrelated BM/mobilized PB in their CR1 were included in this study. The projected OS and EFS rates were 74.9% and 71.1%, respectively, with a median follow-up of 87.3 months after transplantation. The EFS was 70.1%, 80.7%, and 73.9% for CB, BM, and mobilized PB groups, respectively (P = 0.89), and 73.9% and 70.6% for IR and high-risk groups (P = 0.76). The leading cause of death was relapse (n = 8), and only one patient died from non-relapse cause. Unrelated donor HSCT seems a feasible approach for children with intermediate- or high-risk AML in CR1. Relapse remains the leading cause of treatment failure among these patients.
Collapse
Affiliation(s)
- Eu Gene Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Sang Yi
- Department of Pediatrics, Korea University Guro Hospital, Seoul, Korea
| | - Young Bae Choi
- Department of Pediatrics, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Science and Technology, SAIHST, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Abstract
Increasing evidence supports the prognostic significance of measurable residual disease (MRD) in acute myeloid leukemia (AML). Dynamic MRD assessment for patients with AML complements baseline patient risk assessment factors in determining patient prognosis. MRD status may also be helpful in informing therapeutic decisions. The European Leukemia Net MRD working party recently issued consensus recommendations for the use of MRD in AML. The Food and Drug Administration also issued advice for using MRD in trials of hematologic malignancies. This article discusses MRD testing, highlights the challenges in adopting MRD testing in clinical practice, and provides insights into the future of the field.
Collapse
|
25
|
Sui J, Chen Q, Zhang Y, Sheng Y, Wu J, Li J, Weng X, Chen B. Identifying leukemia-associated immunophenotype-based individualized minimal residual disease in acute myeloid leukemia and its prognostic significance. Am J Hematol 2019; 94:528-538. [PMID: 30734356 DOI: 10.1002/ajh.25431] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/25/2022]
Abstract
Based on the leukemia-associated immunophenotypes (LAIPs), minimal residual disease (MRD) related to the outcome can be detected by multiparameter flow cytometry in acute myeloid leukemia (AML) patients. Although 0.1% was commonly used as a cutoff value, measurable MRD or MRD level below 0.1% has also been associated with prognostic significance and more sensitive thresholds (<0.1%) are required for improving AML prognosis prediction. In this study, 292 adult patients diagnosed with AML (non-M3) were enrolled, 36 kinds of LAIPs were identified, and the baseline expression levels in normal or regenerating bone marrows of each kind of LAIP were established, which ranged from <2.00 × 10-5 to 5.71 × 10-4 . The baseline level of each LAIP was considered as the individual threshold for MRD assessment. MRD statuses stratified by 0.1% and individual threshold were termed as 0.1%-MRD and individual-MRD, respectively. The patients of individual-MRDneg showed significantly better survival compared with those of 0.1%-MRDneg /individual-MRDpos or 0.1%-MRDpos . Multivariate analysis showed that when time points of complete remission, post the first and second consolidation courses, were considered, only individual-MRD post second consolidation presented independent prognostic value. Notably, in patients of cytogenetic/molecular low-risk (LR) or intermediate-risk (IR), the individual-MRD status could identify the patients with significantly different outcomes, while 0.1%-MRD status could not. Furthermore, among the patients of the LR or IR group which received chemotherapy only, those with individual-MRDneg status presented favorable survival, which was comparable with that of the patients accepted allogeneic hematopoietic stem cell transplantation (ASCT). This approach is useful in the selection of an ASCT strategy for clinical practice.
Collapse
Affiliation(s)
- Jing‐Ni Sui
- State Key Laboratory of Medical GenomicsShanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine 197 Rui Jin Road II, Shanghai China
| | - Qiu‐Sheng Chen
- State Key Laboratory of Medical GenomicsShanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine 197 Rui Jin Road II, Shanghai China
| | - Yun‐Xiang Zhang
- State Key Laboratory of Medical GenomicsShanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine 197 Rui Jin Road II, Shanghai China
| | - Yan Sheng
- State Key Laboratory of Medical GenomicsShanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine 197 Rui Jin Road II, Shanghai China
| | - Jing Wu
- State Key Laboratory of Medical GenomicsShanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine 197 Rui Jin Road II, Shanghai China
| | - Jun‐Min Li
- State Key Laboratory of Medical GenomicsShanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine 197 Rui Jin Road II, Shanghai China
| | - Xiang‐Qin Weng
- State Key Laboratory of Medical GenomicsShanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine 197 Rui Jin Road II, Shanghai China
| | - Bing Chen
- State Key Laboratory of Medical GenomicsShanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine 197 Rui Jin Road II, Shanghai China
| |
Collapse
|
26
|
Ehinger M, Pettersson L. Measurable residual disease testing for personalized treatment of acute myeloid leukemia. APMIS 2019; 127:337-351. [PMID: 30919505 DOI: 10.1111/apm.12926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022]
Abstract
This review summarizes - with the practicing hematologist in mind - the methods used to determine measurable residual disease (MRD) in everyday practice with some future perspectives, and the current knowledge about the prognostic impact of MRD on outcome in acute myeloid leukemia (AML), excluding acute promyelocytic leukemia. Possible implications for choice of MRD method, timing of MRD monitoring, and guidance of therapy are discussed in general and in some detail for certain types of leukemia with specific molecular markers to monitor, including core binding factor (CBF)-leukemias and NPM1-mutated leukemias.
Collapse
Affiliation(s)
- Mats Ehinger
- Department of Clinical Sciences, Pathology, Skane University Hospital, Lund University, Lund, Sweden
| | - Louise Pettersson
- Department of Pathology, Halland Hospital Halmstad, Region Halland, Halmstad, Sweden.,Faculty of Medicine, Division of Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Deng DX, Zhu HH, Liu YR, Chang YJ, Ruan GR, Jia JS, Jiang H, Jiang Q, Zhao XS, Huang XJ. Minimal residual disease detected by multiparameter flow cytometry is complementary to genetics for risk stratification treatment in acute myeloid leukemia with biallelic CEBPA mutations. Leuk Lymphoma 2019; 60:2181-2189. [PMID: 30773106 DOI: 10.1080/10428194.2019.1576868] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dao-Xing Deng
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
| | - Hong-Hu Zhu
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yan-Rong Liu
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
| | - Ying-Jun Chang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
| | - Guo-Rui Ruan
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
| | - Jin-Song Jia
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
| | - Hao Jiang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
| | - Qian Jiang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiao-Su Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiao-Jun Huang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
28
|
Buldini B, Maurer-Granofszky M, Varotto E, Dworzak MN. Flow-Cytometric Monitoring of Minimal Residual Disease in Pediatric Patients With Acute Myeloid Leukemia: Recent Advances and Future Strategies. Front Pediatr 2019; 7:412. [PMID: 31681710 PMCID: PMC6798174 DOI: 10.3389/fped.2019.00412] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/25/2019] [Indexed: 01/10/2023] Open
Abstract
Minimal residual disease (MRD) by multiparametric flow cytometry (MFC) has been recently shown as a strong and independent prognostic marker of relapse in pediatric AML (pedAML) when measured at specific time points during Induction and/or Consolidation therapy. Hence, MFC-MRD has the potential to refine the current strategies of pedAML risk stratification, traditionally based on the cytogenetic and molecular genetic aberrations at diagnosis. Consequently, it may guide the modulation of therapy intensity and clinical decision making. However, the use of non-standardized protocols, including different staining panels, analysis, and gating strategies, may hamper a broad implementation of MFC-MRD monitoring in clinical routine. Besides, the thresholds of MRD positivity still need to be validated in large, prospective and multi-center clinical studies, as well as optimal time points of MRD assessment during therapy, to better discriminate patients with different prognosis. In the present review, we summarize the most relevant findings on MFC-MRD testing in pedAML. We examine the clinical significance of MFC-MRD and the recent advances in its standardization, including innovative approaches with an automated analysis of MFC-MRD data. We also touch upon other technologies for MRD assessment in AML, such as quantitative genomic breakpoint PCR, current challenges and future strategies to enable full incorporation of MFC-MRD into clinical practice.
Collapse
Affiliation(s)
- Barbara Buldini
- Laboratory of Hematology-Oncology, Department of Woman's and Child's Health, University of Padova, Padova, Italy
| | | | - Elena Varotto
- Laboratory of Hematology-Oncology, Department of Woman's and Child's Health, University of Padova, Padova, Italy
| | - Michael N Dworzak
- Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung, Vienna, Austria
| |
Collapse
|
29
|
Xiao W, Goldberg AD, Famulare CA, Devlin SM, Nguyen NT, Sim S, Kabel CC, Patel MA, McGovern EM, Patel A, Schulman J, Dunbar AJ, Epstein-Peterson ZD, Menghrajani KN, Getta BM, Cai SF, Geyer MB, Glass JL, Taylor J, Viny AD, Levine RL, Zhang Y, Giralt SA, Klimek V, Tallman MS, Roshal M. Loss of plasmacytoid dendritic cell differentiation is highly predictive for post-induction measurable residual disease and inferior outcomes in acute myeloid leukemia. Haematologica 2018; 104:1378-1387. [PMID: 30523054 PMCID: PMC6601104 DOI: 10.3324/haematol.2018.203018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
Measurable residual disease is associated with inferior outcomes in patients with acute myeloid leukemia (AML). Measurable residual disease monitoring enhances risk stratification and may guide therapeutic intervention. The European LeukemiaNet working party recently came to a consensus recommendation incorporating leukemia associated immunophenotype-based different from normal approach by multi-color flow cytometry for measurable residual disease evaluation. However, the analytical approach is highly expertise-dependent and difficult to standardize. Here we demonstrate that loss of plasmacytoid dendritic cell differentiation after 7+3 induction in AML is highly specific for measurable residual disease positivity (specificity 97.4%) in a uniformly treated patient cohort. Moreover, loss of plasmacytoid dendritic cell differentiation as determined by a blast-to-plasmacytoid dendritic cell ratio >10 was strongly associated with inferior overall and relapse-free survival (RFS) [Hazard ratio 2.79, 95% confidence interval (95%CI): 0.98-7.97; P=0.077) and 3.83 (95%CI: 1.51-9.74; P=0.007), respectively), which is similar in magnitude to measurable residual disease positivity. Importantly, measurable residual disease positive patients who reconstituted plasmacytoid dendritic cell differentiation (blast/ plasmacytoid dendritic cell ratio <10) showed a higher rate of measurable residual disease clearance at later pre-transplant time points compared to patients with loss of plasmacytoid dendritic cell differentiation (blast/ plasmacytoid dendritic cell ratio <10) (6 of 12, 50% vs. 2 of 18, 11%; P=0.03). Furthermore pre-transplant plasmacytoid dendritic cell recovery was associated with superior outcome in measurable residual disease positive patients. Our study provides a novel, simple, broadly applicable, and quantitative multi-color flow cytometry approach to risk stratification in AML.
Collapse
Affiliation(s)
- Wenbin Xiao
- Department of Pathology, Hematopathology Diagnostic Service
| | | | | | | | - Nghia T Nguyen
- Department of Pathology, Hematopathology Diagnostic Service
| | - Sinnifer Sim
- Department of Pathology, Hematopathology Diagnostic Service
| | | | | | | | | | | | | | | | | | | | | | - Mark B Geyer
- Department of Medicine, Leukemia Service.,Center for Cell Engineering
| | | | | | | | - Ross L Levine
- Department of Medicine, Leukemia Service.,Center for Hematologic Malignancies.,Human Oncology and Pathogenesis Program
| | | | - Sergio A Giralt
- Department of Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Mikhail Roshal
- Department of Pathology, Hematopathology Diagnostic Service
| |
Collapse
|
30
|
Martignoles JA, Delhommeau F, Hirsch P. Genetic Hierarchy of Acute Myeloid Leukemia: From Clonal Hematopoiesis to Molecular Residual Disease. Int J Mol Sci 2018; 19:E3850. [PMID: 30513905 PMCID: PMC6321602 DOI: 10.3390/ijms19123850] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the field of cancer genome analysis revolutionized the picture we have of acute myeloid leukemia (AML). Pan-genomic studies, using either single nucleotide polymorphism arrays or whole genome/exome next generation sequencing, uncovered alterations in dozens of new genes or pathways, intimately connected with the development of leukemia. From a simple two-hit model in the late nineties, we are now building clonal stories that involve multiple unexpected cellular functions, leading to full-blown AML. In this review, we will address several seminal concepts that result from these new findings. We will describe the genetic landscape of AML, the association and order of events that define multiple sub-entities, both in terms of pathogenesis and in terms of clinical practice. Finally, we will discuss the use of this knowledge in the settings of new strategies for the evaluation of measurable residual diseases (MRD), using clone-specific multiple molecular targets.
Collapse
Affiliation(s)
- Jean-Alain Martignoles
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Hématologie Biologique, F-75012 Paris, France.
| | - François Delhommeau
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Hématologie Biologique, F-75012 Paris, France.
| | - Pierre Hirsch
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Hématologie Biologique, F-75012 Paris, France.
| |
Collapse
|
31
|
Brooimans RA, van der Velden VHJ, Boeckx N, Slomp J, Preijers F, Te Marvelde JG, Van NM, Heijs A, Huys E, van der Holt B, de Greef GE, Kelder A, Schuurhuis GJ. Immunophenotypic measurable residual disease (MRD) in acute myeloid leukemia: Is multicentric MRD assessment feasible? Leuk Res 2018; 76:39-47. [PMID: 30553189 DOI: 10.1016/j.leukres.2018.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/01/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
Flow-cytometric detection of now termed measurable residual disease (MRD) in acute myeloid leukemia (AML) has proven to have an independent prognostic impact. In a previous multicenter study we developed protocols to accurately define leukemia-associated immunophenotypes (LAIPs) at diagnosis. It has, however, not been demonstrated whether the use of the defined LAIPs in the same multicenter setting results in a high concordance between centers in MRD assessment. In the present paper we evaluated whether interpretation of list-mode data (LMD) files, obtained from MRD assessment of previously determined LAIPs during and after treatment, could reliably be performed in a multicenter setting. The percentage of MRD positive cells was simultaneously determined in totally 173 LMD files from 77 AML patients by six participating centers. The quantitative concordance between the six participating centers was meanly 84%, with slight variation of 75%-89%. In addition our data showed that the type and number of LAIPs were of influence on the performance outcome. The highest concordance was observed for LAIPs with cross-lineage expression, followed by LAIPs with an asynchronous antigen expression. Our results imply that immunophenotypic MRD assessment in AML will only be feasible when fully standardized methods are used for reliable multicenter assessment.
Collapse
Affiliation(s)
- Rik A Brooimans
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Laboratory of Clinical and Tumor Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Vincent H J van der Velden
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nancy Boeckx
- Laboratory of Experimental Transplantation, University of Leuven, Leuven, Belgium
| | - Jennita Slomp
- Department of Clinical Chemistry, Medisch Spectrum Twente/Medlon, Enschede, The Netherlands
| | - Frank Preijers
- Department of Laboratory Medicine-Laboratory for Hematology, Radboud UMC, Nijmegen, The Netherlands
| | - Jeroen G Te Marvelde
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ngoc M Van
- Laboratory of Clinical and Tumor Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Antoinette Heijs
- Department of Clinical Chemistry, Medisch Spectrum Twente/Medlon, Enschede, The Netherlands
| | - Erik Huys
- Department of Laboratory Medicine-Laboratory for Hematology, Radboud UMC, Nijmegen, The Netherlands
| | - Bronno van der Holt
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Georgine E de Greef
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Angele Kelder
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
32
|
Zhou Y, Moon A, Hoyle E, Fromm JR, Chen X, Soma L, Salipante SJ, Wood BL, Wu D. Pattern associated leukemia immunophenotypes and measurable disease detection in acute myeloid leukemia or myelodysplastic syndrome with mutated NPM1. CYTOMETRY PART B-CLINICAL CYTOMETRY 2018; 96:67-72. [DOI: 10.1002/cyto.b.21744] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/18/2018] [Accepted: 10/01/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Yi Zhou
- Department of Laboratory Medicine; University of Washington; Seattle Western Australia Australia
| | - Andres Moon
- Department of Laboratory Medicine; University of Washington; Seattle Western Australia Australia
| | - Eric Hoyle
- Department of Laboratory Medicine; University of Washington; Seattle Western Australia Australia
| | - Jonathan R. Fromm
- Department of Laboratory Medicine; University of Washington; Seattle Western Australia Australia
| | - Xueyan Chen
- Department of Laboratory Medicine; University of Washington; Seattle Western Australia Australia
| | - Lori Soma
- Department of Laboratory Medicine; University of Washington; Seattle Western Australia Australia
| | - Stephen J. Salipante
- Department of Laboratory Medicine; University of Washington; Seattle Western Australia Australia
| | - Brent L. Wood
- Department of Laboratory Medicine; University of Washington; Seattle Western Australia Australia
| | - David Wu
- Department of Laboratory Medicine; University of Washington; Seattle Western Australia Australia
| |
Collapse
|
33
|
Gilleece MH, Labopin M, Yakoub-Agha I, Volin L, Socié G, Ljungman P, Huynh A, Deconinck E, Wu D, Bourhis JH, Cahn JY, Polge E, Mohty M, Savani BN, Nagler A. Measurable residual disease, conditioning regimen intensity, and age predict outcome of allogeneic hematopoietic cell transplantation for acute myeloid leukemia in first remission: A registry analysis of 2292 patients by the Acute Leukemia Working Party European Society of Blood and Marrow Transplantation. Am J Hematol 2018; 93:1142-1152. [PMID: 29981272 DOI: 10.1002/ajh.25211] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 12/26/2022]
Abstract
Patients with acute myeloid leukemia (AML) in morphological first complete remission (CR1) pre-allogeneic hematopoietic cell transplantation (HCT) may have measurable residual disease (MRD) by molecular and immunophenotyping criteria. We assessed interactions of MRD status with HCT conditioning regimen intensity in patients aged <50 years (y) or ≥50y. This was a retrospective study by the European Society for Blood and Marrow Transplantation registry. Patients were >18y with AML CR1 MRD NEG/POS and recipients of HCT in 2000-2015. Conditioning regimens were myeloablative (MAC), reduced intensity (RIC) or non-myeloablative (NMA). Outcomes included leukemia free survival (LFS), overall survival (OS), relapse incidence (RI), non-relapse mortality (NRM), chronic graft-vs-host (cGVHD), and GVHD-free and relapse-free survival (GRFS). The 2292 eligible patients were categorized into four paired groups: <50y MRD POS MAC (N = 240) vs RIC/NMA (N = 58); <50y MRD NEG MAC (N = 665) vs RIC/NMA (N = 195); ≥50y MRD POS MAC (N = 126) vs RIC/NMA (N = 230), and ≥50y MRD NEG MAC (N = 223) vs RIC/NMA (N = 555). In multivariate analysis RIC/NMA was only inferior to MAC for patients in the <50y MRD POS group, with worse RI (HR 1.71) and LFS (HR 1.554). Patients <50Y MRD NEG had less cGVHD after RIC/NMA HCT (HR 0.714). GRFS was not significantly affected by conditioning intensity in any group. Patients aged <50y with AML CR1 MRD POS status should preferentially be offered MAC allo-HCT. Prospective studies are needed to address whether patients with AML CR1 MRD NEG may be spared the toxicity of MAC regimens. New approaches are needed for ≥50y AML CR1 MRD POS.
Collapse
Affiliation(s)
- Maria H. Gilleece
- Department of Haematology; Leeds Teaching Hospitals Trust, University of Leeds; Leeds United Kingdom
| | | | | | - Liisa Volin
- Comprehensive Cancer Center, Stem Cell Transplantation Unit; Helsinki University Hospital; Helsinki Finland
| | - Gerard Socié
- Service d'Hématologie Greffe; Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris; Paris France
| | - Per Ljungman
- Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital; Stockholm Sweden
| | - Anne Huynh
- Service d'Hématologie, Institut Universitaire du Cancer de Toulouse Oncopole; Toulouse France
| | - Eric Deconinck
- Hematology Department; CHRU Besancon, INSERM UMR1098, Universite de Franche-Comte; Besancon France
| | - Depei Wu
- Department of Hematology; First Affiliated Hospital of Soochow University; Suzhou Jiangsu China
| | | | - Jean Yves Cahn
- Department of Haematology, Centre Hospital; Universitaire Grenoble Alpes; Grenoble France
| | - Emmanuelle Polge
- Acute Leukemia Working Party; European Society for Blood and Marrow Transplantation Paris Study Office/European Center for Biostatistical and Epidemiological Evaluation in Hematopoietic Cell Therapy (CEREST-TC); Paris France
| | - Mohamad Mohty
- Hopital Saint-Antoine, Université Pierre and Marie Curie, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche U938; Paris France
| | - Bipin N. Savani
- Division of Hematology/Oncology, Department of Internal Medicine; Vanderbilt University Medical Center; Nashville Tennessee
| | - Arnon Nagler
- Chaim Sheba Medical Center; Tel Aviv University; Tel-Hashomer Israel
| |
Collapse
|
34
|
Prognostic impact of t(16;21)(p11;q22) and t(16;21)(q24;q22) in pediatric AML: a retrospective study by the I-BFM Study Group. Blood 2018; 132:1584-1592. [PMID: 30150206 DOI: 10.1182/blood-2018-05-849059] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022] Open
Abstract
To study the prognostic relevance of rare genetic aberrations in acute myeloid leukemia (AML), such as t(16;21), international collaboration is required. Two different types of t(16;21) translocations can be distinguished: t(16;21)(p11;q22), resulting in the FUS-ERG fusion gene; and t(16;21)(q24;q22), resulting in RUNX1-core binding factor (CBFA2T3). We collected data on clinical and biological characteristics of 54 pediatric AML cases with t(16;21) rearrangements from 14 international collaborative study groups participating in the international Berlin-Frankfurt-Münster (I-BFM) AML study group. The AML-BFM cohort diagnosed between 1997 and 2013 was used as a reference cohort. RUNX1-CBFA2T3 (n = 23) had significantly lower median white blood cell count (12.5 × 109/L, P = .03) compared with the reference cohort. FUS-ERG rearranged AML (n = 31) had no predominant French-American-British (FAB) type, whereas 76% of RUNX1-CBFA2T3 had an M1/M2 FAB type (M1, M2), significantly different from the reference cohort (P = .004). Four-year event-free survival (EFS) of patients with FUS-ERG was 7% (standard error [SE] = 5%), significantly lower compared with the reference cohort (51%, SE = 1%, P < .001). Four-year EFS of RUNX1-CBFA2T3 was 77% (SE = 8%, P = .06), significantly higher compared with the reference cohort. Cumulative incidence of relapse was 74% (SE = 8%) in FUS-ERG, 0% (SE = 0%) in RUNX1-CBFA2T3, compared with 32% (SE = 1%) in the reference cohort (P < .001). Multivariate analysis identified both FUS-ERG and RUNX1-CBFA2T3 as independent risk factors with hazard ratios of 1.9 (P < .0001) and 0.3 (P = .025), respectively. These results describe 2 clinically relevant distinct subtypes of pediatric AML. Similarly to other core-binding factor AMLs, patients with RUNX1-CBFA2T3 rearranged AML may benefit from stratification in the standard risk treatment, whereas patients with FUS-ERG rearranged AML should be considered high-risk.
Collapse
|
35
|
Coustan-Smith E, Song G, Shurtleff S, Yeoh AEJ, Chng WJ, Chen SP, Rubnitz JE, Pui CH, Downing JR, Campana D. Universal monitoring of minimal residual disease in acute myeloid leukemia. JCI Insight 2018; 3:98561. [PMID: 29720577 DOI: 10.1172/jci.insight.98561] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/28/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Optimal management of acute myeloid leukemia (AML) requires monitoring of treatment response, but minimal residual disease (MRD) may escape detection. We sought to identify distinctive features of AML cells for universal MRD monitoring. METHODS We compared genome-wide gene expression of AML cells from 157 patients with that of normal myeloblasts. Markers encoded by aberrantly expressed genes, including some previously associated with leukemia stem cells, were studied by flow cytometry in 240 patients with AML and in nonleukemic myeloblasts from 63 bone marrow samples. RESULTS Twenty-two (CD9, CD18, CD25, CD32, CD44, CD47, CD52, CD54, CD59, CD64, CD68, CD86, CD93, CD96, CD97, CD99, CD123, CD200, CD300a/c, CD366, CD371, and CX3CR1) markers were aberrantly expressed in AML. Leukemia-associated profiles defined by these markers extended to immature CD34+CD38- AML cells; expression remained stable during treatment. The markers yielded MRD measurements matching those of standard methods in 208 samples from 52 patients undergoing chemotherapy and revealed otherwise undetectable MRD. They allowed MRD monitoring in 129 consecutive patients, yielding prognostically significant results. Using a machine-learning algorithm to reduce high-dimensional data sets to 2-dimensional data, the markers allowed a clear visualization of MRD and could detect 1 leukemic cell among more than 100,000 normal cells. CONCLUSION The markers uncovered in this study allow universal and sensitive monitoring of MRD in AML. In combination with contemporary analytical tools, the markers improve the discrimination between leukemic and normal cells, thus facilitating data interpretation and, hence, the reliability of MRD results. FUNDING National Cancer Institute (CA60419 and CA21765); American Lebanese Syrian Associated Charities; National Medical Research Council of Singapore (1299/2011); Viva Foundation for Children with Cancer, Children's Cancer Foundation, Tote Board & Turf Club, and Lee Foundation of Singapore.
Collapse
Affiliation(s)
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sheila Shurtleff
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Allen Eng-Juh Yeoh
- Department of Pediatrics, National University of Singapore, Singapore.,National University Cancer Institute, Singapore, National University of Singapore, Singapore
| | - Wee Joo Chng
- National University Cancer Institute, Singapore, National University of Singapore, Singapore
| | - Siew Peng Chen
- Department of Pediatrics, National University of Singapore, Singapore
| | - Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ching-Hon Pui
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Dario Campana
- Department of Pediatrics, National University of Singapore, Singapore.,National University Cancer Institute, Singapore, National University of Singapore, Singapore
| |
Collapse
|
36
|
Coltoff A, Houldsworth J, Keyzner A, Renteria AS, Mascarenhas J. Role of minimal residual disease in the management of acute myeloid leukemia-a case-based discussion. Ann Hematol 2018; 97:1155-1167. [PMID: 29704019 DOI: 10.1007/s00277-018-3330-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/04/2018] [Indexed: 01/04/2023]
Abstract
AML is stratified into risk-categories based on cytogenetic and molecular features that prognosticate survival and facilitate treatment algorithms, though there is still significant heterogeneity within risk groupings with regard to risk of relapse and prognosis. The ambiguity regarding prognosis is due in large part to the relatively outdated criteria used to determine response to therapy. Whereas risk assessment has evolved to adopt cytogenetic and molecular profiling, response criteria are still largely determined by bone marrow morphologic assessment and peripheral cell count recovery. Minimal residual disease refers to the detection of a persistent population of leukemic cells below the threshold for morphologic CR determination. MRD assessment represents standard of care for ALL and PML, but concerns over prognostic capability and standardization have limited its use in AML. However, recent advancements in MRD assessment and research supporting the use of MRD assessment in AML require the reconsideration and review of this clinical tool in this disease entity. This review article will first compare and contrast the major modalities used to assess MRD in AML, such as RQ-PCR and flow cytometry, as well as touching upon newer technologies such as next-generation sequencing and digital droplet PCR. The majority of the article will discuss the evidence supporting the use of MRD assessment to prognosticate disease at various time points during treatment, and review the limited number of studies that have incorporated MRD assessment into novel treatment algorithms for AML. The article concludes by discussing the current major limitations to the implementation of MRD assessment in this disease. The manuscript is bookended by a clinical vignette that highlights the need for further research and refinement of this clinical tool.
Collapse
Affiliation(s)
- A Coltoff
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Houldsworth
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A Keyzner
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A S Renteria
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Adult Leukemia Program, Myeloproliferative Disorders Clinical Research Program, Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1079, New York, NY, 10029, USA.
| |
Collapse
|
37
|
Schuurhuis GJ, Heuser M, Freeman S, Béné MC, Buccisano F, Cloos J, Grimwade D, Haferlach T, Hills RK, Hourigan CS, Jorgensen JL, Kern W, Lacombe F, Maurillo L, Preudhomme C, van der Reijden BA, Thiede C, Venditti A, Vyas P, Wood BL, Walter RB, Döhner K, Roboz GJ, Ossenkoppele GJ. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood 2018; 131:1275-1291. [PMID: 29330221 PMCID: PMC5865231 DOI: 10.1182/blood-2017-09-801498] [Citation(s) in RCA: 792] [Impact Index Per Article: 113.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022] Open
Abstract
Measurable residual disease (MRD; previously termed minimal residual disease) is an independent, postdiagnosis, prognostic indicator in acute myeloid leukemia (AML) that is important for risk stratification and treatment planning, in conjunction with other well-established clinical, cytogenetic, and molecular data assessed at diagnosis. MRD can be evaluated using a variety of multiparameter flow cytometry and molecular protocols, but, to date, these approaches have not been qualitatively or quantitatively standardized, making their use in clinical practice challenging. The objective of this work was to identify key clinical and scientific issues in the measurement and application of MRD in AML, to achieve consensus on these issues, and to provide guidelines for the current and future use of MRD in clinical practice. The work was accomplished over 2 years, during 4 meetings by a specially designated MRD Working Party of the European LeukemiaNet. The group included 24 faculty with expertise in AML hematopathology, molecular diagnostics, clinical trials, and clinical medicine, from 19 institutions in Europe and the United States.
Collapse
Affiliation(s)
- Gerrit J Schuurhuis
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Sylvie Freeman
- Department of Clinical Immunology, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Francesco Buccisano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Jacqueline Cloos
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - David Grimwade
- Division of Genetics & Molecular Medicine, King's College, London, United Kingdom
| | | | - Robert K Hills
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | | | - Jeffrey L Jorgensen
- Division of Pathology/Laboratory Medicine, Department of Hematopathology, MD Anderson Cancer Center, Houston, TX
| | | | - Francis Lacombe
- Flow Cytometry Platform, University Hospital, Bordeaux, France
| | - Luca Maurillo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Claude Preudhomme
- Center of Pathology, Laboratory of Hematology, University Hospital of Lille, Lille, France
| | - Bert A van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Thiede
- Universitätsklinikum Carl Gustav Garus an der Technischen Universität Dresden, Dresden, Germany
| | - Adriano Venditti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Paresh Vyas
- Medical Research Council Molecular Haematology Unit, Oxford Centre for Haematology, University of Oxford and Oxford University Hospitals National Health Service Trust, Oxford, United Kingdom
| | - Brent L Wood
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Laboratory Medicine and
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany; and
| | - Gail J Roboz
- Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY
| | - Gert J Ossenkoppele
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Umeda K, Iwai A, Kawaguchi K, Mikami M, Nodomi S, Saida S, Hiramatsu H, Heike T, Ohmori K, Adachi S. Impact of post-transplant minimal residual disease on the clinical outcome of pediatric acute leukemia. Pediatr Transplant 2017; 21. [PMID: 28370903 DOI: 10.1111/petr.12926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/24/2017] [Indexed: 11/27/2022]
Abstract
This retrospective study examined the clinical significance of FCM-MRD in 36 patients with ALL and 29 patients with AML after their first allogeneic HSCT. Hematological (FCM-MRD ≥5.0%) and molecular relapse (FCM-MRD <5.0%) were first detected in 10 and two patients with ALL and in seven and eight patients with AML, respectively. Eight of 10 patients with molecular relapse eventually progressed to hematological relapse, although most were treated with immunological intervention by aggressive discontinuation of immunosuppressive therapy or donor lymphocyte infusion. Among these 12 patients, four of seven patients that obtained MRDneg CR following post-transplant chemotherapy remain alive and disease-free after their second HSCT; however, all five patients who underwent a second HSCT in non-CR died of disease or treatment-related complications. As the FCM-MRD monitoring system used in the current study was probably not sensitive enough to detect MRD, which could be elucidated by immunological intervention, more sensitive diagnostic tools are mandatory for post-transplant MRD monitoring. Additional studies are required to address the impact of presecond transplant MRD on the clinical outcome of second HSCT.
Collapse
Affiliation(s)
- Katsutsugu Umeda
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Iwai
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Kawaguchi
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masamitsu Mikami
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishiro Nodomi
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Saida
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidefumi Hiramatsu
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshio Heike
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Katsuyuki Ohmori
- Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan
| | - Souichi Adachi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
39
|
Buldini B, Rizzati F, Masetti R, Fagioli F, Menna G, Micalizzi C, Putti MC, Rizzari C, Santoro N, Zecca M, Disarò S, Rondelli R, Merli P, Pigazzi M, Pession A, Locatelli F, Basso G. Prognostic significance of flow-cytometry evaluation of minimal residual disease in children with acute myeloid leukaemia treated according to the AIEOP-AML 2002/01 study protocol. Br J Haematol 2017; 177:116-126. [PMID: 28240765 DOI: 10.1111/bjh.14523] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022]
Abstract
In children with acute myeloid leukaemia (AML), assessment of initial treatment response is an essential prognostic factor; methods more sensitive than morphology are still under evaluation. We report on the measurement of minimal residual disease (MRD), by multicolour flow-cytometry in one centralized laboratory, in 142 children with newly diagnosed AML enrolled in the Associazione Italiana di EmatoOncologia Pediatrica-AML 2002/01 trial. At the end of the first induction course, MRD was <0·1% in 69, 0·1-1% in 16 and >1% in 51 patients. The 8-year disease-free survival (DFS) of 125 children in morphological complete remission and with MRD <0·1%, 0·1-1% and ≥1% was 73·1 ± 5·6%, 37·8 ± 12·1% and 34·1 ± 8·8%, respectively (P < 0·01). MRD was also available after the second induction course in 92/142 patients. MRD was ≥0·1% at the end of the first induction course in 36 patients; 13 reached an MRD <0·1% after the second one and their DFS was 45·4 ± 16·7% vs. 22·8 ± 8·9% in patients with persisting MRD ≥0·1% (P = 0·037). Multivariate analysis demonstrated that MRD ≥0·1% after first induction course was, together with a monosomal karyotype, an independent adverse prognostic factor for DFS. Our results show that MRD detected by flow-cytometry after induction therapy predicts outcome in patients with childhood AML and can help stratifying post-remission treatment.
Collapse
Affiliation(s)
- Barbara Buldini
- Department of Woman and Child Health, Laboratory of Haematology-Oncology, University of Padova, Padova, Italy
| | - Frida Rizzati
- Department of Woman and Child Health, Laboratory of Haematology-Oncology, University of Padova, Padova, Italy
| | - Riccardo Masetti
- Department of Pediatrics, Lalla Seragnoli, Haematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Franca Fagioli
- Pediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Torino, Italy
| | - Giuseppe Menna
- Department of Pediatric Haemato-Oncology, Santobono-Pausilipon Hospital, Napoli, Italy
| | - Concetta Micalizzi
- Department of Pediatric Haemato-Oncology, IRCCS Istituto "Giannina Gaslini", Genova, Italy
| | - Maria Caterina Putti
- Department of Woman and Child Health, Laboratory of Haematology-Oncology, University of Padova, Padova, Italy
| | - Carmelo Rizzari
- Department of Pediatrics, Centro Ricerca Tettamanti, Università di Milano-Bicocca, Monza, Italy
| | - Nicola Santoro
- Department of Pediatrics, Policlinico di Bari, Bari, Italy
| | - Marco Zecca
- Department of Pediatric Haemato-Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Silvia Disarò
- Department of Woman and Child Health, Laboratory of Haematology-Oncology, University of Padova, Padova, Italy
| | - Roberto Rondelli
- Department of Pediatrics, Lalla Seragnoli, Haematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Pietro Merli
- Department of Pediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Bambino Gesù, Rome; University of Pavia, Pavia, Italy
| | - Martina Pigazzi
- Department of Woman and Child Health, Laboratory of Haematology-Oncology, University of Padova, Padova, Italy
| | - Andrea Pession
- Department of Pediatrics, Lalla Seragnoli, Haematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Pediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Bambino Gesù, Rome; University of Pavia, Pavia, Italy
| | - Giuseppe Basso
- Department of Woman and Child Health, Laboratory of Haematology-Oncology, University of Padova, Padova, Italy
| |
Collapse
|
40
|
Ossenkoppele G, Schuurhuis GJ. MRD in AML: does it already guide therapy decision-making? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:356-365. [PMID: 27913502 PMCID: PMC6142473 DOI: 10.1182/asheducation-2016.1.356] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Prognostic factors determined at diagnosis are predictive for outcome whereas achievement of morphological complete remission (CR) is still an important end point during treatment. Residual disease after therapy may reflect the sum of all diagnosis and postdiagnosis resistance mechanisms/factors; its measurement could hypothetically be very instrumental for guiding treatment. The possibility of defining residual disease (minimal residual disease [MRD]) far below the level of 5% blast cells is changing the landscape of risk classification. In this manuscript, the various methods, all different in sensitivity, specificity, and phase of development, to assess MRD are discussed. Currently, the 2 methods mostly used are flow cytometry-based immune MRD (multiparameter flow cytometry [MPFC]) and molecular MRD assessed by real-time quantitative polymerase chain reaction. Both have advantages and disadvantages that are summarized in detail. Many studies in children as well as adults already demonstrated that MRD detection by MPFC or molecular MRD provides strong prognostic information in acute myeloid leukemia (AML) after both induction and consolidation. These studies are summarized in this review. The general conclusion of this review is that a better definition of disease burden than morphological CR is now emerging. MRD assessed by flow or molecular techniques should become standard in every clinical trial in AML. Harmonization of antibody panels, introduction of single-cell tube systems (for determination of residual leukemic stem cells), and standardized analytical programs will pave the way for individual risk assessment and become a surrogate end point for survival in studies investigating new drugs, hopefully resulting in faster drug approval in AML.
Collapse
Affiliation(s)
- Gert Ossenkoppele
- Department of Hematology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Gerrit Jan Schuurhuis
- Department of Hematology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Paietta E. Minimal Residual Disease in AML: Why Has It Lagged Behind Pediatric ALL? CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2016; 15 Suppl:S2-6. [PMID: 26297274 DOI: 10.1016/j.clml.2015.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/03/2015] [Indexed: 12/16/2022]
Abstract
Although the concept of minimal residual disease (MRD) as an indicator for the quality of treatment response is the same in acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL), the practice of measuring MRD levels for monitoring response and guiding therapy after induction has been implemented much more rapidly in ALL, particularly pediatric ALL, than in AML. In this perspective we examine the facts and discuss why ALL appears to be more amenable to MRD-shaped risk allocation and a revised definition of complete remission.
Collapse
Affiliation(s)
- Elisabeth Paietta
- Montefiore Medical Center-North Division, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
42
|
Athale UH, Gibson PJ, Bradley NM, Malkin DM, Hitzler J. Minimal Residual Disease and Childhood Leukemia: Standard of Care Recommendations From the Pediatric Oncology Group of Ontario MRD Working Group. Pediatr Blood Cancer 2016; 63:973-82. [PMID: 26914030 DOI: 10.1002/pbc.25939] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 01/03/2023]
Abstract
Minimal residual disease (MRD) is an independent predictor of relapse risk in children with leukemia and is widely used for risk-adapted treatment. This article summarizes current evidence supporting the use of MRD, including clinical significance, current international clinical practice, impact statement, and recommended indications. The proposed MRD recommendations have been endorsed by the MRD Working Group of the Pediatric Oncology Group of Ontario and provide the foundation for a strategy that aims at equitable access to MRD evaluation for children with leukemia.
Collapse
Affiliation(s)
- Uma H Athale
- Division of Hematology/Oncology, Hamilton Health Sciences, McMaster Children's Hospital, Hamilton, Ontario, Canada.,Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Paul J Gibson
- Division of Hematology/Oncology, Children's Hospital, London Health Sciences Centre, London, Ontario, Canada.,Department of Pediatrics, University of Western Ontario, London, Ontario, Canada
| | - Nicole M Bradley
- Pediatric Oncology Group of Ontario (POGO), Toronto, Ontario, Canada
| | - David M Malkin
- Pediatric Oncology Group of Ontario (POGO), Toronto, Ontario, Canada.,Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Johann Hitzler
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
43
|
Tierens A, Bjørklund E, Siitonen S, Marquart HV, Wulff-Juergensen G, Pelliniemi TT, Forestier E, Hasle H, Jahnukainen K, Lausen B, Jonsson OG, Palle J, Zeller B, Fogelstrand L, Abrahamsson J. Residual disease detected by flow cytometry is an independent predictor of survival in childhood acute myeloid leukaemia; results of the NOPHO-AML 2004 study. Br J Haematol 2016; 174:600-9. [PMID: 27072379 DOI: 10.1111/bjh.14093] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/15/2016] [Indexed: 01/10/2023]
Abstract
Early response after induction is a prognostic factor for disease outcome in childhood acute myeloid leukaemia (AML). Residual disease (RD) detection by multiparameter flow cytometry (MFC) was performed at day 15 and before consolidation therapy in 101 patients enrolled in the Nordic Society of Paediatric Haemato-Oncology AML 2004 study. A multicentre laboratory approach to RD analysis was used. Event-free survival (EFS) and overall survival (OS) was significantly different in patients with and without RD at both time points, using a 0·1% RD cut-off level. RD-negative and -positive patients after first induction showed a 5-year EFS of 65 ± 7% and 22 ± 7%, respectively (P < 0·001) and an OS of 77 ± 6% (P = 0·025) and 51 ± 8%. RD-negative and -positive patients at start of consolidation therapy had a 5-year EFS of 57 ± 7% and 11 ± 7%, respectively (P < 0·001) and an OS of 78 ± 6% and 28 ± 11%) (P < 0·001). In multivariate analysis only RD was significantly correlated with survival. RD before consolidation therapy was the strongest independent prognostic factor for EFS [hazard ratio (HR):5·0; 95% confidence interval (CI):1·9-13·3] and OS (HR:7·0; 95%CI:2·0-24·5). In conclusion, RD before consolidation therapy identifies patients at high risk of relapse in need of intensified treatment. In addition, RD detection can be performed in a multicentre setting and can be implemented in future trials.
Collapse
Affiliation(s)
- Anne Tierens
- Department of Pathobiology and Laboratory Medicine, University Health Network, Toronto General Hospital, Toronto, ON, Canada.,Department of Pathology, Oslo University Hospital, Oslo, Norway
| | | | - Sanna Siitonen
- Laboratory Services (Hospital District of Helsinki and Uusimaa Laboratory), Helsinki University Central Hospital, Helsinki, Finland
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology section 7631, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gitte Wulff-Juergensen
- Department of Clinical Immunology section 7631, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | | | - Henrik Hasle
- Aarhus University, Hospital Skejby, Aarhus, Denmark
| | - Kirsi Jahnukainen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | | | | | - Bem Zeller
- Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Linda Fogelstrand
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jonas Abrahamsson
- Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
44
|
Sever C, Abbott CL, de Baca ME, Khoury JD, Perkins SL, Reichard KK, Taylor A, Terebelo HR, Colasacco C, Rumble RB, Thomas NE. Bone Marrow Synoptic Reporting for Hematologic Neoplasms: Guideline From the College of American Pathologists Pathology and Laboratory Quality Center. Arch Pathol Lab Med 2016; 140:932-49. [PMID: 26905483 DOI: 10.5858/arpa.2015-0450-sa] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT -There is ample evidence from the solid tumor literature that synoptic reporting improves accuracy and completeness of relevant data. No evidence-based guidelines currently exist for synoptic reporting for bone marrow samples. OBJECTIVE -To develop evidence-based recommendations to standardize the basic components of a synoptic report template for bone marrow samples. DESIGN -The College of American Pathologists Pathology and Laboratory Quality Center convened a panel of experts in hematopathology to develop recommendations. A systematic evidence review was conducted to address 5 key questions. Recommendations were derived from strength of evidence, open comment feedback, and expert panel consensus. RESULTS -Nine guideline statements were established to provide pathology laboratories with a framework by which to develop synoptic reporting templates for bone marrow samples. The guideline calls for specific data groups in the synoptic section of the pathology report; provides a list of evidence-based parameters for key, pertinent elements; and addresses ancillary testing. CONCLUSION -A framework for bone marrow synoptic reporting will improve completeness of the final report in a manner that is clear, succinct, and consistent among institutions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Nicole E Thomas
- From the Department of Hematopathology, Pathology Associates of Albuquerque, Albuquerque, New Mexico (Dr Sever); the Department of Pathology, Berkshire Medical Center, Pittsfield, Massachusetts (Dr Abbott); Medical Laboratory Associates, Seattle, Washington (Dr de Baca); the Department of Pathology, University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology, University of Utah, Salt Lake City (Dr Perkins); the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (Dr Reichard); Utah Pathology Services, Inc, Salt Lake City (Dr Taylor); the Department of Hematology/Medical Oncology, Newland Medical Associates, Novi, Michigan (Dr Terebelo); the Departments of Governance (Ms Colasacco) and Surveys (Ms Thomas), College of American Pathologists, Northfield, Illinois; and the Quality and Guidelines Department, American Society of Clinical Oncology, Alexandria, Virginia (Mr Rumble)
| |
Collapse
|
45
|
Keino D, Kinoshita A, Tomizawa D, Takahashi H, Ida K, Kurosawa H, Koike K, Ota S, Iwasaki N, Fujimura J, Yuza Y, Kiyotani C, Yamamoto S, Osumi T, Ueda T, Mochizuki S, Isoyama K, Hanada R, Tawa A, Manabe A, Toguchi Y, Ohara A. Residual disease detected by multidimensional flow cytometry shows prognostic significance in childhood acute myeloid leukemia with intermediate cytogenetics and negative FLT3-ITD: a report from the Tokyo Children’s Cancer Study Group. Int J Hematol 2016; 103:416-22. [DOI: 10.1007/s12185-016-1937-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/28/2015] [Accepted: 01/07/2016] [Indexed: 01/03/2023]
|
46
|
DeAngelo DJ, Stein EM, Ravandi F. Evolving Therapies in Acute Myeloid Leukemia: Progress at Last? Am Soc Clin Oncol Educ Book 2016; 35:e302-e312. [PMID: 27249736 DOI: 10.1200/edbk_161258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Acute myeloid leukemia (AML) is an acquired disease characterized by chromosomal translocations and somatic mutations that lead to leukemogenesis. Systemic combination chemotherapy with an anthracycline and cytarabine remains the standard induction regimen for "fit" adults. Patients who achieve complete remission generally receive postinduction therapy with cytarabine-based chemotherapy or an allogeneic bone marrow transplant. Those unfit for induction chemotherapy are treated with hypomethylating agents (HMAs), low-dose cytarabine, or they are offered supportive care alone with transfusions and prophylactic antimicrobials. The revolution in understanding the genetics of AML, facilitated by next-generation sequencing, has led to many new drugs against driver mutations. Better methods of identification of leukemic blasts have provided us with better means to detect the disease left behind after cytotoxic chemotherapy regimens. This measurable residual disease has been correlated with poorer relapse-free survival, demonstrating the need for novel strategies to eradicate it to improve the outcome of patients with acute leukemias. In this article, we discuss adapting and improving AML therapy by age and comorbidities, emerging targeted therapies in AML, and minimal residual disease (MRD) assessment in AML.
Collapse
Affiliation(s)
- Daniel J DeAngelo
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Eytan M Stein
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Farhad Ravandi
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
47
|
The role of multiparametric flow cytometry in the detection of minimal residual disease in acute leukaemia. Pathology 2015; 47:609-21. [DOI: 10.1097/pat.0000000000000319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
48
|
Minimal residual disease evaluation by flow cytometry is a complementary tool to cytogenetics for treatment decisions in acute myeloid leukaemia. Leuk Res 2015; 40:1-9. [PMID: 26598032 DOI: 10.1016/j.leukres.2015.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/07/2015] [Accepted: 10/07/2015] [Indexed: 12/16/2022]
Abstract
The clinical utility of minimal residual disease (MRD) analysis in acute myeloid leukaemia (AML) is not yet defined. We analysed the prognostic impact of MRD level at complete remision after induction therapy using multiparameter flow cytometry in 306 non-APL AML patients. First, we validated the prognostic value of MRD-thresholds we have previously proposed (≥ 0.1%; ≥ 0.01-0.1%; and <0.01), with a 5-year RFS of 38%, 50% and 71%, respectively (p=0.002). Cytogenetics is the most relevant prognosis factor in AML, however intermediate risk cytogenetics represent a grey zone that require other biomarkers for risk stratification, and we show that MRD evaluation discriminate three prognostic subgroups (p=0.03). Also, MRD assessments yielded relevant information on favourable and adverse cytogenetics, since patients with favourable cytogenetics and high MRD levels have poor prognosis and patients with adverse cytogenetics but undetectable MRD overcomes the adverse prognosis. Interestingly, in patients with intermediate or high MRD levels, intensification with transplant improved the outcome as compared with chemotherapy, while the type of intensification therapy did not influenced the outcome of patients with low MRD levels. Multivariate analysis revealed age, MRD and cytogenetics as independent variables. Moreover, a scoring system, easy in clinical practice, was generated based on MRD level and cytogenetics.
Collapse
|
49
|
Schweitzer J, Zimmermann M, Rasche M, von Neuhoff C, Creutzig U, Dworzak M, Reinhardt D, Klusmann JH. Improved outcome of pediatric patients with acute megakaryoblastic leukemia in the AML-BFM 04 trial. Ann Hematol 2015; 94:1327-36. [PMID: 25913479 PMCID: PMC4488462 DOI: 10.1007/s00277-015-2383-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/14/2015] [Indexed: 01/11/2023]
Abstract
Despite recent advances in the treatment of children with acute megakaryoblastic leukemia (AMKL) using intensified treatment protocols, clear prognostic indicators, and treatment recommendations for this acute myeloid leukemia (AML) subgroup are yet to be defined. Here, we report the outcome of 97 pediatric patients with de novo AMKL (excluding Down syndrome [DS]) enrolled in the prospective multicenter studies AML-BFM 98 and AML-BFM 04 (1998-2014). AMKL occurred in 7.4 % of pediatric AML cases, at younger age (median 1.44 years) and with lower white blood cell count (mean 16.5 × 109/L) as compared to other AML subgroups. With 60 ± 5 %, children with AMKL had a lower 5-year overall survival (5-year OS; vs. 68 ± 1 %, Plog rank = 0.038). Yet, we achieved an improved 5-year OS in AML-BFM 04 compared to AML-BFM 98 (70 ± 6 % vs. 45 ± 8 %, Plog rank = 0.041). Allogeneic hematopoietic stem cell transplantation in first remission did not provide a significant survival benefit (5-year OS 70 ± 11 % vs. 63 ± 6 %; PMantel-Byar = 0.85). Cytogenetic data were available for n = 78 patients. AMKL patients with gain of chromosome 21 had a superior 5-year OS (80 ± 9 %, Plog rank = 0.034), whereas translocation t(1;22)(p13;q13) was associated with an inferior 5-year event-free survival (38 ± 17 %, Plog rank = 0.04). However, multivariate analysis showed that treatment response (bone marrow morphology on day 15 and 28) was the only independent prognostic marker (RR = 4.39; 95 % CI, 1.97–9.78). Interestingly, GATA1-mutations were detected in six patients (11 %) without previously known trisomy 21. Thus, AMKL (excluding DS) remains an AML subgroup with inferior outcome. Nevertheless, with intensive therapy regimens, a steep increase in the survival rates was achieved.
Collapse
Affiliation(s)
- Jana Schweitzer
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Steinbach D, Bader P, Willasch A, Bartholomae S, Debatin KM, Zimmermann M, Creutzig U, Reinhardt D, Gruhn B. Prospective validation of a new method of monitoring minimal residual disease in childhood acute myelogenous leukemia. Clin Cancer Res 2014; 21:1353-9. [PMID: 25501127 DOI: 10.1158/1078-0432.ccr-14-1999] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE This study evaluated the prognostic impact of a novel, simple, and standardized assay for monitoring minimal residual disease (MRD) in pediatric acute myelogenous leukemia (AML). EXPERIMENTAL DESIGN The expression of seven leukemia-associated genes (WT1, PRAME, CCL23, GAGED2, MSLN, SPAG6, and ST18) was measured by TaqMan Low Density Arrays in 112 patients and 52 healthy controls. Patients were treated according to the multicenter study AML-BFM 2004. Samples were collected prospectively at standard time points. The laboratory that measured MRD was blinded to patient outcome. RESULTS Relapse-free survival (RFS) was 95% (N = 19; SE = 5%) if expression of all genes was down to normal on day 15, 63% (N = 41; SE = 8%) if expression was normalized on day 28, and 38% (N = 21; SE = 11%) in patients who still showed elevated expression on day 28. The prognostic impact of MRD remained significant (P = 0.002) when patients were stratified for the AML-BFM 2004 risk group. Multivariate analysis identified the MRD risk group and day 28 cytology as the only independent prognostic factors. Patients with a cytologic nonremission on day 28, which was confirmed by MRD, had a dismal prognosis. Only 1 out of 8 patients survived without relapse. CONCLUSIONS This novel method of monitoring MRD has a strong prognostic impact that is independent from established risk factors in childhood AML.
Collapse
Affiliation(s)
| | - Peter Bader
- University of Frankfurt, Children's Hospital, Frankfurt, Germany
| | - Andre Willasch
- University of Frankfurt, Children's Hospital, Frankfurt, Germany
| | | | | | | | - Ursula Creutzig
- Medical School Hannover, Children's Hospital, Hannover, Germany
| | - Dirk Reinhardt
- Medical School Hannover, Children's Hospital, Hannover, Germany
| | - Bernd Gruhn
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| |
Collapse
|