1
|
Wong KL, Cheng KH, Lam SK, Liu C, Cai J. Review of functional magnetic resonance imaging in the assessment of nasopharyngeal carcinoma treatment response. PRECISION RADIATION ONCOLOGY 2022. [DOI: 10.1002/pro6.1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Kwun Lam Wong
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR People's Republic of China
- Department of Radiotherapy Hong Kong Sanatorium & Hospital HKSH Medical Group Hong Kong SAR People's Republic of China
| | - Ka Hei Cheng
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR People's Republic of China
| | - Sai Kit Lam
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR People's Republic of China
| | - Chenyang Liu
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR People's Republic of China
| | - Jing Cai
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR People's Republic of China
| |
Collapse
|
2
|
Koçak B, Durmaz EŞ, Ateş E, Kılıçkesmez Ö. Radiomics with artificial intelligence: a practical guide for beginners. ACTA ACUST UNITED AC 2020; 25:485-495. [PMID: 31650960 DOI: 10.5152/dir.2019.19321] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radiomics is a relatively new word for the field of radiology, meaning the extraction of a high number of quantitative features from medical images. Artificial intelligence (AI) is broadly a set of advanced computational algorithms that basically learn the patterns in the data provided to make predictions on unseen data sets. Radiomics can be coupled with AI because of its better capability of handling a massive amount of data compared with the traditional statistical methods. Together, the primary purpose of these fields is to extract and analyze as much and meaningful hidden quantitative data as possible to be used in decision support. Nowadays, both radiomics and AI have been getting attention for their remarkable success in various radiological tasks, which has been met with anxiety by most of the radiologists due to the fear of replacement by intelligent machines. Considering ever-developing advances in computational power and availability of large data sets, the marriage of humans and machines in future clinical practice seems inevitable. Therefore, regardless of their feelings, the radiologists should be familiar with these concepts. Our goal in this paper was three-fold: first, to familiarize radiologists with the radiomics and AI; second, to encourage the radiologists to get involved in these ever-developing fields; and, third, to provide a set of recommendations for good practice in design and assessment of future works.
Collapse
Affiliation(s)
- Burak Koçak
- Department of Radiology İstanbul Training and Research Hospital, İstanbul, Turkey
| | - Emine Şebnem Durmaz
- Department of Radiology, Büyükçekmece Mimar Sinan State Hospital, İstanbul, Turkey
| | - Ece Ateş
- Department of Radiology İstanbul Training and Research Hospital, İstanbul, Turkey
| | - Özgür Kılıçkesmez
- Department of Radiology İstanbul Training and Research Hospital, İstanbul, Turkey
| |
Collapse
|
3
|
Abstract
Despite the evolution in imaging, especially the introduction of advanced imaging technologies, radiographs still are the key for the initial assessment of a bone tumor. Important aspects to be considered in radiographs are the location, shape and size or volume, margins, periosteal reaction, and internal mineralization of the tumor's matrix; careful evaluation of these may provide for accurate diagnosis in >80% of cases. Computed tomography and magnetic resonance imaging are often diagnostic for lesions with typical findings such as the nidus of osteoid osteoma and bone destruction such as in Ewing sarcoma and lymphoma that may be difficult to detect with radiographs; they may also be used for surgical planning. Magnetic resonance imaging accurately determines the intraosseous extent and articular and vascular involvement by the tumor. This article summarizes the diagnostic accuracy of imaging analyses in bone tumors and emphasizes the specific radiographic findings for optimal radiographic diagnosis of the patients with these tumors.
Collapse
Affiliation(s)
- Costantino Errani
- Department of Orthopaedic Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Shinji Tsukamoto
- Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan
| | - Andreas F Mavrogenis
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
4
|
Natarajan S, Harini K, Gajula GP, Sarmento B, Neves-Petersen MT, Thiagarajan V. Multifunctional magnetic iron oxide nanoparticles: diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s42833-019-0002-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractMagnetic iron oxide nanoparticles (MIONPs) play a major role in the emerging fields of nanotechnology to facilitate rapid advancements in biomedical and industrial platforms. The superparamagnetic properties of MIONPs and their environment friendly synthetic methods with well-defined particle size have become indispensable to obtain their full potential in a variety of applications ranging from cellular to diverse areas of biomedical science. Thus, the broadened scope and need for MIONPs in their demanding fields of applications required to be highlighted for a comprehensive understanding of their state-of-the-art. Many synthetic methods, however, do not entirely abolish their undesired cytotoxic effects caused by free radical production and high iron dosage. In addition, the agglomeration of MIONPs has also been a major problem. To alleviate these issues, suitable surface modification strategies adaptive to MIONPs has been suggested not only for the effective cytotoxicity control but also to minimize their agglomeration. The surface modification using inorganic and organic polymeric materials would represent an efficient strategy to utilize the diagnostic and therapeutic potentials of MIONPs in various human diseases including cancer. This review article elaborates the structural and magnetic properties of MIONPs, specifically magnetite, maghemite and hematite, followed by the important synthetic methods that can be exploited for biomedical approaches. The in vivo cytotoxic effects and the possible surface modifications employed to eliminate the cytotoxicity thereby enhancing the nanoparticle efficacy are also critically discussed. The roles and applications of surface modified MIONPs in medical and industrial platforms have been described for the benefits of global well-being.
Collapse
|
5
|
Savadjiev P, Chong J, Dohan A, Agnus V, Forghani R, Reinhold C, Gallix B. Image-based biomarkers for solid tumor quantification. Eur Radiol 2019; 29:5431-5440. [PMID: 30963275 DOI: 10.1007/s00330-019-06169-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/25/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
The last few decades have witnessed tremendous technological developments in image-based biomarkers for tumor quantification and characterization. Initially limited to manual one- and two-dimensional size measurements, image biomarkers have evolved to harness developments not only in image acquisition technology but also in image processing and analysis algorithms. At the same time, clinical validation remains a major challenge for the vast majority of these novel techniques, and there is still a major gap between the latest technological developments and image biomarkers used in everyday clinical practice. Currently, the imaging biomarker field is attracting increasing attention not only because of the tremendous interest in cutting-edge therapeutic developments and personalized medicine but also because of the recent progress in the application of artificial intelligence (AI) algorithms to large-scale datasets. Thus, the goal of the present article is to review the current state of the art for image biomarkers and their use for characterization and predictive quantification of solid tumors. Beginning with an overview of validated imaging biomarkers in current clinical practice, we proceed to a review of AI-based methods for tumor characterization, such as radiomics-based approaches and deep learning.Key Points• Recent years have seen tremendous technological developments in image-based biomarkers for tumor quantification and characterization.• Image-based biomarkers can be used on an ongoing basis, in a non-invasive (or mildly invasive) way, to monitor the development and progression of the disease or its response to therapy.• We review the current state of the art for image biomarkers, as well as the recent developments in artificial intelligence (AI) algorithms for image processing and analysis.
Collapse
Affiliation(s)
- Peter Savadjiev
- Department of Diagnostic Radiology, McGill University, Montreal, QC, Canada
| | - Jaron Chong
- Department of Diagnostic Radiology, McGill University Health Centre, McGill University, 1001 Décarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Anthony Dohan
- Department of Diagnostic Radiology, McGill University Health Centre, McGill University, 1001 Décarie Boulevard, Montreal, QC, H4A 3J1, Canada.,Department of Body and Interventional Imaging, Hôpital Lariboisière-AP-HP, Université Diderot-Paris 7 and INSERM U965, 2 rue Ambroise Paré, 75475, Paris Cedex 10, France
| | - Vincent Agnus
- Institut de chirurgie guidée par l'image IHU Strasbourg, 1, place de l'Hôpital, 67091, Strasbourg Cedex, France
| | - Reza Forghani
- Department of Diagnostic Radiology, McGill University Health Centre, McGill University, 1001 Décarie Boulevard, Montreal, QC, H4A 3J1, Canada.,Department of Radiology, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada
| | - Caroline Reinhold
- Department of Diagnostic Radiology, McGill University Health Centre, McGill University, 1001 Décarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Benoit Gallix
- Department of Diagnostic Radiology, McGill University Health Centre, McGill University, 1001 Décarie Boulevard, Montreal, QC, H4A 3J1, Canada. .,Institut de chirurgie guidée par l'image IHU Strasbourg, 1, place de l'Hôpital, 67091, Strasbourg Cedex, France.
| |
Collapse
|
6
|
Contrast-Enhanced 3-T Perfusion MRI With Quantitative Analysis for the Characterization of Musculoskeletal Tumors: Is It Worth the Trouble? AJR Am J Roentgenol 2018; 211:1092-1098. [DOI: 10.2214/ajr.18.19618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Abstract
OBJECTIVE This review article explores recent advancements in PET/MRI for clinical oncologic imaging. CONCLUSION Radiologists should understand the technical considerations that have made PET/MRI feasible within clinical workflows, the role of PET tracers for imaging various molecular targets in oncology, and advantages of hybrid PET/MRI compared with PET/CT. To facilitate this understanding, we discuss clinical examples (including gliomas, breast cancer, bone metastases, prostate cancer, bladder cancer, gynecologic malignancy, and lymphoma) as well as future directions, challenges, and areas for continued technical optimization for PET/MRI.
Collapse
|
8
|
Nadeem M, Ahmad M, Saeed M, Shaari A, Riaz S, Naseem S, Rashid K. Uptake and clearance analysis of Technetium
99m
labelled iron oxide nanoparticles in a rabbit brain. IET Nanobiotechnol 2015; 9:136-41. [DOI: 10.1049/iet-nbt.2014.0012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Muhammad Nadeem
- Physics DepartmentFaculty of ScienceUniversiti Teknologi Malaysia (UTM)Skudai81310JohorMalaysia
- Center of Excellence in Solid State Physics, University of the PunjabLahore 54590Pakistan
| | - Munir Ahmad
- Department of Medical PhysicsInstitute of Nuclear Medicine and Oncology (INMOL)LahorePakistan
| | - M.A. Saeed
- Physics DepartmentFaculty of ScienceUniversiti Teknologi Malaysia (UTM)Skudai81310JohorMalaysia
| | - Amiruddin Shaari
- Physics DepartmentFaculty of ScienceUniversiti Teknologi Malaysia (UTM)Skudai81310JohorMalaysia
| | - Saira Riaz
- Center of Excellence in Solid State Physics, University of the PunjabLahore 54590Pakistan
| | - Shahzad Naseem
- Center of Excellence in Solid State Physics, University of the PunjabLahore 54590Pakistan
| | - Khalid Rashid
- Applied Physics & Computer Center (APCC)Pakistan Council for Scientific and Industrial Research (PCSIR)LahorePakistan
| |
Collapse
|
9
|
Teixeira SR, Elias Junior J, Nogueira-Barbosa MH, Guimarães MD, Marchiori E, Santos MK. Whole-body magnetic resonance imaging in children: state of the art. Radiol Bras 2015; 48:111-20. [PMID: 25987752 PMCID: PMC4433302 DOI: 10.1590/0100-3984.2014.0005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/24/2014] [Indexed: 11/22/2022] Open
Abstract
Whole-body imaging in children was classically performed with radiography,
positron-emission tomography, either combined or not with computed tomography, the
latter with the disadvantage of exposure to ionizing radiation. Whole-body magnetic
resonance imaging (MRI), in association with the recently developed metabolic and
functional techniques such as diffusion-weighted imaging, has brought the advantage
of a comprehensive evaluation of pediatric patients without the risks inherent to
ionizing radiation usually present in other conventional imaging methods. It is a
rapid and sensitive method, particularly in pediatrics, for detecting and monitoring
multifocal lesions in the body as a whole. In pediatrics, it is utilized for both
oncologic and non-oncologic indications such as screening and diagnosis of tumors in
patients with genetic syndromes, evaluation of disease extent and staging, evaluation
of therapeutic response and post-therapy follow-up, evaluation of non neoplastic
diseases such as multifocal osteomyelitis, vascular malformations and syndromes
affecting multiple regions of the body. The present review was aimed at describing
the major indications of whole-body MRI in pediatrics added of technical
considerations.
Collapse
Affiliation(s)
- Sara Reis Teixeira
- PhD, Attending Physician at Centro de Ciências das Imagens e Física Médica (CCIFM) do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (HCFMRP-USP), Ribeirão Preto, SP, Brazil
| | - Jorge Elias Junior
- PhD, Associate Professor, Division of Radiology, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (HCFMRP-USP), Ribeirão Preto, SP, Brazil
| | - Marcello Henrique Nogueira-Barbosa
- PhD, Professor, Division of Radiology, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (HCFMRP-USP), Ribeirão Preto, SP, Brazil
| | - Marcos Duarte Guimarães
- PhD, Attending Physician at Hospital Heliópolis and A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | - Edson Marchiori
- PhD, Full Professor, Division of Radiology, Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil
| | - Marcel Koenigkam Santos
- PhD, Attending Physician at Centro de Ciências das Imagens e Física Médica (CCIFM) do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (HCFMRP-USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
10
|
Guimaraes MD, Schuch A, Hochhegger B, Gross JL, Chojniak R, Marchiori E. Functional magnetic resonance imaging in oncology: state of the art. Radiol Bras 2015; 47:101-11. [PMID: 25741058 PMCID: PMC4337156 DOI: 10.1590/s0100-39842014000200013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/17/2013] [Indexed: 12/20/2022] Open
Abstract
In the investigation of tumors with conventional magnetic resonance imaging, both
quantitative characteristics, such as size, edema, necrosis, and presence of
metastases, and qualitative characteristics, such as contrast enhancement degree, are
taken into consideration. However, changes in cell metabolism and tissue physiology
which precede morphological changes cannot be detected by the conventional technique.
The development of new magnetic resonance imaging techniques has enabled the
functional assessment of the structures in order to obtain information on the
different physiological processes of the tumor microenvironment, such as oxygenation
levels, cellularity and vascularity. The detailed morphological study in association
with the new functional imaging techniques allows for an appropriate approach to
cancer patients, including the phases of diagnosis, staging, response evaluation and
follow-up, with a positive impact on their quality of life and survival rate.
Collapse
Affiliation(s)
- Marcos Duarte Guimaraes
- MSc and PhD Fellow, MD, Radiologist, Specialist in Chest and Oncological Imaging, Hospital Heliópolis and A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | - Alice Schuch
- MD, Radiologist, Full Member of Colégio Brasileiro de Radiologia e Diagnóstico por Imagem (CBR), Specialist in Oncological Imaging, MD, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| | - Bruno Hochhegger
- Post-PhD, MD, Associate Professor, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Jefferson Luiz Gross
- PhD, MD, Oncological Surgeon, Head of Thoracic Surgery Department, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | - Rubens Chojniak
- PhD, Head of Imaging Department, A.C.Camargo Cancer Center, São Paulo, SP. Brazil
| | - Edson Marchiori
- PhD, Full Professor, Universidade Federal Fluminense (UFF), Niterói, RJ, Associate Professor, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
11
|
Smith AD, Roda D, Yap TA. Strategies for modern biomarker and drug development in oncology. J Hematol Oncol 2014; 7:70. [PMID: 25277503 PMCID: PMC4189730 DOI: 10.1186/s13045-014-0070-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/21/2014] [Indexed: 02/08/2023] Open
Abstract
Technological advancements in the molecular characterization of cancers have enabled researchers to identify an increasing number of key molecular drivers of cancer progression. These discoveries have led to multiple novel anticancer therapeutics, and clinical benefit in selected patient populations. Despite this, the identification of clinically relevant predictive biomarkers of response continues to lag behind. In this review, we discuss strategies for the molecular characterization of cancers and the importance of biomarkers for the development of novel antitumor therapeutics. We also review critical successes and failures in oncology, and detail the lessons learnt, which may aid in the acceleration of anticancer drug development and biomarker discovery.
Collapse
Affiliation(s)
- Alan D Smith
- Drug Development Unit, Royal Marsden NHS Foundation Trust, Division of Clinical Studies, The Institute of Cancer Research, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Desam Roda
- Drug Development Unit, Royal Marsden NHS Foundation Trust, Division of Clinical Studies, The Institute of Cancer Research, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Timothy A Yap
- Drug Development Unit, Royal Marsden NHS Foundation Trust, Division of Clinical Studies, The Institute of Cancer Research, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| |
Collapse
|
12
|
Jang M, Yoon YI, Kwon YS, Yoon TJ, Lee HJ, Hwang SI, Yun BL, Kim SM. Trastuzumab-conjugated liposome-coated fluorescent magnetic nanoparticles to target breast cancer. Korean J Radiol 2014; 15:411-22. [PMID: 25053899 PMCID: PMC4105802 DOI: 10.3348/kjr.2014.15.4.411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 05/03/2014] [Indexed: 01/09/2023] Open
Abstract
Objective To synthesize mesoporous silica-core-shell magnetic nanoparticles (MNPs) encapsulated by liposomes (Lipo [MNP@m-SiO2]) in order to enhance their stability, allow them to be used in any buffer solution, and to produce trastuzumab-conjugated (Lipo[MNP@m-SiO2]-Her2Ab) nanoparticles to be utilized in vitro for the targeting of breast cancer. Materials and Methods The physiochemical characteristics of Lipo[MNP@m-SiO2] were assessed in terms of size, morphological features, and in vitro safety. The multimodal imaging properties of the organic dye incorporated into Lipo[MNP@m-SiO2] were assessed with both in vitro fluorescence and MR imaging. The specific targeting ability of trastuzumab (Her2/neu antibody, Herceptin®)-conjugated Lipo[MNP@m-SiO2] for Her2/neu-positive breast cancer cells was also evaluated with fluorescence and MR imaging. Results We obtained uniformly-sized and evenly distributed Lipo[MNP@m-SiO2] that demonstrated biological stability, while not disrupting cell viability. Her2/neu-positive breast cancer cell targeting by trastuzumab-conjugated Lipo[MNP@m-SiO2] was observed by in vitro fluorescence and MR imaging. Conclusion Trastuzumab-conjugated Lipo[MNP@m-SiO2] is a potential treatment tool for targeted drug delivery in Her2/neu-positive breast cancer.
Collapse
Affiliation(s)
- Mijung Jang
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Young Il Yoon
- Nanoimaging and Therapy Research Center, Institute of Nanoconvergence, Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Korea
| | - Yong Soo Kwon
- NanoBio Materials Chemistry Lab., Department of Applied Bioscience, CHA University, Pocheon 487-010, Korea
| | - Tae-Jong Yoon
- Nanoimaging and Therapy Research Center, Institute of Nanoconvergence, Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Korea. ; NanoBio Materials Chemistry Lab., Department of Applied Bioscience, CHA University, Pocheon 487-010, Korea
| | - Hak Jong Lee
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea. ; Nanoimaging and Therapy Research Center, Institute of Nanoconvergence, Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Korea. ; Program in Nano Science and Technology, Department of Transdisciplinary Studies, Seoul National University Graduate School of Convergence Science and Technology, Suwon 443-270, Korea
| | - Sung Il Hwang
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Bo La Yun
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Sun Mi Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| |
Collapse
|
13
|
Zucali PA, De Vincenzo F, Simonelli M, Santoro A. Future developments in the management of malignant pleural mesothelioma. Expert Rev Anticancer Ther 2014; 9:453-67. [DOI: 10.1586/era.09.2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Rose PA, Praseetha PK, Bhagat M, Alexander P, Abdeen S, Chavali M. Drug Embedded PVP Coated Magnetic Nanoparticles for Targeted Killing of Breast Cancer Cells. Technol Cancer Res Treat 2013; 12:463-72. [DOI: 10.7785/tcrt.2012.500333] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Magnetic drug targeting is a drug delivery system that can be used in loco-regional cancer treatment. Coated magnetic particles, called carriers, are very useful for delivering chemotherapeutic drugs. Magnetic carriers were synthesized by co-precipitation of iron oxide followed by coating with polyvinyl pyrrolidone (PVP). Characterization was performed using X-ray diffraction, TEM, TGA, FTIR and UV-Vis Spectroscopy. Magnetite (Fe3O4) remained as the core of the carrier. The amount of PVP bound to the iron oxide nanoparticles was estimated by thermogravimetric analysis (TGA) and the attachment of PVP to the iron oxide nanoparticles confirmed by FTIR analysis. The loading efficiency of Epirubicin hydrochloride onto the PVP coated and uncoated iron oxide nanoparticles was measured at intervals such as 1 hr and 24 hrs by UV-Vis Spectroscopy. The binding of Epirubicin hydrochloride to the PVP coated and uncoated iron oxide nanoparticles were confirmed by FTIR analysis. The present findings showed that Epirubicin hydrochloride loaded PVP coated iron oxide nanoparticles are promising for magnetically targeted drug delivery. The drug displayed increased cell cytotoxicity at lower concentrations when conjugated with the nanoparticles than being administered conventionally as individual drugs.
Collapse
Affiliation(s)
- P. Arsula Rose
- Department of Nanoscience and Technology, Udaya School of Engineering, Vellamodi, Kanyakumari District, Tamil Nadu, India
| | - P. K. Praseetha
- Department of Nanotechnology, Noorul Islam University, Kumaracoil, Tamil Nadu, India
| | | | - Princy Alexander
- Department of Nanotechnology, Noorul Islam University, Kumaracoil, Tamil Nadu, India
| | - Sunitha Abdeen
- Department of Nanotechnology, Noorul Islam University, Kumaracoil, Tamil Nadu, India
| | - Murthy Chavali
- Department of Nanotechnology, Noorul Islam University, Kumaracoil, Tamil Nadu, India
| |
Collapse
|
15
|
The Outline of Prognosis and New Advances in Diagnosis of Oral Squamous Cell Carcinoma (OSCC): Review of the Literature. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/519312] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective. Oral squamous cell carcinoma (OSCC) has a remarkable incidence over the world and a fairly strenuous prognosis, encouraging further research on the prognostic factors and new techniques for diagnosis that might modify disease outcome. Data Sources. A web-based search for all types of articles published was initiated using Medline/Pub Med, with the key words such as oral cancer, prognostic factors of oral cancer, diagnostic method of oral cancer, and imaging techniques for diagnosis of oral cancer. The search was restricted to articles published in English, with no publication date restriction (last update April, 2013). Review Methods. In this paper, I approach the factors of prognosis of OSCC and the new advances in diagnostic technologies as well. I also reviewed available studies of the tissue fluorescence spectroscopy and other noninvasive diagnostic aids for OSCC. Results. The outcome is greatly influenced by the stage of the disease (especially TNM). Prognosis also depends or varies with tumour primary site, nodal involvement, tumour thickness, and the status of the surgical margins. Conclusion. Tumour diameter is not the most accurate when compared to tumour thickness or depth of invasion, which can be related directly to prognosis. There is a wide agreement on using ultrasound guided fine needle aspiration biopsies in the evaluation of lymph node metastasis.
Collapse
|
16
|
Dhyani AH, Fan X, Leoni L, Haque M, Roman BB. Empirical mathematical model for dynamic manganese-enhanced MRI of the murine pancreas for assessment of β-cell function. Magn Reson Imaging 2012; 31:508-14. [PMID: 23102946 DOI: 10.1016/j.mri.2012.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 12/25/2022]
Abstract
Autoimmune ablation of pancreatic β-cells and alteration of its microvasculature may be a predictor of Type I diabetes development. A dynamic manganese-enhanced MRI (MEMRI) approach and an empirical mathematical model were developed to monitor whole pancreatic β-cell function and vasculature modifications in mice. Normal and streptozotocin-induced diabetic FVB/N mice were imaged on a 9.4T MRI system using a 3D magnetization prepared rapid acquisition gradient echo pulse sequence to characterize low dose manganese kinetics in the pancreas head, body and tail. Average signal enhancement in the pancreas (head, body, and tail) as a function of time was fit by a novel empirical mathematical model characterizing contrast uptake/washout rates and yielding parameters describing peak signal, initial slope, and initial area under the curve. Signal enhancement from glucose-induced manganese uptake was fit by a linear function. The results demonstrated that the diabetic pancreatic tail had a significantly lower contrast uptake rate, smaller initial slope/initial area under the curve, and a smaller rate of Mn uptake following glucose activation (p<0.05) compared to the normal pancreatic tail. These observations parallel known patterns of β-cell loss and alteration in supportive vasculature associated with diabetes. Dynamic MEMRI is a promising technique for assessing β-cell functionality and vascular perfusion with potential applications for monitoring diabetes progression and/or therapy.
Collapse
Affiliation(s)
- Anita H Dhyani
- Department of Radiology, MC2026, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
17
|
Sorace AG, Saini R, Mahoney M, Hoyt K. Molecular ultrasound imaging using a targeted contrast agent for assessing early tumor response to antiangiogenic therapy. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2012; 31:1543-50. [PMID: 23011617 PMCID: PMC3464103 DOI: 10.7863/jum.2012.31.10.1543] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
OBJECTIVES Contrast-enhanced ultrasound (US) and targeted microbubbles have been shown to be advantageous for angiogenesis evaluation and disease staging in cancer. This study explored molecular US imaging of a multitargeted microbubble for assessing the early tumor response to antiangiogenic therapy. METHODS Target receptor expression of 2LMP breast cancer cells was quantified by flow cytometric analysis and characterization established with antibodies against mouse α(V)β3- integrin, P-selectin, and vascular endothelial growth factor receptor 2. Tumor-bearing mice (n = 15 per group) underwent contrast-enhanced US imaging of multitargeted microbubbles. Microbubble accumulation was calculated by destruction-replenishment techniques and time-intensity curve analysis. On day 0, mice underwent baseline imaging. Next, therapy group mice were injected with a 0.2-mg dose of bevacizumab, and controls received matched saline injections. Imaging was repeated on days 1 and 3. After imaging was completed on day 3, the mice were euthanized and tumors excised. Histologic analysis of microvessel density and intratumoral necrosis was completed on tumor sections. RESULTS On day 3 after bevacizumab dosing, a 71.8% change in tumor vasculature was shown between the therapy and control groups (P = .01). The therapy group had a 15.4% decrease in tumor vascularity, whereas the control group had a 56.4% increase. CONCLUSIONS Molecular US imaging of angiogenic markers can detect the early tumor response to drug therapy.
Collapse
Affiliation(s)
- Anna G Sorace
- MBA, Department of Biomedical Engineering, University of Alabama at Birmingham, G082 Volker Hall, 1670 University Blvd, Birmingham, AL 35294-0019, USA
| | | | | | | |
Collapse
|
18
|
Kurland BF, Gerstner ER, Mountz JM, Schwartz LH, Ryan CW, Graham MM, Buatti JM, Fennessy FM, Eikman EA, Kumar V, Forster KM, Wahl RL, Lieberman FS. Promise and pitfalls of quantitative imaging in oncology clinical trials. Magn Reson Imaging 2012; 30:1301-12. [PMID: 22898682 DOI: 10.1016/j.mri.2012.06.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 06/07/2012] [Accepted: 06/16/2012] [Indexed: 01/13/2023]
Abstract
Quantitative imaging using computed tomography, magnetic resonance imaging and positron emission tomography modalities will play an increasingly important role in the design of oncology trials addressing molecularly targeted, personalized therapies. The advent of molecularly targeted therapies, exemplified by antiangiogenic drugs, creates new complexities in the assessment of response. The Quantitative Imaging Network addresses the need for imaging modalities which can accurately and reproducibly measure not just change in tumor size but changes in relevant metabolic parameters, modulation of relevant signaling pathways, drug delivery to tumor and differentiation of apoptotic cell death from other changes in tumor volume. This article provides an overview of the applications of quantitative imaging to phase 0 through phase 3 oncology trials. We describe the use of a range of quantitative imaging modalities in specific tumor types including malignant gliomas, lung cancer, head and neck cancer, lymphoma, breast cancer, prostate cancer and sarcoma. In the concluding section, we discuss potential constraints on clinical trials using quantitative imaging, including complexity of trial conduct, impact on subject recruitment, incremental costs and institutional barriers. Strategies for overcoming these constraints are presented.
Collapse
|
19
|
Pericleous P, Gazouli M, Lyberopoulou A, Rizos S, Nikiteas N, Efstathopoulos EP. Quantum dots hold promise for early cancer imaging and detection. Int J Cancer 2012; 131:519-528. [PMID: 22411309 DOI: 10.1002/ijc.27528] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 02/27/2012] [Indexed: 01/21/2023]
Abstract
Despite all major breakthroughs in recent years of research concerning the complex events that lead to cancer expression and metastasis, we are not yet able to effectively treat cancer that has spread to vital organs. The various clinical phases originating from cancer diagnosis through treatment and prognosis require a comprehensive understanding of these events, to utilise pre-symptomatic, minimally invasive and targeted cancer management techniques. Current imaging modalities such as ultrasound, computed tomography, magnetic resonance imaging and gamma scintigraphy facilitate the pre-operative study of tumours, but they have been rendered unable to visualise cancer in early stages, due to their intrinsic limitations. The semiconductor nanocrystal quantum dots (QDs) have excellent photo-physical properties, and the QDs-based probes have achieved encouraging developments in cellular (in vitro) and in vivo molecular imaging. However, the same unique physical and chemical properties which renowned QDs attractive may be associated with their potentially catastrophic effects on living cells and tissues. There are critical issues that need to be further examined to properly assess the risks associated with the manufacturing and use of QDs in cancer management. In this review, we aim to describe the current utilisation of QDs as well as their future prospective to decipher and confront cancer.
Collapse
|
20
|
Figueiras RG, Padhani AR, Goh VJ, Vilanova JC, González SB, Martín CV, Caamaño AG, Naveira AB, Choyke PL. Novel oncologic drugs: what they do and how they affect images. Radiographics 2012; 31:2059-91. [PMID: 22084189 DOI: 10.1148/rg.317115108] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Targeted therapies are designed to interfere with specific aberrant biologic pathways involved in tumor development. The main classes of novel oncologic drugs include antiangiogenic drugs, antivascular agents, drugs interfering with EGFR-HER2 or KIT receptors, inhibitors of the PI3K/Akt/mTOR pathway, and hormonal therapies. Cancer cells usurp normal signal transduction pathways used by growth factors to stimulate proliferation and sustain viability. The interaction of growth factors with their receptors activates different intracellular pathways affecting key tumor biologic processes such as neoangiogenesis, tumor metabolism, and tumor proliferation. The response of tumors to anticancer therapy can be evaluated with anatomic response assessment, qualitative response assessment, and response assessment with functional and molecular imaging. Angiogenesis can be measured by means of perfusion imaging with computed tomography and magnetic resonance (MR) imaging. Diffusion-weighted MR imaging allows imaging evaluation of tumor cellularity. The main imaging techniques for studying tumor metabolism in vivo are positron emission tomography and MR spectroscopy. Familiarity with imaging findings secondary to tumor response to targeted therapies may help the radiologist better assist the clinician in accurate evaluation of tumor response to these anticancer treatments. Functional and molecular imaging techniques may provide valuable data and augment conventional assessment of tumor response to targeted therapies. Supplemental material available at http://radiographics.rsna.org/lookup/suppl/doi:10.1148/rg.317115108/-/DC1.
Collapse
Affiliation(s)
- Roberto García Figueiras
- Department of Radiology, Grupo de Imagen Molecular, Fundación IDICHUS/IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Choupana s/n, 15702 Santiago de Compostela, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Britten CD, Gomes AS, Wainberg ZA, Elashoff D, Amado R, Xin Y, Busuttil RW, Slamon DJ, Finn RS. Transarterial chemoembolization plus or minus intravenous bevacizumab in the treatment of hepatocellular cancer: a pilot study. BMC Cancer 2012; 12:16. [PMID: 22244160 PMCID: PMC3292503 DOI: 10.1186/1471-2407-12-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 01/14/2012] [Indexed: 01/27/2023] Open
Abstract
Background Stimulation of vascular endothelial growth factor (VEGF) has been observed following transarterial chemoembolization (TACE) in hepatocellular cancer (HCC) and may contribute to tumor regrowth. This pilot study examined whether intravenous (IV) bevacizumab, a monoclonal antibody against VEGF, could inhibit neovessel formation after TACE. Methods 30 subjects with HCC undergoing TACE at a single academic institution were randomized with a computer-generated allocation in a one to one ratio to either bevacizumab at a dose of 10 mg/kg IV every 14 days beginning 1 week prior to TACE (TACE-BEV arm) or observation (TACE-O arm). Angiography was performed with TACE at day 8, and again at weeks 10 and 14. Repeat TACE was performed at week 14 if indicated. TACE-BEV subjects were allowed to continue bevacizumab beyond week 16. TACE-O subjects were allowed to cross-over to bevacizumab at week 16 in the setting of progressive disease. The main outcome measure was a comparison of neovessel formation by serial angiography. Secondary outcome measures were progression free survival (PFS) at 16 weeks, overall survival (OS), bevacizumab safety, and an analysis of VEGF levels before and after TACE with and without bevacizumab. Results Among the 30 subjects enrolled, 9 of 15 randomized to the TACE-O arm and 14 of 15 randomized to the TACE-BEV arm completed all 3 angiograms. At week 14, 3 of 9 (33%) TACE-O subjects and 2 of 14 (14%) TACE-BEV subjects demonstrated neovascularity. The PFS at 16 weeks was 0.19 in the TACE-O arm and 0.79 in the TACE-BEV arm (p = 0.021). The median OS was 61 months in the TACE-O arm and 49 months in the TACE-BEV arm (p = 0.21). No life-threatening bevacizumab-related toxicities were observed. There were no substantial differences in bevacizumab pharmacokinetics compared to historical controls. Bevacizumab attenuated the increase in VEGF observed post-TACE. Conclusions IV bevacizumab was well tolerated in selected HCC subjects undergoing TACE, and appeared to diminish neovessel formation at week 14. Trial registration ClinicalTrials.gov NCT00049322.
Collapse
Affiliation(s)
- Carolyn D Britten
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, Santa Monica, CA 90404-2429, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cheong SJ, Lee CM, Jang D, Kim EM, Jeong MH, Uhm TB, Lee WS, Jeong HJ, Kim DW, Lim ST, Sohn MH. Effect of molecular imaging on validation of developed anti-hVEGFR2 therapeutic antibody. Cancer Biother Radiopharm 2011; 26:745-51. [PMID: 22003972 DOI: 10.1089/cbr.2011.0996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vascular endothelial growth factor receptor type 2 (VEGFR2)-targeted tumor treatment is an antiangiogenic therapeutic strategy. The human sodium iodide symporter (hNIS) gene is a useful reporter gene for tumor imaging and radiotherapy. In this study, we investigated the evaluation of therapeutic efficacy in hNIS gene-transfected tumor xenografts using a gamma imaging system after treatment with an anti-VEGFR2 antibody. Human breast cancer MDA-MB-231 cells transfected with the hNIS gene were injected subcutaneously into the right flanks of BALB/c nude mice. Therapy was initiated when the tumor volume reached approximately 130-180 mm(3). The animals were intravenously injected with 50, 100, or 150 μg of antibody every 3 days for 16 days. Gamma imaging was performed 1 and 2 weeks after the first injection to monitor the effects of tumor therapy. Mice were sacrificed 2 weeks after the first injection of antibody and the tumors were removed for CD31 staining and reverse transcription-polymerase chain reaction (RT-PCR) assay. All groups of mice that were treated with anti-hVEGFR2 antibody showed markedly reduced tumor growth compared to control mice. In vivo gamma imaging results showed that, at 1 week after the first injection of the anti-hVEGFR2 antibody, (125)I uptake of a tumor treated with 150 μg of antibody was 24.5% lower than that in the controls. At 2 weeks, (125)I uptake in the tumor treated with 150 μg of antibody was as low as 44.3% of that in the controls. CD31 staining and RT-PCR assays showed that blood vessel formation and expression of the hNIS gene were reduced with increased treatment doses. This study demonstrated the feasibility of molecular imaging and the therapeutic efficacy of developing therapeutic antibody anti-hVEGFR2 using a gamma imaging system in hNIS gene-transfected tumor xenograft mice.
Collapse
Affiliation(s)
- Su-Jin Cheong
- Department of Nuclear Medicine, Chonbuk National University Medical School, Jeonju-si, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Patel GS, Kiuchi T, Lawler K, Ofo E, Fruhwirth GO, Kelleher M, Shamil E, Zhang R, Selvin PR, Santis G, Spicer J, Woodman N, Gillett CE, Barber PR, Vojnovic B, Kéri G, Schaeffter T, Goh V, O'Doherty MJ, Ellis PA, Ng T. The challenges of integrating molecular imaging into the optimization of cancer therapy. Integr Biol (Camb) 2011; 3:603-31. [PMID: 21541433 DOI: 10.1039/c0ib00131g] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We review novel, in vivo and tissue-based imaging technologies that monitor and optimize cancer therapeutics. Recent advances in cancer treatment centre around the development of targeted therapies and personalisation of treatment regimes to individual tumour characteristics. However, clinical outcomes have not improved as expected. Further development of the use of molecular imaging to predict or assess treatment response must address spatial heterogeneity of cancer within the body. A combination of different imaging modalities should be used to relate the effect of the drug to dosing regimen or effective drug concentration at the local site of action. Molecular imaging provides a functional and dynamic read-out of cancer therapeutics, from nanometre to whole body scale. At the whole body scale, an increase in the sensitivity and specificity of the imaging probe is required to localise (micro)metastatic foci and/or residual disease that are currently below the limit of detection. The use of image-guided endoscopic biopsy can produce tumour cells or tissues for nanoscopic analysis in a relatively patient-compliant manner, thereby linking clinical imaging to a more precise assessment of molecular mechanisms. This multimodality imaging approach (in combination with genetics/genomic information) could be used to bridge the gap between our knowledge of mechanisms underlying the processes of metastasis, tumour dormancy and routine clinical practice. Treatment regimes could therefore be individually tailored both at diagnosis and throughout treatment, through monitoring of drug pharmacodynamics providing an early read-out of response or resistance.
Collapse
Affiliation(s)
- G S Patel
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, King's College London, Guy's Medical School Campus, London, SE1 1UL, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
González Hernando C, Esteban L, Cañas T, Van den Brule E, Pastrana M. The role of magnetic resonance imaging in oncology. Clin Transl Oncol 2011; 12:606-13. [PMID: 20851801 DOI: 10.1007/s12094-010-0565-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Conventional diagnostic magnetic resonance imaging (MRI) techniques have focused on improving the spatial resolution and image acquisition speed (whole-body MRI) or on new contrast agents. Most advances in MRI go beyond morphologic study to obtain functional and structural information in vivo about different physiological processes of tumor microenvironment, such as oxygenation levels, cellular proliferation, or tumor vascularization through MRI analysis of some characteristics: angiogenesis (perfusion MRI), metabolism (MRI spectroscopy), cellularity (diffusion-weighted MRI), lymph node function, or hypoxia [blood-oxygen-level-dependent (BOLD) MRI]. We discuss the contributions of different MRI techniques than must be integrated in oncologic patients to substantially advance tumor detection and characterization risk stratification, prognosis, predicting and monitoring response to treatment, and development of new drugs.
Collapse
|
25
|
Wang H, Miao Y, Zhou K, Yu Y, Bao S, He Q, Dai Y, Xuan SY, Tarabishy B, Ye Y, Hu J. Feasibility of high temporal resolution breast DCE-MRI using compressed sensing theory. Med Phys 2010; 37:4971-81. [PMID: 20964216 PMCID: PMC2945738 DOI: 10.1118/1.3483094] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 07/15/2010] [Accepted: 08/05/2010] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To investigate the feasibility of high temporal resolution breast DCE-MRI using compressed sensing theory. METHODS Two experiments were designed to investigate the feasibility of using reference image based compressed sensing (RICS) technique in DCE-MRI of the breast. The first experiment examined the capability of RICS to faithfully reconstruct uptake curves using undersampled data sets extracted from fully sampled clinical breast DCE-MRI data. An average approach and an approach using motion estimation and motion compensation (ME/MC) were implemented to obtain reference images and to evaluate their efficacy in reducing motion related effects. The second experiment, an in vitro phantom study, tested the feasibility of RICS for improving temporal resolution without degrading the spatial resolution. RESULTS For the uptake-curve reconstruction experiment, there was a high correlation between uptake curves reconstructed from fully sampled data by Fourier transform and from undersampled data by RICS, indicating high similarity between them. The mean Pearson correlation coefficients for RICS with the ME/MC approach and RICS with the average approach were 0.977 +/- 0.023 and 0.953 +/- 0.031, respectively. The comparisons of final reconstruction results between RICS with the average approach and RICS with the ME/MC approach suggested that the latter was superior to the former in reducing motion related effects. For the in vitro experiment, compared to the fully sampled method, RICS improved the temporal resolution by an acceleration factor of 10 without degrading the spatial resolution. CONCLUSIONS The preliminary study demonstrates the feasibility of RICS for faithfully reconstructing uptake curves and improving temporal resolution of breast DCE-MRI without degrading the spatial resolution.
Collapse
Affiliation(s)
- Haoyu Wang
- Beijing City Key Laboratory of Medical Physics and Engineering, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Burdinski D, Pikkemaat J, Emrullahoglu M, Costantini F, Verboom W, Langereis S, Grüll H, Huskens J. Targeted LipoCEST Contrast Agents for Magnetic Resonance Imaging: Alignment of Aspherical Liposomes on a Capillary Surface. Angew Chem Int Ed Engl 2010; 49:2227-9. [DOI: 10.1002/anie.200905731] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Burdinski D, Pikkemaat J, Emrullahoglu M, Costantini F, Verboom W, Langereis S, Grüll H, Huskens J. Zielspezifische LipoCEST-Kontrastmittel für die Magnetresonanztomographie: die Ausrichtung asphärischer Liposomen auf einer Kapillaroberfläche. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200905731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
García Figueiras R, Padhani A, Vilanova J, Goh V, Villalba Martín C. Imagen funcional tumoral. Parte 1. RADIOLOGIA 2010; 52:115-25. [DOI: 10.1016/j.rx.2009.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/09/2009] [Accepted: 12/27/2009] [Indexed: 02/06/2023]
|
29
|
Lamuraglia M, Bridal SL, Santin M, Izzi G, Rixe O, Paradiso A, Lucidarme O. Clinical relevance of contrast-enhanced ultrasound in monitoring anti-angiogenic therapy of cancer: Current status and perspectives. Crit Rev Oncol Hematol 2010; 73:202-12. [DOI: 10.1016/j.critrevonc.2009.06.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 05/28/2009] [Accepted: 06/02/2009] [Indexed: 12/21/2022] Open
|
30
|
Jiang S, Gnanasammandhan MK, Zhang Y. Optical imaging-guided cancer therapy with fluorescent nanoparticles. J R Soc Interface 2010; 7:3-18. [PMID: 19759055 PMCID: PMC2839386 DOI: 10.1098/rsif.2009.0243] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Accepted: 08/17/2009] [Indexed: 01/01/2023] Open
Abstract
The diagnosis and treatment of cancer have been greatly improved with the recent developments in nanotechnology. One of the promising nanoscale tools for cancer diagnosis is fluorescent nanoparticles (NPs), such as organic dye-doped NPs, quantum dots and upconversion NPs that enable highly sensitive optical imaging of cancer at cellular and animal level. Furthermore, the emerging development of novel multi-functional NPs, which can be conjugated with several functional molecules simultaneously including targeting moieties, therapeutic agents and imaging probes, provides new potentials for clinical therapies and diagnostics and undoubtedly will play a critical role in cancer therapy. In this article, we review the types and characteristics of fluorescent NPs, in vitro and in vivo imaging of cancer using fluorescent NPs and multi-functional NPs for imaging-guided cancer therapy.
Collapse
Affiliation(s)
- Shan Jiang
- Division of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Republic of Singapore
| | - Muthu Kumara Gnanasammandhan
- Division of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Republic of Singapore
| | - Yong Zhang
- Division of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Republic of Singapore
- Nanoscience and Nanotechnology Initiative, National University of Singapore, Singapore 117576, Republic of Singapore
| |
Collapse
|
31
|
Functional imaging of tumors. Part 1. RADIOLOGIA 2010. [DOI: 10.1016/s2173-5107(10)70008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
|
33
|
Petrelli A, Valabrega G. Multitarget drugs: the present and the future of cancer therapy. Expert Opin Pharmacother 2009; 10:589-600. [PMID: 19284362 DOI: 10.1517/14656560902781907] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Target therapies for the treatment of human cancers have revolutionized the concept of oncological medicine. This type of therapeutic approach is directed to the inhibition of molecular targets that play a pivotal role in tumor progression -- such as tyrosine kinase receptors (TKIs) controlling cell proliferation and survival -- mainly by means of compounds able to block their activity. In the beginning, the aim of target therapies was specifically to hit a single molecule expressed in neoplastic cells. Now the prevailing idea is that inhibiting both cancer cells and cells of the stroma supporting the tumor would gain better results in fighting the disease. Therefore, the single-target therapy is fading in favor of a multitarget approach and the new generation of TKIs is selected on the basis of their ability simultaneously to target different molecules. This review summarizes the molecular basis of multitarget therapies and the most relevant results obtained in different cancer types.
Collapse
Affiliation(s)
- Annalisa Petrelli
- University of Turin Medical School, Institute for Cancer Research and Treatment (IRCC), Division of Molecular Oncology, Candiolo (Torino), Italy.
| | | |
Collapse
|
34
|
Bone marrow angiogenesis magnetic resonance imaging in patients with acute myeloid leukemia: peak enhancement ratio is an independent predictor for overall survival. Blood 2009; 113:3161-7. [DOI: 10.1182/blood-2008-08-173104] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Emerging evidence suggests that progression of hematologic malignancies is associated with angiogenesis. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can provide global and functional imaging of tumor angiogenesis. In this study, we performed bone marrow DCE-MRI prospectively at diagnosis and after induction chemotherapy in 78 de novo acute myeloid leukemia (AML) patients and correlated it with treatment outcome. An algorithm to assess bone marrow angiogenesis by measuring the DCE-MRI time-intensity curve pixel by pixel was developed using 3 distinct parameters: peak enhancement ratio (Peak) to indicate tissue blood perfusion; amplitude (Amp) to reflect vascularity; and volume transfer constant (K trans) to indicate vascular permeability. The Peak and Amp decreased significantly at remission status after induction chemotherapy. Patients with higher Peak or Amp at diagnosis had shorter overall survival and disease-free survival than others. Cox multivariate analysis identified higher Peak value (hazard ratio, 9.181; 95% confidence interval, 1.740-48.437; P = .009) as an independent predictor for overall survival in addition to unfavorable karyotype and old age. Our findings provide evidence that increased bone marrow angiogenesis measured by DCE-MRI can predict adverse clinical outcome in AML patients. DCE-MRI may help to select high-risk phenotype AML patients for tailored antiangiogenic therapy and to monitor treatment response.
Collapse
|
35
|
Abstract
Inhibition of specific processes essential for tumour vascular development is one of the key strategies for the treatment of non- small cell lung cancer (NSCLC). Many agents target the Vascular Endothelial Growth Factor (VEGF) pathway, either by preventing VEGF receptor binding or inhibiting VEGF receptor signalling in endothelial cells. Bevacizumab is a monoclonal antibody specific for VEGF-A. Combination of bevacizumab with standard first-line chemotherapy in NSCLC leads to an improvement in response rates and progression-free survival compared to chemotherapy alone and a significant survival advantage with carboplatin- paclitaxel chemotherapy. Toxicity issues are of concern with the possible occurrence of hypertension and an increased risk of arterial thrombo-embolism. The occurrence of fatal pulmonary haemorrhage after necrosis of the primary tumour is a specific toxicity in NSCLC which requires appropriate selection of patients before treatment; excluding squamous cell carcinoma, haemorrhagic tumours and tumour invasion of major blood vessels. The use of bevacizumab combined with chemotherapy represent a first step in the development of antiangiogenic treatments in NSCLC, with the future possibility of using it in earlier stages of disease.
Collapse
|
36
|
Molecular Imaging: Introduction. Mol Imaging 2009. [DOI: 10.1007/978-3-540-76735-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
37
|
Peng XH, Qian X, Mao H, Wang AY, Chen ZG, Nie S, Shin DM. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomedicine 2008; 3:311-21. [PMID: 18990940 PMCID: PMC2626938 DOI: 10.2147/ijn.s2824] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Magnetic iron oxide (IO) nanoparticles with a long blood retention time, biodegradability and low toxicity have emerged as one of the primary nanomaterials for biomedical applications in vitro and in vivo. IO nanoparticles have a large surface area and can be engineered to provide a large number of functional groups for cross-linking to tumor-targeting ligands such as monoclonal antibodies, peptides, or small molecules for diagnostic imaging or delivery of therapeutic agents. IO nanoparticles possess unique paramagnetic properties, which generate significant susceptibility effects resulting in strong T2 and T*2 contrast, as well as T1 effects at very low concentrations for magnetic resonance imaging (MRI), which is widely used for clinical oncology imaging. We review recent advances in the development of targeted IO nanoparticles for tumor imaging and therapy.
Collapse
Affiliation(s)
- Xiang-Hong Peng
- Department of Medical Oncology/Hematology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood-brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list "elementary" phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach.
Collapse
Affiliation(s)
- Ales Prokop
- Department of Chemical Engineering, 24th Avenue & Garland Avenues, 107 Olin Hall, Vanderbilt University, Nashville, Tennessee 37235, USA.
| | | |
Collapse
|
39
|
Abstract
Despite the large diffusion and rapid development of anti-VEGF therapy in clinical practice and in contrast to the consolidated evidence with imatinib and trastuzumab that demonstrated a direct correlation between pre-treatment target expression and drug activity, it is very difficult, at present, to identify validated and useful biomarkers to monitor the efficacy of these compounds and to appropriately select patients most likely to benefit from such treatments. However, emerging data suggest that this is not presently feasible for antiangiogenic drugs. Although tumoral and/or circulating VEGF levels have been associated with tumor progression and/or poor prognosis, to date, there is no validated evidence suggesting their role as potential predictive biomarkers of response to anti-VEGF therapy. Recently, many studies have documented promising results with the evaluation of circulating endothelial cells and/or progenitors, and the use of several imaging techniques, such as dynamic contrast-enhanced MRI, PET, dynamic CT scan and functional ultrasound. These preliminary data need a validation in larger prospective trials.
Collapse
Affiliation(s)
- Raffaele Longo
- Division of Medical Oncology, 'San Filippo Neri' Hospital, Via Martinotti 20, 00135 Rome, Italy.
| | | |
Collapse
|
40
|
Burdinski D, Lub J, Pikkemaat J, Langereis S, Grüll H, ten Hoeve W. The Thulium Complex of 1,4,7,10-Tetrakis{[N-(1H-imidazol-2-yl)carbamoyl]methyl}-1,4,7,10-tetraazacyclododecane (dotami) as a ParaCEST Contrast Agent. Chem Biodivers 2008; 5:1505-1512. [DOI: 10.1002/cbdv.200890139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
41
|
Abstract
Multiple biomedical imaging techniques are used in all phases of cancer management. Imaging forms an essential part of cancer clinical protocols and is able to furnish morphological, structural, metabolic and functional information. Integration with other diagnostic tools such as in vitro tissue and fluids analysis assists in clinical decision-making. Hybrid imaging techniques are able to supply complementary information for improved staging and therapy planning. Image guided and targeted minimally invasive therapy has the promise to improve outcome and reduce collateral effects. Early detection of cancer through screening based on imaging is probably the major contributor to a reduction in mortality for certain cancers. Targeted imaging of receptors, gene therapy expression and cancer stem cells are research activities that will translate into clinical use in the next decade. Technological developments will increase imaging speed to match that of physiological processes. Targeted imaging and therapeutic agents will be developed in tandem through close collaboration between academia and biotechnology, information technology and pharmaceutical industries.
Collapse
Affiliation(s)
- Leonard Fass
- GE Healthcare, 352 Buckingham Avenue, Slough, SL1 4ER, UK.
| |
Collapse
|
42
|
Sessa C, Guibal A, Del Conte G, Rüegg C. Biomarkers of angiogenesis for the development of antiangiogenic therapies in oncology: tools or decorations? ACTA ACUST UNITED AC 2008; 5:378-91. [DOI: 10.1038/ncponc1150] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Accepted: 12/06/2007] [Indexed: 12/26/2022]
|
43
|
Siu LL, Pili R, Duran I, Messersmith WA, Chen EX, Sullivan R, MacLean M, King S, Brown S, Reid GK, Li Z, Kalita AM, Laille EJ, Besterman JM, Martell RE, Carducci MA. Phase I study of MGCD0103 given as a three-times-per-week oral dose in patients with advanced solid tumors. J Clin Oncol 2008; 26:1940-7. [PMID: 18421048 PMCID: PMC3501257 DOI: 10.1200/jco.2007.14.5730] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE MGCD0103 is a novel isotype-selective inhibitor of human histone deaceylases (HDACs) with the potential to regulate aberrant gene expression and restore normal growth control in malignancies. PATIENTS AND METHODS A phase I trial of MGCD0103, given as a three-times-per-week oral dose for 2 of every 3 weeks, was performed in patients with advanced solid tumors. Primary end points were safety, tolerability, pharmacokinetics (PK), pharmacodynamic (PD) assessments of HDAC activity, and histone acetylation status in peripheral WBCs. RESULTS Six dose levels ranging from 12.5 to 56 mg/m(2)/d were evaluated in 38 patients over 99 cycles (median, 2; range, 1 to 11). The recommended phase II dose was 45 mg/m(2)/d. Dose-limiting toxicities consisting of fatigue, nausea, vomiting, anorexia, and dehydration were observed in three (27%) of 11 and two (67%) of three patients treated at the 45 and 56 mg/m(2)/d dose levels, respectively. Disease stabilization for four or more cycles was observed in five (16%) of 32 patients assessable for efficacy. PK analyses demonstrated interpatient variability which was improved by coadministration with low pH beverages. Elimination half-life ranged from 6.7 to 12.2 hours, and no accumulation was observed with repeated dosing. PD evaluations confirmed inhibition of HDAC activity and induction of acetylation of H3 histones in peripheral WBCs from patients by MGCD0103. CONCLUSION At doses evaluated, MGCD0103 appears tolerable and exhibits favorable PK and PD profiles with evidence of target inhibition in surrogate tissues.
Collapse
Affiliation(s)
- Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Hospital, University Health Network, 610 University Ave, Ste 5-718, Toronto, Ontario, M5G 2M9, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tilki D, Singer B, Seitz M, Stief CG, Ergün S. [Molecular imaging of tumor blood vessels]. Urologe A 2008; 46:1266-71. [PMID: 17639291 DOI: 10.1007/s00120-007-1516-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the past three decades many efforts have been undertaken to understand the mechanisms of tumor angiogenesis. The introduction of the anti-angiogenic drugs in tumor therapy during the last few years necessitates the establishment of new techniques enabling molecular imaging of vascular remodeling. Tumor imaging by X-ray, CT, MRI and ultrasound has to be improved by coupling with molecular markers targeting the tumor vessels. The determination of tumor size as commonly used is not appropriate since the extended necrosis under anti-angiogenic therapy does not result in a reduction of tumor diameter. But remodeling of the tumor vessels under anti-angiogenic therapy obviously occurs at an early stage and seems to be a convincing parameter for tumor imaging. Despite the enormous progress in this field during the last few years the resolution is still not high enough to evaluate the remodeling of the microtumor vessels. Thus, new imaging approaches are needed to overcome this issue.
Collapse
Affiliation(s)
- D Tilki
- Urologische Klinik und Poliklinik, Klinikum der Ludwig-Maximilians-Universität, München
| | | | | | | | | |
Collapse
|
45
|
Sharkey RM, Karacay H, Vallabhajosula S, McBride WJ, Rossi EA, Chang CH, Goldsmith SJ, Goldenberg DM. Metastatic human colonic carcinoma: molecular imaging with pretargeted SPECT and PET in a mouse model. Radiology 2008; 246:497-507. [PMID: 18227543 DOI: 10.1148/radiol.2462070229] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To prospectively determine if a bispecific monoclonal antibody (MoAb) pretargeting method with a radiolabeled hapten peptide can depict small (<0.3 mm in diameter) microdisseminated human colon cancer colonies in the lungs of nude mice. MATERIALS AND METHODS Animal studies were approved in advance by animal care and use committees. Animals injected intravenously with a human colon cancer cell line to establish microdisseminated colonies in the lungs were pretargeted with TF2--a recombinant, humanized, anti-carcinoembryonic antigen (CEA) and anti-histamine-succinyl-glycine (HSG) bispecific MoAb; 21 hours later, a radiolabeled HSG peptide was given. Imaging and necropsy data for tumor-bearing animals given the anti-CEA bispecific MoAb (n = 38, all studies) were compared with those of animals given fluorine 18 ((18)F) fluorodeoxyglucose (FDG) (n = 15, all studies), peptide alone (n = 20, all studies), or an irrelevant anti-CD22 bispecific MoAb (n = 12, all studies). Uptake of these agents in the lungs of non-tumor-bearing animals enabled assessment of specificity (n = 15, 4, and 6 for TF2 pretarget, hapten peptide alone, and (18)F-FDG, respectively). RESULTS TF2-pretargeting helped localize tumors in the lungs within 1.5 hours of the radiolabeled HSG peptide injection, while the peptide alone, irrelevant bispecific MoAb pretargeted peptide, and (18)F-FDG failed. Necropsy data indicated that the signal in tumor-bearing lungs was five times higher than in blood within 1.5 hours, increasing to 50 times higher by 24 hours. Peptide uptake in tumor-bearing lungs pretargeted with TF2 was nine times higher than in non-tumor-bearing lungs, while it was only 1.5-fold higher with (18)F-FDG or the peptide alone. Micro-positron emission tomographic (PET) images showed discrete uptake in individual metastatic tumor colonies; autoradiographic data demonstrated selective targeting within the lungs, including metastases less than 0.3 mm in diameter. CONCLUSION Bispecific antibody pretargeting is highly specific for imaging micrometastatic disease and may thus provide a complementary method to (18)F-FDG at clinical examination.
Collapse
Affiliation(s)
- Robert M Sharkey
- Center for Molecular Medicine and Immunology, Garden State Cancer Center, 520 Belleville Ave, Belleville, NJ 07109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Graf N, Desmedt C, Buffa F, Kafetzopoulos D, Forgó N, Kollek R, Hoppe A, Stamatakos G, Tsiknakis M. Post-genomic clinical trials: the perspective of ACGT. Ecancermedicalscience 2008; 2:66. [PMID: 22275963 PMCID: PMC3234044 DOI: 10.3332/ecms.2008.66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Indexed: 01/02/2023] Open
Affiliation(s)
- N Graf
- University Hospital of Saarland Paediatric Haematology and Oncology, D-66421 Homburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
van der Vaart MG, Meerwaldt R, Slart RHJA, van Dam GM, Tio RA, Zeebregts CJ. Application of PET/SPECT imaging in vascular disease. Eur J Vasc Endovasc Surg 2008; 35:507-13. [PMID: 18180182 DOI: 10.1016/j.ejvs.2007.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 11/27/2007] [Indexed: 12/26/2022]
Abstract
BACKGROUND Nuclear medicine imaging differs from other imaging modalities by showing physiological processes instead of anatomical details. OBJECTIVE To describe the current applications of positron emission tomography (PET) and single photon emission computed tomography (SPECT) as a diagnostic tool for vascular disease as relevant to vascular surgeons. METHODS A literature search identified articles focussing on vascular disease and PET or SPECT using the Pubmed database. Manual cross referencing was also performed. RESULTS PET and SPECT may be used to assess plaque vulnerability, biology of aneurysm progression, prosthetic graft infection, and vasculitis. The ability to combine computerized tomography scanning or magnetic resonance imaging with PET or SPECT adds detailed anatomical information and enhances the potential of nuclear medicine imaging in the investigation of vascular disease. DISCUSSION Considerable further information will be needed to define whether and where PET or SPECT will fit in a clinical strategy. The necessary validation studies represent an exciting challenge for the future but also may require the development of interdisciplinary imaging groups to integrate expertise and optimize nuclear diagnostic potential.
Collapse
Affiliation(s)
- M G van der Vaart
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Sharkey RM, Karacay H, McBride WJ, Rossi EA, Chang CH, Goldenberg DM. Bispecific antibody pretargeting of radionuclides for immuno single-photon emission computed tomography and immuno positron emission tomography molecular imaging: an update. Clin Cancer Res 2007; 13:5577s-5585s. [PMID: 17875792 DOI: 10.1158/1078-0432.ccr-07-1087] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular imaging is intended to localize disease based on distinct molecular/functional characteristics. Much of today's interest in molecular imaging is attributed to the increased acceptance and role of 18F-flurodeoxyglucose (18F-FDG) imaging in a variety of tumors. The clinical acceptance of 18F-FDG has stimulated research for other positron emission tomography (PET) agents with improved specificity to aid in tumor detection and assessment. In this regard, a number of highly specific antibodies have been described for different cancers. Although scintigraphic imaging with antibodies in the past was helpful in patient management, most antibody-based imaging products have not been able to compete successfully with the sensitivity afforded by 18F-FDG-PET, especially when used in combination with computed tomography. Recently, however, significant advances have been made in reengineering antibodies to improve their targeting properties. Herein, we describe progress being made in using a bispecific antibody pretargeting method for immuno-single-photon emission computed tomography and immunoPET applications, as contrasted to directly radiolabeled antibodies. This approach not only significantly enhances tumor/nontumor ratios but also provides high signal intensity in the tumor, making it possible to visualize micrometastases of colonic cancer as small as 0.1 to 0.2 mm in diameter using an anti-carcinoembryonic antigen bispecific antibody, whereas FDG failed to localize these lesions in a nude mouse model. Early detection of micrometastatic non-Hodgkin's lymphoma is also possible using an anti-CD20-based bispecific antibody pretargeting procedure. Thus, this bispecific antibody pretargeting procedure may contribute to tumor detection and could also contribute to the detection of other diseases having distinct antigen targets and suitably specific antibodies.
Collapse
Affiliation(s)
- Robert M Sharkey
- Garden State Cancer Center, Center for Molecular Medicine and Immunology, Belleville, New Jersey, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Kao JPY, Barth ED, Burks SR, Smithback P, Mailer C, Ahn KH, Halpern HJ, Rosen GM. Very-low-frequency electron paramagnetic resonance (EPR) imaging of nitroxide-loaded cells. Magn Reson Med 2007; 58:850-4. [PMID: 17899588 PMCID: PMC3708470 DOI: 10.1002/mrm.21388] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 07/17/2007] [Indexed: 11/11/2022]
Abstract
Recent advances in electron paramagnetic resonance (EPR) imaging have made it possible to image, in real time in vivo, cells that have been labeled with nitroxide spin probes. We previously reported that cells can be loaded to high (millimolar) intracellular concentrations with (2,2,5,5-tetramethylpyrrolidin-1-oxyl-3-ylmethyl)amine-N,N-diacetic acid by incubation with the corresponding acetoxymethyl (AM) ester. Furthermore, the intracellular lifetime (t(1/e)) of this nitroxide is 114 min-sufficiently long to permit in vivo imaging studies. In the present study, at a gradient of approximately 50 mT/m, we acquire and compare EPR images of a three-tube phantom, filled with either a 200-microM solution of the nitroxide, or a suspension of cells preincubated with the nitroxide AM ester. In both cases, 3-mm resolution images can be acquired with excellent signal-to-noise ratios (SNRs). These findings indicate that cells well-loaded with nitroxide are readily imageable by EPR imaging, and that in vivo tracking studies utilizing such cells should be feasible.
Collapse
Affiliation(s)
- Joseph P Y Kao
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
|