1
|
Chen M, Huang R, Rong Q, Yang W, Shen X, Sun Q, Shu D, Jiang K, Xue C, Peng J, An X, Li H, Xu F, Shi Y. Bevacizumab, tislelizumab and nab-paclitaxel for previously untreated metastatic triple-negative breast cancer: a phase II trial. J Immunother Cancer 2025; 13:e011314. [PMID: 40199609 PMCID: PMC11979599 DOI: 10.1136/jitc-2024-011314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Optimal first-line therapy for metastatic triple-negative breast cancer (mTNBC) varied in different situations. This phase II trial explores the efficacy and safety of combination regimens with bevacizumab, tislelizumab and nab-paclitaxel (BETINA) in first-line setting for mTNBC. METHODS Patients with previously untreated advanced TNBC received tislelizumab 200 mg and bevacizumab on day 1 and nab-paclitaxel 125 mg/m2 on day 1, day 8 in 3-week cycles. Patients were randomized to bevacizumab 7.5 mg/kg or 15 mg/kg. The primary endpoint was investigator-assessed objective response rate (ORR) per Response Evaluation Criteria in Solid Tumors V.1.1. Secondary endpoints included progression-free survival (PFS), overall survival (OS), and safety. The trial was registered at the Chinese Clinical Trial Registry (No. ChiCTR2200058567). RESULTS 30 female patients were enrolled from March 11, 2021 to February 5, 2024. Nine patients receiving bevacizumab 15 mg/kg experienced significantly higher hypertension rates versus 7.5 mg/kg (55.5% vs 0%), prompting subsequent enrollment of 12 additional patients at 7.5 mg/kg. By November 30, 2024, the ORR was 73.3% and the disease control rate was 90.0%, while the median PFS was 6.0 months and the median OS was 19.8 months. No new safety signal was reported. Common treatment-related adverse events (AEs) included peripheral sensory neuropathy (83.3%), dyspepsia (70.0%), anemia (70.0%), leukocytopenia (66.7%), and pruritus (53.3%). Hypothyroidism (30.0%) was the most frequent immune-related AE. Biomarker analysis indicated that lower baseline interleukin (IL)-1α was associated with poor survival, while IL-2, vascular endothelial growth factor-A and insulin-like growth factor binding protein-7 levels significantly decreased at progression. RNA sequencing highlighted the enrichment of the fatty acid metabolism pathway in poor responders. CONCLUSIONS BETINA study demonstrated promising efficacy and favorable tolerance in treating patients with mTNBC with bevacizumab with tislelizumab and nab-paclitaxel.
Collapse
Affiliation(s)
- Meiting Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Riqing Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Qixiang Rong
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Wei Yang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Xiujiao Shen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Qi Sun
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Ditian Shu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Kuikui Jiang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Cong Xue
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Jing Peng
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Xin An
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Haifeng Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Fei Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Yanxia Shi
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
2
|
Hakariya H, Ozaki A, Tanimoto T. US FDA-accelerated approvals and subsequent withdrawals: influence on Japanese clinical oncology practice guidelines. Invest New Drugs 2025; 43:311-317. [PMID: 40178688 PMCID: PMC12048449 DOI: 10.1007/s10637-025-01524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025]
Abstract
The US (US) Food and Drug Administration (FDA)-accelerated approval pathway facilitates early access to oncology drugs based on surrogate endpoints, with required confirmatory post-marketing trials. However, regulatory decisions vary globally, with some drugs withdrawn in the US remaining approved in Japan. We conducted a cross-sectional analysis of Japanese professional society guidelines, evaluating recommendations for seven accelerated approval cancer drugs withdrawn from the US market but retained in Japan. We assessed for level of evidence and level of treatment preference ratings with consensus across guidelines issued by the corresponding Japanese professional societies. Four of the seven drugs (57%) were recommended as highly or moderately preferred treatment options in Japanese guidelines: gemtuzumab ozogamicin for acute myeloid leukemia, gefitinib for EGFR-positive non-small cell lung cancer, bevacizumab for HER2-negative metastatic breast cancer, and atezolizumab with nab-paclitaxel for PD-L1-positive triple-negative breast cancer. Detailed analysis of regulatory history and background of guideline recommendation revealed discrepancies in the assessment of clinical benefits: gemtuzumab ozogamicin failed to demonstrate benefits amid safety concerns, while gefitinib, bevacizumab, and atezolizumab were more controversial, although they did not demonstrate improved overall survival in post-marketing trials. Despite regulatory withdrawal in the US due to unproven clinical benefits, drugs retained in Japan received positive guideline recommendations. This finding highlights regional variations in regulatory decisions and different approaches to benefit-risk assessments, suggesting a need for improved transparency in Japan's regulatory decisions and guideline recommendations, with clearer justifications for endorsing drugs that are considered to have unproven clinical benefits in the US.
Collapse
Affiliation(s)
- Hayase Hakariya
- Interfaculty Institute of Biochemistry, University of Tuebingen, 72076, Tuebingen, Germany.
- Institute for Pharmaceutical and Social Health Sciences, Ise, Japan.
| | - Akihiko Ozaki
- Breast and Thyroid Center, Jyoban Hospital of Tokiwa Foundation, Iwaki, Fukushima, 972-8322, Japan
- Medical Governance Research Institute, Minato, Tokyo, 108-0074, Japan
| | - Tetsuya Tanimoto
- Medical Governance Research Institute, Minato, Tokyo, 108-0074, Japan
- Navitas Clinic, Tokyo, 190-0023, Japan
| |
Collapse
|
3
|
Luo H, Sun Y, Xu T. Application status and research progress of targeted therapy drugs for hormone receptor-positive breast cancer. Front Med (Lausanne) 2025; 12:1513836. [PMID: 40134916 PMCID: PMC11933059 DOI: 10.3389/fmed.2025.1513836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/10/2025] [Indexed: 03/27/2025] Open
Abstract
Breast cancer (BC) is the most common malignant tumor in women and the leading cause of cancer-related deaths in women. As one of the most common subtypes of breast cancer, patients with hormone receptor-positive (HR+) breast cancer usually experience disease progression over an extended period of time, triggering the search for therapeutic strategies other than endocrine therapy. In recent years, continuous research on various targets has led to dramatic changes in the treatment of hormone receptor-positive breast cancer patients, resulting in prolonged clinical survival. With the redefinition of human epidermal growth factor-2 (HER2) expression, more precise and individualized treatment is possible. This review comprehensively reviews targeted therapies and critical clinical trials for HR+ breast cancer and tracks the latest advances. It also provides valuable insights into the future direction of targeted therapies.
Collapse
Affiliation(s)
- Han Luo
- Department of Breast Surgery, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Yue Sun
- Department of Breast Surgery, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Tiefeng Xu
- Department of Breast Surgery, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
4
|
Zhang Y, Shang H, Zhang J, Jiang Y, Li J, Xiong H, Chao T. Drug Treatment Direction Based on the Molecular Mechanism of Breast Cancer Brain Metastasis. Pharmaceuticals (Basel) 2025; 18:262. [PMID: 40006075 PMCID: PMC11859690 DOI: 10.3390/ph18020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Today, breast cancer (BC) is the most frequently diagnosed malignancy and a leading cause of cancer-related deaths among women worldwide. Brain metastases (BMs) are a common complication among individuals with advanced breast cancer, significantly impacting both survival rates and the overall condition of life of patients. This review systematically analyzes the innovative approaches to drug treatment for breast cancer brain metastases (BCBMs), with particular emphasis placed on treatments targeting molecular mechanisms and signaling pathways and drug delivery strategies targeting the blood brain barrier (BBB). The article discusses various drugs that have demonstrated effectiveness against BCBM, featuring a mix of monoclonal antibodies, nimble small-molecule tyrosine kinase inhibitors (TKIs), and innovative antibody-drug conjugates (ADCs). This study of various drugs and techniques designed to boost the permeability of the BBB sheds light on how these innovations can improve the treatment of brain metastases. This review highlights the need to develop new therapies for BCBM and to optimize existing treatment strategies. With a deeper comprehension of the intricate molecular mechanisms and advances in drug delivery technology, it is expected that more effective personalized treatment options will become available in the future for patients with BCBM.
Collapse
Affiliation(s)
- Yumin Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (H.S.); (Y.J.); (J.L.)
| | - Haotian Shang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (H.S.); (Y.J.); (J.L.)
| | - Jiaxuan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yizhi Jiang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (H.S.); (Y.J.); (J.L.)
| | - Jiahao Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (H.S.); (Y.J.); (J.L.)
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (H.S.); (Y.J.); (J.L.)
| | - Tengfei Chao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (H.S.); (Y.J.); (J.L.)
| |
Collapse
|
5
|
Sharma P, Chida K, Wu R, Tung K, Hakamada K, Ishikawa T, Takabe K. VEGFA Gene Expression in Breast Cancer Is Associated With Worse Prognosis, but Better Response to Chemotherapy and Immunotherapy. World J Oncol 2025; 16:120-130. [PMID: 39850522 PMCID: PMC11750749 DOI: 10.14740/wjon1993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2025] [Accepted: 01/02/2025] [Indexed: 01/25/2025] Open
Abstract
Background Vascular endothelial growth factor-A (VEGFA) is a key inducer of angiogenesis, responsible for generating new blood vessels in the tumor microenvironment (TME) and facilitating metastasis. Notably, Avastin, which targets VEGFA, failed to demonstrate any significant benefit in clinical trials for breast cancer (BC). This study aimed to investigate the clinical relevance of VEGFA gene expression in BC. Methods A total of 7,336 BC patients across eight independent cohorts: ISPY2 (GSE173839), Sweden Cancerome Analysis Network-Breast (SCAN-B) (GSE96058), Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), GSE25066, GSE163882, GSE34138, GSE20194, and The Cancer Genome Atlas (TCGA), were analyzed. The calculated median VEGFA expression level was used to stratify these cohorts into high and low groups. Results High VEGFA was associated with worse disease-free, disease-specific, and overall survival in the METABRIC cohort, with findings supported by the SCAN-B cohort, which also showed worse overall survival (all P < 0.02). High VEGFA expression was seen in triple-negative breast cancer (TNBC) but not in BC with lymph node metastasis. Additionally, there was a significant correlation between high VEGFA expression and higher silent and non-silent mutations, single-nucleotide variant (SNV) neoantigens, homologous recombination defect, intratumoral heterogeneity, in the TCGA cohort. In the TCGA, METABRIC, and SCAN-B cohorts, high VEGFA BC was also associated with higher cell proliferation: higher Ki67 gene expression, higher Nottingham histological grade, and consistent enrichment of all the Hallmark cell proliferation-related gene sets. Unexpectedly, the angiogenesis gene set was not enriched in any of the cohorts and showed no association with infiltrations of lymphatic or blood vascular endothelial cells besides pericytes. High VEGFA BC had significantly less infiltration of anti-cancer immune cells but higher infiltration of pro-cancer immune cells in TCGA, METABRIC, and SCAN-B cohorts. Interestingly, BC, which had a pathological complete response (pCR) after anthracycline- and taxane-based neoadjuvant therapy, was associated with significantly heightened VEGFA expression in both estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2)- and TNBC subtypes in the GSE25066 cohort and after immunotherapy in ER+/ HER2- subtype, but not TNBC in the ISPY2 cohort. Conclusions Our research indicates that high VEGFA BC confers high cell proliferation, reduced immune cell infiltration, and poorer survival, but allows better response to anthracycline- and taxane-based chemotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Pia Sharma
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Kohei Chida
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Kaity Tung
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14203, USA
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14203, USA
- Department of Breast and Thyroid Surgery, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| |
Collapse
|
6
|
Guo Z, Zhu Z, Lin X, Wang S, Wen Y, Wang L, Zhi L, Zhou J. Tumor microenvironment and immunotherapy for triple-negative breast cancer. Biomark Res 2024; 12:166. [PMID: 39741315 DOI: 10.1186/s40364-024-00714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer known for its high aggressiveness and poor prognosis. Conventional treatment of TNBC is challenging due to its heterogeneity and lack of clear targets. Recent advancements in immunotherapy have shown promise in treating TNBC, with immune checkpoint therapy playing a significant role in comprehensive treatment plans. The tumor microenvironment (TME), comprising immune cells, stromal cells, and various cytokines, plays a crucial role in TNBC progression and response to immunotherapy. The high presence of tumor-infiltrating lymphocytes and immune checkpoint proteins in TNBC indicates the potential of immunotherapeutic strategies. However, the complexity of the TME, while offering therapeutic targets, requires further exploration of its multiple roles in immunotherapy. In this review, we discuss the interaction mechanism between TME and TNBC immunotherapy based on the characteristics and composition of TME, and elaborate on and analyze the effect of TME on immunotherapy, the potential of TME as an immune target, and the ability of TME as a biomarker. Understanding these dynamics will offer new insights for enhancing therapeutic approaches and investigating stratification and prognostic markers for TNBC patients.
Collapse
Affiliation(s)
- Zijie Guo
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Ziyu Zhu
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Xixi Lin
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Shenkangle Wang
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Yihong Wen
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Linbo Wang
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China.
| | - Lili Zhi
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China.
| | - Jichun Zhou
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
7
|
Yang F. The integration of radiotherapy with systemic therapy in advanced triple-negative breast cancer. Crit Rev Oncol Hematol 2024; 204:104546. [PMID: 39476993 DOI: 10.1016/j.critrevonc.2024.104546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with high aggressiveness and poor prognosis. For patients who have undergone multiple treatments, systemic drug therapy often presents challenges with limited efficacy and significant side effects. Radiotherapy, a pivotal local treatment, has shown substantial local control benefits in patients with inoperable locally advanced or metastatic disease. Clinical evidence suggests that integrating systemic therapy with locoregional radiotherapy can confer survival advantages in advanced malignancies. Within multidisciplinary treatment, the synergy between radiotherapy and systemic therapies shows promise for enhancing outcomes and extending survival. This review synthesizes recent advances in combining radiotherapy and systemic therapy in managing advanced TNBC, focusing on preclinical and clinical evidence regarding efficacy and safety. By reviewing these advancements, we aim to identify novel therapeutic strategies and integrate clinical evidence to inform best practices in TNBC management, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Fang Yang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
8
|
Antoine A, Pérol D, Robain M, Bachelot T, Choquet R, Jacot W, Ben Hadj Yahia B, Grinda T, Delaloge S, Lasset C, Drouet Y. Assessing the real-world effectiveness of 8 major metastatic breast cancer drugs using target trial emulation. Eur J Cancer 2024; 213:115072. [PMID: 39476445 DOI: 10.1016/j.ejca.2024.115072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Demonstration of trial emulation ability to benchmark randomised controlled trials (RCTs) from real-world data (RWD) is required to increase confidence in the use of routinely collected data for decision making in oncology. METHODS To assess the frequency with which emulation findings align with RCTs regarding effect size on overall survival (OS) in metastatic breast cancer (MBC), 8 of 13 pre-selected pivotal RCTs in MBC were emulated using data from 32,598 patients enrolled in the French ESME-MBC cohort between January 1, 2008 and December 31, 2021. Adjustment methods and confounders were selected a priori for each emulation; stabilized weight was the reference method to mitigate confounding. Concordance in OS hazard ratios with associated 95 % confidence intervals between RCTs and emulations were assessed used predefined metrics based on statistical significance, estimates, and standardized differences. RESULTS The effect sizes were consistent with RCT results in 7 out of the 8 emulations; 4 emulations achieved full statistical significance agreement; 5 emulations had a point estimate included in the RCT CI (estimate agreement); 6 emulations reported no significant differences between RCT and emulation (standardized difference agreement). Discrepancies related to residual confounders and significant shifts in prescription practices post-drug approval may arise in some cases. CONCLUSION Target trial emulation from RWD combined with appropriate adjustment can provide conclusions similar to RCTs in MBC. In oncology, this methodology offers opportunities for confirming the impact on long-term survival, for expanding indications in patients excluded from RCTs and for comparative effectiveness in single-arm trials using external control arms.
Collapse
Affiliation(s)
- Alison Antoine
- Clinical Research Department, Centre Léon Bérard, Lyon, France; UMR CNRS 5558 LBBE, Claude Bernard Lyon 1 University, Villeurbanne, France.
| | - David Pérol
- Clinical Research Department, Centre Léon Bérard, Lyon, France
| | | | - Thomas Bachelot
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Rémy Choquet
- Department of Medical Evidence & Data Science, Roche, Boulogne-Billancourt, France
| | - William Jacot
- Department of Medical Oncology, Institut du Cancer de Montpellier, Montpellier University, INSERM U1194, Montpellier, France
| | | | - Thomas Grinda
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Suzette Delaloge
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Christine Lasset
- UMR CNRS 5558 LBBE, Claude Bernard Lyon 1 University, Villeurbanne, France; Prevention & Public Health Department, Centre Léon Bérard, Lyon, France
| | - Youenn Drouet
- UMR CNRS 5558 LBBE, Claude Bernard Lyon 1 University, Villeurbanne, France; Prevention & Public Health Department, Centre Léon Bérard, Lyon, France
| |
Collapse
|
9
|
Ren W, Liang H, Sun J, Cheng Z, Liu W, Wu Y, Shi Y, Zhou Z, Chen C. TNFAIP2 promotes HIF1α transcription and breast cancer angiogenesis by activating the Rac1-ERK-AP1 signaling axis. Cell Death Dis 2024; 15:821. [PMID: 39532855 PMCID: PMC11557851 DOI: 10.1038/s41419-024-07223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Angiogenesis is well known to play a critical role in breast cancer. We previously reported that TNFAIP2 activates Rac1 to promote triple-negative breast cancer (TNBC) cell proliferation, migration, and chemoresistance. However, the potential contribution of TNFAIP2 to tumor angiogenesis remains unknown. In this study, we demonstrated that TNFAIP2 promotes TNBC angiogenesis by activating the Rac1-ERK-AP1-HIF1α signaling axis. Under hypoxia, TNFAIP2 activates Rac1 and ERK sequentially. Following that, ERK activates the AP-1 (c-Jun/Fra1) transcription factor. By employing chromatin immunoprecipitation and luciferase reporter assays, we showed that AP-1 directly interacts with the HIF1α gene promoter, thereby enhancing its transcription. The combined application of ERK inhibitors, U0126 or trametinib, with the VEGFR inhibitor Apatinib, additively suppresses angiogenesis and tumor growth of HCC1806 in nude mice. These findings provide new therapeutic strategies for TNBC.
Collapse
MESH Headings
- Humans
- Animals
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- rac1 GTP-Binding Protein/metabolism
- rac1 GTP-Binding Protein/genetics
- Female
- Cell Line, Tumor
- Mice, Nude
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/pathology
- Triple Negative Breast Neoplasms/metabolism
- Triple Negative Breast Neoplasms/drug therapy
- Mice
- Signal Transduction
- Transcription Factor AP-1/metabolism
- Pyrimidinones/pharmacology
- Pyridines/pharmacology
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Transcription, Genetic/drug effects
- Pyridones/pharmacology
- Mice, Inbred BALB C
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Nitriles/pharmacology
- MAP Kinase Signaling System/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Angiogenesis
Collapse
Affiliation(s)
- Wenlong Ren
- School of Life Science, University of Science & Technology of China, Hefei, Anhui, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Huichun Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jian Sun
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, China
| | - Zhuo Cheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenjing Liu
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, China
| | - Yingying Wu
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yujie Shi
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhongmei Zhou
- The School of Continuing Education, Kunming Medical University, Kunming, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, China.
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Academy of Biomedical Engineering, Kunming Medical University, Kunming, ChinaAcademy of Biomedical Engineering, Kunming Medical University, Kunming, China.
| |
Collapse
|
10
|
Lagarde CB, Thapa K, Cullen NM, Hawes ML, Salim K, Benz MC, Dietrich SR, Burow BE, Bunnell BA, Martin EC, Collins-Burow BM, Lynch RM, Hoang VT, Burow ME, Fang JS. Obesity and leptin in breast cancer angiogenesis. Front Endocrinol (Lausanne) 2024; 15:1465727. [PMID: 39439572 PMCID: PMC11493622 DOI: 10.3389/fendo.2024.1465727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
At the time of breast cancer diagnosis, most patients meet the diagnostic criteria to be classified as obese or overweight. This can significantly impact patient outcome: breast cancer patients with obesity (body mass index > 30) have a poorer prognosis compared to patients with a lean BMI. Obesity is associated with hyperleptinemia, and leptin is a well-established driver of metastasis in breast cancer. However, the effect of hyperleptinemia on angiogenesis in breast cancer is less well-known. Angiogenesis is an important process in breast cancer because it is essential for tumor growth beyond 1mm3 in size as well as cancer cell circulation and metastasis. This review investigates the role of leptin in regulating angiogenesis, specifically within the context of breast cancer and the associated tumor microenvironment in obese patients.
Collapse
Affiliation(s)
- Courtney B. Lagarde
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane University Cancer Center, New Orleans, LA, United States
| | - Kapil Thapa
- Department of Cell and Molecular Biology, Tulane University School of Science and Engineering, New Orleans, LA, United States
| | - Nicole M. Cullen
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane University Cancer Center, New Orleans, LA, United States
| | - Mackenzie L. Hawes
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane University Cancer Center, New Orleans, LA, United States
| | - Khudeja Salim
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane University Cancer Center, New Orleans, LA, United States
| | - Megan C. Benz
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane University Cancer Center, New Orleans, LA, United States
| | - Sophie R. Dietrich
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane University Cancer Center, New Orleans, LA, United States
- United States Department of Agriculture Southern Regional Research Center, New Orleans, LA, United States
| | - Brandon E. Burow
- Department of Cell and Molecular Biology, Tulane University School of Science and Engineering, New Orleans, LA, United States
| | - Bruce A. Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Elizabeth C. Martin
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane University Cancer Center, New Orleans, LA, United States
| | - Bridgette M. Collins-Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane University Cancer Center, New Orleans, LA, United States
| | - Ronald M. Lynch
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Van T. Hoang
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane University Cancer Center, New Orleans, LA, United States
| | - Matthew E. Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane University Cancer Center, New Orleans, LA, United States
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jennifer S. Fang
- Department of Cell and Molecular Biology, Tulane University School of Science and Engineering, New Orleans, LA, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
11
|
Guelfi S, Hodivala-Dilke K, Bergers G. Targeting the tumour vasculature: from vessel destruction to promotion. Nat Rev Cancer 2024; 24:655-675. [PMID: 39210063 DOI: 10.1038/s41568-024-00736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
As angiogenesis was recognized as a core hallmark of cancer growth and survival, several strategies have been implemented to target the tumour vasculature. Yet to date, attempts have rarely been so diverse, ranging from vessel growth inhibition and destruction to vessel normalization, reprogramming and vessel growth promotion. Some of these strategies, combined with standard of care, have translated into improved cancer therapies, but their successes are constrained to certain cancer types. This Review provides an overview of these vascular targeting approaches and puts them into context based on our subsequent improved understanding of the tumour vasculature as an integral part of the tumour microenvironment with which it is functionally interlinked. This new knowledge has already led to dual targeting of the vascular and immune cell compartments and sets the scene for future investigations of possible alternative approaches that consider the vascular link with other tumour microenvironment components for improved cancer therapy.
Collapse
Affiliation(s)
- Sophie Guelfi
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK.
| | - Gabriele Bergers
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Gaudio G, Martino E, Pellizzari G, Cavallone M, Castellano G, Omar A, Katselashvili L, Trapani D, Curigliano G. Developing combination therapies with biologics in triple-negative breast cancer. Expert Opin Biol Ther 2024; 24:1075-1094. [PMID: 39360776 DOI: 10.1080/14712598.2024.2408756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/22/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION Novel compounds have entered the triple-negative breast cancer (TNBC) treatment algorithm, namely immune checkpoints inhibitors (ICIs), PARP inhibitors and antibody-drug conjugates (ADCs). The optimization of treatment efficacy can be enhanced with the use of combination treatments, and the incorporation of novel compounds. In this review, we discuss the combination treatments under development for the treatment of TNBC. AREAS COVERED The development of new drugs occurring in recent years has boosted the research for novel combinations to target TNBC heterogeneity and improve outcomes. ICIs, ADCs, tyrosine kinase inhibitors (TKIs), and PARP inhibitors have emerged as leading players in this new landscape, while other compounds like novel intracellular pathways inhibitors or cancer vaccines are drawing more and more interest. The future of TNBC is outlined in combination approaches, and based on new cancer targets, including many chemotherapy-free treatments. EXPERT OPINION A large number of TNBC therapies have either proved clinically ineffective or weighted by unacceptable safety profiles. Others, however, have provided promising results and are currently in late-stage clinical trials, while a few have actually changed clinical practice in recent years. As novel, more and more selective drugs come up, combination strategies focusing the concept of synergy are fully warranted for the future.
Collapse
Affiliation(s)
- Gilda Gaudio
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Enzo Martino
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Gloria Pellizzari
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Matteo Cavallone
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Grazia Castellano
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Abeid Omar
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Nuclear Medicine, Kenyatta University Teaching Referral and Research Hospital, Nairobi, Kenya
| | - Lika Katselashvili
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology, Caucasus Medical Centre, Tbilisi, Georgia
| | - Dario Trapani
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| |
Collapse
|
13
|
Li Y, Zhang Y, Mi G, Lin J. A seamless phase II/III design with dose optimization for oncology drug development. Stat Med 2024; 43:3383-3402. [PMID: 38845095 DOI: 10.1002/sim.10129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/19/2024] [Accepted: 05/20/2024] [Indexed: 07/17/2024]
Abstract
The US FDA's Project Optimus initiative that emphasizes dose optimization prior to marketing approval represents a pivotal shift in oncology drug development. It has a ripple effect for rethinking what changes may be made to conventional pivotal trial designs to incorporate a dose optimization component. Aligned with this initiative, we propose a novel seamless phase II/III design with dose optimization (SDDO framework). The proposed design starts with dose optimization in a randomized setting, leading to an interim analysis focused on optimal dose selection, trial continuation decisions, and sample size re-estimation (SSR). Based on the decision at interim analysis, patient enrollment continues for both the selected dose arm and control arm, and the significance of treatment effects will be determined at final analysis. The SDDO framework offers increased flexibility and cost-efficiency through sample size adjustment, while stringently controlling the Type I error. This proposed design also facilitates both accelerated approval (AA) and regular approval in a "one-trial" approach. Extensive simulation studies confirm that our design reliably identifies the optimal dosage and makes preferable decisions with a reduced sample size while retaining statistical power.
Collapse
Affiliation(s)
- Yuhan Li
- Department of Statistics, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Yiding Zhang
- Department of Biostatistics and Programming, Sanofi US, Cambridge, Massachusetts, USA
| | - Gu Mi
- Department of Biostatistics and Programming, Sanofi US, Cambridge, Massachusetts, USA
| | - Ji Lin
- Department of Biostatistics and Programming, Sanofi US, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Chen X, Wei X, Yao P, Liu Y, Guan H, Kang H, Liu D, Diao Y, Ma X, Min W, Shan C, Zhao Y, Zhao F, Chen Y, Xiao D, She Q, Liu Y, Zhang Y, Zhang S. The Efficiency and Toxicity Of Anlotinib in Combination With Docetaxel Followed by Epirubicin and Cyclophosphamide Regimen as Neoadjuvant Treatment in IIB to IIIA Triple Negative Breast Cancer: A Single-Arm, Multicenter, Open-Label, Phase II Study. Clin Breast Cancer 2024; 24:e195-e202. [PMID: 38670862 DOI: 10.1016/j.clbc.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/03/2023] [Accepted: 01/25/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND The combination of neoadjuvant chemotherapy and anti-angiogenesis therapy for patients with triple-negative breast cancer (TNBC) remains inadequately supported by evidence. We conducted a single-arm, open-label, multicenter, phase II trial to evaluate the efficacy and toxicity of anlotinib plus epirubicin and cyclophosphamide followed by paclitaxel in patients with IIB to IIIA stage TNBC. METHODS Newly diagnosed patients received epirubicin at 90 mg/m2 and cyclophosphamide at 600 mg/m2 followed by docetaxel at 100 mg/m2 (21 days per cycle; total of 4 cycles), along with oral anlotinib (12 mg qd, d1-14; 21 days per cycle; total of 4 cycles). Subsequently, patients underwent surgery. The primary endpoint of this study was pathologic complete response (pCR). RESULTS Among the 34 included patients, the median age was 46.5 years (range: 27-72); all were female. Pathological assessment revealed that 17 patients achieved RCB 0 response, which is currently defined as pathologic complete response; 3 patients achieved RCB 1; 12 patients achieved RCB 2; and 1 patient achieved RCB 3. The probability of a grade 3 adverse reaction was 17.6%, and no grade 4 adverse reactions occurred. The most common hematological adverse reaction was leukopenia (13/34, 38.2%), of which 5.9% (2/34) were grade 3. The most common non-hematological adverse reactions were oral mucositis (16/34, 58.8%), fatigue (50.0%), hand-foot syndrome (50.0%), hypertension (44.1%), bleeding (44.1%), and alopecia (32.4%). CONCLUSION The combination of anlotinib and EC-T chemotherapy demonstrated tolerable side effects in the neoadjuvant treatment of early TNBC. pCR was higher than what has been reported in previous clinical studies of chemotherapy alone. This study provides additional rationale for using anlotinib plus docetaxel-epirubicin-based chemotherapy regimen in patients with early-stage TNBCs.
Collapse
Affiliation(s)
- Xi Chen
- Xi'an Jiaotong University, Shaanxi Province, China
| | - Xinyu Wei
- Xi'an Jiaotong University, Shaanxi Province, China
| | - Peizhuo Yao
- Xi'an Jiaotong University, Shaanxi Province, China
| | - Yanbin Liu
- Xi'an Jiaotong University, Shaanxi Province, China
| | - Haitao Guan
- The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, China
| | - Huafeng Kang
- The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, China
| | - Di Liu
- The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, China
| | - Yan Diao
- The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, China
| | - Xiaobin Ma
- The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, China
| | - Weili Min
- The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, China
| | - Changyou Shan
- The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, China
| | - Yang Zhao
- The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, China
| | - Fang Zhao
- The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, China
| | - Yuanyuan Chen
- Baoji Central Hospital of Shaanxi Province, Shaanxi Province, China
| | - Dong Xiao
- 3201 Hospital of Hanzhong City, Shaanxi Province, China
| | - Qing She
- Baoji Central Hospital of Shaanxi Province, Shaanxi Province, China
| | - Youhuai Liu
- Baoji Central Hospital of Shaanxi Province, Shaanxi Province, China
| | - Yinbin Zhang
- The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, China
| | - Shuqun Zhang
- The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, China.
| |
Collapse
|
15
|
Preziosi AJ, Priefer R. Oncology's trial and error: Analysis of the FDA withdrawn accelerated approvals. Life Sci 2024; 346:122615. [PMID: 38582392 DOI: 10.1016/j.lfs.2024.122615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Launched in 1992, the FDA accelerated approval program grants drugs indicated in rare/life threatening diseases the ability to be marketed at a faster pace than through the traditional track. Each manufacturing company presents its drug to the FDA, and within 60 days it will determine if the drug is eligible for this path. Many drugs that were initially approved through this route, subsequently did not demonstrate their clinical benefits. With cancer being a leading cause of death, a vast majority of drugs that have been approved/withdrawn from this pathway are indicated within oncology. There are a wide variety of cancer subtypes and therapeutic target sites that these drugs have been evaluated for. Herein, is an overview of the 17 oncology drugs, spanning 22 cancer-related indications, that had been approved within the accelerated route and subsequently withdrawn.
Collapse
Affiliation(s)
- Anthony J Preziosi
- Massachusetts College or Pharmacy and Health Sciences, Boston, MA 02115, United States of America
| | - Ronny Priefer
- Massachusetts College or Pharmacy and Health Sciences, Boston, MA 02115, United States of America.
| |
Collapse
|
16
|
Imamura T, Ohgi K, Mori K, Ashida R, Yamada M, Otsuka S, Uesaka K, Sugiura T. Surrogacy of Recurrence-free Survival for Overall Survival as an Endpoint of Clinical Trials of Perioperative Adjuvant Therapy in Hepatobiliary-pancreatic Cancers: A Retrospective Study and Meta-analysis. Ann Surg 2024; 279:1025-1035. [PMID: 37638472 DOI: 10.1097/sla.0000000000006084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
OBJECTIVE To assess the correlation between recurrence-free survival (RFS) and overall survival (OS) in the hepatobiliary-pancreatic (HBP) surgical setting to validate RFS as a surrogate endpoint. BACKGROUND Reliable surrogate endpoints for OS are still limited in the field of HBP surgery. METHODS We analyzed patients who underwent curative resection for HBP disease [986 patients with pancreatic ductal adenocarcinoma (PDAC), 1168 with biliary tract cancer (BTC), 1043 with hepatocellular carcinoma, and 1071 with colorectal liver metastasis] from September 2002 to June 2022. We also conducted meta-analyses of randomized controlled trials of neoadjuvant or adjuvant therapy to validate the surrogacy in PDAC and BTC. RESULTS Correlation coefficients between RFS and OS were low for hepatocellular carcinoma ( p = 0.67) and colorectal liver metastasis ( p = 0.53) but strong for PDAC ( p = 0.80) and BTC ( p = 0.75). In a landmark analysis, the concordance rates between survival or death at 5 years postoperatively and the presence or absence of recurrence at each time point (1, 2, 3, and 4 years) were 50%, 70%, 74%, and 77% for PDAC and 54%, 67%, 73%, and 78% for BTC, respectively, both increasing and reaching a plateau at 3 years. In a meta-analysis, the correlation coefficients for the RFS hazard ratio and OS hazard ratio in PDAC and BTC were p = 0.88 ( P < 0.001) and p = 0.87 ( P < 0.001), respectively. CONCLUSIONS Three-year RFS can be a reliable surrogate endpoint for OS in clinical trials of neoadjuvant or adjuvant therapy for PDAC and BTC.
Collapse
Affiliation(s)
- Taisuke Imamura
- Division of HepatoBiliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Katsuhisa Ohgi
- Division of HepatoBiliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Keita Mori
- Clinical Research Center, Shizuoka Cancer Center, Shizuoka, Japan
| | - Ryo Ashida
- Division of HepatoBiliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Mihoko Yamada
- Division of HepatoBiliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Shimpei Otsuka
- Division of HepatoBiliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Katsuhiko Uesaka
- Division of HepatoBiliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Teiichi Sugiura
- Division of HepatoBiliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
17
|
Bartsch R, Rinnerthaler G, Petru E, Egle D, Gnant M, Balic M, Sliwa T, Singer C. Updated Austrian treatment algorithm for metastatic triple-negative breast cancer. Wien Klin Wochenschr 2024; 136:347-361. [PMID: 37682349 PMCID: PMC11156740 DOI: 10.1007/s00508-023-02254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 09/09/2023]
Abstract
Approximately 15% of newly diagnosed breast cancer patients have neither hormone receptors expression nor HER2 overexpression and/or HER2/neu gene amplification. This subtype of breast cancer is known as Triple Negative Breast Cancer (TNBC), and carries a significantly elevated risk of local and distant recurrence. In comparison with other breast cancer subtypes, there is a higher rate of visceral and brain metastases. The majority of metastases of TNBC are diagnosed within three years after initial breast cancer diagnosis. While there have been major advances in hormone-receptor- positive and in human epidermal growth factor receptor 2 (HER2)-positive disease over the past two decades, only limited improvements in outcomes for patients with triple negative breast cancer (TNBC) have been observed. A group of Austrian breast cancer specialists therefore convened an expert meeting to establish a comprehensive clinical risk-benefit profile of available mTNBC therapies and discuss the role sacituzumab govitecan may play in the treatment algorithm of the triple-negative breast cancer patients.
Collapse
Affiliation(s)
- Rupert Bartsch
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Gabriel Rinnerthaler
- Third Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Edgar Petru
- Department of Gynecology and Obstetrics, Division of Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036, Graz, Austria
| | - Daniel Egle
- Department of Gynecology, Breast Cancer Center Tirol, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Michael Gnant
- Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Marija Balic
- Department of Internal Medicine, Division of Clinical Oncology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Thamer Sliwa
- 3rd Medical Department, Hematology and Oncology, Hanusch Hospital, Heinrich-Collin-Straße 30, 1140, Vienna, Austria
| | - Christian Singer
- Department of Gynecology, Breast Cancer Center Vienna, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
18
|
Tang MY, Shen X, Yuan RS, Li HY, Li XW, Jing YM, Zhang Y, Shen HH, Wang ZS, Zhou L, Yang YC, Wen HX, Su F. Plexin domain-containing 1 may be a biomarker of poor prognosis in hepatocellular carcinoma patients, may mediate immune evasion. World J Gastrointest Oncol 2024; 16:2091-2112. [PMID: 38764846 PMCID: PMC11099457 DOI: 10.4251/wjgo.v16.i5.2091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND For the first time, we investigated the oncological role of plexin domain-containing 1 (PLXDC1), also known as tumor endothelial marker 7 (TEM7), in hepatocellular carcinoma (HCC). AIM To investigate the oncological profile of PLXDC1 in HCC. METHODS Based on The Cancer Genome Atlas database, we analyzed the expression of PLXDC1 in HCC. Using immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting, we validated our results. The prognostic value of PLXDC1 in HCC was analyzed by assessing its correlation with clinicopathological features, such as patient survival, methylation level, tumor immune microenvironment features, and immune cell surface checkpoint expression. Finally, to assess the immune evasion potential of PLXDC1 in HCC, we used the tumor immune dysfunction and exclusion (TIDE) website and immunohistochemical staining assays. RESULTS Based on immunohistochemistry, qRT-PCR, and Western blot assays, overexpression of PLXDC1 in HCC was associated with poor prognosis. Univariate and multivariate Cox analyses indicated that PLXDC1 might be an independent prognostic factor. In HCC patients with high methylation levels, the prognosis was worse than in patients with low methylation levels. Pathway enrichment analysis of HCC tissues indicated that genes upregulated in the high-PLXDC1 subgroup were enriched in mesenchymal and immune activation signaling, and TIDE assessment showed that the risk of immune evasion was significantly higher in the high-PLXDC1 subgroup compared to the low-PLXDC1 subgroup. The high-risk group had a significantly lower immune evasion rate as well as a poor prognosis, and PLXDC1-related risk scores were also associated with a poor prognosis. CONCLUSION As a result of this study analyzing PLXDC1 from multiple biological perspectives, it was revealed that it is a biomarker of poor prognosis for HCC patients, and that it plays a role in determining immune evasion status.
Collapse
Affiliation(s)
- Ming-Yue Tang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Xue Shen
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Run-Sheng Yuan
- Otolaryngology and Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Hui-Yuan Li
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Xin-Wei Li
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Yi-Ming Jing
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Yue Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Hong-Hong Shen
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Zi-Shu Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Yun-Chuan Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - He-Xin Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Fang Su
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| |
Collapse
|
19
|
Shen F, Jiang G, Philips S, Cantor E, Gardner L, Xue G, Cunningham G, Kassem N, O'Neill A, Cameron D, Suter TM, Miller KD, Sledge GW, Schneider BP. Germline predictors for bevacizumab induced hypertensive crisis in ECOG-ACRIN 5103 and BEATRICE. Br J Cancer 2024; 130:1348-1355. [PMID: 38347093 PMCID: PMC11014938 DOI: 10.1038/s41416-024-02602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Bevacizumab is a beneficial therapy in several advanced cancer types. Predictive biomarkers to better understand which patients are destined to benefit or experience toxicity are needed. Associations between bevacizumab induced hypertension and survival have been reported but with conflicting conclusions. METHODS We performed post-hoc analyses to evaluate the association in 3124 patients from two phase III adjuvant breast cancer trials, E5103 and BEATRICE. Differences in invasive disease-free survival (IDFS) and overall survival (OS) between patients with hypertension and those without were compared. Hypertension was defined as systolic blood pressure (SBP) ≥ 160 mmHg (n = 346) and SBP ≥ 180 mmHg (hypertensive crisis) (n = 69). Genomic analyses were performed to evaluate germline genetic predictors for the hypertensive crisis. RESULTS Hypertensive crisis was significantly associated with superior IDFS (p = 0.015) and OS (p = 0.042), but only IDFS (p = 0.029; HR = 0.28) remained significant after correction for prognostic factors. SBP ≥ 160 mmHg was not associated with either IDFS or OS. A common single-nucleotide polymorphism, rs6486785, was significantly associated with hypertensive crisis (p = 8.4 × 10-9; OR = 5.2). CONCLUSION Bevacizumab-induced hypertensive crisis is associated with superior outcomes and rs6486785 predicted an increased risk of this key toxicity.
Collapse
Affiliation(s)
- Fei Shen
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Guanglong Jiang
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Santosh Philips
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Erica Cantor
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Laura Gardner
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gloria Xue
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Nawal Kassem
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anne O'Neill
- Dana Farber Cancer Institute - ECOG-ACRIN Biostatistics Center, Boston, MA, USA
| | - David Cameron
- Edinburgh Cancer Research Centre, Edinburgh, United Kingdom
| | - Thomas M Suter
- Swiss Cardiovascular Center, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Kathy D Miller
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
20
|
Huang J, Chen X, Xie X, Song L, Chen L, Lan X, Bai X, Chen X, Du C. The efficiency and safety of low-dose apatinib combined with oral vinorelbine in pretreated HER2-negative metastatic breast cancer. Cancer Med 2024; 13:e7181. [PMID: 38659376 PMCID: PMC11043681 DOI: 10.1002/cam4.7181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Apatinib is an oral small-molecule tyrosine kinase inhibitor that blocks vascular endothelial growth factor receptor-2. Oral vinorelbine is a semisynthetic chemotherapeutic agent of vinorelbine alkaloids. Apatinib and oral vinorelbine have been proved to be effective in the treatment of metastatic breast cancer (mBC). At present, several small sample clinical trials have explored the efficacy of apatinib combined with oral vinorelbine in the treatment of mBC. METHODS This retrospective study included 100 human epidermal growth factor receptor-2 (HER2)-negative mBC patients who received low-dose apatinib (250 mg orally per day) plus oral vinorelbine until disease progression or intolerance during February 2017 and March 2023. The progression-free survival (PFS), overall survival (OS), objective response rate (ORR), clinical benefit rate (CBR), disease control rate (DCR), and safety were analyzed by SPSS 26.0 software and GraphPad Prism 8 software. Cox proportional hazards regression model for univariate and multivariate was used to identify factors significantly related to PFS and OS. RESULTS The median follow-up time for this study was 38.1 months. Among 100 patients with HER2-negative mBC, 66 were hormone receptor (HR)-positive/HER2-negative and 34 were triple-negative breast cancer (TNBC). The median PFS and OS were 6.0 months (95% CI, 5.2-6.8 months) and 23.0 months (95% CI, 19.9-26.1 months). There were no statistical differences in PFS (p = 0.239) and OS (p = 0.762) between the HR-positive /HER2-negative and TNBC subgroups. The ORR, CBR, and DCR were 21.0%, 58.0%, and 78.0%, respectively. Ninety-five patients (95.0%) experienced varying grades of adverse events (AEs) and 38.0% of patients for Grades 3-4. The most common Grades 3-4 AEs that we observed were neutropenia (30.0%) and leukopenia (25.0%). CONCLUSION Low-dose apatinib combined with oral vinorelbine demonstrates potential efficacy and well tolerated for pretreated HER2-negative mBC.
Collapse
Affiliation(s)
- Jia‐Yi Huang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen518116GuangdongChina
| | - Xue‐Lian Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen518116GuangdongChina
| | - Xiao‐Feng Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen518116GuangdongChina
| | - Lin Song
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen518116GuangdongChina
| | - Li‐Ping Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen518116GuangdongChina
| | - Xiao‐Feng Lan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen518116GuangdongChina
| | - Xue Bai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen518116GuangdongChina
| | - Xiao Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen518116GuangdongChina
| | - Cai‐Wen Du
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen518116GuangdongChina
| |
Collapse
|
21
|
Khafaga AF, Gaballa MMS, Karam R, Shoulah SA, Shamma RN, Khalifa NE, Farrag NE, Noreldin AE. Synergistic therapeutic strategies and engineered nanoparticles for anti-vascular endothelial growth factor therapy in cancer. Life Sci 2024; 341:122499. [PMID: 38342375 DOI: 10.1016/j.lfs.2024.122499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Angiogenesis is one of the defining characteristics of cancer. Vascular endothelial growth factor (VEGF) is crucial for the development of angiogenesis. A growing interest in cancer therapy is being caused by the widespread use of antiangiogenic drugs in treating several types of human cancer. However, this therapeutic approach can worsen resistance, invasion, and overall survival. As we proceed, refining combination strategies and addressing the constraint of targeted treatments are paramount. Therefore, major challenges in using novel combinations of antiangiogenic agents with cytotoxic treatments are currently focused on illustrating the potential of synergistic therapeutic strategies, alongside advancements in nanomedicine and gene therapy, present opportunities for more precise interference with angiogenesis pathways and tumor environments. Nanoparticles have the potential to regulate several crucial activities and improve several drug limitations such as lack of selectivity, non-targeted cytotoxicity, insufficient drug delivery at tumor sites, and multi-drug resistance based on their unique features. The goal of this updated review is to illustrate the enormous potential of novel synergistic therapeutic strategies and the targeted nanoparticles as an alternate strategy for t treating a variety of tumors employing antiangiogenic therapy.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Mohamed M S Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Reham Karam
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, 35511, Egypt.
| | - Salma A Shoulah
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Rehab N Shamma
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt.
| | - Nehal E Farrag
- Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| |
Collapse
|
22
|
Chew V, Chuang CH, Hsu C. Translational research on drug development and biomarker discovery for hepatocellular carcinoma. J Biomed Sci 2024; 31:22. [PMID: 38368324 PMCID: PMC10874078 DOI: 10.1186/s12929-024-01011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 02/10/2024] [Indexed: 02/19/2024] Open
Abstract
Translational research plays a key role in drug development and biomarker discovery for hepatocellular carcinoma (HCC). However, unique challenges exist in this field because of the limited availability of human tumor samples from surgery, the lack of homogenous oncogenic driver mutations, and the paucity of adequate experimental models. In this review, we provide insights into these challenges and review recent advancements, with a particular focus on the two main agents currently used as mainstream therapies for HCC: anti-angiogenic agents and immunotherapy. First, we examine the pre-clinical and clinical studies to highlight the challenges of determining the optimal therapeutic combinations with biologically effective dosage for HCC. Second, we discuss biomarker studies focusing on anti-PD1/anti-PD-L1-based combination therapy. Finally, we discuss the progress made in our collective understanding of tumor immunology and in multi-omics analysis technology, which enhance our understanding of the mechanisms underlying immunotherapy, characterize different patient subgroups, and facilitate the development of novel combination approaches to improve treatment efficacy. In summary, this review provides a comprehensive overview of efforts in translational research aiming at advancing our understanding of and improving the treatment of HCC.
Collapse
Affiliation(s)
- Valerie Chew
- Translational Immunology Institute, SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Chien-Huai Chuang
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chiun Hsu
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan.
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
23
|
Tang L, Ding C, Li H, Yin G, Zhang H, Liu WS, Ji Y, Li H. A pharmacovigilance study of adverse event profiles and haemorrhagic safety of bevacizumab based on the FAERS database. Expert Opin Drug Saf 2024; 23:213-220. [PMID: 37581403 DOI: 10.1080/14740338.2023.2248876] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Bevacizumab is used for the treatment of advanced malignant tumors; it acts by inhibiting angiogenesis. This study aimed to examine adverse events (AEs) of bevacizumab, especially hemorrhage, using the Food and Drug Administration Adverse Event Reporting System (FAERS) database. RESEARCH DESIGN AND METHODS The reporting odds ratio (ROR) and proportional reporting ratio (PRR) were used to analyze the AEs of bevacizumab using FAERS registration data from January 2004 to September 2022. Clinical information regarding hemorrhagic signals was further analyzed. RESULTS The number of bevacizumab-associated AE reports was 96,477. Our study found that 892 significant preferred terms (PTs) were spread throughout 25 organ systems. The system organ classes (SOCs) focus on general disorders, administration site conditions, blood and lymphatic system disorders, injury, poisoning, and procedural complications. A total of 2,847 bevacizumab-related hemorrhage cases were reported, and 37 hemorrhagic signals were identified. Hemorrhagic signals were focused on SOC levels in vascular, gastrointestinal, and nervous system disorders. Colorectal, lung, and breast cancers are the three most common malignancies associated with BV-induced hemorrhage. CONCLUSION The AE report from the present study confirms the majority of label information for bevacizumab, while also identifying new AEs. In addition, this was a large descriptive study of bevacizumab-induced hemorrhage.
Collapse
Affiliation(s)
- Linlin Tang
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Chuanhua Ding
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Hongying Li
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Guoqiang Yin
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Haixia Zhang
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Wen Shan Liu
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Yinghui Ji
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Hui Li
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
24
|
Mayer EL, Tayob N, Ren S, Savoie JJ, Spigel DR, Burris HA, Ryan PD, Harris LN, Winer EP, Burstein HJ. A randomized phase II study of metronomic cyclophosphamide and methotrexate (CM) with or without bevacizumab in patients with advanced breast cancer. Breast Cancer Res Treat 2024; 204:123-132. [PMID: 38019444 DOI: 10.1007/s10549-023-07167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/24/2023] [Indexed: 11/30/2023]
Abstract
PURPOSE Metronomic chemotherapy has the potential to offer tumor control with reduced toxicity when compared to standard dose chemotherapy in patients with metastatic breast cancer. As metronomic chemotherapy may target the tumor microvasculature, it has the potential for synergistic effects with antiangiogenic agents such as the VEGF-A inhibitor bevacizumab. METHODS In this randomized phase II study, patients with metastatic breast cancer were randomized to receive metronomic oral cyclophosphamide and methotrexate (CM) combined with bevacizumab (Arm A) or CM alone (Arm B). The primary endpoint was objective response rate (ORR). Secondary endpoints included progression-free survival (PFS), overall survival (OS), and safety and tolerability. RESULTS A total of 55 patients were enrolled, with 34 patients treated on Arm A and 21 patients treated on Arm B. The ORR was modestly higher in Arm A (26%) than in Arm B (10%); neither met the 40% cutoff for further clinical evaluation. The median time to progression (TTP) was 5.52 months (3.22-13.6) on Arm A and 1.82 months (1.54-6.70) on Arm B (log-rank p = 0.008). The median OS was 29.6 months (17.2-NA) on Arm A and 16.2 months (15.7-NA) on Arm B (log-rank p = 0.7). Common all-grade adverse events in both arms included nausea, fatigue, and elevated AST. CONCLUSION The combination of metronomic CM with bevacizumab significantly improved PFS over CM alone, although there was no significant difference in OS. Oral metronomic chemotherapy alone has limited activity in advanced breast cancer. CLINICALTRIALS gov Identifier: NCT00083031. Date of Registration: May 17, 2004.
Collapse
Affiliation(s)
- Erica L Mayer
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Nabihah Tayob
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Siyang Ren
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Jennifer J Savoie
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
| | - David R Spigel
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
- Sarah Cannon Research Institute, Nashville, TN, USA
| | - Howard A Burris
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
- Sarah Cannon Research Institute, Nashville, TN, USA
| | - Paula D Ryan
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
- Texas Oncology, The Woodlands, TX, USA
| | - Lyndsay N Harris
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
- National Cancer Institute, Bethesda, MD, USA
| | - Eric P Winer
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
- Yale Cancer Center, New Haven, CT, USA
| | - Harold J Burstein
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA.
| |
Collapse
|
25
|
Owen JS, Rackley RJ, Hummel MA, Roepcke S, Huang H, Liu M, Idris TA, Murugesan SMN, Marwah A, Loganathan S, Ranganna G, Barve A, Waller CF, Socinski MA. Population Pharmacokinetics of MYL-1402O, a Proposed Biosimilar to Bevacizumab and Reference Product (Avastin ®) in Patients with Non-squamous Non-small Cell Lung Cancer. Eur J Drug Metab Pharmacokinet 2023; 48:675-689. [PMID: 37792130 DOI: 10.1007/s13318-023-00855-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND AND OBJECTIVES MYL-1402O is a bevacizumab (Avastin®) biosimilar. Pharmacokinetic and safety similarity of MYL-1402O and reference Avastin® authorized in the European Union (EU-Avastin®) and the US (US-Avastin®) was demonstrated in healthy subjects (phase I, NCT02469987). The key objectives of this study were to establish a population pharmacokinetic (PopPK) model on pooled data from the phase I and phase III clinical studies to assess pharmacokinetic linearity of MYL-1402O and Avastin® across dose ranges, to assess the pharmacokinetic similarity of MYL-1402O and Avastin® in patients with non-squamous non-small cell lung cancer (nsNSCLC), and to explore potential covariates to account for systematic sources of variability in bevacizumab exposure. METHODS Efficacy and safety of MYL-1402O compared with EU-Avastin® was investigated in a multicenter, double-blind, randomized, parallel-group study in patients with stage IV nsNSCLC (phase III, NCT04633564). PopPK models were developed using a nonlinear mixed effects approach (NONMEM® 7.3.0). RESULTS The pharmacokinetics of Avastin® and MYL-1402O were adequately described with a two-compartment linear model. Fourteen covariates were found to be statistically significant predictors of bevacizumab pharmacokinectics. The impact of each covariate on area under the concentration-time curve, half-life, and maximum plasma concentration was modest, and ranges were similar between the treatment groups, MYL-1402O and EU-Avastin®, in patients with nsNSCLC. The pharmacokinectics of bevacizumab appeared to be linear. CONCLUSIONS PopPK analysis revealed no significant differences between pharmacokinetics of MYL-1402O and Avastin® in patients with nsNSCLC. The developed PopPK model was considered robust, as it adequately described bevacizumab pharmacokinetics in healthy participants and nsNSCLC patients.
Collapse
Affiliation(s)
- Joel S Owen
- Consulting Department, Cognigen Division of Simulations Plus, Buffalo, NY, USA.
| | | | | | - Stefan Roepcke
- Pharmacometrics Department, Cognigen Division of Simulations Plus, Buffalo, NY, USA
| | - Hannah Huang
- Pharmacometrics Department, Cognigen Division of Simulations Plus, Buffalo, NY, USA
| | - Mark Liu
- Global PK/DM Department, Viatris Inc, Morgantown, WV, USA
| | - Tazeen A Idris
- Global Clinical Sciences Department, Viatris, Hyderabad, India
| | | | - Ashwani Marwah
- Clinical Development & Medical Affairs Department, Biocon Biologics Ltd, Bangalore, Karnataka, India
| | - Subramanian Loganathan
- Clinical Development & Medical Affairs Department, Biocon Biologics Ltd, Bangalore, Karnataka, India
| | | | - Abhijit Barve
- Clinical Development & Medical Affairs, Viatris Inc, Canonsburg, PA, USA
| | - Cornelius F Waller
- Department of Hematology, Oncology, and Stem Cell Transplantation, University Medical Centre Freiburg and Faculty of Medicine, Freiburg, Germany
| | - Mark A Socinski
- Cancer Institute, Advent Health Cancer Institute, Orlando, FL, USA
| |
Collapse
|
26
|
Cramer A, Sørup FKH, Christensen HR, Petersen TS, Karstoft K. Withdrawn accelerated approvals for cancer indications in the USA: what is the marketing authorisation status in the EU? Lancet Oncol 2023; 24:e385-e394. [PMID: 37657479 DOI: 10.1016/s1470-2045(23)00357-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/28/2023] [Accepted: 07/19/2023] [Indexed: 09/03/2023]
Abstract
As of April, 2023, 23 accelerated approvals for cancer indications granted by the US Food and Drug Administration (FDA) since 1992 have been withdrawn from the US market, with 17 (74%) of 23 withdrawn in the past 3 years. The marketing authorisation status of these indications in the EU has not been reported. A review of relevant documents from the FDA and the European Medicines Agency (EMA) was done to investigate whether the accelerated approvals for cancer indications withdrawn by the FDA have a marketing authorisation in the EU to date, and to compare the approval history of these indications by the EMA and FDA. We found that, as of April 20, 2023, nine (39%) of 23 withdrawn accelerated approvals for cancer indications in the USA have a marketing authorisation in the EU for a similar indication. By comparison, only two conditional marketing authorisations for cancer indications have been withdrawn from the EU; both are no longer approved in the USA. These findings indicate a discrepancy in the approval policies between the FDA and EMA and imply either that some patient groups in the USA do not get access to relevant medical treatment, or that some patient groups in the EU are treated with medicine without a positive benefit-risk balance. These discrepancies could potentially be reduced by increased collaboration and information sharing between the two agencies.
Collapse
Affiliation(s)
- Allan Cramer
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.
| | - Freja K H Sørup
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Hanne R Christensen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Tonny S Petersen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Karstoft
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Zhang R, Chen Y, Liu X, Gui X, Zhu A, Jiang H, Shao B, Liang X, Yan Y, Zhang J, Song G, Li H. Efficacy of apatinib 250 mg combined with chemotherapy in patients with pretreated advanced breast cancer in a real-world setting. Front Oncol 2023; 13:1076469. [PMID: 37397355 PMCID: PMC10314217 DOI: 10.3389/fonc.2023.1076469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Objectives This study evaluated the efficacy and safety of apatinib (an oral small-molecule tyrosine kinase inhibitor targeting VEGFR-2) 250 mg combined with chemotherapy in patients with pretreated metastatic breast cancer in a real-world setting. Patients and methods A database of patients with advanced breast cancer who received apatinib between December 2016 and December 2019 in our institution was reviewed, and patients who received apatinib combined with chemotherapy were included. Progression-free survival (PFS), overall survival (OS), the objective response rate (ORR), the disease control rate (DCR), and treatment-related toxicity were analyzed. Results In total, 52 evaluated patients with metastatic breast cancer previously exposed to anthracyclines or taxanes who received apatinib 250 mg combined with chemotherapy were enrolled in this study. Median PFS and OS were 4.8 (95% confidence interval [CI] = 3.2-6.4) and 15.4 months (95% CI = 9.2-21.6), respectively. The ORR and DCR were 25% and 86.5%, respectively. Median PFS for the previous line of treatment was 2.1 months (95% CI = 0.65-3.6), which was significantly shorter than that for the apatinib-chemotherapy combination (p < 0.001). No significant difference was identified in the ORR and PFS among the subgroups(subtypes, target lesion, combined regimens and treatment lines). The common toxicities related to apatinib were hypertension, hand-foot syndrome, proteinuria, and fatigue events. Conclusion Apatinib 250 mg combined with chemotherapy provided favorable efficacy in patients with pretreated metastatic breast cancer regardless of molecular types and treatment lines. The toxicities of the regimen were well tolerated and manageable. This regimen could be a potential treatment option in patients with refractory pretreated metastatic breast cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Huiping Li
- *Correspondence: Guohong Song, ; Huiping Li,
| |
Collapse
|
28
|
Singh H. Role of Molecular Targeted Therapeutic Drugs in Treatment of Breast Cancer: A Review Article. Glob Med Genet 2023; 10:79-86. [PMID: 37228871 PMCID: PMC10205396 DOI: 10.1055/s-0043-57247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Breast cancer is a multifactor, multistage, and heterogeneous disease. Systemic treatment of breast cancer has changed significantly over the last decade. With a better knowledge of the pathogenesis, researchers and scientists have discovered numerous signaling pathways and synonymous therapeutic targets in breast cancer. Because of the molecular nature of breast cancer, which makes it difficult to understand, previous attempts to treat or prevent it have failed. However, recent decades have provided effective therapeutic targets for treatment. In this review, literature or information on various targeted therapy for breast cancer is discussed. English language articles were explored in numerous directory or databases like PubMed, Web of Sciences, Google Scholar, ScienceDirect, and Scopus. The important keywords used for searching databases are "Breast cancer," "Targeted therapy in breast cancer," "Therapeutic drugs in breast cancer," and "Molecular targets in breast cancer."
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Index Institute of Dental Sciences, Indore, Madhya Pradesh, India
| |
Collapse
|
29
|
Bahremani M, Rashtchizadeh N, Sabzichi M, Vatankhah AM, Danaiyan S, Poursistany H, Mohammadian J, Ghorbanihaghjo A. Enhanced chemotherapeutic efficacy of docetaxel in human lung cancer cell line via GLUT1 inhibitor. J Biochem Mol Toxicol 2023; 37:e23348. [PMID: 36999407 DOI: 10.1002/jbt.23348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/01/2023] [Accepted: 03/20/2023] [Indexed: 04/01/2023]
Abstract
The dose-dependent adverse effects of anticancer agents need new methods with lesser toxicity. The objective of the current research was to evaluate the efficacy of GLUT1 inhibitor, as an inhibitor of glucose consumption in cancer cells, in augmenting the efficiency of docetaxel with respect to cytotoxicity and apoptosis. Cell cytotoxicity was assessed by using methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. Annexin V/PI double staining was employed to evaluate apoptosis percentage. Quantitative real-time polymerase chain reaction (RT-PCR) analysis was accomplished to detect the expression of genes involved in the apoptosis pathway. The IC50 values for docetaxel and BAY-876 were 3.7 ± 0.81 and 34.1 ± 3.4 nM, respectively. The severity of synergistic mutual effects of these agents on each other was calculated by synergy finder application. It showed that the percentage of apoptotic cells following co-administration of docetaxel and BAY-876 increased to 48.1 ± 2.8%. In comparison without GLUT1 co-administration, the combined therapy decreased significantly the transcriptome levels of the Bcl-2 and Ki-67 and a remarkable increase in the level of the Bax as proapoptotic protein(p < 0.05). Co-treatment of BAY-876 and docetaxel depicted a synergistic effect which was calculated using the synergy finder highest single agent (HSA) method (HSA synergy score: 28.055). These findings recommend that the combination of GLUT-1 inhibitor and docetaxel can be considered as a promising therapeutic approach for the treatment of patients with lung cancer.
Collapse
Affiliation(s)
- Mona Bahremani
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadereh Rashtchizadeh
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sabzichi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sepideh Danaiyan
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haniyeh Poursistany
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamal Mohammadian
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbanihaghjo
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Delgado-Bellido D, Oliver FJ, Vargas Padilla MV, Lobo-Selma L, Chacón-Barrado A, Díaz-Martin J, de Álava E. VE-Cadherin in Cancer-Associated Angiogenesis: A Deceptive Strategy of Blood Vessel Formation. Int J Mol Sci 2023; 24:ijms24119343. [PMID: 37298296 DOI: 10.3390/ijms24119343] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Tumor growth depends on the vascular system, either through the expansion of blood vessels or novel adaptation by tumor cells. One of these novel pathways is vasculogenic mimicry (VM), which is defined as a tumor-provided vascular system apart from endothelial cell-lined vessels, and its origin is partly unknown. It involves highly aggressive tumor cells expressing endothelial cell markers that line the tumor irrigation. VM has been correlated with high tumor grade, cancer cell invasion, cancer cell metastasis, and reduced survival of cancer patients. In this review, we summarize the most relevant studies in the field of angiogenesis and cover the various aspects and functionality of aberrant angiogenesis by tumor cells. We also discuss the intracellular signaling mechanisms involved in the abnormal presence of VE-cadherin (CDH5) and its role in VM formation. Finally, we present the implications for the paradigm of tumor angiogenesis and how targeted therapy and individualized studies can be applied in scientific analysis and clinical settings.
Collapse
Affiliation(s)
- Daniel Delgado-Bellido
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain
- Instituto de Salud Carlos III, CIBERONC, 28220 Madrid, Spain
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
| | - F J Oliver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain
| | | | - Laura Lobo-Selma
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
| | | | - Juan Díaz-Martin
- Instituto de Salud Carlos III, CIBERONC, 28220 Madrid, Spain
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Enrique de Álava
- Instituto de Salud Carlos III, CIBERONC, 28220 Madrid, Spain
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| |
Collapse
|
31
|
Cao M, Lu H, Yan S, Pang H, Sun L, Li C, Chen X, Liu W, Hu J, Huang J, Xing Y, Zhang N, Chen Y, He T, Zhao D, Sun Y, Zhao L, Liu X, Cai L. Apatinib plus etoposide in pretreated patients with advanced triple-negative breast cancer: a phase II trial. BMC Cancer 2023; 23:463. [PMID: 37208633 DOI: 10.1186/s12885-023-10768-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/24/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Treatment options for pretreated triple-negative breast cancer (TNBC) are limited. This study aimed to evaluate the efficacy and safety of apatinib, an antiangiogenic agent, in combination of etoposide for pretreated patients with advanced TNBC. METHODS In this single-arm phase II trial, patients with advanced TNBC who failed to at least one line of chemotherapy were enrolled. Eligible patients received oral apatinib 500 mg on day 1 to 21, plus oral etoposide 50 mg on day 1 to 14 of a 3-week cycle until disease progression or intolerable toxicities. Etoposide was administered up to six cycles. The primary endpoint was progression-free survival (PFS). RESULTS From September 2018 to September 2021, 40 patients with advanced TNBC were enrolled. All patients received previous chemotherapy in the advanced setting, with the median previous lines of 2 (1-5). At the cut-off date on January 10, 2022, the median follow-up was 26.8 (1.6-52.0) months. The median PFS was 6.0 (95% confidence interval [CI]: 3.8-8.2) months, and the median overall survival was 24.5 (95%CI: 10.2-38.8) months. The objective response rate and disease control rate was 10.0% and 62.5%, respectively. The most common adverse events (AEs) were hypertension (65.0%), nausea (47.5%) and vomiting (42.5%). Four patients developed grade 3 AE, including two with hypertension and two with proteinuria. CONCLUSIONS Apatinib combined with oral etoposide was feasible in pretreated advanced TNBC, and was easy to administer. CLINICAL TRIAL REGISTRATION Chictr.org.cn, (registration number: ChiCTR1800018497, registration date: 20/09/2018).
Collapse
Affiliation(s)
- Mengru Cao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hailing Lu
- The First Ward of the Oncology Department, The First Affilliated Hospital of Harbin Medical University, Harbin, China
| | - Shi Yan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hui Pang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lichun Sun
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chunhong Li
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xuesong Chen
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jing Hu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jian Huang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ningzhi Zhang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingqi Chen
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ting He
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Danni Zhao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanyuan Sun
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Zhao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaomeng Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
32
|
Gupta R, Kadhim MM, Turki Jalil A, Qasim Alasheqi M, Alsaikhan F, Khalimovna Mukhamedova N, Alexis Ramírez-Coronel A, Hassan Jawhar Z, Ramaiah P, Najafi M. The interactions of docetaxel with tumor microenvironment. Int Immunopharmacol 2023; 119:110214. [PMID: 37126985 DOI: 10.1016/j.intimp.2023.110214] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
There are several interactions within the tumor microenvironment (TME) that affect the response of cancer cells to therapy. There are also a large number of cells and secretions in TME that increase resistance to therapy. Following the release of immunosuppressive, pro-angiogenic, and metastatic molecules by certain cells such as tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), and cancer cells, immune evasion, angiogenesis, and metastasis may be induced. However, natural killer (NK) cells and cytotoxic CD8 + T lymphocytes (CTLs) can responsively release anticancer molecules. In addition, anticancer drugs can modulate these cells and their interactions in favor of either cancer resistance or therapy. Docetaxel belongs to taxanes, a class of anti-tumor drugs, which acts through the polymerization of tubulin and the induction of cell cycle arrest. Also, it has been revealed that taxanes including docetaxel affect cancer cells and the other cells within TME through some other mechanisms such as modulation of immune system responses, angiogenesis, and metastasis. In this paper, we explain the basic mechanisms of docetaxel interactions with malignant cells. Besides, we review the diverse effects of docetaxel on TME and cancer cells in consequence. Lastly, the modulatory effects of docetaxel alone or in conjunction with other anticancer agents on anti-tumor immunity, cancer cell resistance, angiogenesis, and metastasis will be discussed.
Collapse
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, District-Mathura, 281406 U. P., India
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad 10022, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq.
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | | | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca 010107, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Medillin 050001, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Azogues 030102, Ecuador
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil 44001, Iraq; Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil 44001, Iraq
| | | | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran.
| |
Collapse
|
33
|
Demirkiran A, Eryilmaz MK, Karaagac M, Araz M, Korkmaz M, Koçak MZ, Artac M. Low-dose (7.5 mg/kg) bevacizumab may be a viable option in recurrent ovarian cancer: A retrospective study. J Cancer Res Ther 2023; 19:595-600. [PMID: 37470581 DOI: 10.4103/jcrt.jcrt_1879_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective Bevacizumab (BEV) is a humanized monoclonal antibody of vascular endothelial growth factor receptors and, as a result of clinical trials, was approved for the treatment of recurrent ovarian cancer (ROC). The aim of this study was to assess the clinical utility of BEV in patients with ROC in real-world practice beyond clinical trials. Materials and Methods In this single-center retrospective cohort study, we evaluated the medical data of all patients with ROC who were treated with BEV between October 2013 and March 2020. Results A total of 76 females were evaluated. Forty-nine (64.5%) patients were platinum sensitive and 27 (35.5%) patients were platinum resistant. BEV was used in combination with chemotherapy agents in all patients, and the most preferred combinations were gemcitabine/carboplatin (GC) (78.9%) and carboplatin/paclitaxel (14.5%). In all patients, the BEV dose was 7.5 mg/kg every 3 weeks. The median progression-free survival (PFS) was 11.1 months (95% confidence interval [CI]: 9.6-12.6), and the median overall survival (OS) was 22.3 months (95% CI: 17.5-27.2). In multivariate analysis, serous histological type (P = 0.01), maintenance BEV administration (P = 0.001), and combination of GC-BEV (P < 0.001) were associated with better PFS, while serous histological type (P = 0.016) and good performance status (P = 0.006) were associated with prolonged OS. Conclusions Low-dose (7.5 mg/kg) BEV was found to be effective in the second-line treatment of patients with ROC in our real-life study. In addition, the combination of BEV with GC was shown to be a viable option, especially in the treatment selection of platinum-resistant patients.
Collapse
Affiliation(s)
- Aykut Demirkiran
- Department of Medical Oncology, Necmettin Erbakan University School of Medicine, Akyokuş, Konya, Turkey
| | - Melek Karakurt Eryilmaz
- Department of Medical Oncology, Necmettin Erbakan University School of Medicine, Akyokuş, Konya, Turkey
| | - Mustafa Karaagac
- Department of Medical Oncology, Necmettin Erbakan University School of Medicine, Akyokuş, Konya, Turkey
| | - Murat Araz
- Department of Medical Oncology, Necmettin Erbakan University School of Medicine, Akyokuş, Konya, Turkey
| | - Mustafa Korkmaz
- Department of Medical Oncology, Necmettin Erbakan University School of Medicine, Akyokuş, Konya, Turkey
| | - Mehmet Zahid Koçak
- Department of Medical Oncology, Necmettin Erbakan University School of Medicine, Akyokuş, Konya, Turkey
| | - Mehmet Artac
- Department of Medical Oncology, Necmettin Erbakan University School of Medicine, Akyokuş, Konya, Turkey
| |
Collapse
|
34
|
The Role of Exosomes in Pancreatic Ductal Adenocarcinoma Progression and Their Potential as Biomarkers. Cancers (Basel) 2023; 15:cancers15061776. [PMID: 36980662 PMCID: PMC10046651 DOI: 10.3390/cancers15061776] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic malignancy, is an aggressive and lethal cancer with a dismal five-year survival rate. Despite remarkable improvements in cancer therapeutics, the clinical outcome of PDAC patients remains poor due to late diagnosis of the disease. This highlights the importance of early detection, wherein biomarker evaluation including exosomes would be helpful. Exosomes, small extracellular vesicles (sEVs), are cell-secreted entities with diameters ranging from 50 to 150 nm that deliver cellular contents (e.g., proteins, lipids, and nucleic acids) from parent cells to regulate the cellular processes of targeted cells. Recently, an increasing number of studies have reported that exosomes serve as messengers to facilitate stromal-immune crosstalk within the PDAC tumor microenvironment (TME), and their contents are indicative of disease progression. Moreover, evidence suggests that exosomes with specific surface markers are capable of distinguishing patients with PDAC from healthy individuals. Detectable exosomes in bodily fluids (e.g., blood, urine, saliva, and pancreatic juice) are omnipresent and may serve as promising biomarkers for improving early detection and evaluating patient prognosis. In this review, we shed light on the involvement of exosomes and their cargos in processes related to disease progression, including chemoresistance, angiogenesis, invasion, metastasis, and immunomodulation, and their potential as prognostic markers. Furthermore, we highlight feasible clinical applications and the limitations of exosomes in liquid biopsies as tools for early diagnosis as well as disease monitoring. Taking advantage of exosomes to improve diagnostic capacity may provide hope for PDAC patients, although further investigation is urgently needed.
Collapse
|
35
|
Ghalehbandi S, Yuzugulen J, Pranjol MZI, Pourgholami MH. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur J Pharmacol 2023; 949:175586. [PMID: 36906141 DOI: 10.1016/j.ejphar.2023.175586] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 03/11/2023]
Abstract
Angiogenesis is a double-edged sword; it is a mechanism that defines the boundary between health and disease. In spite of its central role in physiological homeostasis, it provides the oxygen and nutrition needed by tumor cells to proceed from dormancy if pro-angiogenic factors tip the balance in favor of tumor angiogenesis. Among pro-angiogenic factors, vascular endothelial growth factor (VEGF) is a prominent target in therapeutic methods due to its strategic involvement in the formation of anomalous tumor vasculature. In addition, VEGF exhibits immune-regulatory properties which suppress immune cell antitumor activity. VEGF signaling through its receptors is an integral part of tumoral angiogenic approaches. A wide variety of medicines have been designed to target the ligands and receptors of this pro-angiogenic superfamily. Herein, we summarize the direct and indirect molecular mechanisms of VEGF to demonstrate its versatile role in the context of cancer angiogenesis and current transformative VEGF-targeted strategies interfering with tumor growth.
Collapse
Affiliation(s)
| | - Jale Yuzugulen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
| | | | | |
Collapse
|
36
|
Jusino S, Fadul CE, Dillon P. Systematic review of the management of brain metastases from hormone receptor positive breast cancer. J Neurooncol 2023; 162:45-57. [PMID: 36884200 PMCID: PMC10049940 DOI: 10.1007/s11060-023-04276-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
INTRODUCTION Brain metastases are a common cause of morbidity and mortality in patients with breast cancer. Local central nervous system (CNS) directed therapies are usually the first line treatment for breast cancer brain metastases (BCBM), but those must be followed by systemic therapies to achieve long-term benefit. Systemic therapy for hormone receptor (HR+) breast cancer has evolved in the last 10 years, but their role when brain metastases occur is uncertain. METHODS We performed a systematic review of the literature focused on management of HR+ BCBM by searching Medline/PubMed, EBSCO, and Cochrane databases. The PRISMA guidelines were used for systematic review. RESULTS Out of 807 articles identified, 98 fulfilled the inclusion criteria in their relevance to the management of HR+ BCBM. CONCLUSIONS Similar to brain metastases from other neoplasms, local CNS directed therapies are the first line treatment for HR+ BCBM. Although the quality of evidence is low, after local therapies, our review supports the combination of targeted and endocrine therapies for both CNS and systemic management. Upon exhaustion of targeted/endocrine therapies, case series and retrospective reports suggest that certain chemotherapy agents are active against HR+ BCBM. Early phase clinical trials for HR+ BCBM are ongoing, but there is a need for prospective randomized trials to guide management and improve patients' outcome.
Collapse
Affiliation(s)
| | - Camilo E Fadul
- Division of Neuro-Oncology, Department of Neurology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Patrick Dillon
- Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
37
|
Xun X, Ai J, Feng F, Hong P, Rai S, Liu R, Zhang B, Zhou Y, Hu H. Adverse events of bevacizumab for triple negative breast cancer and HER-2 negative metastatic breast cancer: A meta-analysis. Front Pharmacol 2023; 14:1108772. [PMID: 36794276 PMCID: PMC9922898 DOI: 10.3389/fphar.2023.1108772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Background: Triple-negative breast cancer (TNBC) and HER-2 negative metastatic breast cancer (HER-2 negative MBC) are intractable to various treatment schemes. Bevacizumab as a novel anti-VEGF drug, its safety for these two high-risk breast cancers remains controversial. Therefore, we conducted this meta-analysis to assess the safety of Bevacizumab for TNBC and HER-2 negative MBC. Methods: We searched Medline, Embase, Web of science and Cochrane databases updated to 1 Oct 2022 for relevant randomized controlled trials (RCTs). In all, 18 RCTs articles with 12,664 female patients were included. We used any grade Adverse Events (AEs) and grade ≥3 AEs to assess the AEs of Bevacizumab. Results: Our study demonstrated that the application of Bevacizumab was associated with increased incidence of grade ≥3 AEs (RR = 1.37, 95% CI 1.30-1.45, Rate: 52.59% vs. 41.32%). Any grade AEs (RR = 1.06, 95% CI 1.04-1.08, Rate: 64.55% vs. 70.59%) did not show a significant statistical difference in both overall results and among the subgroups. In subgroup analysis, HER-2 negative MBC (RR = 1.57, 95% CI 1.41-1.75, Rate: 39.49% vs. 25.6%), dosage over 15 mg/3w (RR = 1.44, 95% CI 1.07-1.92, Rate: 28.67% vs. 19.93%) and endocrine therapy (ET) (RR = 2.32, 95% CI 1.73-3.12, Rate: 31.17% vs. 13.42%) were associated with higher risk of grade ≥3 AEs. Of all graded ≥3 AEs, proteinuria (RR = 9.22, 95%CI 4.49-18.93, Rate: 4.22% vs. 0.38%), mucosal inflammation (RR = 8.12, 95%CI 2.46-26.77, Rate: 3.49% vs. 0.43%), palmar-plantar erythrodysesthesia syndrome (RR = 6.95, 95%CI 2.47-19.57, Rate: 6.01% vs. 0.87%), increased Alanine aminotransferase (ALT) (RR = 6.95, 95%CI 1.59-30.38, Rate: 3.13% vs. 0.24%) and hypertension (RR = 4.94, 95%CI 3.84-6.35, Rate: 9.44% vs. 2.02%) had the top five risk ratios. Conclusion: The addition of Bevacizumab for TNBC and HER-2 negative MBC patients showed an increased incidence of AEs especially for grade ≥3 AEs. The risk of developing different AEs varies mostly dependent on the type of breast cancer and combined therapy. Systematic Review Registration: [https://www.crd.york.ac.uk/PROSPERO/#recordDetails], identifier [CRD42022354743].
Collapse
Affiliation(s)
- Xueqiong Xun
- Department of thyroid and breast Surgery, First People’s Hospital of Qujing, Qujing, China
| | - Jun Ai
- Department of thyroid and breast Surgery, First People’s Hospital of Qujing, Qujing, China
| | - Fuhui Feng
- Department of thyroid and breast Surgery, First People’s Hospital of Qujing, Qujing, China
| | - Pan Hong
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Saroj Rai
- Department of Orthopedics, Al Ahalia Hospital, Abu Dhabi, United Arab Emirates
| | - Ruikang Liu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baowen Zhang
- Basic medical school, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yeming Zhou
- Basic medical school, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Yeming Zhou, ; Huiyong Hu,
| | - Huiyong Hu
- Department of thyroid and breast Surgery, First People’s Hospital of Qujing, Qujing, China,*Correspondence: Yeming Zhou, ; Huiyong Hu,
| |
Collapse
|
38
|
Matsui K, Earashi M, Yoshikawa A, Fukushima W, Nozaki Z, Oyama K, Maeda K, Nakakura A, Morita S, Fujii T. Real-world effect of bevacizumab and eribulin on metastatic breast cancer using a propensity score matching analysis. Mol Clin Oncol 2023; 18:12. [PMID: 36761387 PMCID: PMC9892966 DOI: 10.3892/mco.2023.2608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/27/2022] [Indexed: 01/15/2023] Open
Abstract
Bevacizumab and eribulin are novel agents for the treatment of HER2-negative metastatic breast cancer (MBC); however, the choice between bevacizumab and eribulin for MBC can be difficult. The present study aimed to compare two treatment strategies, eribulin followed by bevacizumab and paclitaxel (BEV + PTX) versus BEV + PTX followed by eribulin, to determine whether the order of administration affects the outcome of MBC in the real world. A total of 180 patients who started BEV + PTX and eribulin treatment for HER2-negative MBC from August 2011 to June 2018 were selected. Of these, 84 patients were treated with both BEV + PTX and eribulin sequentially. To evaluate the influence of the sequential order, the efficacy of BEV + PTX followed by eribulin (B-E arm) was compared to treatment with the reverse sequence (E-B arm). The propensity score matching method (PSMA) was used to improve the robustness of the findings from the present study. A total of 60 cases analyzed received BEV + PTX or eribulin as either first- or second-line treatment. In the entire cohort, the median time to failure of strategy (TFS) was 16.8 and 9.9 months in the B-E and E-B arms, respectively [hazard ratio (HR)=0.515, 95% CI 0.298-0.889, P=0.017). A similar HR was derived from PSMA for TFS. Using PSMA, TFS was 16.9 and 9.9 months in the B-E and E-B arms, respectively (HR=0.491, 95% CI 0.253-0.952, P=0.031). These results suggested that when both bevacizumab and eribulin are administered, bevacizumab should be administered first and eribulin should be administered later to ensure the most effective use of each drug.
Collapse
Affiliation(s)
- Koshi Matsui
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Mitsuharu Earashi
- Department of Surgery, Toyama Nishi General Hospital, Toyama 939-2716, Japan
| | - Akemi Yoshikawa
- Department of Surgery, Toyama Prefectural Central Hospital, Toyama 930-8550, Japan
| | - Wataru Fukushima
- Department of Surgery, Takaoka City Hospital, Takaoka, Toyama 933-8550, Japan
| | - Zensei Nozaki
- Department of Surgery, Tonami General Hospital, Tonami, Toyama 939-1395, Japan
| | - Kaeko Oyama
- Department of Surgery, Kouseiren Takaoka Hospital, Takaoka, Toyama 933-8555, Japan
| | - Kiichi Maeda
- Department of Surgery, Toyama Prefectural Central Hospital, Toyama 930-8550, Japan
| | - Akiyoshi Nakakura
- Department of Biomedical Statistics and Bioinformatics, Kyoto University, Kyoto 606-8501, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University, Kyoto 606-8501, Japan
| | - Tsutomu Fujii
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan,Correspondence to: Professor Tsutomu Fujii, Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
39
|
Factors affecting prognosis in patients treated with bevacizumab plus paclitaxel as first-line chemotherapy for HER2-negative metastatic breast cancer: an international pooled analysis of individual patient data from four prospective observational studies. Breast Cancer 2023; 30:88-100. [PMID: 36057014 DOI: 10.1007/s12282-022-01399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/24/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Bevacizumab (BV) plus paclitaxel (PTX) is a treatment option in patients with HER2-negative metastatic breast cancer (mBC). We conducted an international pooled analysis with individual patient data to evaluate the effectiveness of BV + PTX as a first-line treatment for HER2-negative mBC patients under routine practice. METHODS A total of 2,474 mBC patients treated with BV + PTX from four prospective observational studies were analyzed. The primary endpoint was overall survival (OS). The other endpoints including identifying independent prognostic factors and validation of the modified Prognostic Factor Index (PFI) developed in the ATHENA trial. RESULTS Median follow-up time was 10.9 months (M). Median OS were 21.4 M (95% confidential interval 19.8-22.7 M). The seven independent prognostic factors (tumor subtype, age, ECOG performance status (PS), disease-free interval (DFI), liver metastases, number of metastatic organs, and prior anthracycline and/or taxane treatment) for OS found in this analysis included the five risk factors (RFs [DFI < 24 months, ECOG PS 2, liver metastases and/or > 3 metastasis organ sites, TNBC, prior anthracycline and/or taxane therapy]). High- (> 3 RFs [median OS 12.6 M]) and intermediate-risk groups (2 RFs [median OS 18.0 M]) had a significantly worse prognosis than the low-risk group (< 1 RF [median OS 27.4 M]), (p < 0.0001). CONCLUSIONS This international pooled analysis showed the effectiveness of first-line BV + PTX for HER2-negative mBC patients identifying seven independent prognostic factors as real-world evidence. The usefulness of the modified PFI developed in the ATHENA trial in predicting OS among patients receiving BV + PTX was also verified.
Collapse
|
40
|
Traore S, Sashegyi A, Winfree KB, Taipale KL, Jen MH. Bayesian survival extrapolation for cost-effectiveness analysis: a case study of RELAY for ramucirumab in combination with erlotinib in the treatment of non-small-cell lung cancer. J Med Econ 2023; 26:1479-1488. [PMID: 38035666 DOI: 10.1080/13696998.2023.2272534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023]
Abstract
AIM Increasing trend for progression-free survival (PFS)-based primary endpoint in oncology has led to lack of mature overall survival (OS) data at the time of approval. To address this evidence gap in economic evaluations, we used a joint Bayesian approach to predict survival outcomes using immature OS data from the RELAY trial. METHODS Patient data from RELAY and systematic literature review (SLR) of phase 3 randomized clinical trials with hazard ratio (HR) estimates of mature PFS and immature OS were considered. OS and PFS were analyzed individually using a univariate model; bivariate analysis was performed using a joint model based on modified Bayesian normal induced copula estimation model. First, a Bayesian univariate model incorporated informative priors based on predicted HR and acceleration factor for OS and PFS. Second, a Bayesian-based joint model of RELAY PFS and OS data was based on the correlation between PFS and OS established in trials of similar populations. Marginal distribution of PFS was used to estimate the same for OS. RESULTS Publications (N = 122) of first-line treatments in patients with epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer were identified in the SLR, of which 36 trials were linked to RELAY. Twenty-six trials with HR data were used. The univariate model could predict OS with reduced uncertainty compared with the frequentist approach. In the joint model, the marginal OS distribution borrowed strength from the marginal PFS distribution through the established correlation coefficient. LIMITATIONS Bayesian approach was successfully used in RELAY analysis but may not be universally applied to oncology trials due to the different associations of OS and PFS and different trial patient populations. CONCLUSIONS We demonstrated that both the univariate and joint Bayesian models reduced uncertainty in predicting OS compared to frequentist method. The methodology introduced here will have potential applications in clinical decision-making for other oncology trials.
Collapse
|
41
|
Liu Y, Zheng L, Cai X, Zhang X, Ye Y. Cardiotoxicity from neoadjuvant targeted treatment for breast cancer prior to surgery. Front Cardiovasc Med 2023; 10:1078135. [PMID: 36910540 PMCID: PMC9992214 DOI: 10.3389/fcvm.2023.1078135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Cancer treatment has been gradually shifting from non-specific cytotoxic agents to molecularly targeted drugs. Breast cancer (BC), a malignant tumor with one of the highest incidence worldwide, has seen a rapid development in terms of targeted therapies, leading to a radical change in the treatment paradigm. However, the use of targeted drugs is accompanied by an increasing rate of deaths due to non-tumor-related causes in BC patients, with cardiovascular complications as the most common cause. Cardiovascular toxicity during antitumor therapy has become a high-risk factor for survival in BC patients. Targeted drug-induced cardiotoxicity exerts a wide range of effects on cardiac structure and function, including conduction disturbances, QT interval prolongation, impaired myocardial contractility, myocardial fibrosis, and hypertrophy, resulting in various clinical manifestations, e.g., arrhythmias, cardiomyopathy, heart failure, and even sudden death. In adult patients, the incidence of antitumor targeted drug-induced cardiotoxicity can reach 50%, and current preclinical evaluation tools are often insufficiently effective in predicting clinical cardiotoxicity. Herein, we reviewed the current status of the occurrence, causative mechanisms, monitoring methods, and progress in the prevention and treatment of cardiotoxicity associated with preoperative neoadjuvant targeted therapy for BC. It supplements the absence of relevant review on the latest research progress of preoperative neoadjuvant targeted therapy for cardiotoxicity, with a view to providing more reference for clinical treatment of BC patients.
Collapse
Affiliation(s)
- Yihua Liu
- Department of Breast Surgery, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Zheng
- Department of Breast Surgery, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xingjuan Cai
- Department of Breast Surgery, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojun Zhang
- Department of Breast Surgery, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
42
|
Islam W, Tsutsuki H, Ono K, Harada A, Shinozaki K, Niidome T, Fang J, Sawa T. Structural Determination of the Nanocomplex of Borate with Styrene-Maleic Acid Copolymer-Conjugated Glucosamine Used as a Multifunctional Anticancer Drug. ACS APPLIED BIO MATERIALS 2022; 5:5953-5964. [PMID: 36480740 DOI: 10.1021/acsabm.2c00883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of effective anticancer drugs is essential for chemotherapy that specifically targets cancer tissues. We recently synthesized a multifunctional water-soluble anticancer polymer drug consisting of styrene-maleic acid copolymer (SMA) conjugated with glucosamine and boric acid (BA) (SGB complex). It demonstrated about 10 times higher tumor-selective accumulation compared with accumulation in normal tissues because of the enhanced permeability and retention effect, and it inhibited tumor growth via glycolysis inhibition, mitochondrial damage, and thermal neutron irradiation. Gaining insight into the anticancer effects of this SGB complex requires a determination of its structure. We therefore investigated the chemical structure of the SGB complex by means of nuclear magnetic resonance, infrared (IR) spectroscopy, and liquid chromatography-mass spectrometry. To establish the chemical structure of the SGB complex, we synthesized a simple model compound─maleic acid-glucosamine (MAG) conjugate─by using a maleic anhydride (MA) monomer unit instead of the SMA polymer. We obtained two MAG-BA complexes (MAGB) with molecular weights of 325 and 343 after the MAG reaction with BA. We confirmed, by using IR spectroscopy, that MAGB formed a stable complex via an amide bond between MA and glucosamine and that BA bound to glucosamine via a diol bond. As a result of this chemical design, identified via analysis of MAGB, the SGB complex can release BA and demonstrate toxicity to cancer cells through inhibition of lactate secretion in mild hypoxia that mimics the tumor microenvironment. For clinical application of the SGB complex, we confirmed that this complex is stable in the presence of serum. These findings confirm that our design of the SGB complex has various advantages in targeting solid cancers and exerting therapeutic effects when combined with neutron irradiation.
Collapse
Affiliation(s)
- Waliul Islam
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan.,Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.,BioDynamics Research Foundation, Kumamoto 862-0954, Japan
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Katsuhiko Ono
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Ayaka Harada
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Kozo Shinozaki
- BioDynamics Research Foundation, Kumamoto 862-0954, Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
43
|
Qian Y, Lou K, Zhou H, Zhang L, Yuan Y. Efficacy and safety of anlotinib-based treatment in metastatic breast cancer patients. Front Oncol 2022; 12:1042451. [PMID: 36568219 PMCID: PMC9780491 DOI: 10.3389/fonc.2022.1042451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Objective To evaluate the efficacy and safety of anlotinib-based treatment in metastatic breast cancer (MBC) patients with failure of standard treatment. Methods We collected the medical data of 56 female patients with the diagnosis of MBC and had failed the standard treatment before. These patients received at least two cycles of anlotinib-based treatment as the second-line or beyond treatment between October 2019 and April 2022 in Jiangsu Cancer Hospital. The primary endpoint of our study was progression-free survival (PFS), and it was estimated with Kaplan-Meier. The second end points were disease control rate (DCR), objective response rate (ORR), and side effects. Results The median PFS time of a total of 56 patients was 5.7 months (95% CI, 3.17-8.22months). The ORR and DCR was 28.6% and 71.4%, respectively. In second-line, third-line, and beyond treatment, the median PFS was 11.7 months, 8.7 months, and 4.7 months, respectively. In different subtype of breast cancer, the median PFS was 5.6 months, 5.7months, and 6.4 months in human epidermal growth factor receptor 2 positive (HER2+), hormone receptor positive and HER2 negative (HR+/HER2-), and triple negative breast cancer (TNBC) patients, respectively. Most adverse effects were clinically manageable, and the most common events were platelet count decrease (35.7%), hand-foot syndrome (19.6%), diarrhea (19.6%), and fatigue (17.9%). The most common grade 3 and 4 adverse events were platelet count decrease (25.0%), diarrhea (7.1%), and oral mucositis (5.4%). Conclusion Anlotinib-based treatment showed good efficacy and manageable toxicity in multi-line treatment of MBC patients who failed the standard treatment.
Collapse
Affiliation(s)
- Yu Qian
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Kexin Lou
- Department of Pathology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Zhou
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Lili Zhang
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Yuan Yuan, ; Lili Zhang,
| | - Yuan Yuan
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Yuan Yuan, ; Lili Zhang,
| |
Collapse
|
44
|
Anderson TS, Wooster AL, Piersall SL, Okpalanwaka IF, Lowe DB. Disrupting cancer angiogenesis and immune checkpoint networks for improved tumor immunity. Semin Cancer Biol 2022; 86:981-996. [PMID: 35149179 PMCID: PMC9357867 DOI: 10.1016/j.semcancer.2022.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 02/05/2022] [Indexed: 01/27/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have advanced the field of cancer immunotherapy in patients by sustaining effector immune cell activity within the tumor microenvironment. However, the approach in general is still faced with issues related to ICI response duration/resistance, treatment eligibility, and safety, which indicates a need for further refinements. As immune checkpoint upregulation is inextricably linked to cancer-induced angiogenesis, newer clinical efforts have demonstrated the feasibility of disrupting both tumor-promoting networks to mediate enhanced immune-driven protection. This review focuses on such key evidence stipulating the necessity of co-applying ICI and anti-angiogenic strategies in cancer patients, with particular interest in highlighting newer engineered antibody approaches that may provide theoretically superior multi-pronged and safe therapeutic combinations.
Collapse
Affiliation(s)
- Trevor S Anderson
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Amanda L Wooster
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Savanna L Piersall
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Izuchukwu F Okpalanwaka
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Devin B Lowe
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States.
| |
Collapse
|
45
|
Sánchez J, Nicolini V, Fahrni L, Waldhauer I, Walz AC, Jamois C, Fowler S, Simon S, Klein C, Umaña P, Friberg L, Frances N. Preclinical InVivo Data Integrated in a Modeling Network Informs a Refined Clinical Strategy for a CD3 T-Cell Bispecific in Combination with Anti-PD-L1. AAPS J 2022; 24:106. [PMID: 36207642 DOI: 10.1208/s12248-022-00755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
TYRP1-TCB is a CD3 T-cell bispecific (CD3-TCB) antibody for the treatment of advanced melanoma. A tumor growth inhibition (TGI) model was developed using mouse xenograft data with TYRP1-TCB monotherapy or TYRP1-TCB plus anti-PD-L1 combination. The model was translated to humans to inform a refined clinical strategy. From xenograft mouse data, we estimated an EC50 of 0.345 mg/L for TYRP1-TCB, close to what was observed in vitro using the same tumor cell line. The model showed that, though increasing the dose of TYRP1-TCB in monotherapy delays the time to tumor regrowth and promotes higher tumor cell killing, it also induces a faster rate of tumor regrowth. Combination with anti-PD-L1 extended the time to tumor regrowth by 25% while also decreasing the tumor regrowth rate by 69% compared to the same dose of TYRP1-TCB alone. The model translation to humans predicts that if patients' tumors were scanned every 6 weeks, only 46% of the monotherapy responders would be detected even at a TYRP1-TCB dose resulting in exposures above the EC90. However, combination of TYRP1-TCB and anti-PD-L1 in the clinic is predicted to more than double the overall response rate (ORR), duration of response (DoR) and progression-free survival (PFS) compared to TYRP1-TCB monotherapy. As a result, it is highly recommended to consider development of CD3-TCBs as part of a combination therapy from the outset, without the need to escalate the CD3-TCB up to the Maximum Tolerated Dose (MTD) in monotherapy and without gating the combination only on RECIST-derived efficacy metrics.
Collapse
Affiliation(s)
- Javier Sánchez
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland. .,Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| | - Valeria Nicolini
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Linda Fahrni
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Inja Waldhauer
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Antje-Christine Walz
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Candice Jamois
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Stephen Fowler
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Silke Simon
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Pablo Umaña
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Lena Friberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Nicolas Frances
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
46
|
Vasseur A, Carton M, Guiu S, Augereau P, Uwer L, Mouret-Reynier MA, Levy C, Eymard JC, Ferrero JM, Leheurteur M, Goncalves A, Robert M, De La Motte Rouge T, Bachelot T, Petit T, Debled M, Grinda T, Desmoulins I, Vanlemmens L, Nicolaï V, Simon G, Cabel L. Efficacy of taxanes rechallenge in first-line treatment of early metastatic relapse of patients with HER2-negative breast cancer previously treated with a (neo)adjuvant taxanes regimen: A multicentre retrospective observational study. Breast 2022; 65:136-144. [PMID: 35944353 PMCID: PMC9379666 DOI: 10.1016/j.breast.2022.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 12/24/2022] Open
Abstract
Background Taxanes are one of the most effective chemotherapies (CT) in breast cancer (BC), but the efficacy of taxanes rechallenge in early metastatic relapse has been poorly studied in patients previously treated by taxanes in the (neo)adjuvant setting. Our study aimed to analyse the efficacy of taxane rechallenge in case of early metastatic relapse in a multicentre retrospective observational study compared with other chemotherapies. Methods We analysed the French national ESME metastatic BC (MBC) database and selected HER2- MBC patients who received CT in first-line treatment for a metastatic relapse occurring 3–24 months after previous (neo)adjuvant taxanes treatment. Results Of 23,501 female patients with MBC in ESME, 1057 met the selection criteria. 58.4% received a taxane-based regimen (75.4% concomitant bevacizumab) and 41.6% received other CT. In hormone-receptor positive (HR+)/HER2- MBC, multivariate analysis showed no difference in OS between taxanes without bevacizumab compared to other CT (HZR = 1.3 [0.97; 1.74], but taxanes was significantly associated with worse PFS (HZR = 1.48 [1.14; 1.93]). In TNBC, taxanes without bevacizumab and carboplatin/gemcitabine were not superior to other CT for OS (HZR = 1.07 [0.79; 1.44] and HZR = 0.81 [0.58; 1.13], respectively), while for PFS, taxanes was inferior (HZR = 1.33 [1.06–1.67]) and carboplatin plus gemcitabine was superior to other CT (HZR = 0.63 [0.46; 0.87]). For both subtypes, the worse outcome observed with paclitaxel was no longer observed with the addition of bevacizumab. Conclusions With the limitation of retrospective design, taxanes rechallenge in early metastatic relapse of BC may result in a worse PFS in TNBC and HR+/HER2- MBC, which was not observed with the addition of bevacizumab. Patients with HER2-advanced breast cancer (ABC) have often previously received taxanes in the (neo)adjuvant setting. Current guidelines suggest a rechallenge by taxanes in ABC with DFI≥12 months, few data are available for DFI ≤24 months. Taxane rechallenge in early metastatic relapse of BC (DFI ≤24 months) may result in a worse PFS in TNBC and HR+/HER2- ABC. In TNBC, the addition of bevacizumab to taxanes improves PFS and OS for DFI ≤24 months.
Collapse
|
47
|
Ecker BL, Lee J, Saadat LV, Aparicio T, Buisman FE, Balachandran VP, Drebin JA, Hasegawa K, Jarnagin WR, Kemeny NE, Kingham TP, Groot Koerkamp B, Kokudo N, Matsuyama Y, Portier G, Saltz LB, Soares KC, Wei AC, Gonen M, D'Angelica MI. Recurrence-free survival versus overall survival as a primary endpoint for studies of resected colorectal liver metastasis: a retrospective study and meta-analysis. Lancet Oncol 2022; 23:1332-1342. [PMID: 36058227 DOI: 10.1016/s1470-2045(22)00506-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recurrence-free survival has been used as a surrogate endpoint for overall survival in trials involving patients with resected colorectal liver metastases. We aimed to assess the correlation between recurrence-free survival and overall survival after resection of colorectal liver metastases to determine the adequacy of this surrogate endpoint. METHODS In this retrospective study and meta-analysis, we compiled an institutional cohort of consecutive patients who had complete resection of colorectal liver metastases from the Memorial Sloan Kettering Cancer Center (New York, NY, USA) prospective database. Patients were eligible for inclusion if they were aged 18 years or older, and underwent hepatectomy, with or without operative ablation, between Jan 1, 1991, and April 30, 2019. We estimated overall survival and recurrence-free survival probabilities at various timepoints using the Kaplan-Meier method, and we assessed pairwise associations between these endpoints using Spearman's rank correlation. We also did a meta-analysis of adjuvant phase 3 clinical trials for colorectal liver metastases to assess the correlation between hazard ratios (HRs) for recurrence-free survival and overall survival. We searched MEDLINE for articles of phase 3 randomised controlled trials analysing adjuvant treatment strategies for resected colorectal metastases from database inception to Jan 1, 2022. The titles and abstracts of identified studies were screened before full-text screening and summary data were either recalculated or extracted manually from the published Kaplan-Meier curves (depending on data availability). FINDINGS Data were available for 3299 patients in the institutional database, of whom 2983 were eligible for inclusion in our cohort. Median follow-up was 8·4 years (95% CI 7·9-9·1) , during which time there were 1995 (67%) disease recurrences and 1684 (56%) deaths. Median recurrence-free survival was 1·3 years (95% CI 1·3-1·4) and median overall survival was 5·2 years (95% CI 5·0-5·5). 1428 (85%) of 1684 deaths were preceded by recurrence, and median time from recurrence to death was 2·0 years (IQR 1·0-3·4). Pairwise correlations between recurrence-free survival and overall survival were low to moderate, with a correlation estimate ranging from 0·30 (SD 0·17) to 0·56 (0·13). In the meta-analysis of adjuvant clinical trials, the Spearman's correlation coefficient between recurrence-free survival HR and overall survival HR was r=0·20 (p=0·71). INTERPRETATION We found a minimal correlation between recurrence-free survival and overall survival after resection of colorectal liver metastases. Recurrence-free survival is an inadequate surrogate endpoint for overall survival in this disease setting. FUNDING US National Cancer Institute.
Collapse
Affiliation(s)
- Brett L Ecker
- Department of Surgery, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Jasme Lee
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lily V Saadat
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thomas Aparicio
- Gastroenterology and Digestive Oncology Department, Centre Hospitalo-Universitaire Saint Louis, Paris, France
| | - Florian E Buisman
- Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Vinod P Balachandran
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeffrey A Drebin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - William R Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy E Kemeny
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - T Peter Kingham
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Norihiro Kokudo
- Department of Hepato-Biliary-Pancreatic Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yutaka Matsuyama
- Department of Biostatistics, The University of Tokyo, Tokyo, Japan
| | | | - Leonard B Saltz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin C Soares
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alice C Wei
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael I D'Angelica
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
48
|
Li X, Fan Y, Tang M, Li H, Zhang Y, Mi J, Wang Y, Zhao M, Wang Z, Su F. PLXDC1 Can Be a Biomarker for Poor Prognosis and Immune Evasion in Gastric Cancer. J Inflamm Res 2022; 15:5439-5455. [PMID: 36147688 PMCID: PMC9488617 DOI: 10.2147/jir.s383191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background Research has revealed that Plexin domain containing 1 (PLXDC1) is correlated with the prognosis of a variety of tumors, but its role in the tumor microenvironment (TME) of gastric cancer has not been reported. Methods In this study, we analyzed PLXDC1 expression in gastric cancer using the Oncomine and the Cancer Genome Atlas (TCGA) databases and immunohistochemical staining experiments, and performed prognostic assessment with data from the TCGA and Kaplan–Meier Plotter databases. The immunomodulatory role of PLXDC1 in the gastric cancer TME was analyzed by signaling pathway enrichment, immune cell correlation analysis, immunomodulator risk model construction and immunohistochemical staining experiments of immune cells. Results The results indicated that PLXDC1 was overexpressed in gastric cancer and that its overexpression was associated with poor prognosis. Multivariate Cox analysis revealed that PLXDC1 could be an independent biomarker of the risk of gastric cancer. Signaling pathway enrichment revealed that high PLXDC1 expression was involved in signaling pathways related to immune activation and stromal activation, and Tumor Immune Dysfunction and Exclusion (TIDE) assessment indicated that high PLXDC1 expression was associated with a significantly higher risk of immune evasion than low PLXDC1 expression. A Cox risk model based on PLXDC1-associated immunomodulators also presented poor prognosis, and immune evasion was significantly higher in the high-risk group than in the low-risk group. In addition, immunohistochemical staining of CD8/CD3/CD4+ T cells in the high and low PLXDC1 expression groups also observed immune cell distribution characteristics of immune evasion. Conclusion This study analyzed PLXDC1 from multiple biological perspectives and revealed that PLXDC1 can be a biomarker for poor prognosis and immune evasion in gastric cancer.
Collapse
Affiliation(s)
- Xinwei Li
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People's Republic of China
| | - Yongfei Fan
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, People's Republic of China
| | - Mingyue Tang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People's Republic of China
| | - Huiyuan Li
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People's Republic of China
| | - Yue Zhang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People's Republic of China
| | - Jiaqi Mi
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People's Republic of China
| | - Yanyan Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People's Republic of China
| | - Menglin Zhao
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People's Republic of China
| | - Zishu Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People's Republic of China
| | - Fang Su
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People's Republic of China
| |
Collapse
|
49
|
Apatinib plus vinorelbine versus vinorelbine for metastatic triple-negative breast cancer who failed first/second-line treatment: the NAN trial. NPJ Breast Cancer 2022; 8:110. [PMID: 36127351 PMCID: PMC9489776 DOI: 10.1038/s41523-022-00462-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
While therapies such as chemotherapy combined with immunotherapy, sacituzumab govitecan, and PARP inhibitors are available for metastatic TNBC, on disease progression after these therapies, the mainstay of therapy is chemotherapy. Apatinib is a small-molecule tyrosine kinase inhibitor that has promising anti-angiogenesis and antitumor activity for TNBC. We aimed to evaluate the safety and efficacy of adding apatinib to chemotherapy in patients with advanced TNBC with failed first/second-line treatment. A total of 66 patients were randomly assigned, in a 1:1 ratio, to receive vinorelbine or vinorelbine with apatinib in 28-day cycles. The primary endpoint was progression-free survival (PFS). Secondary endpoints included overall survival (OS), overall response rate (ORR) and safety. 33 received apatinib plus vinorelbine and 32 received vinorelbine (1 was withdrawal). Median PFS was significantly longer in the apatinib plus vinorelbine group than in the vinorelbine group (3.9 months vs. 2.0 months; hazard ratio, 1.82; 95% confidence interval [CI], 1.06 to 3.11; P = 0.026). Median OS was 11.5 months with apatinib plus vinorelbine and 9.9 months with vinorelbine (HR,1.01; 95% CI, 0.51 to 1.97; P = 0.985). The ORR was 9.1% in the apatinib plus vinorelbine group and 6.3% in the vinorelbine group (P = 0.667). The most common treatment-related hematologic grade 3–4 adverse events in apatinib plus vinorelbine group, were leukopenia, granulocytopenia, anemia, and thrombocytopenia. no treatment-related nonhematologic grade 4 adverse events or treatment-related deaths were observed. Collectively, adding apatinib to vinorelbine shows a promising benefit in PFS compared to vinorelbine monotherapy, with an excellent toxicity profile, warranting further exploration.
Collapse
|
50
|
Can EGFR be a therapeutic target in breast cancer? Biochim Biophys Acta Rev Cancer 2022; 1877:188789. [PMID: 36064121 DOI: 10.1016/j.bbcan.2022.188789] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022]
Abstract
Epidermal growth factor receptor (EGFR) is highly expressed in certain cancer types and is involved in regulating the biological characteristics of cancer progression, including proliferation, metastasis, and drug resistance. Various medicines targeting EGFR have been developed and approved for several cancer types, such as lung and colon cancer. To date, however, EGFR inhibitors have not achieved satisfactory clinical results in breast cancer, which continues to be the most serious malignant tumor type in females. Therefore, clarifying the underlying mechanisms related to the ineffectiveness of EGFR inhibitors in breast cancer and developing new EGFR-targeted strategies (e.g., combination therapy) remain critical challenges. Various studies have demonstrated aberrant expression and maintenance of EGFR levels in breast cancer. In this review, we summarize the regulatory mechanisms underlying EGFR protein expression in breast cancer cells, including EGFR mutations, amplification, endocytic dysfunction, recycling acceleration, and degradation disorders. We also discuss potential therapeutic strategies that act directly or indirectly on EGFR, including reducing EGFR protein expression, treating the target protein to mediate precise clearance, and inhibiting non-EGFR signaling pathways. This review should provide new therapeutic perspectives for breast cancer patients with high EGFR expression.
Collapse
|