1
|
Liu J, Han B, Hu X, Yuan M, Liu Z. Identification of N6-methyladenosine-associated ferroptosis biomarkers in cervical cancer. Hereditas 2025; 162:53. [PMID: 40197384 PMCID: PMC11974235 DOI: 10.1186/s41065-025-00418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/15/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Cervical cancer (CC) stands as a major contributor to female mortality. The pathogenesis of CC is linked with various factors. Our research aimed to unravel the underlying mechanisms of ferroptosis and m6A RNA methylation in CC through bioinformatics analysis. METHODS Three CC datasets, including GSE9750, GSE63514, and TCGA-CESC, were incorporated. m6A-related genes were derived from published sources, while ferroptosis-related genes were obtained from the FerrDb database. Differential expression and correlation analyses were performed to identify differentially expressed m6A-related ferroptosis genes (DE-MRFGs) in CC. Subsequently, the biomarkers were further identified using machine learning techniques. Gene Set Enrichment Analysis (GSEA) and Kaplan-Meier (KM) survival analysis were also performed to comprehend these biomarkers. Furthermore, a competing endogenous RNAs (ceRNA) network involving biomarkers was established. Finally, biomarkers expression were verified by real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS From the DE-MRFGs, six genes, including ALOX12, EZH2, CA9, CDCA3, CDC25A, HSPB1, were selected. A nomogram constructed based on these biomarkers exhibited potential clinical diagnostic value for CC, with good diagnostic accuracy confirmed through calibration curves. GSEA unveiled associations of these biomarkers with cell proliferation, spliceosome, and base excision repair. KM survival analysis demonstrated significant differences in survival outcomes between high and low expressions of HSPB1, EZH2, and CA9 samples. A ceRNA network was constructed involving three biomarkers, such as CDC25A, CDCA3, and EZH2, 29 miRNAs, and 25 lncRNAs. In RT-qPCR verification, the expression of ALOX12, EZH2 and CDC25A was significantly higher in CC samples, while HSPB1 expression was higher in control samples. CONCLUSION Six genes, namely ALOX12, EZH2, CA9, CDCA3, CDC25A, and HSPB1, were identified as m6A-regulated ferroptosis biomarkers in CC. These findings offer valuable insights into disease pathogenesis and hold promise for advancing CC treatment and prognosis.
Collapse
Affiliation(s)
- Jinzhe Liu
- Department of Chinese Pharmacy, School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Buwei Han
- Department of Chinese Pharmacy, School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
- Postdoctoral Scientific Research Workstation, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Xijiao Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Mengke Yuan
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Zhiwei Liu
- Department of Pediatrics, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 83, Feishan Road, Guiyang, Guizhou Province, China.
| |
Collapse
|
2
|
Muñoz ÓM, Delgado León BD, Sellés EG, Enguix-Riego MV, Fernández de Bobadilla JC, Praena-Fernández JM, Del Campo ER, López Guerra JL. Association of single nucleotide polymorphisms rs7459185 of the HSPβ1 gene and the risk of hematological toxicity in lung cancer. Lung Cancer 2025; 200:108103. [PMID: 39862642 DOI: 10.1016/j.lungcan.2025.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/12/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
PURPOSE Hematological toxicities (HTs) in lung cancer (LCa) may compromise the delivery of Radio-Chemotherapy (RTCT), and consequently affect the control of the disease. The aim of this study is to evaluate the association of Single nucleotide polymorphisms (SNPs) with HT. MATERIAL/METHODS In this prospective multicentre study, 264 patients with primary LCa treated with RTCT between 2012 and 2018 were included. Genotyping analysis was performed on DNA isolated from peripheral blood samples by real-time polymerase chain reaction (PCR) using TaqMan. HTs were scored using the Common Toxicity Criteria (CTCAE) version 5.0. RESULTS An increased risk of HT ≥ grade 2 was observed in patients with the GG genotype of the SNP rs7459185 (HSPβ1) with a hazard ratio (HR) of 1.462 (95 %CI 1.054-2.029, p = 0.007). Similarly, those patients had an increased risk of overall HT ≥ grade 3 with a HR of 1.531 (95 %CI 1.016-2.30, p = 0.007). The patients with the GG genotype experienced an acute lymphopenia ≥ Grade 3 (HR 1.590 [95 %CI 1.004-2.517; p 0.045]) and acute anemia ≥ Grade 2 (HR 1.886 [95 %CI 1.060-3.356; p 0.032]), compared to the GC/CC genotypes. CONCLUSION Our findings show a relationship between the functional GG genotypic of the SNP rs7459185 (HSPβ1) and heightened risk the development of HT, including anemia and lymphopenia in patients with LCa. This genetic variant could be utilized as a predictive marker to tailor treatment intensity, contributing to the advancement of individualized therapeutic approaches.
Collapse
Affiliation(s)
- Óscar Muñoz Muñoz
- Department of Radiation Oncology, Instituto de Biomedicina de Sevilla-University Hospital Virgen del Rocio (IBIS/HUVR/CSIC/Universidad de Sevilla), Seville, Spain.
| | - Blas David Delgado León
- Department of Radiation Oncology, Instituto de Biomedicina de Sevilla-University Hospital Virgen del Rocio (IBIS/HUVR/CSIC/Universidad de Sevilla), Seville, Spain
| | - Elías Gomis Sellés
- Department of Radiation Oncology, Instituto de Biomedicina de Sevilla-University Hospital Virgen del Rocio (IBIS/HUVR/CSIC/Universidad de Sevilla), Seville, Spain
| | - María Valle Enguix-Riego
- Department of Radiation Oncology, Instituto de Biomedicina de Sevilla-University Hospital Virgen del Rocio (IBIS/HUVR/CSIC/Universidad de Sevilla), Seville, Spain
| | - Jon Cacicedo Fernández de Bobadilla
- Department of Radiation Oncology, Cruces University Hospital/Biocruces Bizkaia Health Research Institute, University of the Basque Country UPV/EHU, Barakaldo, Spain
| | | | - Eleonor Rivin Del Campo
- Department of Radiation Oncology, Tenon University Hospital, Hôpitaus Universitaires Est Parisien, Sorbonne University Medical Faculty, Paris, France
| | - José Luis López Guerra
- Department of Radiation Oncology, Instituto de Biomedicina de Sevilla-University Hospital Virgen del Rocio (IBIS/HUVR/CSIC/Universidad de Sevilla), Seville, Spain
| |
Collapse
|
3
|
Li Y, He Z, Li Z, Lu Y, Xun Q, Xiang L, Zhang M. G-quadruplex formation within the promoter region of HSPB2 and its effect on transcription. Heliyon 2024; 10:e24396. [PMID: 38298658 PMCID: PMC10827768 DOI: 10.1016/j.heliyon.2024.e24396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
G-rich sequences in DNA and RNA tend to fold into stable secondary structures called G-quadruplexes. Except for the telomere region, G-quadruplex-forming sequences are widely present in gene promoters and have been implicated in transcriptional regulation. Single nucleotide polymorphisms (SNPs) can disrupt the G-quadruplex structure of a gene promoter. In this study, we confirmed the promoter of HSPB2, a cancer-related gene, tends to form an unusual DNA secondary structure. The dual luciferase assay revealed that the SNP rs2234704 in the HSPB2 promoter with a single G > A mutation increased the transcriptional activity of the HSPB2 promoter. Circular dichroism and native PAGE revealed that the G-rich strand of the DNA in this promoter preferred to form a parallel G-quadruplex, which could be destabilized by the SNP rs2234704 (G > A) mutation. Furthermore, we found that the SNP rs2234704 (G > A) greatly increased and influenced the overexpression of HSPB2 in breast cancer samples. These results suggest SNP rs2234704 (G > A) may play a role in the occurrence of breast cancer by destroying the G-quadruplex structure and promoting the expression of HSPB2.
Collapse
Affiliation(s)
- Ying Li
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jing Medical University, Jining, Shandong, 272000, PR China
| | - Zhichao He
- Medical Equipment Department, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, PR China
| | - Zewu Li
- Department of Reproductive Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, PR China
| | - Yan Lu
- Clinical Laboratory Medicine Department, Jining No.1 People's Hospital, Jining, Shandong, 272000, PR China
| | - Qingqing Xun
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, 272000, PR China
| | - Longquan Xiang
- Department of Pathology, Jining No.1 People's Hospital, Jining, Shandong, 272000, PR China
| | - Miaomiao Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jing Medical University, Jining, Shandong, 272000, PR China
- Department of Pathology, Jining No.1 People's Hospital, Jining, Shandong, 272000, PR China
| |
Collapse
|
4
|
HSPB1 Gene Variants and Schizophrenia: A Case-Control Study in a Polish Population. DISEASE MARKERS 2022; 2022:4933011. [PMID: 35340410 PMCID: PMC8941579 DOI: 10.1155/2022/4933011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 02/01/2022] [Accepted: 03/01/2022] [Indexed: 11/20/2022]
Abstract
Schizophrenia (SCZ) is a severe psychiatric disorder that has a significant genetic component. HSPB1 (HSP27) is known for its neuroprotective functions under stress conditions and appears to play an important role during the development of the central nervous system, which is in agreement with the neurodevelopmental hypothesis of SCZ. The aim of the present case-control study was to investigate whether HSPB1 variants contribute to the risk and clinical features (age of onset, symptoms, and suicidal behavior) of SCZ in a Polish population. To the best of our knowledge, this is the first study that investigated the association between the HSPB1 polymorphisms and SCZ. Three SNPs of HSPB1 (rs2868370, rs2868371, and rs7459185) were genotyped in a total of 1082 (403 patients and 679 controls) unrelated subjects using TaqMan assays. The results showed that the genotypes, alleles, and haplotypes of the three SNPs were not significantly different between the schizophrenic patients and healthy controls either in the overall analysis or in the gender-stratified analysis (all p > 0.05). However, we did find a significant effect of the rs2868371 genotype on the age of onset, negative symptoms, and disorganized symptoms in the five-factor model of PANSS (all p < 0.01). Post hoc comparisons showed that carriers of the rs2868371 G/G genotype had significantly higher negative and disorganized factor scores than those with the C/G and C/C genotypes, respectively. Further investigations with other larger independent samples are required to confirm our findings and to better explore the effect of the HSPB1 polymorphisms on the risk and symptomatology of SCZ.
Collapse
|
5
|
Gruden G, Carucci P, Barutta F, Burt D, Ferro A, Rolle E, Pinach S, Abate ML, Campra D, Durazzo M. Serum levels of anti-heat shock protein 27 antibodies in patients with chronic liver disease. Cell Stress Chaperones 2021; 26:151-157. [PMID: 32895883 PMCID: PMC7736373 DOI: 10.1007/s12192-020-01164-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 10/23/2022] Open
Abstract
Heat shock protein 27 (HSP27), an intracellular molecular chaperone, is involved in the pathogenesis of cancer by promoting both tumor cell proliferation and resistance to therapy. HSP27 is also present in the circulation and circulating HSP27 (sHSP27) can elicit an autoimmune response with production of antibodies. Levels of sHSP27 are enhanced in patients with hepatocellular carcinoma (HCC); it is, however, unknown whether changes in HSP27 antibody levels occur in patients with HCC and can be exploited as a circulating biomarker of HCC. Our aim was to assess the potential association between newly diagnosed HCC and serum anti-HSP27 antibody levels. In this cross-sectional study, anti-HSP27 antibody levels were measured in serum samples from 71 HCC patients, 80 subjects with chronic liver disease, and 38 control subjects by immunoenzymatic assay. Anti-HSP27 antibody levels did not differ significantly among groups. However, in patients with chronic active hepatitis/cirrhosis, anti-HSP27 levels were significantly higher in subjects with a positive history of alcoholism (p = 0.03). Our data do not support the hypothesis that anti-HSP27 antibody levels may help identify patients with HCC among subjects with chronic liver disease. However, our finding that alcohol-related liver disease is associated with higher anti-HSP27 levels is novel and deserves further investigations.
Collapse
Affiliation(s)
- Gabriella Gruden
- Department of Medical Science, University of Turin, Turin, Italy.
| | - Patrizia Carucci
- Department of Gastro-Hepatology, Città della Salute e della Scienza, Turin, Italy
| | - Federica Barutta
- Department of Medical Science, University of Turin, Turin, Italy
| | - Davina Burt
- Department of Medical Science, University of Turin, Turin, Italy
| | - Arianna Ferro
- Department of Medical Science, University of Turin, Turin, Italy
| | - Emanuela Rolle
- Department of Gastro-Hepatology, Città della Salute e della Scienza, Turin, Italy
| | - Silvia Pinach
- Department of Medical Science, University of Turin, Turin, Italy
| | - Maria Lorena Abate
- Department of Gastro-Hepatology, Città della Salute e della Scienza, Turin, Italy
| | - Donata Campra
- Department of Surgery, Città della Salute e della Scienza, Turin, Italy
| | - Marilena Durazzo
- Department of Medical Science, University of Turin, Turin, Italy
| |
Collapse
|
6
|
Zou T, Liu JY, She L, Yin JY, Li X, Li XP, Zhou HH, Chen J, Liu ZQ. The Association Between Heat-Shock Protein Polymorphisms and Prognosis in Lung Cancer Patients Treated With Platinum-Based Chemotherapy. Front Pharmacol 2020; 11:1029. [PMID: 32848724 PMCID: PMC7396685 DOI: 10.3389/fphar.2020.01029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
Objective Lung cancer is one of the most prevalent cancers and the leading cause of cancer-related death in the world. Platinum-based chemotherapy plays an important role in lung cancer treatment, but the therapeutic effect varies from person to person. Heat shock proteins (HSPs) have been reported to be associated with the survival time of lung cancer patients, which may be a potential biomarker in lung cancer treatment. The aim of this study was to investigate the association between genetic polymorphisms and the prognosis in lung cancer patients treated with platinum-based chemotherapy. Methods We performed genotyping in 19 single nucleotide polymorphisms (SNPs) of HSP genes and Rho family genes of 346 lung cancer patients by SequenomMassARRAY. We used Cox proportional hazard models, state and plink to analyze the associations between SNPs and the prognosis of lung cancer patients. Results We found that the polymorphisms of HSPB1 rs2070804 and HSPA4 rs3088225 were significantly associated with lung cancer survival (p=0.015, p=0.049*, respectively). We also discovered the statistically significant differences between rs2070804 with age, gender, histology and stage, rs3088225 with gender and stage, which can affect lung cancer prognosis. Conclusion The results of our study suggest that HSPB1 rs2070804 (G>T) and HSPA4 rs3088225 (A>G) may be useful biomarkers for predicting the prognosis of lung cancer patients treated with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Ting Zou
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jun-Yan Liu
- Department of Orthopaedics, The First Affiliated Hospital of the University of South China, Hengyang, China
| | - Li She
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Li
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang-Ping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Ayala de Miguel P, Enguix-Riego MV, Cacicedo J, Delgado BD, Perez M, Praena-Fernández JM, Quintana Cortés L, Borrega García P, Del Campo ER, Lopez Guerra JL. Prognostic value of the TGFβ1 rs4803455 single nucleotide polymorphism in small cell lung cancer. TUMORI JOURNAL 2020; 107:209-215. [PMID: 32779517 DOI: 10.1177/0300891620946841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Small cell lung cancer (SCLC) is one of the greatest therapeutic challenges of oncology. Potential associations between single nucleotide polymorphisms in heat shock protein β1 (HSPB1) and transforming growth factor β1 (TGFβ1) and survival have been investigated. METHODS A prospective multicenter study of 94 patients with SCLC treated between 2013 and 2016 was conducted. Clinical, tumour-related, therapeutic, and genetic (9 SNPs of TGFβ1 gene and 5 of HSPB1 gene) variables were analyzed. RESULTS The cohort included 77 men and 17 women with a median age of 61 years. Eighty percent presented with limited stage at diagnosis and received thoracic radiation with a median dose of 45 Gy (twice-daily radiation in 42%). Forty-seven percent received concurrent platinum-based chemotherapy and 57% received prophylactic cranial irradiation (PCI). Overall survival (OS) was 34% at 2 years and 16% at 3 years. In multivariate analysis, the rs4803455:CA genotype of the TGFβ1 gene showed a statistically significant association with lower disease-free survival (DFS; hazard ratio [HR] 3.13; confidence interval [CI] 1.19-8.17; p = 0.020) and higher local recurrence (HR 3.80; CI 1.37-10.5; p = 0.048), and a marginal association with lower OS (HR 1.94; CI 0.98-3.83; p = 0.057). A combined analysis showed that patients receiving PCI and carrying the rs4803455:CA genotype had statistically significant lower OS (p < 0.001) and DFS (p < 0.001) than patients receiving PCI and carrying the rs4803455:AA genotype. CONCLUSIONS Genetic analysis showed the CA genotype of TGFβ1 SNP rs4803455 was associated with worse prognosis in patients with SCLC and could be considered as a potential biomarker.
Collapse
Affiliation(s)
- Pablo Ayala de Miguel
- Department of Medical Oncology, San Pedro de Alcántara University Hospital, Caceres, Spain
| | - María Valle Enguix-Riego
- Department of Radiation Oncology, University Hospital Virgen del Rocío, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), Seville, Spain
| | - Jon Cacicedo
- Departament of Radiation Oncology, Cruces University Hospital, Barakaldo, Spain
| | - Blas David Delgado
- Department of Radiation Oncology, University Hospital Virgen del Rocío, Seville, Spain
| | - Marco Perez
- Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), Seville, Spain
| | | | - Laura Quintana Cortés
- Department of Medical Oncology, San Pedro de Alcántara University Hospital, Caceres, Spain
| | - Pablo Borrega García
- Department of Medical Oncology, San Pedro de Alcántara University Hospital, Caceres, Spain
| | - Eleonor Rivin Del Campo
- Department of Radiation Oncology, Tenon University Hospital, Sorbonne University, Paris, France
| | - Jose Luis Lopez Guerra
- Department of Radiation Oncology, University Hospital Virgen del Rocío, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), Seville, Spain
| |
Collapse
|
8
|
Mittal S, Rajala MS. Heat shock proteins as biomarkers of lung cancer. Cancer Biol Ther 2020; 21:477-485. [PMID: 32228356 PMCID: PMC7515496 DOI: 10.1080/15384047.2020.1736482] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/18/2019] [Accepted: 02/18/2020] [Indexed: 12/31/2022] Open
Abstract
Heat shock proteins are known to be associated with a wide variety of human cancers including lung cancer. Overexpression of these molecular chaperones is linked with tumor survival, metastasis and anticancer drug resistance. In recent years, heat shock proteins are gaining much importance in the field of cancer research owing to their potential to be key determinants of cell survival and apoptosis. Lung cancer is one of the most common cancers diagnosed worldwide and the association of heat shock proteins in lung cancer diagnosis, prognosis and as drug targets remains unresolved. The aim of this review is to draw the importance of heat shock protein members; Hsp27, Hsp70, Hsp90, Hsp60 and their diagnostic and prognostic implications in lung cancer. Based on the available literature heat shock proteins can serve as biomarkers and anticancer drug targets in the management of lung cancer patients.
Collapse
Affiliation(s)
- Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
9
|
Hung CS, Huang CY, Hsu YW, Makondi PT, Chang WC, Chang YJ, Wang JY, Wei PL. HSPB1 rs2070804 polymorphism is associated with the depth of primary tumor. J Cell Biochem 2020; 121:63-69. [PMID: 31364192 DOI: 10.1002/jcb.28266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer in the world. Genome-wide association studies are a powerful method to analyze the status of single-nucleotide polymorphisms (SNPs) in specific genes. Heat shock proteins (HSPs) were found to be involved in the cancer progression and chemoresistance. However, there is still no further study about polymorphisms of HSP beta-1 (HSPB1) in colorectal cancer. We proposed the SNP of HSPB1 may be correlated with the progression and metastasis in colon cancer. METHODS We recruited 379 colorectal cancer patients and categorized as four stages following the UICC TNM system. Then, we selected tagging SNPs of HSPB1 by 10% minimum allelic frequency in Han Chinese population from the HapMap database and analyze with the Chi-square test. RESULTS We demonstrated the association of HSPB1 genetic polymorphisms rs2070804 with tumor depth with colorectal cancer. But, there is a lack of association between HSPB1 genetic polymorphisms and colorectal cancer invasion, recurrence or metastasis. CONCLUSIONS The polymorphisms of HSPB1 seemed to change the tumor behavior of colorectal cancer. HSPB1 rs2070804 polymorphism is associated with the depth of the primary tumor. But, there is no further correlation with other to the clinical parameters such as cancer invasiveness, local recurrence, or distant metastasis.
Collapse
Affiliation(s)
- Chin-Sheng Hung
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chien-Yu Huang
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Hsu
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | | | - Wei-Chiao Chang
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, Taipei Medical University, Taipei, Taiwan
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jaw-Yuan Wang
- Division of Gastrointestinal and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Li Wei
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
10
|
Enguix-Riego MDV, Cacicedo J, Delgado León BD, Nieto-Guerrero Gómez JM, Herrero Rivera D, Perez M, Praena-Fernández JM, Sanchez Carmona G, Rivin Del Campo E, Ortiz Gordillo MJ, Lopez Guerra JL. The single nucleotide variant rs2868371 associates with the risk of mortality in non-small cell lung cancer patients: A multicenter prospective validation. Radiother Oncol 2019; 136:29-36. [PMID: 31015126 DOI: 10.1016/j.radonc.2019.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Definitive radiation therapy (RT) with or without chemotherapy has become the standard treatment for non-metastatic unresectable non-small cell lung cancer (NSCLC). However, treatment outcomes can differ substantially and patients' genetic background could play a crucial role. Potential associations between single-nucleotide polymorphisms (SNP) in Heat shock protein beta-1 (HSPB1) and survival have been reported in prior single-institution retrospective reports. MATERIALS AND METHODS The current assay aims to validate such connection in a prospective multicenter study in a European cohort including 181 NSCLC patients. Median follow-up time for all patients was 13 months (range, 3-57 months). RESULTS The results obtained show an association between the rs2868371 GG genotype and better overall survival (HR: 0.35; 95%CI: 0.13-0.96; p = 0.042) in multivariate analysis. Two-year overall survival rate was 72% for patients carrying the rs2868371 GG genotype versus 36% for those patients harboring the rs2868371 CC/CG genotypes (p = 0.013). Additionally, the rs2868371 GG genotype was found to be associated with better disease-free survival in the multivariate analysis (HR: 0.36; 95%CI: 0.13-0.99; p = 0.048). In silico analysis of the potential functional SNP suggested significant difference in the affinity of the Glucocorticoid Receptor binding site between alternative allelic variants, confirmed by chromatin immunoprecipitation analysis displaying stronger affinity for the risk allele (C). Furthermore, our findings indicate that the rs2868371 influences (mRNA) HSPB1 expression, offering insight into the regulation of HSPB1 transcription. CONCLUSION The functional HSPB1 rs2868371 promoter variant may affect lung cancer survival by regulation of HSPB1 expression levels through glucocorticoid receptor interaction.
Collapse
Affiliation(s)
- María Del Valle Enguix-Riego
- Department of Radiation Oncology, University Hospital Virgen del Rocío, Seville, Spain; Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), Spain
| | - Jon Cacicedo
- Departament of Radiation Oncology, Cruces University Hospital, Barakaldo, Spain
| | | | | | - Daniel Herrero Rivera
- Department of Medical Oncology, University Hospital Virgen del Rocío, Seville, Spain
| | - Marco Perez
- Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), Spain
| | | | | | | | - María José Ortiz Gordillo
- Department of Radiation Oncology, University Hospital Virgen del Rocío, Seville, Spain; Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), Spain
| | - Jose Luis Lopez Guerra
- Department of Radiation Oncology, University Hospital Virgen del Rocío, Seville, Spain; Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), Spain.
| |
Collapse
|
11
|
Vilander LM, Vaara ST, Kaunisto MA, Pettilä V, Study Group TF. Common Inflammation-Related Candidate Gene Variants and Acute Kidney Injury in 2647 Critically Ill Finnish Patients. J Clin Med 2019; 8:jcm8030342. [PMID: 30862128 PMCID: PMC6463106 DOI: 10.3390/jcm8030342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/26/2019] [Accepted: 03/04/2019] [Indexed: 12/19/2022] Open
Abstract
Acute kidney injury (AKI) is a syndrome with high incidence among the critically ill. Because the clinical variables and currently used biomarkers have failed to predict the individual susceptibility to AKI, candidate gene variants for the trait have been studied. Studies about genetic predisposition to AKI have been mainly underpowered and of moderate quality. We report the association study of 27 genetic variants in a cohort of Finnish critically ill patients, focusing on the replication of associations detected with variants in genes related to inflammation, cell survival, or circulation. In this prospective, observational Finnish Acute Kidney Injury (FINNAKI) study, 2647 patients without chronic kidney disease were genotyped. We defined AKI according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria. We compared severe AKI (Stages 2 and 3, n = 625) to controls (Stage 0, n = 1582). For genotyping we used iPLEXTM Assay (Agena Bioscience). We performed the association analyses with PLINK software, using an additive genetic model in logistic regression. Despite the numerous, although contradictory, studies about association between polymorphisms rs1800629 in TNFA and rs1800896 in IL10 and AKI, we found no association (odds ratios 1.06 (95% CI 0.89–1.28, p = 0.51) and 0.92 (95% CI 0.80–1.05, p = 0.20), respectively). Adjusting for confounders did not change the results. To conclude, we could not confirm the associations reported in previous studies in a cohort of critically ill patients.
Collapse
Affiliation(s)
- Laura M Vilander
- Division of Intensive Care Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine,University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland.
| | - Suvi T Vaara
- Division of Intensive Care Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine,University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland.
| | - Mari A Kaunisto
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki,000014 Helsinki, Finland.
| | - Ville Pettilä
- Division of Intensive Care Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine,University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland.
| | | |
Collapse
|
12
|
Carra S, Alberti S, Benesch JLP, Boelens W, Buchner J, Carver JA, Cecconi C, Ecroyd H, Gusev N, Hightower LE, Klevit RE, Lee HO, Liberek K, Lockwood B, Poletti A, Timmerman V, Toth ME, Vierling E, Wu T, Tanguay RM. Small heat shock proteins: multifaceted proteins with important implications for life. Cell Stress Chaperones 2019; 24:295-308. [PMID: 30758704 PMCID: PMC6439001 DOI: 10.1007/s12192-019-00979-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Small Heat Shock Proteins (sHSPs) evolved early in the history of life; they are present in archaea, bacteria, and eukaryota. sHSPs belong to the superfamily of molecular chaperones: they are components of the cellular protein quality control machinery and are thought to act as the first line of defense against conditions that endanger the cellular proteome. In plants, sHSPs protect cells against abiotic stresses, providing innovative targets for sustainable agricultural production. In humans, sHSPs (also known as HSPBs) are associated with the development of several neurological diseases. Thus, manipulation of sHSP expression may represent an attractive therapeutic strategy for disease treatment. Experimental evidence demonstrates that enhancing the chaperone function of sHSPs protects against age-related protein conformation diseases, which are characterized by protein aggregation. Moreover, sHSPs can promote longevity and healthy aging in vivo. In addition, sHSPs have been implicated in the prognosis of several types of cancer. Here, sHSP upregulation, by enhancing cellular health, could promote cancer development; on the other hand, their downregulation, by sensitizing cells to external stressors and chemotherapeutics, may have beneficial outcomes. The complexity and diversity of sHSP function and properties and the need to identify their specific clients, as well as their implication in human disease, have been discussed by many of the world's experts in the sHSP field during a dedicated workshop in Québec City, Canada, on 26-29 August 2018.
Collapse
Affiliation(s)
- Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Nanotechnology, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy.
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), Biotechnology Center (BIOTEC), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Justin L P Benesch
- Department of Chemistry, Physical and Theoretical Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Wilbert Boelens
- Department of Biomolecular Chemistry, Institute of Molecules and Materials, Radboud University, NL-6500, Nijmegen, The Netherlands
| | - Johannes Buchner
- Center for Integrated Protein Science Munich (CIPSM) and Department Chemie, Technische Universität München, D-85748, Garching, Germany
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| | - Ciro Cecconi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125, Modena, Italy
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125, Modena, Italy
| | - Heath Ecroyd
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Nikolai Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation, 117234
| | - Lawrence E Hightower
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT, 06269-3125, USA
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Hyun O Lee
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Brent Lockwood
- Department of Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Univrsità degli Studi di Milano, Milan, Italy
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Melinda E Toth
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Tangchun Wu
- MOE Key Lab of Environment and Health, Tongji School of Public Health, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Robert M Tanguay
- Laboratory of Cell and Developmental Genetics, IBIS, and Department of Molecular Biology, Medical Biochemistry and Pathology, Medical School, Université Laval, QC, Québec, G1V 0A6, Canada.
| |
Collapse
|
13
|
Dai X, Hua T, Hong T. Integrated diagnostic network construction reveals a 4-gene panel and 5 cancer hallmarks driving breast cancer heterogeneity. Sci Rep 2017; 7:6827. [PMID: 28754978 PMCID: PMC5533795 DOI: 10.1038/s41598-017-07189-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/23/2017] [Indexed: 12/26/2022] Open
Abstract
Breast cancer encompasses a group of heterogeneous diseases, each associated with distinct clinical implications. Dozens of molecular biomarkers capable of categorizing tumors into clinically relevant subgroups have been proposed which, though considerably contribute in precision medicine, complicate our understandings toward breast cancer subtyping and its clinical translation. To decipher the networking of markers with diagnostic roles on breast carcinomas, we constructed the diagnostic networks by incorporating 6 publically available gene expression datasets with protein interaction data retrieved from BioGRID on previously identified 1015 genes with breast cancer subtyping roles. The Greedy algorithm and mutual information were used to construct the integrated diagnostic network, resulting in 37 genes enclosing 43 interactions. Four genes, FAM134B, KIF2C, ALCAM, KIF1A, were identified having comparable subtyping efficacies with the initial 1015 genes evaluated by hierarchical clustering and cross validations that deploy support vector machine and k nearest neighbor algorithms. Pathway, Gene Ontology, and proliferation marker enrichment analyses collectively suggest 5 primary cancer hallmarks driving breast cancer differentiation, with those contributing to uncontrolled proliferation being the most prominent. Our results propose a 37-gene integrated diagnostic network implicating 5 cancer hallmarks that drives breast cancer heterogeneity and, in particular, a 4-gene panel with clinical diagnostic translation potential.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
| | - Tongyan Hua
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Tingting Hong
- Department of medical oncology, the affiliated hospital of Jiangnan University, the fourth people's hospital of Wuxi, Wuxi, China
| |
Collapse
|
14
|
Transcriptome assembly and identification of genes and SNPs associated with growth traits in largemouth bass (Micropterus salmoides). Genetica 2017; 145:175-187. [PMID: 28204905 DOI: 10.1007/s10709-017-9956-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 01/31/2017] [Indexed: 12/25/2022]
Abstract
Growth is one of the most crucial economic traits of all aquaculture species, but the molecular mechanisms involved in growth of largemouth bass (Micropterus salmoides) are poorly understood. The objective of this study was to screen growth-related genes of M. salmoides by RNA sequencing and identify growth-related single-nucleotide polymorphism (SNP) markers through a growth association study. The muscle transcriptomes of fast- and slow-growing largemouth bass were obtained using the RNA-Seq technique. A total of 54,058,178 and 54,742,444 qualified Illumina read pairs were obtained for the fast-growing and slow-growing groups, respectively, giving rise to 4,865,236,020 and 4,926,819,960 total clean bases, respectively. Gene expression profiling showed that 3,530 unigenes were differentially expressed between the fast-growing and slow-growing phenotypes (false discovery rate ≤0.001, the absolute value of log2 (fold change) ≥1), including 1,441 up-regulated and 2,889 down-regulated unigenes in the fast-growing largemouth bass. Analysis of these genes revealed that several signalling pathways, including the growth hormone-insulin-like growth factor 1 axis and signalling pathway, the glycolysis pathway, and the myostatin/transforming growth factor beta signalling pathway, as well as heat shock protein, cytoskeleton, and myofibril component genes might be associated with muscle growth. From these genes, 10 genes with putative SNPs were selected, and 17 SNPs were genotyped successfully. Marker-trait analysis in 340 individuals of Youlu No. 1 largemouth bass revealed three SNPs associated with growth in key genes (phosphoenolpyruvate carboxykinase 1, FOXO3b, and heat shock protein beta-1). This research provides information about key genes and SNPs related to growth, providing new clues to understanding the molecular basis of largemouth bass growth.
Collapse
|
15
|
Kriegsmann M, Casadonte R, Kriegsmann J, Dienemann H, Schirmacher P, Hendrik Kobarg J, Schwamborn K, Stenzinger A, Warth A, Weichert W. Reliable Entity Subtyping in Non-small Cell Lung Cancer by Matrix-assisted Laser Desorption/Ionization Imaging Mass Spectrometry on Formalin-fixed Paraffin-embedded Tissue Specimens. Mol Cell Proteomics 2016; 15:3081-3089. [PMID: 27473201 PMCID: PMC5054336 DOI: 10.1074/mcp.m115.057513] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/27/2016] [Indexed: 12/24/2022] Open
Abstract
Histopathological subtyping of non-small cell lung cancer (NSCLC) into adenocarcinoma (ADC), and squamous cell carcinoma (SqCC) is of utmost relevance for treatment stratification. However, current immunohistochemistry (IHC) based typing approaches on biopsies are imperfect, therefore novel analytical methods for reliable subtyping are needed. We analyzed formalin-fixed paraffin-embedded tissue cores of NSCLC by Matrix-assisted laser desorption/ionization (MALDI) imaging on tissue microarrays to identify and validate discriminating MALDI imaging profiles for NSCLC subtyping. 110 ADC and 98 SqCC were used to train a Linear Discriminant Analysis (LDA) model. Results were validated on a separate set of 58 ADC and 60 SqCC. Selected differentially expressed proteins were identified by tandem mass spectrometry and validated by IHC. The LDA classification model incorporated 339 m/z values. In the validation cohort, in 117 cases (99.1%) MALDI classification on tissue cores was in accordance with the pathological diagnosis made on resection specimen. Overall, three cases in the combined cohorts were discordant, after reevaluation two were initially misclassified by pathology whereas one was classified incorrectly by MALDI. Identification of differentially expressed peptides detected well-known IHC discriminators (CK5, CK7), but also less well known differentially expressed proteins (CK15, HSP27). In conclusion, MALDI imaging on NSCLC tissue cores as small biopsy equivalents is capable to discriminate lung ADC and SqCC with a very high accuracy. In addition, replacing multislide IHC by an one-slide MALDI approach may also save tissue for subsequent predictive molecular testing. We therefore advocate to pursue routine diagnostic implementation strategies for MALDI imaging in solid tumor typing.
Collapse
Affiliation(s)
- Mark Kriegsmann
- From the ‡Institute of Pathology, University Heidelberg, 69120 Heidelberg, Germany;
| | | | - Jörg Kriegsmann
- §Proteopath GmbH, 54296 Trier, Germany; ¶Center for Histology, Cytology and Molecular Diagnostics, 54296 Trier, Germany
| | - Hendrik Dienemann
- ‖Department of Thoracic Surgery, Thoraxklinik at Heidelberg University, 69126 Heidelberg, Germany
| | - Peter Schirmacher
- From the ‡Institute of Pathology, University Heidelberg, 69120 Heidelberg, Germany
| | | | - Kristina Schwamborn
- ‡‡Institute of Pathology, Technical University Munich (TUM), 81675 Munich, Germany
| | - Albrecht Stenzinger
- From the ‡Institute of Pathology, University Heidelberg, 69120 Heidelberg, Germany; §§German Cancer Consortium (DKTK)
| | - Arne Warth
- From the ‡Institute of Pathology, University Heidelberg, 69120 Heidelberg, Germany; ¶¶Translational Lung Research Centre Heidelberg, Member of the German Centre for Lung Research
| | - Wilko Weichert
- From the ‡Institute of Pathology, University Heidelberg, 69120 Heidelberg, Germany; ‡‡Institute of Pathology, Technical University Munich (TUM), 81675 Munich, Germany; §§German Cancer Consortium (DKTK); ‖‖National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| |
Collapse
|
16
|
Saif R, Awan AR, Lyons L, Gandolfi B, Tayyab M, Ellahi Babar M, Khalid Mehmood A, Ullah Z, Wasim M. Hspb1 and Tp53 Mutation and Expression Analysis in Cat Mammary Tumors. IRANIAN JOURNAL OF BIOTECHNOLOGY 2016; 14:202-212. [PMID: 28959337 PMCID: PMC5492242 DOI: 10.15171/ijb.1480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/10/2016] [Accepted: 04/02/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND Molecular marker based cancer diagnosis gaining more attention in the current genomics era. So, Hspb1 and Tp53 gene characterization and their mRNA expression might be helpful in diagnosis and prognosis of cat mammary adenocarcinoma. It will also add information in comparative cancer genetics and genomics. OBJECTIVES Eight tumors of Siamese cats were analyzed to ascertain germ-line and tissue-specific somatic DNA variations of Hspb1 and Tp53 genes along with the ectopic differential expression in tumorous and normal tissues were also analyzed. MATERIALS AND METHODS Tumorous tissues and peripheral blood from mammary adenocarcinoma affected Siamese cats were collected from the Pet center-UVAS. DNA and RNA were extracted from these tissues to analyze the Hspb1 and Tp53 DNA variants and ectopic expression of their mRNA within cancerous and normal tissues. RESULTS Exon 1 and 3 revealed as hotspots in Hspb1 gene. The 5´UTR region of the exon1 bear six mutation including 3 transitions, 2 transversion and one heterozygous synonymous transversion in two samples at locus c.34C>C/A. Exon 3 has 1 transversion at c.773A>A/T, 3´UTR of this exon harbor two point mutations at 1868A>T and 2193C>T loci. Intron 2 has two alterations at 1490C>C/T and GTCT4del at 1514. Overall up-regulation of Hspb1 gene was observed. While exons 3, 4 and 7 of Tp53 harbor a single variationat c.105A>A/G, c.465T>T/C and c.859G>T respectively. The locus c.1050G>G/A in exon 9 is a heterozygous (G/A) in 3 samples and homozygous (G) in 2 other tumours. Introns 3, 5, 7 and 9 harbor 3, 4, 2 and 7 altered loci respectively. Sixty percent of cancers showed up-regulated trend of Tp53 gene. CONCLUSIONS Tumor specific mutations and ectopic expression of Hspb1 and Tp53 genes might be helpful in the diagnosis of the mammary lesions and endorse their involvement in cat mammary neoplasm.
Collapse
Affiliation(s)
- Rashid Saif
- Department of Biotechnology, Virtual University of Pakistan, Lahore 54000, Pakistan
| | - Ali Raza Awan
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Outfall Road, 5400, Lahore, Pakistan
| | - Leslie Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Barbara Gandolfi
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Muhammad Tayyab
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Outfall Road, 5400, Lahore, Pakistan
| | - Masroor Ellahi Babar
- Department of Biotechnology, Virtual University of Pakistan, Lahore 54000, Pakistan
| | - Asim Khalid Mehmood
- Pet Center, University of Veterinary and Animal Sciences, Outfall Road, 5400, Lahore, Pakistan
| | - Zia Ullah
- Pet Center, University of Veterinary and Animal Sciences, Outfall Road, 5400, Lahore, Pakistan
| | - Muhammad Wasim
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Outfall Road, 5400, Lahore, Pakistan
| |
Collapse
|
17
|
Li S, Zhang W, Fan J, Lai Y, Che G. Clinicopathological and prognostic significance of heat shock protein 27 (HSP27) expression in non-small cell lung cancer: a systematic review and meta-analysis. SPRINGERPLUS 2016; 5:1165. [PMID: 27512624 PMCID: PMC4960090 DOI: 10.1186/s40064-016-2827-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 07/14/2016] [Indexed: 02/05/2023]
Abstract
Numbers of clinical and experimental investigations have provided increasing evidences to demonstrate that heat shock protein 27 (HSP27) is a qualified predictor for many cancers. However, no consensus has been reached on its clinicopathological and prognostic significance in patients with non-small cell lung cancer (NSCLC). Therefore, we performed this systematic meta-analysis to help addressing this issue. PubMed, EMBASE, the Web of Science and China National Knowledge Infrastructure were searched for full-text literatures met out eligibility criteria. We determined the odds ratio (OR) and hazard ratio (HR) as the appropriate summarized statistics for assessments of clinicopathological and prognostic roles of HSP27, respectively. Q-test and I(2)-statistic were used to evaluate the level of heterogeneity. Sensitivity analysis was conducted to examine the stability of overall estimates. Potential publication bias was detected by Begg's test and Egger's test. Finally, ten articles were identified to be included into our meta-analysis. The pooled analyses suggested that HSP27 expression was significantly associated with the unfavorable conditions for differentiation degree, lymphatic metastasis, clinical stage, squamous cell carcinoma and tumor size. However, HSP27 expression had no significant relationship to gender, age and smoking status. Meanwhile, pooled HRs indicated that HSP27 expression could be a predictor for a lower 5-year overall survival (OS) rate (HR: 1.832; 95 % CI 1.322-2.538; P < 0.001) but not for 1-year OS of NSCLC (HR: 0.885; 95 % CI 0.140-5.599; P = 0.896). In conclusion, our meta-analysis demonstrates that HSP27 expression may be a strong biomarker to predict both the poor clinicopathological and prognostic characteristics in patients with NSCLC.
Collapse
Affiliation(s)
- Shuangjiang Li
- Department of General Thoracic Surgery, West China Hospital, Sichuan University, Guoxue Alley No. 37, Chengdu, 610041 China
| | - Wenbiao Zhang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jun Fan
- Department of General Thoracic Surgery, West China Hospital, Sichuan University, Guoxue Alley No. 37, Chengdu, 610041 China
| | - Yutian Lai
- Department of General Thoracic Surgery, West China Hospital, Sichuan University, Guoxue Alley No. 37, Chengdu, 610041 China
| | - Guowei Che
- Department of General Thoracic Surgery, West China Hospital, Sichuan University, Guoxue Alley No. 37, Chengdu, 610041 China
| |
Collapse
|
18
|
Li X, Xu S, Cheng Y, Shu J. HSPB1 polymorphisms might be associated with radiation-induced damage risk in lung cancer patients treated with radiotherapy. Tumour Biol 2016; 37:5743-9. [PMID: 26874728 DOI: 10.1007/s13277-016-4959-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/02/2016] [Indexed: 10/22/2022] Open
Abstract
Several studies investigating the association between heat shock protein beta-1 (HSPB1) polymorphisms and radiation-induced damage in lung cancer patients administrated with radiotherapy have derived conflicting results. This meta-analysis aimed to assess the association between the HSPB1 genes' (rs2868370 and rs2868371) polymorphisms and the risk of radiation-induced damage in lung cancer patients. After an electronic literature search, four articles including six studies were found to be eligible for this meta-analysis. No association was observed between rs2868370 genotypes and radiation-induced damage risk. However, rs2868371 showed a statistically increased risk of radiation-induced damage under CC vs. CG/GG model (OR = 1.59, 95 % CI = 1.10-2.29). Subgroup analysis by ethnicity showed that the genotypes of rs2868371 were also associated with a significantly increased risk of radiation-induced damage in CC vs. CG/GG model (OR = 1.86, 95 % CI = 1.21-2.83) among mixed ethnicities which are mainly comprised of white people. When the data was stratified by organ-damaged, a significant association was only observed in the esophagus group (OR = 2.94, 95 % CI = 1.35-6.37, for CC vs. CG/GG model). In conclusion, the present study demonstrated that the rs2868371 genotypes of HSPB1 might be associated with radiation-induced esophagus damage risk, especially in Caucasians but not in the Asian population.
Collapse
Affiliation(s)
- Xiaofeng Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Geriatrics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Sheng Xu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Geriatrics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Yu Cheng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Geriatrics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jun Shu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Geriatrics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
19
|
Cai XZ, Zeng WQ, Xiang Y, Liu Y, Zhang HM, Li H, She S, Yang M, Xia K, Peng SF. iTRAQ-Based Quantitative Proteomic Analysis of Nasopharyngeal Carcinoma. J Cell Biochem 2015; 116:1431-41. [PMID: 25648846 DOI: 10.1002/jcb.25105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 01/23/2015] [Indexed: 01/08/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a common disease in the southern provinces of China with a poor prognosis. To better understand the pathogenesis of NPC and identify proteins involved in NPC carcinogenesis, we applied iTRAQ coupled with two-dimensional LC-MS/MS to compare the proteome profiles of NPC tissues and the adjacent non-tumor tissues. We identified 54 proteins with differential expression in NPC and the adjacent non-tumor tissues. The differentially expressed proteins were further determined by RT-PCR and Western blot analysis. In addition, the up-regulation of HSPB1, NPM1 and NCL were determined by immunohistochemistry using tissue microarray. Functionally, we found that siRNA mediated knockdown of NPM1 inhibited the migration and invasion of human NPC CNE1 cell line. In summary, this is the first study on proteome analysis of NPC tissues using an iTRAQ method, and we identified many new differentially expressed proteins which are potential targets for the diagnosis and therapy of NPC.
Collapse
Affiliation(s)
- Xin-Zhang Cai
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Wei-Qun Zeng
- Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yi Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong-Min Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong Li
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Sha She
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Min Yang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kun Xia
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Shi-Fang Peng
- Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Morrow G, Hightower LE, Tanguay RM. Small heat shock proteins: big folding machines. Cell Stress Chaperones 2015; 20:207-12. [PMID: 25536931 PMCID: PMC4326388 DOI: 10.1007/s12192-014-0561-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022] Open
Abstract
The workshop was entitled "The Small HSP World" and had the mission to bring together investigators studying small heat shock proteins (sHSPs). It was held at Le Bonne Entente in Quebec City (Quebec, Canada) from October 2 to October 5 2014. Forty-four scientists from 14 different countries attended this workshop of the Cell Stress Society International (CSSI). The small number of participants stimulated interesting discussions, and the resulting informal atmosphere was appreciated by everybody. This article provides highlights from talks and discussions of the workshop, giving an overview of the latest work on sHSPs.
Collapse
Affiliation(s)
- Geneviève Morrow
- />Laboratory of Cell and Developmental Genetics, Département de biologie moléculaire, biochimie médicale et pathologie, Institut de Biologie Intégrative et des Systèmes (IBIS) and PROTEO, Université Laval, Québec, G1V 0A6 Canada
| | - Lawrence E. Hightower
- />Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269 USA
| | - Robert M. Tanguay
- />Laboratory of Cell and Developmental Genetics, Département de biologie moléculaire, biochimie médicale et pathologie, Institut de Biologie Intégrative et des Systèmes (IBIS) and PROTEO, Université Laval, Québec, G1V 0A6 Canada
| |
Collapse
|
21
|
Associations of LIG4 and HSPB1 genetic polymorphisms with risk of radiation-induced lung injury in lung cancer patients treated with radiotherapy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:860373. [PMID: 25811031 PMCID: PMC4355602 DOI: 10.1155/2015/860373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/02/2015] [Indexed: 12/25/2022]
Abstract
Objective. This study aims to explore the correlations of genetic polymorphisms in LIG4 and HSPB1 genes with the radiation-induced lung injury (RILI), especially radiation pneumonitis (RP), in lung cancer patients. Methods. A total of 160 lung cancer patients, who were diagnosed with inoperable lung cancer and received radiotherapy, were included in the present study from September 2009 to December 2011. TaqMan Real-Time PCR (RT-PCR) was used to verify the SNPs of LIG4 and HSPB1 genes. Chi-square criterion was used to compare the differences in demographic characteristics, exposure to risk factors, and SNPs genotypes. Crude odds ratios (ORs) with 95% confidence intervals (95% CI) were calculated by logistic regression analysis. All statistical analyses were conducted in SPSS 18.0. Results. A total of 32 (20.0%) lung cancer patients had RP after receiving radiotherapy. Of the 32 cases, 4 cases were of grade 2, 24 cases were of grade 3, and 4 cases were of grade 4. However, our results indicated that the general condition and treatment of all patients had no significant difference with RP risk (P > 0.05). Meanwhile, our results revealed that there was no significant association between the frequencies of LIG4 rs1805388 and HSPB1 rs2868371 genotype distribution and the risk of RP (P > 0.05). Conclusion. In conclusion, we demonstrated that the genetic polymorphisms in LIG4 rs1805388 and HSPB1 rs2868371 were not obviously correlated with the risk of RP and RILI of lung cancer.
Collapse
|
22
|
Li L, He M, Zhou L, Miao X, Wu F, Huang S, Dai X, Wang T, Wu T. A solute carrier family 22 member 3 variant rs3088442 G→A associated with coronary heart disease inhibits lipopolysaccharide-induced inflammatory response. J Biol Chem 2015; 290:5328-40. [PMID: 25561729 DOI: 10.1074/jbc.m114.584953] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent genome-wide association studies have identified single-nucleotide polymorphism (SNPs) within the SLC22A3 (solute carrier family 22 member 3) gene associated with coronary heart disease (CHD) in the Caucasian population. We performed molecular analysis to investigate the potential role of SLC22A3 variants in CHD. Our study showed that the common polymorphism rs3088442 G→A, which is localized in the 3' UTR of the SLC22A3 gene, was associated with a decreased risk of CHD in the Chinese population by a case control study. In silico analysis indicated that G→A substitution of SNP rs3088442 created a putative binding site for miR-147 in the SLC22A3 mRNA. By overexpressing miR-147 or inhibiting endogenous miR-147, we demonstrated that SNP rs3088442 G→A recruited miR-147 to inhibit SLC22A3 expression. Moreover, SLC22A3 deficiency significantly decreased LPS-induced monocytic inflammatory response by interrupting NF-κB and MAPK signaling cascades in a histamine-dependent manner. Notably, the expression of SLC22A3(A) was also suppressed by LPS stimulus. Our findings might indicate a negative feedback mechanism against inflammatory response by which SLC22A3 polymorphisms decreased the risk of CHD.
Collapse
Affiliation(s)
- Lu Li
- From the Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei
| | - Meian He
- From the Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei
| | - Li Zhou
- From the Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei
| | - Xiaoping Miao
- From the Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei
| | - Fangqing Wu
- the Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, and
| | - Suli Huang
- From the Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, the Key Laboratory of Molecular Biology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, China
| | - Xiayun Dai
- From the Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei
| | - Tian Wang
- From the Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei
| | - Tangchun Wu
- From the Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei,
| |
Collapse
|
23
|
Li X, Wei J, Xu P, Yin X, Hu D, Zhang X, Liu L, Zhang K, Zhou C, Wang T, Zhang X, He M, Wu T, Yang M, Guo H. The interaction of APEX1 variant with polycyclic aromatic hydrocarbons on increasing chromosome damage and lung cancer risk among male Chinese. Mol Carcinog 2014; 54 Suppl 1:E103-11. [PMID: 25156607 DOI: 10.1002/mc.22195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/15/2014] [Accepted: 05/28/2014] [Indexed: 12/31/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the most significant contributors to tobacco-induced lung carcinogenesis. Apurinic/apyrimidinic endonuclease 1 (APE1) is a central enzyme in the removal of apurinic/apyrimidinic sites caused by DNA damaging agents. This study aimed to investigate the potential interaction of APEX1 polymorphisms and PAHs on genetic damage and lung cancer risk among male Chinese. We recruited an occupational cohort of 922 male coke oven workers and determined their DNA damage levels by calculating the lymphocytic micronucleus (MN) frequencies. Two well-studied APEX1 polymorphisms (-307A > C and Asp148Glu) and their associations with MN frequencies were examined. The impact of MN-related single nucleotide polymorphism (SNP) on lung cancer risk was further investigated in two case-control studies including 1634 male lung cancer patients and 1678 controls. It was shown that, the APEX1 148Glu allele was associated with significantly higher MN frequencies than 148Asp allele, with strongest associations among the highest PAH-exposure workers (P = 0.008). The APEX1 148Glu allele was also associated with increased lung cancer risk among male smokers, especially among heavy smokers in both case-control studies (odd ratio: 4.40, 95%CI: 3.29-5.72). In addition, APEX1 148Glu variant interacts with smoking in increasing male lung cancer risk, as measured by the attributable proportion due to interaction, which was 0.23 (95%CI: 0.06-0.39). This study showed evidence on interaction between APEX1 148Glu variant and cigarette smoking in increasing lung cancer susceptibility among male Chinese, which may be due to the synergistic effects of APEX1 148Glu and PAHs in increasing chromosome damage levels. The results provide a new insight into gene-interactions in lung carcinogenesis.
Collapse
Affiliation(s)
- Xiaoliang Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinyu Wei
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ping Xu
- Department of Oncology, the Second Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, China
| | - Xiangqian Yin
- Department of Oncology, the Second Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, China
| | - Die Hu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Liu
- Department of Oncology, Cancer Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhang
- Department of Oncology, Cancer Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Changchun Zhou
- Clinical Laboratory, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Tian Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Dai X, Deng S, Wang T, Qiu G, Li J, Yang B, Feng W, He X, Deng Q, Ye J, Zhang W, He M, Zhang X, Guo H, Wu T. Associations between 25 lung cancer risk-related SNPs and polycyclic aromatic hydrocarbon-induced genetic damage in coke oven workers. Cancer Epidemiol Biomarkers Prev 2014; 23:986-96. [PMID: 24692499 DOI: 10.1158/1055-9965.epi-13-1251] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified multiple single-nucleotide polymorphisms (SNP) associated with lung cancer. However, whether these SNPs are associated with genetic damage, a crucial event in cancer initiation and evolution, is still unknown. We aimed to establish associations between these SNPs and genetic damage caused by the ubiquitous carcinogens, polycyclic aromatic hydrocarbons (PAH). METHODS We cross-sectionally investigated the associations between SNPs from published GWAS for lung cancer in Asians and PAH-induced genetic damage in 1,557 coke oven workers in China. Urinary PAH metabolites, plasma benzo[a]pyrene-r-7,t-8,c-10-tetrahydrotetrol-albumin (BPDE-Alb) adducts, urinary 8-hydroxydeoxyguanosine (8-OHdG), and micronuclei (MN) frequency were determined by gas chromatography-mass spectrometry, sandwich ELISA, high-performance liquid chromatography, and cytokinesis-block micronucleus assay, respectively. RESULTS 13q12.12-rs753955C was suggestively associated with elevated 8-OHdG levels (P = 0.003). Higher 8-OHdG levels were observed in individuals with rare allele homozygotes (CC) than in TT homozygotes (β, 0.297; 95% confidence interval, 0.124-0.471; P = 0.001). 9p21-rs1333040C, 10p14-rs1663689G, and 15q25.1-rs3813572G were significantly associated with lower MN frequency (P values were 0.002, 0.001, and 0.005, respectively). 10p14-rs1663689G polymorphism downregulated the relationship of the total concentration of PAH metabolites to 8-OHdG levels (Pinteraction = 0.002). TERT-rs2736100G and VTI1A-rs7086803A aggravated the relationship of BPDE-Alb adducts to MN frequency, whereas BPTF-rs7216064G attenuated that correlation (all Pinteraction < 0.001). CONCLUSIONS Lung cancer risk-associated SNPs and their correlations with PAH exposure were associated with 8-OHdG levels and MN frequency. IMPACT Lung cancer risk-associated SNPs might influence one's susceptibility to genetic damage caused by PAHs. Cancer Epidemiol Biomarkers Prev; 23(6); 986-96. ©2014 AACR.
Collapse
Affiliation(s)
- Xiayun Dai
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Siyun Deng
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Tian Wang
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Gaokun Qiu
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Jun Li
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Binyao Yang
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Wei Feng
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Xiaosheng He
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Qifei Deng
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Jian Ye
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Wangzhen Zhang
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Meian He
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Huan Guo
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| | - Tangchun Wu
- Authors' Affiliations: Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health for Incubation, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; and Institute of Industrial Health, Wuhan Iron and Steel (group) Corporation, Wuhan, Hubei, China
| |
Collapse
|
25
|
Pavan S, Musiani D, Torchiaro E, Migliardi G, Gai M, Di Cunto F, Erriquez J, Olivero M, Di Renzo MF. HSP27 is required for invasion and metastasis triggered by hepatocyte growth factor. Int J Cancer 2014; 134:1289-1299. [DOI: 10.1002/ijc.28464] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The hepatocyte growth factor (HGF) also known as scatter factor activates cancer cell invasion and metastasis. We show that in ovarian cancer cells HGF induced the phosphorylation of the small heat shock protein of 27 kDa (HSP27) by activating the p38MAPK. HSP27 is increased in many cancers at advanced stage including ovarian cancer and associated with cancer resistance to therapy and poor patients' survival. The phosphorylation of HSP27 regulates both its chaperone activity and its control of cytoskeletal stability. We show that HSP27 was necessary for the remodeling of actin filaments induced by HGF and that motility in vitro depended on the p38MAPK‐MK2 axis. In vivo, HSP27 silencing impaired the ability of the highly metastatic, HGF‐secreting ovarian cancer cells to give rise to spontaneous metastases. This was due to defective motility across the vessel wall and reduced growth. Indeed, HSP27 silencing impaired the ability of circulating ovarian cancer cells to home to the lungs and to form experimental hematogenous metastases and the capability of cancer cells to grow as subcutaneous xenografts. Moreover, HSP27 suppression resulted in the sensitization of xenografts to low doses of the chemotherapeutic paclitaxel, likely because HSP27 protected microtubules from bundling caused by the drug. Altogether, these data show that the HSP27 is required for the proinvasive and prometastatic activity of HGF and suggest that HSP27 might be not only a marker of progression of ovarian cancer, but also a suitable target for therapy.
Collapse
Affiliation(s)
- Simona Pavan
- Department of Oncology University of Torino, School of Medicine Torino Italy
- Laboratory of Cancer Genetics Institute for Cancer Research at Candiolo Torino Italy
| | - Daniele Musiani
- Department of Oncology University of Torino, School of Medicine Torino Italy
- Laboratory of Cancer Genetics Institute for Cancer Research at Candiolo Torino Italy
| | - Erica Torchiaro
- Department of Oncology University of Torino, School of Medicine Torino Italy
- Laboratory of Cancer Genetics Institute for Cancer Research at Candiolo Torino Italy
| | - Giorgia Migliardi
- Department of Oncology University of Torino, School of Medicine Torino Italy
- Laboratory of Molecular Pharmacology Institute for Cancer Research at Candiolo Torino Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences Molecular Biotechnology Center University of Torino Torino Italy
| | - Ferdinando Di Cunto
- Department of Molecular Biotechnology and Health Sciences Molecular Biotechnology Center University of Torino Torino Italy
| | - Jessica Erriquez
- Laboratory of Cancer Genetics Institute for Cancer Research at Candiolo Torino Italy
| | - Martina Olivero
- Department of Oncology University of Torino, School of Medicine Torino Italy
- Laboratory of Cancer Genetics Institute for Cancer Research at Candiolo Torino Italy
| | - Maria Flavia Di Renzo
- Department of Oncology University of Torino, School of Medicine Torino Italy
- Laboratory of Cancer Genetics Institute for Cancer Research at Candiolo Torino Italy
| |
Collapse
|
26
|
MMP9 processing of HSPB1 regulates tumor progression. PLoS One 2014; 9:e85509. [PMID: 24465581 PMCID: PMC3896397 DOI: 10.1371/journal.pone.0085509] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/27/2013] [Indexed: 01/03/2023] Open
Abstract
Matrix metalloproteinases regulate pathophysiological events by processing matrix proteins and secreted proteins. Previously, we demonstrated that soluble heat shock protein B1 (HSPB1) is released primarily from endothelial cells (ECs) and regulates angiogenesis via direct interaction with vascular endothelial growth factor (VEGF). Here we report that MMP9 can cleave HSPB1 and release anti-angiogenic fragments, which play a key role in tumorprogression. We mapped the cleavage sites and explored their physiological relevance during these processing events. HSPB1 cleavage by MMP9 inhibited VEGF-induced ECs activation and the C-terminal HSPB1 fragment exhibited more interaction with VEGF than did full-length HSPB1. HSPB1 cleavage occurs during B16F10 lung progression in wild-type mice. Also, intact HSPB1 was more detected on tumor endothelium of MMP9 null mice than wild type mice. Finally, we confirmed that secretion of C-terminal HSPB1 fragment was significantly inhibited lung and liver tumor progression of B16F10 melanoma cells and lung tumor progression of CT26 colon carcinoma cells, compared to full-length HSPB1. These data suggest that in vivo MMP9-mediated processing of HSPB1 acts to regulate VEGF-induced ECs activation for tumor progression, releasing anti-angiogenic HSPB1 fragments. Moreover, these findings potentially explain an anti-target effect for the failure of MMP inhibitors in clinical trials, suggesting that MMP inhibitors may have pro-tumorigenic effects by reducing HSPB1 fragmentation.
Collapse
|
27
|
Genetic variation in BCL2 3'-UTR was associated with lung cancer risk and prognosis in male Chinese population. PLoS One 2013; 8:e72197. [PMID: 23977251 PMCID: PMC3745400 DOI: 10.1371/journal.pone.0072197] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/06/2013] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Bcl-2 is a critical apoptosis inhibitor with established carcinogenic potential, and can confer cancer cell resistance to therapeutic treatments by activating anti-apoptotic cellular defense. We hypothesized that genetic variants of BCL2 gene may be associated with lung cancer susceptibility and prognosis. METHODS Three selected tagSNPs of BCL2 (rs2279115, rs1801018, and rs1564483) were genotyped in 1017 paired male Chinese lung cancer cases and controls by TaqMan assay. The associations of these variants with risk of lung cancer and overall survival of 242 male advanced non-small-cell lung cancer (NSCLC) patients were separately investigated. RESULTS Compared with the BCL2 3'UTR rs1564483GG genotype, the rs1564483GA, AA, and GA+AA genotypes were associated with significantly decreased susceptibilities of lung cancer in male Chinese (adjusted OR = 0.78, 0.73, and 0.76, P = 0.016, 0.038, and 0.007, respectively), while rs1564483A allele has a inverse dose-response relationship with lung cancer risk (P trend = 0.010). These effects were more evident in the elders, smokers, and subjects without family history of cancer (P trend = 0.017, 0.043 and 0.005, respectively). Furthermore, advanced NSCLC males carrying BCL2 rs1564483 GA+AA genotypes had significantly longer median survival time (Long-rank P = 0.036) and decreased death risk (adjusted HR = 0.69, P = 0.027) than patients with rs1564483GG genotype. These effects were more obvious in patients with smoking, stage IIIA, and in patients without surgery but underwent chemotherapy or radiotherapy (adjusted HR = 0.68, 0.49, 0.67, 0.69, 0.50, respectively, all P<0.05). CONCLUSION The BCL2 3'UTR rs1564483A allele was associated with a decreased lung cancer risk and better survival for advanced NSCLC in male Chinese, which may offer a novel biomarker for identifying high-risk population and predicting clinical outcomes.
Collapse
|
28
|
Deng Q, Guo H, Dai J, Yang L, Wu C, Wang Q, Hu Z, Yang M, Liu L, Yu D, Hu D, Hong X, Qiu F, Yang H, Wang T, Tan W, Chu M, Feng J, Teng K, Gong J, Sun C, Hu X, Zhang K, Lu J, Lin D, Shen H, Wu T. Imputation-based association analyses identify new lung cancer susceptibility variants in CDK6 and SH3RF1 and their interactions with smoking in Chinese populations. Carcinogenesis 2013; 34:2010-6. [DOI: 10.1093/carcin/bgt145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
29
|
Zhang R, Zhao Y, Chu M, Wu C, Jin G, Dai J, Wang C, Hu L, Gou J, Qian C, Bai J, Wu T, Hu Z, Lin D, Shen H, Chen F. Pathway analysis for genome-wide association study of lung cancer in Han Chinese population. PLoS One 2013; 8:e57763. [PMID: 23469231 PMCID: PMC3585721 DOI: 10.1371/journal.pone.0057763] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/24/2013] [Indexed: 11/30/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified a number of genetic variants associated with lung cancer risk. However, these loci explain only a small fraction of lung cancer hereditability and other variants with weak effect may be lost in the GWAS approach due to the stringent significance level after multiple comparison correction. In this study, in order to identify important pathways involving the lung carcinogenesis, we performed a two-stage pathway analysis in GWAS of lung cancer in Han Chinese using gene set enrichment analysis (GSEA) method. Predefined pathways by BioCarta and KEGG databases were systematically evaluated on Nanjing study (Discovery stage: 1,473 cases and 1,962 controls) and the suggestive pathways were further to be validated in Beijing study (Replication stage: 858 cases and 1,115 controls). We found that four pathways (achPathway, metPathway, At1rPathway and rac1Pathway) were consistently significant in both studies and the P values for combined dataset were 0.012, 0.010, 0.022 and 0.005 respectively. These results were stable after sensitivity analysis based on gene definition and gene overlaps between pathways. These findings may provide new insights into the etiology of lung cancer.
Collapse
Affiliation(s)
- Ruyang Zhang
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yang Zhao
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Minjie Chu
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chen Wu
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Section of Clinical Epidemiology, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lingmin Hu
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianwei Gou
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chen Qian
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianling Bai
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tangchun Wu
- Institute of Occupational Medicine and Ministry of Education, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Section of Clinical Epidemiology, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Dongxin Lin
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Section of Clinical Epidemiology, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
30
|
Pang Q, Wei Q, Xu T, Yuan X, Lopez Guerra JL, Levy LB, Liu Z, Gomez DR, Zhuang Y, Wang LE, Mohan R, Komaki R, Liao Z. Functional promoter variant rs2868371 of HSPB1 is associated with risk of radiation pneumonitis after chemoradiation for non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2013; 85:1332-9. [PMID: 23374503 DOI: 10.1016/j.ijrobp.2012.10.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/11/2012] [Accepted: 10/05/2012] [Indexed: 12/25/2022]
Abstract
PURPOSE To date, no biomarkers have been found to predict, before treatment, which patients will develop radiation pneumonitis (RP), a potentially fatal toxicity, after chemoradiation for lung cancer. We investigated potential associations between single nucleotide polymorphisms (SNPs) in HSPB1 and risk of RP after chemoradiation for non-small cell lung cancer (NSCLC). METHODS AND MATERIALS Subjects were patients with NSCLC treated with chemoradiation at 1 institution. The training data set comprised 146 patients treated from 1999 to July 2004; the validation data set was 125 patients treated from August 2004 to March 2010. We genotyped 2 functional SNPs of HSPB1 (rs2868370 and rs2868371) from all patients. We used Kaplan-Meier analysis to assess the risk of grade ≥2 or ≥3 RP in both data sets and a parametric log-logistic survival model to evaluate the association of HSPB1 genotypes with that risk. RESULTS Grade ≥3 RP was experienced by 13% of those with CG/GG and 29% of those with CC genotype of HSPB1 rs2868371 in the training data set (P=.028); corresponding rates in the validation data set were 2% CG/GG and 14% CC (P=.02). Univariate and multivariate analysis confirmed the association of CC of HSPB1 rs2868371 with higher risk of grade ≥3 RP than CG/GG after adjustment for sex, age, performance status, and lung mean dose. This association was validated both in the validation data set and with Harrell's C statistic. CONCLUSIONS The CC genotype of HSPB1 rs2868371 was associated with severe RP after chemoradiation for NSCLC.
Collapse
Affiliation(s)
- Qingsong Pang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 97, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ciocca DR, Arrigo AP, Calderwood SK. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol 2012; 87:19-48. [PMID: 22885793 DOI: 10.1007/s00204-012-0918-z] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
Heat shock proteins (HSP) are a subset of the molecular chaperones, best known for their rapid and abundant induction by stress. HSP genes are activated at the transcriptional level by heat shock transcription factor 1 (HSF1). During the progression of many types of cancer, this heat shock transcriptional regulon becomes co-opted by mechanisms that are currently unclear, although evidently triggered in the emerging tumor cell. Concerted activation of HSF1 and the accumulation of HSPs then participate in many of the traits that permit the malignant phenotype. Thus, cancers of many histologies exhibit activated HSF1 and increased HSP levels that may help to deter tumor suppression and evade therapy in the clinic. We review here the extensive work that has been carried out and is still in progress aimed at (1) understanding the oncogenic mechanisms by which HSP genes are switched on, (2) determining the roles of HSF1/HSP in malignant transformation and (3) discovering approaches to therapy based on disrupting the influence of the HSF1-controlled transcriptome in cancer.
Collapse
Affiliation(s)
- Daniel R Ciocca
- Oncology Laboratory, Institute of Experimental Medicine and Biology of Cuyo (IMBECU), Scientific and Technological Center (CCT), CONICET, 5500 Mendoza, Argentina.
| | - Andre Patrick Arrigo
- Apoptosis Cancer and Development, Cancer Research Center of Lyon (CRCL), UMR INSERM 1052-CNRS 5286, Claude Bernard University, Lyon-1, Cheney A Building, Centre Regional Léon Bérard, 28, rue Laennec 69008 LYON, France. ;
| | - Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA02215
| |
Collapse
|
32
|
A functional copy-number variation in MAPKAPK2 predicts risk and prognosis of lung cancer. Am J Hum Genet 2012; 91:384-90. [PMID: 22883146 DOI: 10.1016/j.ajhg.2012.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/22/2012] [Accepted: 07/02/2012] [Indexed: 02/06/2023] Open
Abstract
Mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2) may promote cancer development and progression by inducing tumorigenesis and drug resistance. To assess whether the copy-number variation g.CNV-30450 located in the MAPKAPK2 promoter has any effect on lung cancer risk or prognosis, we investigated the association between g.CNV-30450 and cancer risk in three independent case-control studies of 2,332 individuals with lung cancer and 2,457 controls and the effects of g.CNV-30450 on cancer prognosis in 1,137 individuals with lung cancer with survival data in southern and eastern Chinese populations. We found that those subjects who had four copies of g.CNV-30450 had an increased cancer risk (odds ratio = 1.94, 95% confidence interval [CI] = 1.61-2.35) and a worse prognosis for individuals with lung cancer (with a median survival time of only 9 months) (hazard ratio = 1.47, 95% CI = 1.22-1.78) compared with those with two or three copies (with a median survival time of 14 months). Meanwhile, four copies of g.CNV-30450 significantly increased MAPKAPK2 expression, both in vitro and in vivo, compared with two or three copies. Our study establishes a robust association between the functional g.CNV-30450 in MAPKAPK2 and risk as well as prognosis of lung cancer, and it presents this functional copy-number variation as a potential biomarker for susceptibility to and prognosis for lung cancer.
Collapse
|
33
|
Xu T, Wei Q, Lopez Guerra JL, Wang LE, Liu Z, Gomez D, O'Reilly M, Lin SH, Zhuang Y, Levy LB, Mohan R, Zhou H, Liao Z. HSPB1 gene polymorphisms predict risk of mortality for US patients after radio(chemo)therapy for non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2012; 84:e229-35. [PMID: 22608953 DOI: 10.1016/j.ijrobp.2012.03.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 03/06/2012] [Accepted: 03/10/2012] [Indexed: 12/28/2022]
Abstract
PURPOSE We investigated potential associations between single-nucleotide polymorphisms (SNPs) in the heat shock protein beta-1 (HSPB1) gene and overall survival in US patients with non-small cell lung cancer (NSCLC). METHODS AND MATERIALS Using available genomic DNA samples from 224 patients with NSCLC treated with definitive radio(chemo)therapy, we genotyped 2 SNPs of HSPB1 (NCBI SNP nos. rs2868370 and rs2868371). We used both Kaplan-Meier cumulative probability and Cox proportional hazards analyses to evaluate the effect of HSPB1 genotypes on survival. RESULTS Our cohort consisted of 117 men and 107 women, mostly white (79.5%), with a median age of 70 years. The median radiation dose was 66 Gy (range, 63-87.5 Gy), and 183 patients (82%) received concurrent platinum-based chemotherapy. The most common genotype of the rs2868371 SNP was CC (61%). Univariate and multivariate analyses showed that this genotype was associated with poorer survival than CG and GG genotypes (univariate hazard ratio [HR] = 1.39, 95% confidence interval [CI], 1.02-1.90; P=.037; multivariate HR = 1.39; 95% CI, 1.01-1.92; P=.045). CONCLUSIONS Our results showed that the CC genotype of HSPB1 rs2868371 was associated with poorer overall survival in patients with NSCLC after radio(chemo)therapy, findings that contradict those of a previous study of Chinese patients. Validation of our findings with larger numbers of similar patients is needed, as are mechanical and clinical studies to determine the mechanism underlying these associations.
Collapse
Affiliation(s)
- Ting Xu
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Quantitative proteomic study of human lung squamous carcinoma and normal bronchial epithelial acquired by laser capture microdissection. J Biomed Biotechnol 2012; 2012:510418. [PMID: 22500095 PMCID: PMC3303868 DOI: 10.1155/2012/510418] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 01/25/2023] Open
Abstract
Objective. To investigate the differential protein profile of human lung squamous carcinoma (HLSC) and normal bronchial epithelium (NBE) and provide preliminary results for further study to explore the carcinogenic mechanism of HLSC. Methods. Laser capture microdissection (LCM) was used to purify the target cells from 10 pairs of HLSC tissues and their matched NHBE, respectively. A stable-isotope labeled strategy using iTRAQ, followed by 2D-LC/Q-STAR mass spectrometry, was performed to separate and identify the differential expression proteins. Results. A total of 96 differential expression proteins in the LCM-purified HLSC and NBE were identified. Compared with NBE, 49 proteins were upregulated and 47 proteins were downregulated in HLSC. Furthermore, the expression levels of the differential proteins including HSPB1, CKB, SCCA1, S100A8, as well as S100A9 were confirmed by western blot and tissue microarray and were consistent with the results of quantitative proteomics. Conclusion. The different expression proteins in HLSC will provide scientific foundation for further study to explore the carcinogenic mechanism of HLSC.
Collapse
|
35
|
Guo H, Deng Q, Wu C, Hu L, Wei S, Xu P, Kuang D, Liu L, Hu Z, Miao X, Shen H, Lin D, Wu T. Variations in HSPA1B at 6p21.3 are associated with lung cancer risk and prognosis in Chinese populations. Cancer Res 2011; 71:7576-86. [PMID: 22037874 DOI: 10.1158/0008-5472.can-11-1409] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The heat shock protein Hsp70 is crucial for regulating cellular homeostasis in stressed cells. Although the tumorigenic potential and prognostic applications of Hsp70 have been widely investigated, it remains unclear whether genetic variations of the human isoforms HSPA1L, HSPA1A, and HSPA1B are associated with cancer risk and prognosis. In this study, we genotyped six tagSNPs in these genes in 1,152 paired patients with lung cancer and controls, and then validated the results in additional cohorts of 1,781 patients with lung cancer and 1,038 controls. In addition, we evaluated the associations of these tagSNPs with survival in 330 patients with advanced non-small cell lung cancer (NSCLC) with additional validation in another 331 patients with advanced NSCLC. Functions of the risk variants identified were investigated using cell-based reporter assays. We found that the HSPA1B rs6457452T allele was associated with increased lung cancer risk compared with the rs6457452C allele in both data sets and also pooled analysis (adjusted OR = 1.41; P = 2.8 × 10(-5)). The HSPA1B rs2763979TT genotype conferred poor survival outcomes for patients with advanced NSCLC in two independent cohorts and pooled analysis [adjusted hazard ratio (HR) = 1.80, 1.61, and 1.66; P = 0.013, 0.036, and 0.002, respectively]. Lastly, we also found that the rs2763979T and rs6457452T alleles were each sufficient to reduce expression of transcriptional reporter constructs, when compared with the rs2763979C and rs6457452C alleles, respectively. Taken together, our findings define that functional HSPA1B variants are associated with lung cancer risk and survival. These Hsp70 genetic variants may offer useful biomarkers to predict lung cancer risk and prognosis.
Collapse
Affiliation(s)
- Huan Guo
- Institute of Occupational Medicine and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lopez Guerra JL, Wei Q, Yuan X, Gomez D, Liu Z, Zhuang Y, Yin M, Li M, Wang LE, Cox JD, Liao Z. Functional promoter rs2868371 variant of HSPB1 associates with radiation-induced esophageal toxicity in patients with non-small-cell lung cancer treated with radio(chemo)therapy. Radiother Oncol 2011; 101:271-7. [PMID: 21937138 DOI: 10.1016/j.radonc.2011.08.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 01/09/2023]
Abstract
PURPOSE We investigated the association between single-nucleotide polymorphisms (SNPs) in the heat shock protein beta-1 (HSPB1) gene and the risk of radiation-induced esophageal toxicity (RIET) in patients with non-small-cell lung cancer (NSCLC). MATERIALS AND METHODS The experimental dataset comprised 120 NSCLC patients who were treated with radio(chemo)therapy between 2005 and 2009, when novel radiation techniques were implemented at MD Anderson. The validation dataset comprised 181 NSCLC patients treated between 1998 and 2004. We genotyped two SNPs of the HSPB1 gene (rs2868370 and rs2868371) by TaqMan assay. RESULTS Univariate and multivariate analyses of the experimental dataset showed that the CG/GG genotypes of HSPB1 rs2868371 were associated with significantly lower risk of grade ⩾3 RIET than the CC genotype (univariate hazard ratio [HR] 0.30; 95% confidence interval [CI], 0.10-0.91; P=0.033; multivariate HR 0.29; 95% CI, 0.09-0.97; P=0.045). This difference in risk was replicated in the validation cohort despite the different radiation techniques used during that period. CONCLUSIONS The CG/GG genotypes of HSPB1 rs2868371 were associated with lower risk of RIET, compared with the CC genotype in patients with NSCLC treated with radio(chemo)therapy. This finding should be validated in large multi-institutional prospective trials.
Collapse
Affiliation(s)
- Jose Luis Lopez Guerra
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hu Z, Wu C, Shi Y, Guo H, Zhao X, Yin Z, Yang L, Dai J, Hu L, Tan W, Li Z, Deng Q, Wang J, Wu W, Jin G, Jiang Y, Yu D, Zhou G, Chen H, Guan P, Chen Y, Shu Y, Xu L, Liu X, Liu L, Xu P, Han B, Bai C, Zhao Y, Zhang H, Yan Y, Ma H, Chen J, Chu M, Lu F, Zhang Z, Chen F, Wang X, Jin L, Lu J, Zhou B, Lu D, Wu T, Lin D, Shen H. A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese. Nat Genet 2011; 43:792-6. [PMID: 21725308 DOI: 10.1038/ng.875] [Citation(s) in RCA: 315] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/06/2011] [Indexed: 02/08/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. To identify genetic factors that modify the risk of lung cancer in individuals of Chinese ancestry, we performed a genome-wide association scan in 5,408 subjects (2,331 individuals with lung cancer (cases) and 3,077 controls) followed by a two-stage validation among 12,722 subjects (6,313 cases and 6,409 controls). The combined analyses identified six well-replicated SNPs with independent effects and significant lung cancer associations (P < 5.0 × 10(-8)) located in TP63 (rs4488809 at 3q28, P = 7.2 × 10(-26)), TERT-CLPTM1L (rs465498 and rs2736100 at 5p15.33, P = 1.2 × 10(-20) and P = 1.0 × 10(-27), respectively), MIPEP-TNFRSF19 (rs753955 at 13q12.12, P = 1.5 × 10(-12)) and MTMR3-HORMAD2-LIF (rs17728461 and rs36600 at 22q12.2, P = 1.1 × 10(-11) and P = 6.2 × 10(-13), respectively). Two of these loci (13q12.12 and 22q12.2) were newly identified in the Chinese population. These results suggest that genetic variants in 3q28, 5p15.33, 13q12.12 and 22q12.2 may contribute to the susceptibility of lung cancer in Han Chinese.
Collapse
Affiliation(s)
- Zhibin Hu
- Department of Epidemiology and Biostatistics, Ministry of Education (MOE) Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|