1
|
Pray B, Baiocchi E, Leon S, Barta B, Koirala S, Tsyba L, Hinterschied C, Carvajal-Moreno J, Hout I, Nishat S, Jindal U, Jain N, Singh S, Sehgal L, Chan WK, Hanel W, Yalowich J, Baiocchi RA, Alinari L. Targeting the DNA damage response through TBL1X in mantle cell lymphoma. Blood Adv 2025; 9:2006-2018. [PMID: 40009753 PMCID: PMC12034073 DOI: 10.1182/bloodadvances.2024015769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
ABSTRACT Mantle cell lymphoma (MCL) is an incurable B-cell lymphoma characterized by significant genomic instability. Patients with MCL who progress on targeted therapies have a short survival; thus, novel therapeutic strategies are urgently needed. Overexpression of transducin β-like protein 1 X-linked (TBL1X) has been documented in several types of cancer and associated with poor prognosis. TBL1X is a critical regulator of multiple oncogenic networks; however, its function in MCL has not been explored. Our data show that, unlike normal B cells, MCL cells express abundant levels of TBL1X and that genetic knockdown of TBL1X and treatment with tegavivint (Iterion), a first-in-class small molecule targeting TBL1X, promote MCL cell death in vitro and in vivo. Moreover, TBL1X controls the stability of key MCL oncogenic drivers, cyclin D1 and RAD51; and targeting TBL1X results in significant DNA damage, cell cycle arrest, and ultimately cell death. Combining tegavivint with poly(adenosine 5'-diphosphate-ribose) polymerase-1/2 inhibitor talazoparib results in synergistic MCL cell death in vitro, and in vivo this combination significantly prolongs the survival of a patient-derived MCL xenograft. Together, our results define the role of TBL1X in maintaining genomic stability in MCL and establish targeting TBL1X as a novel therapeutic strategy for patients with this incurable disease.
Collapse
Affiliation(s)
- Betsy Pray
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Ethan Baiocchi
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Sydney Leon
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Brian Barta
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Shirsha Koirala
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Liudmyla Tsyba
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Claire Hinterschied
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Jessika Carvajal-Moreno
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Ian Hout
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Shamama Nishat
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Udita Jindal
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Neeraj Jain
- Division of Cancer Biology, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Satishkumar Singh
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Lalit Sehgal
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Wing Keung Chan
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Walter Hanel
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Jack Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| |
Collapse
|
2
|
Gupta S, Sharma A, Shukla A, Mishra A, Singh A. From development to clinical success: the journey of established and next-generation BTK inhibitors. Invest New Drugs 2025; 43:377-393. [PMID: 40014234 DOI: 10.1007/s10637-025-01513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
Over the past decade, Bruton's tyrosine kinase (BTK) has emerged as a pivotal therapeutic target for B-cell malignancies and autoimmune diseases, given its essential role in B-cell development and function. Dysregulation of BTK signalling is implicated in a range of hematologic cancers, including Waldenström's macroglobulinaemia (WM), mantle cell lymphoma (MCL), and chronic lymphocytic leukaemia (CLL). The development of BTK inhibitors (BTKIs), starting with ibrutinib, has revolutionized the treatment of these malignancies by inhibiting B-cell receptor (BCR) signalling and inducing apoptosis in malignant B-cells. Despite the impressive clinical efficacy of ibrutinib, challenges such as resistance mutations and off-target effects remain. To address these issues, next-generation BTKIs, including acalabrutinib, orelabrutinib, zanubrutinib, and pirtobrutinib, have been developed, offering improved specificity and reduced toxicity profiles. This review highlights the therapeutic potential of BTK-targeted therapies in treating B-cell malignancies, discusses recent advancements with FDA-approved BTKIs, and explores the latest clinical outcomes from ongoing trials of novel inhibitors.
Collapse
Affiliation(s)
- Shivani Gupta
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, India
| | - Arpit Sharma
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, India
| | - Alok Shukla
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, India
| | - Abha Mishra
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, India.
| | - Amit Singh
- Department of Pharmacology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
3
|
Stella F, Chiappella A, Magni M, Bonifazi F, De Philippis C, Musso M, Cutini I, Ljevar S, Barbui AM, Farina M, Martino M, Massaia M, Grillo G, Angelillo P, Botto B, Patriarca F, Krampera M, Arcaini L, Tisi MC, Zinzani P, Sorà F, Bramanti S, Pennisi M, Carniti C, Corradini P. Brexucabtagene autoleucel in-vivo expansion and BTKi refractoriness have a negative influence on progression-free survival in mantle cell lymphoma: Results from CART-SIE study. Br J Haematol 2025; 206:644-651. [PMID: 39710966 PMCID: PMC11829141 DOI: 10.1111/bjh.19961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Brexucabtagene autoleucel (brexu-cel) has revolutionized the treatment of patients affected by mantle cell lymphomas. In this prospective, observational multicentre study, we evaluated 106 patients, with longitudinal brexu-cel kinetics in peripheral blood monitored in 61 of them. Clinical outcomes and toxicities are consistent with previous real-world evidence studies. Notably, beyond established poor prognostic factors-such as blastoid variant and elevated lactate dehydrogenase-Bruton tyrosine-kinase inhibitors (BTKi) refractoriness and platelet count emerged as significant predictors of survival. Specifically, the 1-year overall survival was 56% in BTKi-refractory patients compared to 92% in BTKi-relapsed patients (p = 0.0001). Our study also demonstrated that in-vivo monitoring of brexu-cel expansion is feasible and correlates with progression-free survival and toxicities. Progression-free survival at 1 year was 74% in patients categorized as strong expanders, based on brexu-cel peak concentration, versus 54% in poor expanders (p = 0.02). Furthermore, in-vivo expansion helped identify a high-risk group of non-responders, those with progressive or stable disease at the 90-day post-infusion evaluation (OR = 4.7, 95% CI = 1.1-34, p = 0.04) characterized by dismal outcomes. When integrated with other clinical factors, monitoring brexu-cel expansion could assist in recognizing patients at high risk of early relapse.
Collapse
Affiliation(s)
- Federico Stella
- Hematology, School of MedicineUniversità degli Studi di MilanoMilanItaly
- Division of HematologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Annalisa Chiappella
- Division of HematologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Martina Magni
- Division of HematologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Francesca Bonifazi
- IRCCS Azienda Ospedaliero‐Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”BolognaItaly
| | - Chiara De Philippis
- Department of Oncology/HematologyIRCCS Humanitas Research HospitalMilanItaly
| | - Maurizio Musso
- Dipartimento Oncologico “La Maddalena”UOC di Oncoematologia e TMOPalermoItaly
| | - Ilaria Cutini
- SOD Terapie Cellulari e Medicina Trasfusionale, AAD Trapianto di midollo osseoOspedale CareggiFlorenceItaly
| | - Silva Ljevar
- Department of Data Science, Unit of Biostatistics for Clinical ResearchFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Anna Maria Barbui
- Azienda Socio Sanitaria Territoriale Papa Giovanni XXIIIBergamoItaly
| | - Mirko Farina
- Unit of Blood Disease and Bone Marrow Transplantation, Unit of HematologyUniversity of Brescia, ASST Spedali Civili di BresciaBresciaItaly
| | - Massimo Martino
- Hematology and Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato‐Oncology and RadiotherapyGrande Ospedale Metropolitano “Bianchi‐Melacrino‐Morelli”Reggio CalabriaItaly
| | - Massimo Massaia
- Division of Hematology—AO S. Croce e Carle, Cuneo and Laboratory of Blood Tumor Immunology, Molecular Biotechnology Center “Guido Tarone”University of TorinoTorinoItaly
| | - Giovanni Grillo
- Dipartimento di Ematologia e trapianto di midolloASST Grande Ospedale Metropolitano NiguardaMilanItaly
| | | | - Barbara Botto
- SC EmatologiaAOU Città della Salute e della ScienzaTorinoItaly
| | - Francesca Patriarca
- Haematology and Stem Cell Transplantation UnitAzienda Sanitaria Universitaria Friuli CentraleUdineItaly
| | - Mauro Krampera
- Hematology and Bone Marrow Transplant Unit, Section of Biomedicine of Innovation, Department of Engineering for Innovative Medicine (DIMI)University of VeronaVeronaItaly
| | - Luca Arcaini
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Division of HematologyFondazione IRCCS Policlinico San MatteoPaviaItaly
| | | | - Pierluigi Zinzani
- IRCCS Azienda Ospedaliero‐Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”BolognaItaly
| | - Federica Sorà
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed EmatologicheUniversità Cattolica del Sacro CuoreRomeItaly
| | - Stefania Bramanti
- Department of Oncology/HematologyIRCCS Humanitas Research HospitalMilanItaly
| | - Martina Pennisi
- Division of HematologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Cristiana Carniti
- Division of HematologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Paolo Corradini
- Hematology, School of MedicineUniversità degli Studi di MilanoMilanItaly
- Division of HematologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| |
Collapse
|
4
|
Khan N, Gupta M, Masamha CP. Characterization and molecular targeting of CFIm25 (NUDT21/CPSF5) mRNA using miRNAs. FASEB J 2025; 39:e70324. [PMID: 39812508 PMCID: PMC11760631 DOI: 10.1096/fj.202402184r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/07/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Changes in protein levels of the mammalian cleavage factor, CFIm25, play a role in regulating pathological processes including neural dysfunction, fibrosis, and tumorigenesis. However, despite these effects, little is known about how CFIm25 (NUDT21) expression is regulated at the RNA level. A potential regulator of NUDT21 mRNA are small non-coding microRNAs (miRNAs). In general, miRNAs bind to the 3'untranslated regions (3'UTRs) and can target the bound mRNA for degradation or inhibit translation thus affecting the levels of protein in cells. Interestingly, a mechanism known as alternative polyadenylation (APA) enables mRNAs to escape miRNA regulation by generating mRNAs with 3'UTRs of different sizes. As many miRNA target sites are located within the 3'UTR, shortening the 3'UTR allows mRNAs to evade miRNAs targeting this region. The differences in the lengths and the sequence composition of the 3'UTRs may also impact the mRNA's translatability and subcellular localization. APA has been reported to regulate over 70% of protein coding genes, thus increasing the transcript repertoire. Several proteins, including mammalian cleavage factor, CFIm25 (NUDT21), have been shown to regulate APA. In this study we wanted to determine whether CFIm25 (NUDT21), itself a regulator of APA, undergoes APA to evade miRNA regulation. We used the blood cancer mantle cell lymphoma (MCL) cells as a model and showed that in these cells, NUDT21 is relatively stable with a long half-life. In addition, the NUDT21 pre-mRNA undergoes alternative APA within the same terminal exon. The three different sized NUDT21 mRNAs have different 3'UTR lengths and they each use a different canonical polyadenylation signal, AAUAAA, for 3'end cleavage and polyadenylation. Use of miRNA mimics and inhibitors showed that miR-23a, miR-222, and miR-323a play a significant role in regulating NUDT21 expression. Hence, these results suggest that NUDT21 mRNA is stable and the different 3'UTRs generated through APA of NUDT21 play an important role in evading miRNA regulation and offers insights into how levels of CFIm25 (NUDT21) may be fine-tuned as needed under different physiological and pathological conditions.
Collapse
Affiliation(s)
- Naazneen Khan
- Department of Pharmaceutical SciencesButler UniversityIndianapolisIndianaUSA
- Department of NeurologyIndiana UniversityIndianapolisIndianaUSA
| | - Mahesh Gupta
- Department of Pharmaceutical SciencesButler UniversityIndianapolisIndianaUSA
| | | |
Collapse
|
5
|
Ağargün BF, Özbalak M, Gülseren ÜA, Yegen G, Beşışık SK. Central nervous system involvement of mantle cell lymphoma: Case report and review of the literature. Hematol Transfus Cell Ther 2024; 46 Suppl 6:S367-S372. [PMID: 36481200 PMCID: PMC11726040 DOI: 10.1016/j.htct.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/09/2022] [Accepted: 10/25/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- Besim Fazıl Ağargün
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Murat Özbalak
- Division of Hematology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Übeyde Ayşe Gülseren
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Gülçin Yegen
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sevgi Kalayoğlu Beşışık
- Division of Hematology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
6
|
Zhang JR, Wu SY, Jain P, Ok CY, Yan F, Chen W, Oriabure O, Dabaja B, Gunther J, Fang P, Pinnix C, Wang ML, Gaulin C. Characteristics, treatment, and outcomes of mantle cell lymphoma with cutaneous involvement: a decade-long study at MD Anderson cancer center. Leuk Lymphoma 2024; 65:1729-1732. [PMID: 38972059 DOI: 10.1080/10428194.2024.2374457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Affiliation(s)
- Jared R Zhang
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susan Y Wu
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Preetesh Jain
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi Young Ok
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fangfang Yan
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wendy Chen
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Onyeka Oriabure
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bouthaina Dabaja
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jillian Gunther
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Penny Fang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chelsea Pinnix
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael L Wang
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles Gaulin
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Long BY, Wang Y, Hao SH, Shi G. Molecular significance of circRNAs in malignant lymphoproliferative disorders: pathogenesis and novel biomarkers or therapeutic targets. Am J Cancer Res 2024; 14:4633-4651. [PMID: 39417189 PMCID: PMC11477815 DOI: 10.62347/kmwb5164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024] Open
Abstract
Recent studies have shown that circular RNAs (CircRNAs) have the novel functions and molecular mechanisms in the pathogenesis of malignant diseases. CircRNAs have been found to be associated with the occurrence and development of lymphoproliferative diseases, impacting on lymphocyte proliferation. This article provides a review of the pathogenesis of circRNAs in malignant lymphoproliferative disorders, focusing on conditions such as acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), and lymphoma. Additionally, it discusses the potential value of circRNAs as novel biomarkers or therapeutic targets in these disorders.
Collapse
Affiliation(s)
- Bo-Yang Long
- Department of Oncology and Hematology, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Yan Wang
- Department of Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai, Shandong, China
| | - Shu-Hong Hao
- Department of Oncology and Hematology, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Guang Shi
- Department of Oncology and Hematology, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| |
Collapse
|
8
|
Han Y, Li C, Liu S, Gao J, He Y, Xiao H, Chen Q, Zheng Y, Chen H, Zhu X. Combined targeting of Hedgehog/GLI1 and Wnt/β-catenin pathways in mantle cell lymphoma. Hematol Oncol 2024; 42:e3305. [PMID: 39205619 DOI: 10.1002/hon.3305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
Mantle cell lymphoma (MCL) is a rare and aggressive form of non-Hodgkin lymphoma. Challenges in its treatment include relapse, drug resistance, and a short survival period. The Hedgehog/GLI1 (Hh/GLI1) and Wnt/β-catenin pathways are crucial in cancer cell proliferation, survival, and drug resistance, making them significant targets for anticancer research. This study aimed to assess the effectiveness of combining inhibitors for both pathways against MCL and investigate the underlying molecular mechanisms. The co-expression of key proteins from the Hh/GLI1 and Wnt/β-catenin pathways was observed in MCL. Targeting the Hh/GLI1 pathway with the GLI1 inhibitor GANT61 and the Wnt/β-catenin pathway with the CBP/β-catenin transcription inhibitor ICG-001, dual-target therapy was demonstrated to synergistically suppressed the activity of MCL cells. This approach promoted MCL cell apoptosis, induced G0/G1 phase blockade, decreased the percentage of S-phase cells, and enhanced the sensitivity of MCL cells to the drugs adriamycin and ibrutinib. Both GANT61 and ICG-001 downregulated GLI1 and β-catenin while upregulating GSK-3β expression. The interaction between Hh/GLI1 and Wnt/β-catenin pathways was mediated by GANT61-dependent Hh/GLI1 inhibition. Moreover, GLI1 knockdown combined with ICG-001 synergistically induced apoptosis and increased drug sensitivity of MCL cells to doxorubicin and ibrutinib. GANT61 attenuated the overexpression of β-catenin and decreased the inhibition of GSK-3β in MCL cells. Overall, the combined targeting of both the Hh/GLI1 and Wnt/β-catenin pathways was more effective in suppressing proliferation, inducing G0/G1 cycle retardation, promoting apoptosis, and increasing drug sensitivity of MCL cells than mono treatments. These findings emphasize the potential of combinatorial therapy for treating MCL patients.
Collapse
Affiliation(s)
- Yan Han
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
- Fujian Medical University, Fuzhou, China
| | - Chuntuan Li
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Shengquan Liu
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Jingjing Gao
- Department of Blood Transfusion, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yanjun He
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
- Fujian Medical University, Fuzhou, China
| | - Huifang Xiao
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Qi Chen
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yan Zheng
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Hongyuan Chen
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
- Fujian Medical University, Fuzhou, China
| | - Xiongpeng Zhu
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
9
|
Abedi Kichi Z, Dini N, Rojhannezhad M, Shirvani Farsani Z. Noncoding RNAs in B cell non-Hodgkins lymphoma. Gene 2024; 917:148480. [PMID: 38636814 DOI: 10.1016/j.gene.2024.148480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
B-cell non-Hodgkins lymphomas (BCNHLs) are a category of B-cell cancers that show heterogeneity. These blood disorders are derived from different levels of B-cell maturity. Among NHL cases, ∼80-90 % are derived from B-cells. Recent studies have demonstrated that noncoding RNAs (ncRNAs) contribute to almost all parts of mechanisms and are essential in tumorigenesis, including B-cell non-Hodgkins lymphomas. The study of ncRNA dysregulations in B-cell lymphoma unravels important mysteries in lymphoma's molecular etiology. It seems also necessary for discovering novel trials as well as investigating the potential of ncRNAs as markers for their diagnosis and prognosis. In the current study, we summarize the role of ncRNAs involving miRNAs, long noncoding RNAs, as well as circular RNAs in the development or progression of BCNHLs.
Collapse
Affiliation(s)
- Zahra Abedi Kichi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Germany
| | - Niloofar Dini
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahbubeh Rojhannezhad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Zeinab Shirvani Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
10
|
Liu F, Chen J, Li K, Li H, Zhu Y, Zhai Y, Lu B, Fan Y, Liu Z, Chen X, Jia X, Dong Z, Liu K. Ubiquitination and deubiquitination in cancer: from mechanisms to novel therapeutic approaches. Mol Cancer 2024; 23:148. [PMID: 39048965 PMCID: PMC11270804 DOI: 10.1186/s12943-024-02046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
Ubiquitination, a pivotal posttranslational modification of proteins, plays a fundamental role in regulating protein stability. The dysregulation of ubiquitinating and deubiquitinating enzymes is a common feature in various cancers, underscoring the imperative to investigate ubiquitin ligases and deubiquitinases (DUBs) for insights into oncogenic processes and the development of therapeutic interventions. In this review, we discuss the contributions of the ubiquitin-proteasome system (UPS) in all hallmarks of cancer and progress in drug discovery. We delve into the multiple functions of the UPS in oncology, including its regulation of multiple cancer-associated pathways, its role in metabolic reprogramming, its engagement with tumor immune responses, its function in phenotypic plasticity and polymorphic microbiomes, and other essential cellular functions. Furthermore, we provide a comprehensive overview of novel anticancer strategies that leverage the UPS, including the development and application of proteolysis targeting chimeras (PROTACs) and molecular glues.
Collapse
Affiliation(s)
- Fangfang Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Jingyu Chen
- Department of Pediatric Medicine, School of Third Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Kai Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Haochen Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yiyi Zhu
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yubo Zhai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Bingbing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanle Fan
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Ziyue Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaojie Chen
- School of Basic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xuechao Jia
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| | - Zigang Dong
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Kangdong Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
11
|
Wang X, Deng L, Ping L, Shi Y, Wang H, Feng F, Leng X, Tang Y, Xie Y, Ying Z, Liu W, Zhu J, Song Y. Germline variants of DNA repair and immune genes in lymphoma from lymphoma-cancer families. Int J Cancer 2024; 155:93-103. [PMID: 38446987 DOI: 10.1002/ijc.34892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/22/2023] [Accepted: 01/23/2024] [Indexed: 03/08/2024]
Abstract
The genetic predisposition to lymphoma is not fully understood. We identified 13 lymphoma-cancer families (2011-2021), in which 27 individuals developed lymphomas and 26 individuals had cancers. Notably, male is the predominant gender in lymphoma patients, whereas female is the predominant gender in cancer patients (p = .019; OR = 4.72, 95% CI, 1.30-14.33). We collected samples from 18 lymphoma patients, and detected germline variants through exome sequencing. We found that germline protein truncating variants (PTVs) were enriched in DNA repair and immune genes. Totally, we identified 31 heterozygous germline mutations (including 12 PTVs) of 25 DNA repair genes and 19 heterozygous germline variants (including 7 PTVs) of 14 immune genes. PTVs of ATM and PNKP were found in two families, respectively. We performed whole genome sequencing of diffuse large B cell lymphomas (DLBCLs), translocations at IGH locus and activation of oncogenes (BCL6 and MYC) were verified, and homologous recombination deficiency was detected. In DLBCLs with germline PTVs of ATM, deletion and insertion in CD58 were further revealed. Thus, in lymphoma-cancer families, we identified germline defects of both DNA repair and immune genes in lymphoma patients.
Collapse
Affiliation(s)
- Xiaogan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lijuan Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lingyan Ping
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yunfei Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Haojie Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Feier Feng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xin Leng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yahan Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhitao Ying
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Weiping Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuqin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
12
|
O'Reilly MA, Wilson W, Burns D, Kuhnl A, Seymour F, Uttenthal B, Besley C, Alajangi R, Creasey T, Paneesha S, Elliot J, Gonzalez Arias C, Iyengar S, Wilson MR, Delaney A, Rubio L, Lambert J, Begg K, Boyle S, Cheok KPL, Collins GP, Roddie C, Johnson R, Sanderson R. Brexucabtagene autoleucel for relapsed or refractory mantle cell lymphoma in the United Kingdom: A real-world intention-to-treat analysis. Hemasphere 2024; 8:e87. [PMID: 38873532 PMCID: PMC11170269 DOI: 10.1002/hem3.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Brexucabtagene autoleucel (brexu-cel) is an autologous CD19 CAR T-cell product, approved for relapsed/refractory (r/r) mantle cell lymphoma (MCL). In ZUMA-2, brexu-cel demonstrated impressive responses in patients failing ≥2 lines, including a bruton's tyrosine kinase inhibitor, with an overall and complete response rate of 93% and 67%, respectively. Here, we report our real-world intention-to-treat (ITT) outcomes for brexu-cel in consecutive, prospectively approved patients, from 12 institutions in the United Kingdom between February 2021 and June 2023, with a focus on feasibility, efficacy, and tolerability. Of 119 approved, 104 underwent leukapheresis and 83 received a brexu-cel infusion. Progressive disease (PD) and/or manufacturing (MF) were the most common reasons for failure to reach harvest and/or infusion. For infused patients, best overall and complete response rates were 87% and 81%, respectively. At a median follow-up of 13.3 months, median progression-free survival (PFS) for infused patients was 21 months (10.1-NA) with a 6- and 12-month PFS of 82% (95% confidence interval [CI], 71-89) and 62% (95% CI, 49-73), respectively. ≥Grade 3 cytokine release syndrome and neurotoxicity occurred in 12% and 22%, respectively. On multivariate analysis, inferior PFS was associated with male sex, bulky disease, ECOG PS > 1 and previous MF. Cumulative incidence of non-relapse mortality (NRM) was 6%, 15%, and 25% at 6, 12, and 24 months, respectively, and mostly attributable to infection. Outcomes for infused patients in the UK are comparable to ZUMA-2 and other real-world reports. However, ITT analysis highlights a significant dropout due to PD and/or MF. NRM events warrant further attention.
Collapse
Affiliation(s)
- Maeve A. O'Reilly
- University College London HospitalLondonUK
- University College London Cancer InstituteLondonUK
| | - William Wilson
- University College London and CRUK Cancer Trials CentreLondonUK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Claire Roddie
- University College London HospitalLondonUK
- University College London Cancer InstituteLondonUK
| | | | | |
Collapse
|
13
|
Ware AD, Davis K, Xian RR. Molecular Pathology of Mature Lymphoid Malignancies. Clin Lab Med 2024; 44:355-376. [PMID: 38821649 DOI: 10.1016/j.cll.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Lymphoid malignancies are a broad and heterogeneous group of neoplasms. In the past decade, the genetic landscape of these tumors has been explored and cataloged in fine detail offering a glimpse into the mechanisms of lymphomagenesis and new opportunities to translate these findings into patient management. A myriad of studies have demonstrated both distinctive and overlapping molecular and chromosomal abnormalities that have influenced the diagnosis and classification of lymphoma, disease prognosis, and treatment selection.
Collapse
Affiliation(s)
- Alisha D Ware
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
| | - Katelynn Davis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rena R Xian
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Johns Hopkins School of Medicine, 1812 Ashland Avenue, Suite 200, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Athiraman H, Maheshwari M. Clinical Management of Mantle Cell Lymphoma With Concurrent Vascular Complications: A Case Report. Cureus 2024; 16:e57631. [PMID: 38586229 PMCID: PMC10995416 DOI: 10.7759/cureus.57631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
This is a case of a 70-year-old patient with no past medical history but a significant family history of cancer, who was admitted with acute pulmonary embolism and left lower extremity deep vein thrombosis concerning malignancy. Further investigations revealed mantle cell lymphoma. This case highlights the complex clinical management of patients presenting with concurrent hematological malignancy and vascular complications.
Collapse
|
15
|
Kawaji‐Kanayama Y, Tsukamoto T, Nakano M, Tokuda Y, Nagata H, Mizuhara K, Katsuragawa‐Taminishi Y, Isa R, Fujino T, Matsumura‐Kimoto Y, Mizutani S, Shimura Y, Taniwaki M, Tashiro K, Kuroda J. miR-17-92 cluster-BTG2 axis regulates B-cell receptor signaling in mantle cell lymphoma. Cancer Sci 2024; 115:452-464. [PMID: 38050664 PMCID: PMC10859618 DOI: 10.1111/cas.16027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023] Open
Abstract
B-cell receptor (BCR) signaling is critically activated and stable for mantle cell lymphoma (MCL), but the underlying mechanism of the activated BCR signaling pathway is not clear. The pathogenic basis of miR-17-92 cluster remains unclear although the oncogenic microRNA (miRNA) miR-17-92 cluster is highly expressed in patients with MCL. We revealed that miR-17-92 cluster overexpression is partly dependent on SOX11 expression and chromatin acetylation of MIR17HG enhancer regions. Moreover, miR-17-92 cluster regulates not only cell proliferation but BCR signaling activation in MCL cell lines. To comprehensively identify miR-17-92 cluster target genes, we performed pulldown-seq, where target RNA of miRNA was captured using the biotinylated miRNA mimics and magnetic bead-coated streptavidin, and quantified using next-generation sequencing. The pulldown-seq identified novel miRNA target genes, including tumor suppressors such as BTG2 (miR-19b), CDKN2A (miR-17), SYNE1 (miR-20a), TET2 (miR-18, miR-19b, and miR-92a), TNFRSF10A (miR-92a), and TRAF3 (miR-17). Notably, the gene expression profile data of patients with MCL revealed that BTG2 expression was negatively associated with that of BCR signature genes, and low BTG2 expression was associated with poor overall survival. Moreover, BTG2 silencing in MCL cell lines significantly induced BCR signaling overactivation and cell proliferation. Our results suggest an oncogenic role of miR-17-92 cluster-activating BCR signaling throughout BTG2 deregulation in MCL. Furthermore, this may contribute to the prediction of the therapeutic efficacy and improved outcomes of MCL.
Collapse
Affiliation(s)
- Yuka Kawaji‐Kanayama
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Taku Tsukamoto
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Masakazu Nakano
- Department of Genomic Medical SciencesKyoto Prefectural University of MedicineKyotoJapan
| | - Yuichi Tokuda
- Department of Genomic Medical SciencesKyoto Prefectural University of MedicineKyotoJapan
| | - Hiroaki Nagata
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Kentaro Mizuhara
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Yoko Katsuragawa‐Taminishi
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Reiko Isa
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Takahiro Fujino
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Yayoi Matsumura‐Kimoto
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
- Department of HematologyJapan Community Health Care Organization, Kyoto Kuramaguchi Medical CenterKyotoJapan
| | - Shinsuke Mizutani
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Yuji Shimura
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Masafumi Taniwaki
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
- Department of HematologyAiseikai Yamashina HospitalKyotoJapan
- Center for Molecular Diagnostic and TherapeuticsKyoto Prefectural University of MedicineKyotoJapan
| | - Kei Tashiro
- Department of Genomic Medical SciencesKyoto Prefectural University of MedicineKyotoJapan
| | - Junya Kuroda
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
16
|
Koraboina CP, Maddipati VC, Annadurai N, Gurská S, Džubák P, Hajdúch M, Das V, Gundla R. Synthesis and Biological Evaluation of Oxindole Sulfonamide Derivatives as Bruton's Tyrosine Kinase Inhibitors. ChemMedChem 2024; 19:e202300511. [PMID: 37916435 DOI: 10.1002/cmdc.202300511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/03/2023]
Abstract
Bruton's tyrosine kinase (BTK) is a promising molecular target for several human B-cell-related autoimmune disorders, inflammation, and haematological malignancies. The pathogenic alterations in various cancer tissues depend on mutant BTK for cell proliferation and survival, and BTK is also overexpressed in a range of hematopoietic cells. Due to this, BTK is emerging as a potential drug target to treat various human diseases, and several reversible and irreversible inhibitors have been developed and are being developed. As a result, BTK inhibition, clinically validated as an anticancer treatment, is finding great interest in B-cell malignancies and solid tumours. This study focuses on the design and synthesis of new oxindole sulfonamide derivatives as promising inhibitors of BTK with negligible off-target effects. The most cytotoxic compounds with greater basicity were PID-4 (2.29±0.52 μM), PID-6 (9.37±2.47 μM), and PID-19 (2.64±0.88 μM). These compounds caused a selective inhibition of Burkitt's lymphoma RAMOS cells without significant cytotoxicity in non-BTK cancerous and non-cancerous cell lines. Further, PID-4 showed promising activity in inhibiting BTK and downstream signalling cascades. As a potent inhibitor of Burkitt's lymphoma cells, PID-4 is a promising lead for developing novel chemotherapeutics.
Collapse
Affiliation(s)
- Chandra Prakash Koraboina
- Department of Chemistry, School of Science, GITAM (Deemed to be University), Hyderabad, Telangana, 502 329, India
| | | | - Narendran Annadurai
- Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Křížkovského 511/8, 77900, Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Křížkovského 511/8, 77900, Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Křížkovského 511/8, 77900, Olomouc, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Křížkovského 511/8, 77900, Olomouc, Czech Republic
| | - Rambabu Gundla
- Department of Chemistry, School of Science, GITAM (Deemed to be University), Hyderabad, Telangana, 502 329, India
| |
Collapse
|
17
|
Lu T, Zhang J, McCracken JM, Young KH. Recent advances in genomics and therapeutics in mantle cell lymphoma. Cancer Treat Rev 2024; 122:102651. [PMID: 37976759 DOI: 10.1016/j.ctrv.2023.102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Over the past decades, significant strides have been made in understanding the pathobiology, prognosis, and treatment options for mantle cell lymphoma (MCL). The heterogeneity observed in MCL's biology, genomics, and clinical manifestations, including indolent and aggressive forms, is intricately linked to factors such as the mutational status of the variable region of the immunoglobulin heavy chain gene, epigenetic profiling, and Sox11 expression. Several intriguing subtypes of MCL, such as Cyclin D1-negative MCL, in situ mantle cell neoplasm, CCND1/IGH FISH-negative MCL, and the impact of karyotypic complexity on prognosis, have been explored. Notably, recent immunochemotherapy regimens have yielded long-lasting remissions in select patients. The therapeutic landscape for MCL is continuously evolving, with a shift towards nonchemotherapeutic agents like ibrutinib, acalabrutinib, and venetoclax. The introduction of BTK inhibitors has brought about a transformative change in MCL treatment. Nevertheless, the challenge of resistance to BTK inhibitors persists, prompting ongoing efforts to discover strategies for overcoming this resistance. These strategies encompass non-covalent BTK inhibitors, immunomodulatory agents, BCL2 inhibitors, and CAR-T cell therapy, either as standalone treatments or in combination regimens. Furthermore, developing novel drugs holds promise for further improving the survival of patients with relapsed or refractory MCL. In this comprehensive review, we methodically encapsulate MCL's clinical and pathological attributes and the factors influencing prognosis. We also undertake an in-depth examination of stratified treatment alternatives. We investigate conceivable resistance mechanisms in MCL from a genetic standpoint and offer precise insights into various therapeutic approaches for relapsed or refractory MCL.
Collapse
Affiliation(s)
- Tingxun Lu
- Division of Hematopathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Jie Zhang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Jenna M McCracken
- Division of Hematopathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ken H Young
- Division of Hematopathology, Duke University Medical Center, Durham, NC 27710, USA; Duke Cancer Institute, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
18
|
Ababneh HS, Frigault MJ, Patel CG. Radiation therapy for patients with relapsed or refractory mantle cell lymphoma undergoing CD19-targeted chimeric antigen receptor T-cell therapy. Hematol Oncol 2024; 42:e3221. [PMID: 37679941 DOI: 10.1002/hon.3221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Affiliation(s)
- Hazim S Ababneh
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew J Frigault
- Division of Hematology & Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chirayu G Patel
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Zhang Q, Wen C, Zhao L, Wang Y. A Comprehensive Review of Small-Molecule Inhibitors Targeting Bruton Tyrosine Kinase: Synthetic Approaches and Clinical Applications. Molecules 2023; 28:8037. [PMID: 38138527 PMCID: PMC10746017 DOI: 10.3390/molecules28248037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Bruton tyrosine kinase (BTK) is an essential enzyme in the signaling pathway of the B-cell receptor (BCR) and is vital for the growth and activation of B-cells. Dysfunction of BTK has been linked to different types of B-cell cancers, autoimmune conditions, and inflammatory ailments. Therefore, focusing on BTK has become a hopeful approach in the field of therapeutics. Small-molecule inhibitors of BTK have been developed to selectively inhibit its activity and disrupt B-cell signaling pathways. These inhibitors bind to the active site of BTK and prevent its phosphorylation, leading to the inhibition of downstream signaling cascades. Regulatory authorities have granted approval to treat B-cell malignancies, such as chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), with multiple small-molecule BTK inhibitors. This review offers a comprehensive analysis of the synthesis and clinical application of conventional small-molecule BTK inhibitors at various clinical stages, as well as presents promising prospects for the advancement of new small-molecule BTK inhibitors.
Collapse
Affiliation(s)
- Qi Zhang
- Nanyang Central Hospital, Nanyang 473000, China; (Q.Z.); (C.W.)
| | - Changming Wen
- Nanyang Central Hospital, Nanyang 473000, China; (Q.Z.); (C.W.)
| | - Lijie Zhao
- The Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yatao Wang
- First People’s Hospital of Shangqiu, Shangqiu 476100, China
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| |
Collapse
|
20
|
Guo YY, Zhang JY, Sun JF, Nie P, Gao H. Synthesis and application of small molecules approved for the treatment of lymphoma. Eur J Med Chem 2023; 261:115835. [PMID: 37801827 DOI: 10.1016/j.ejmech.2023.115835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
Lymphoma is a form of cancer that impacts the lymphatic system, which plays a crucial role in defending the body against infections and illnesses. It is characterized by the atypical proliferation of lymphocytes, a type of white blood cell, which can form tumors in the lymph nodes, bone marrow, spleen, etc. Lymphoma is usually treated using a combination of targeted therapy, chemotherapy, and radiation therapy. In recent years, there has been a growing interest in the development of new drugs to treat lymphoma, which has led to the discovery of several promising compounds. The primary targets for lymphoma treatment have been identified as Bruton's tyrosine kinase (BTK), phosphoinositide3-kinase (PI3K), histone deacetylase (HDAC), and DNA polymerase (POLA). This review aims to provide an overview of the clinical applications and synthesis of several notable drugs approved to treat lymphoma, to expedite the exploration of more potent novel medications for the management of lymphoma.
Collapse
Affiliation(s)
- Yuan-Yuan Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing-Yi Zhang
- College of Chemistry and Chemical Engineering, Zhengzhou Normal University, 450044, China.
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin, 133002, China.
| | - Peng Nie
- Medicinal Chemistry, Rega Institute of Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Hua Gao
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
21
|
Nayak RK, Gerber D, Zhang C, Cohen JB. SOHO State of the Art Updates and Next Questions | Immunotherapeutic Options for Patients With Mantle Cell Lymphoma Who Progress on BTK Inhibitors. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:861-865. [PMID: 37661513 DOI: 10.1016/j.clml.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Mantle cell lymphoma is a challenging subtype of B-cell non-Hodgkin lymphoma treat characterized by its aggressive nature and propensity for relapse or refractory (R/R) disease for many patients. The introduction of Bruton's tyrosine kinase inhibitors has significantly improved the outcomes for patients with R/R MCL, but a considerable proportion of patients eventually experience disease progression or develop resistance to these agents. In recent years, immunotherapeutic approaches have emerged as promising treatment options. The treatment landscape is quickly progressing with the FDA approval of CAR-T cell therapy as well as several promising bispecific antibody therapies and antibody-drug conjugates in clinical development. This review article aims to provide a comprehensive overview of the current state of immunotherapeutic options available for patients with R/R MCL.
Collapse
Affiliation(s)
- Rahul K Nayak
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA
| | - Drew Gerber
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA
| | - Chen Zhang
- Department of Hematology and Medical Oncology, Rush University Medical Center, Chicago, IL
| | - Jonathon B Cohen
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA.
| |
Collapse
|
22
|
Yu T, Xu-Monette ZY, Yu L, Li Y, Young KH. Mechanisms of ferroptosis and targeted therapeutic approaches in lymphoma. Cell Death Dis 2023; 14:771. [PMID: 38007476 PMCID: PMC10676406 DOI: 10.1038/s41419-023-06295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Lymphoma is the sixth most common type of cancer worldwide. Under the current treatment standards, patients with lymphoma often fail to respond to treatment or relapse early and require further therapy. Hence, novel therapeutic strategies need to be explored and our understanding of the molecular underpinnings of lymphomas should be expanded. Ferroptosis, a non-apoptotic regulated cell death, is characterized by increased reactive oxygen species and lipid peroxidation due to metabolic dysfunction. Excessive or lack of ferroptosis has been implicated in tumor development. Current preclinical evidences suggest that ferroptosis participates in tumorigenesis, progression, and drug resistance of lymphoma, identifying a potential biomarker and an attractive molecular target. Our review summarizes the core mechanisms and regulatory networks of ferroptosis and discusses existing evidences of ferroptosis induction for the treatment of lymphoma, with intent to provide a framework for understanding the role of ferroptosis in lymphomagenesis and a new perspective of lymphoma treatment.
Collapse
Affiliation(s)
- Tiantian Yu
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Department of Hematology and Oncology, The Second Affiliated Hospital of NanChang University, Nanchang, China
| | - Zijun Y Xu-Monette
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Li Yu
- Department of Hematology and Oncology, The Second Affiliated Hospital of NanChang University, Nanchang, China
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ken H Young
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA.
- Duke Cancer Institute, Durham, NC, USA.
| |
Collapse
|
23
|
Tuohy S, Wachuku C, Wang YA, Prasad A, Samimi SS, Pappas-Taffer LK, Haun PL, Wang LL. Cutaneous mantle cell lymphoma presenting as a diffuse morbilliform rash: A case report. SAGE Open Med Case Rep 2023; 11:2050313X231212994. [PMID: 38022861 PMCID: PMC10656801 DOI: 10.1177/2050313x231212994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
This case describes a patient with known mantle cell lymphoma without cutaneous involvement presenting with a diffuse morbilliform rash during an inpatient admission for bacterial pneumonia. The patient was thought to have a hypersensitivity to antibiotics but failed to improve after the offending agents were stopped. A skin biopsy revealed metastatic cutaneous mantle cell lymphoma. Treatment with high-dose corticosteroids and chemotherapy was initiated resulting in the resolution of the rash.
Collapse
Affiliation(s)
- Spencer Tuohy
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Wachuku
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yixin A Wang
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aman Prasad
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara S Samimi
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa K Pappas-Taffer
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul L Haun
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leo L Wang
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Brown-Burke F, Hwang I, Sloan S, Hinterschied C, Helmig-Mason J, Long M, Chan WK, Prouty A, Chung JH, Zhang Y, Singh S, Youssef Y, Bhagwat N, Chen Z, Chen-Kiang S, Di Liberto M, Elemento O, Sehgal L, Alinari L, Vaddi K, Scherle P, Lapalombella R, Paik J, Baiocchi RA. PRMT5 inhibition drives therapeutic vulnerability to combination treatment with BCL-2 inhibition in mantle cell lymphoma. Blood Adv 2023; 7:6211-6224. [PMID: 37327122 PMCID: PMC10582835 DOI: 10.1182/bloodadvances.2023009906] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Mantle cell lymphoma (MCL) is an incurable B-cell malignancy that comprises up to 6% of non-Hodgkin lymphomas diagnosed annually and is associated with a poor prognosis. The average overall survival of patients with MCL is 5 years, and for most patients who progress on targeted agents, survival remains at a dismal 3 to 8 months. There is a major unmet need to identify new therapeutic approaches that are well tolerated to improve treatment outcomes and quality of life. The protein arginine methyltransferase 5 (PRMT5) enzyme is overexpressed in MCL and promotes growth and survival. Inhibition of PRMT5 drives antitumor activity in MCL cell lines and preclinical murine models. PRMT5 inhibition reduced the activity of prosurvival AKT signaling, which led to the nuclear translocation of FOXO1 and modulation of its transcriptional activity. Chromatin immunoprecipitation and sequencing identified multiple proapoptotic BCL-2 family members as FOXO1-bound genomic loci. We identified BAX as a direct transcriptional target of FOXO1 and demonstrated its critical role in the synergy observed between the selective PRMT5 inhibitor, PRT382, and the BCL-2 inhibitor, venetoclax. Single-agent and combination treatments were performed in 9 MCL lines. Loewe synergy scores showed significant levels of synergy in most MCL lines tested. Preclinical, in vivo evaluation of this strategy in multiple MCL models showed therapeutic synergy with combination venetoclax/PRT382 treatment with an increased survival advantage in 2 patient-derived xenograft models (P ≤ .0001, P ≤ .0001). Our results provide mechanistic rationale for the combination of PRMT5 inhibition and venetoclax to treat patients with MCL.
Collapse
Affiliation(s)
- Fiona Brown-Burke
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Inah Hwang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Shelby Sloan
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Claire Hinterschied
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - JoBeth Helmig-Mason
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Mackenzie Long
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Wing Keung Chan
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Alexander Prouty
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Ji-Hyun Chung
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | | | - Satishkumar Singh
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Youssef Youssef
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | | | - Zhengming Chen
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY
| | - Selina Chen-Kiang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Maurizio Di Liberto
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Olivier Elemento
- Department of Physiology & Biophysics, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Lalit Sehgal
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | | | | | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
25
|
Sircar A, Singh S, Xu-Monette ZY, Coyle KM, Hilton LK, Chavdoula E, Ranganathan P, Jain N, Hanel W, Tsichlis P, Alinari L, Peterson BR, Tao J, Muthusamy N, Baiocchi R, Epperla N, Young KH, Morin R, Sehgal L. Exploiting the fibroblast growth factor receptor-1 vulnerability to therapeutically restrict the MYC-EZH2-CDKN1C axis-driven proliferation in Mantle cell lymphoma. Leukemia 2023; 37:2094-2106. [PMID: 37598282 PMCID: PMC10539170 DOI: 10.1038/s41375-023-02006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/08/2023] [Indexed: 08/21/2023]
Abstract
Mantle cell lymphoma (MCL) is a lethal hematological malignancy with a median survival of 4 years. Its lethality is mainly attributed to a limited understanding of clinical tumor progression and resistance to current therapeutic regimes. Intrinsic, prolonged drug treatment and tumor-microenvironment (TME) facilitated factors impart pro-tumorigenic and drug-insensitivity properties to MCL cells. Hence, elucidating neoteric pharmacotherapeutic molecular targets involved in MCL progression utilizing a global "unified" analysis for improved disease prevention is an earnest need. Using integrated transcriptomic analyses in MCL patients, we identified a Fibroblast Growth Factor Receptor-1 (FGFR1), and analyses of MCL patient samples showed that high FGFR1 expression was associated with shorter overall survival in MCL patient cohorts. Functional studies using pharmacological intervention and loss of function identify a novel MYC-EZH2-CDKN1C axis-driven proliferation in MCL. Further, pharmacological targeting with erdafitinib, a selective small molecule targeting FGFRs, induced cell-cycle arrest and cell death in-vitro, inhibited tumor progression, and improved overall survival in-vivo. We performed extensive pre-clinical assessments in multiple in-vivo model systems to confirm the therapeutic potential of erdafitinib in MCL and demonstrated FGFR1 as a viable therapeutic target in MCL.
Collapse
Affiliation(s)
- Anuvrat Sircar
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Satishkumar Singh
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Zijun Y Xu-Monette
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Krysta Mila Coyle
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Laura K Hilton
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Evangelia Chavdoula
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Parvathi Ranganathan
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Neeraj Jain
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Walter Hanel
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Philip Tsichlis
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Lapo Alinari
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Blake R Peterson
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Jianguo Tao
- Division of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Natarajan Muthusamy
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Robert Baiocchi
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Narendranath Epperla
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Ken H Young
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute, Durham, NC, USA
| | - Ryan Morin
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer, Vancouver, BC, Canada
| | - Lalit Sehgal
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA.
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.
| |
Collapse
|
26
|
Deng LJ, Zhou KS, Liu LH, Zhang MZ, Li ZM, Ji CY, Xu W, Liu T, Xu B, Wang X, Gao SJ, Zhang HL, Hu Y, Li Y, Cheng Y, Yang HY, Cao JN, Zhu ZM, Hu JD, Zhang W, Jing HM, Ding KY, Zhang XY, Zhao RB, Zhang B, Tian YM, Song YP, Song YQ, Zhu J. Orelabrutinib for the treatment of relapsed or refractory MCL: a phase 1/2, open-label, multicenter, single-arm study. Blood Adv 2023; 7:4349-4357. [PMID: 37078706 PMCID: PMC10432605 DOI: 10.1182/bloodadvances.2022009168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 04/21/2023] Open
Abstract
Relapsed or refractory (r/r) mantle cell lymphoma (MCL) is an aggressive B-cell malignancy with a poor prognosis. Bruton tyrosine kinase (BTK) is a mediator of B-cell receptor signaling and is associated with the development of B-cell lymphomas. Patients with r/r MCL were enrolled in this phase 1/2 study and treated with orelabrutinib, a novel, highly selective BTK inhibitor. The median number of prior regimens was 2 (range, 1-4). The median age was 62 years (range, 37-73 years). Eligible patients received oral orelabrutinib 150 mg once daily (n = 86) or 100 mg twice daily (n = 20) until disease progression or unacceptable toxicity. A dose of 150 mg once daily was chosen as the preferred recommended phase 2 dose. After a median follow-up duration of 23.8 months, the overall response rate was 81.1%, with 27.4% achieving a complete response and 53.8% achieving a partial response. The median duration of response and progression-free survival were 22.9 and 22.0 months, respectively. The median overall survival (OS) was not reached, and the rate of OS at 24 months was 74.3%. Adverse events (AEs) occurring in >20% of patients were thrombocytopenia (34.0%), upper respiratory tract infection (27.4%), and neutropenia (24.5%). Grade ≥3 AEs were infrequent and most commonly included thrombocytopenia (13.2%), neutropenia (8.5%), and anemia (7.5%). Three patients discontinued treatment because of treatment-related adverse events (TRAEs), but no fatal TRAEs were reported. Orelabrutinib showed substantial efficacy and was well tolerated in patients with r/r MCL. This trial was registered at www.clinicaltrials.gov as #NCT03494179.
Collapse
Affiliation(s)
- Li-Juan Deng
- Department of Lymphoma, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ke-Shu Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Li-Hong Liu
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ming-Zhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Ming Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre of Cancer Medicine, Guangzhou, China
| | - Chun-Yan Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Wei Xu
- Department of Hematology, Pukou CLL Center, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Ting Liu
- Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Jinan, China
| | - Su-Jun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Hui-Lai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Lymphoma, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Cheng
- Department of Oncology, Jilin Provincial Cancer Hospital, Changchun, China
| | - Hai-Yan Yang
- Department of Lymphoma, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jun-Ning Cao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zun-Min Zhu
- Institute of Hematology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jian-Da Hu
- Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wei Zhang
- Department of Hematology, Peking Union Medical College Hospital, Beijing, China
| | - Hong-Mei Jing
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Kai-Yang Ding
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | | | | | - Bin Zhang
- InnoCare Pharma Limited, Beijing, China
| | | | - Yong-Ping Song
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yu-Qin Song
- Department of Lymphoma, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Zhu
- Department of Lymphoma, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
27
|
Villa D, Jiang A, Visco C, Crosbie N, McCulloch R, Buege MJ, Kumar A, Bond DA, Paludo J, Maurer MJ, Thanarajasingam G, Lewis KL, Cheah CY, Baech J, El-Galaly TC, Kugathasan L, Scott DW, Gerrie AS, Lewis D. Time to progression of disease and outcomes with second-line BTK inhibitors in relapsed/refractory mantle cell lymphoma. Blood Adv 2023; 7:4576-4585. [PMID: 37307169 PMCID: PMC10425680 DOI: 10.1182/bloodadvances.2023009804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023] Open
Abstract
Time to progression of disease (POD) after first-line (1L) therapy is prognostic in mantle cell lymphoma (MCL), although studies have included a broad range of 1L, second-line (2L), and subsequent lines of therapy. The purpose of this study was to evaluate the factors predicting outcomes in patients with relapsed/refractory (R/R) MCL exclusively initiating 2L Bruton's tyrosine kinase inhibitors (BTKis) after 1L rituximab-containing therapy. Patients were accrued from 8 international centers (7 main, 1 validation cohort). Multivariable models evaluating the association between time to POD and clinical/pathologic factors were constructed and converted into nomograms and prognostic indexes predicting outcomes in this population. A total of 360 patients were included, including 160 in the main cohort and 200 in the validation cohort. Time to POD, Ki67 ≥ 30%, and MCL International Prognostic Index (MIPI) were associated with progression-free survival (PFS2) and overall survival (OS2) from the start of 2L BTKis. C-indexes were consistently ≥0.68 in both cohorts. Web/application-based calculators based on nomograms and prognostic indexes to estimate PFS2 and OS2 were constructed. The 2L BTKi MIPI identifies 3 groups with distinct 2-year PFS2, including high risk (14%), intermediate risk (50%), and low risk (64%). Time to POD, Ki67, and MIPI are associated with survival outcomes in patients with R/R MCL receiving 2L BTKis. Simple clinical models incorporating these variables may assist in planning for alternative therapies such as chimeric antigen receptor T-cell therapy, allogeneic stem cell transplantation, or novel agents with alternative mechanisms of action.
Collapse
Affiliation(s)
- Diego Villa
- British Columbia Cancer Centre for Lymphoid Cancer and University of British Columbia, Vancouver, BC, Canada
| | - Aixiang Jiang
- British Columbia Cancer Centre for Lymphoid Cancer and University of British Columbia, Vancouver, BC, Canada
| | - Carlo Visco
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Nicola Crosbie
- Haematology, University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom
| | - Rory McCulloch
- Department of Haematology, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, United Kingdom
| | - Michael J. Buege
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, NY
- University of Illinois Chicago College of Pharmacy, Chicago, IL
| | - Anita Kumar
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David A. Bond
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Jonas Paludo
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Matthew J. Maurer
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN
| | | | - Katharine L. Lewis
- Department of Haematology, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Division of Internal Medicine, Medical School, University of Western Australia, Perth, WA, Australia
| | - Chan Y. Cheah
- Department of Haematology, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Division of Internal Medicine, Medical School, University of Western Australia, Perth, WA, Australia
| | - Joachim Baech
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Haematology, Aalborg, Denmark
| | - Tarec C. El-Galaly
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Haematology, Aalborg, Denmark
| | | | - David W. Scott
- British Columbia Cancer Centre for Lymphoid Cancer and University of British Columbia, Vancouver, BC, Canada
| | - Alina S. Gerrie
- British Columbia Cancer Centre for Lymphoid Cancer and University of British Columbia, Vancouver, BC, Canada
| | - David Lewis
- Haematology, University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom
| |
Collapse
|
28
|
Sadeghi L, Wright APH. GSK-J4 Inhibition of KDM6B Histone Demethylase Blocks Adhesion of Mantle Cell Lymphoma Cells to Stromal Cells by Modulating NF-κB Signaling. Cells 2023; 12:2010. [PMID: 37566089 PMCID: PMC10416905 DOI: 10.3390/cells12152010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Multiple signaling pathways facilitate the survival and drug resistance of malignant B-cells by regulating their migration and adhesion to microenvironmental niches. NF-κB pathways are commonly dysregulated in mantle cell lymphoma (MCL), but the exact underlying mechanisms are not well understood. Here, using a co-culture model system, we show that the adhesion of MCL cells to stromal cells is associated with elevated levels of KDM6B histone demethylase mRNA in adherent cells. The inhibition of KDM6B activity, using either a selective inhibitor (GSK-J4) or siRNA-mediated knockdown, reduces MCL adhesion to stromal cells. We showed that KDM6B is required both for the removal of repressive chromatin marks (H3K27me3) at the promoter region of NF-κB encoding genes and for inducing the expression of NF-κB genes in adherent MCL cells. GSK-J4 reduced protein levels of the RELA NF-κB subunit and impaired its nuclear localization. We further demonstrated that some adhesion-induced target genes require both induced NF-κB and KDM6B activity for their induction (e.g., IL-10 cytokine gene), while others require induction of NF-κB but not KDM6B (e.g., CCR7 chemokine gene). In conclusion, KDM6B induces the NF-κB pathway at different levels in MCL, thereby facilitating MCL cell adhesion, survival, and drug resistance. KDM6B represents a novel potential therapeutic target for MCL.
Collapse
Affiliation(s)
- Laia Sadeghi
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
| | | |
Collapse
|
29
|
Ito D, Feng C, Fu C, Kim C, Wu J, Epstein J, Snider JT, DuVall AS. Health resource utilization and costs of care for adult patients with relapsed or refractory mantle cell lymphoma in the United States: a retrospective claims analysis. Expert Rev Pharmacoecon Outcomes Res 2023; 23:773-787. [PMID: 37278284 DOI: 10.1080/14737167.2023.2216458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023]
Abstract
OBJECTIVES We assessed real-world healthcare resource utilization (HRU) and costs among US patients with relapsed or refractory mantle cell lymphoma (R/R MCL) by line of therapy (LoT). METHODS We selected patients from MarketScan® (1/1/2016-12/31/2020): ≥1 claims of MCL-indicated first line (1L) therapies, ≥1 diagnoses of MCL pre-index date (1L initiation date), ≥6-month continuous enrollment pre-index date, second line (2L) therapy initiation, ≥18 years old at 2L, and no clinical trial enrollment. Outcomes included time to next treatment (TTNT), all-cause HRU, and costs. RESULTS The cohort (N = 142) was 77.5% male, aged 62 years (median). Sixty-six percent and 23% advanced to 3L and 4L+, respectively. Mean (median) TTNT was 9.7 (5.9), 9.3 (5.0), and 6.3 (4.2) months for 2L, 3L, and 4L+, respectively. Mean (median) per patient per month (PPPM) costs were $29,999 ($21,313), $29,352 ($20,033), and $30,633 ($23,662) for 2L, 3L, and 4L+, respectively. Among those who received Bruton tyrosine kinase inhibitors, mean (median) PPPM costs were $24,702 ($17,203), $31,801 ($20,363), and $36,710 ($25,899) for 2L, 3L, and 4L+, respectively. CONCLUSIONS During the period ending in 2020, patients relapsed frequently, incurring high HRU and costs across LoTs. More effective treatments with long-lasting remissions in R/R MCL may reduce healthcare burden.
Collapse
Affiliation(s)
| | | | | | | | - James Wu
- Kite, A Gilead Company, Santa Monica, CA, USA
| | | | | | | |
Collapse
|
30
|
Till KJ, Abdullah M, Alnassfan T, Janet GZ, Marks T, Coma S, Weaver DT, Pachter JA, Pettitt AR, Slupsky JR. Roles of PI3Kγ and PI3Kδ in mantle cell lymphoma proliferation and migration contributing to efficacy of the PI3Kγ/δ inhibitor duvelisib. Sci Rep 2023; 13:3793. [PMID: 36882482 PMCID: PMC9992372 DOI: 10.1038/s41598-023-30148-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin lymphoma that is incurable with existing therapies, and therefore presents a significant unmet clinical need. The ability of this disease to overcome therapy, including those that target the B cell receptor pathway which has a pathogenic role in MCL, highlights the need to develop new treatment strategies. Herein, we demonstrate that a distinguishing feature of lymph node resident MCL cells is the expression of phosphatidylinositol 3-kinase γ (PI3Kγ), a PI3K isoform that is not highly expressed in other B cells or B-cell malignancies. By exploring the role of PI3K in MCL using different PI3K isoform inhibitors, we provide evidence that duvelisib, a dual PI3Kδ/γ inhibitor, has a greater effect than PI3Kδ- and PI3Kγ-selective inhibitors in blocking the proliferation of primary MCL cells and MCL cell lines, and in inhibiting tumour growth in a mouse xenograft model. In addition, we demonstrated that PI3Kδ/γ signalling is critical for migration of primary MCL cells and cell lines. Our data indicates that aberrant expression of PI3Kγ is a critical feature of MCL pathogenesis. Thus, we suggest that the dual PI3Kδ/γ duvelisib would be effective for the treatment of mantle cell lymphoma.
Collapse
Affiliation(s)
- Kathleen J Till
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK.
| | - Mariah Abdullah
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Tahera Alnassfan
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Gallardo Zapata Janet
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Thomas Marks
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Silvia Coma
- Verastem Oncology, 117 Kendrick St #500, Needham, MA, 02494, USA
| | - David T Weaver
- Verastem Oncology, 117 Kendrick St #500, Needham, MA, 02494, USA
| | | | - Andrew R Pettitt
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Joseph R Slupsky
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| |
Collapse
|
31
|
Najmi A, Thangavel N, Mohanan AT, Qadri M, Albratty M, Ashraf SE, Saleh SF, Nayeem M, Mohan S. Structural Complementarity of Bruton’s Tyrosine Kinase and Its Inhibitors for Implication in B-Cell Malignancies and Autoimmune Diseases. Pharmaceuticals (Basel) 2023; 16:ph16030400. [PMID: 36986499 PMCID: PMC10051736 DOI: 10.3390/ph16030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Bruton’s tyrosine kinase (BTK) is a critical component in B-cell receptor (BCR) signaling and is also expressed in haematogenic and innate immune cells. Inhibition of BTK hyperactivity is implicated in B-cell malignancies and autoimmune diseases. This review derives the structural complementarity of the BTK-kinase domain and its inhibitors from recent three-dimensional structures of inhibitor-bound BTK in the protein data bank (PDB). Additionally, this review analyzes BTK-mediated effector responses of B-cell development and antibody production. Covalent inhibitors contain an α, β-unsaturated carbonyl moiety that forms a covalent bond with Cys481, stabilizing αC-helix in inactive-out conformation which inhibits Tyr551 autophosphorylation. Asn484, located two carbons far from Cys481, influences the stability of the BTK-transition complex. Non-covalent inhibitors engage the BTK-kinase domain through an induced-fit mechanism independent of Cys481 interaction and bind to Tyr551 in the activation kink resulting in H3 cleft, determining BTK selectivity. Covalent and non-covalent binding to the kinase domain of BTK shall induce conformational changes in other domains; therefore, investigating the whole-length BTK conformation is necessary to comprehend BTK’s autophosphorylation inhibition. Knowledge about the structural complementarity of BTK and its inhibitors supports the optimization of existing drugs and the discovery of drugs for implication in B-cell malignancies and autoimmune diseases.
Collapse
Affiliation(s)
- Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Correspondence: (N.T.); (S.M.)
| | | | - Marwa Qadri
- Department of Pharmacology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Medical Research Center, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Safeena Eranhiyil Ashraf
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Safaa Fathy Saleh
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Maryam Nayeem
- Department of Pharmacology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Syam Mohan
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt
- Substance Abuse and Research Centre, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
- Correspondence: (N.T.); (S.M.)
| |
Collapse
|
32
|
Vu K, Frank MJ. CAR T-cell therapy for mantle cell lymphoma with central nervous system relapse. Blood Adv 2023; 7:375-378. [PMID: 35895518 PMCID: PMC9898604 DOI: 10.1182/bloodadvances.2022008031] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/01/2022] [Accepted: 07/17/2022] [Indexed: 02/01/2023] Open
Affiliation(s)
- Khoan Vu
- Department of Oncology/Hematology, Kaiser Permanente Santa Clara Medical Center, Santa Clara, CA
| | - Matthew J. Frank
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Palo Alto, CA
| |
Collapse
|
33
|
Smyth E, Cheah CY, Seymour JF. Management of indolent B-cell Lymphomas: A review of approved and emerging targeted therapies. Cancer Treat Rev 2023; 113:102510. [PMID: 36634434 DOI: 10.1016/j.ctrv.2023.102510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
The indolent B-cell non-Hodgkin lymphomas (B-NHL) comprise a heterogenous group of lymphoproliferative disorders characterized by slow growth kinetics and a relapsing/remitting course. Management has, until recently, been uniform across all indolent B-NHL subtypes. Improving insight into pathophysiological and molecular features of each disease has led to development of several targeted therapies. Consequently, each subtype must now be considered an individual entity. In this review, we consider the three commonest indolent B-NHLs: follicular lymphoma, marginal zone lymphoma and Waldenstrom's macroglobulinemia and review in detail the data on approved and emerging targeted therapeutic agents for each B-NHL subtype.
Collapse
Affiliation(s)
- Elizabeth Smyth
- Department of Hematology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Chan Y Cheah
- Department of Hematology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia; Medical School, University of Western Australia, Perth, Western Australia, Australia.
| | - John F Seymour
- Peter MacCallum Cancer Centre & The Royal Melbourne Hospital, Melbourne, Victoria, Australia; University of Melbourne, Victoria, Australia.
| |
Collapse
|
34
|
Yuan S, Zuo W, Liu T, Fu H. The Therapeutic Synergy of Selinexor and Venetoclax in Mantle Cell Lymphoma Through Induction of DNA Damage and Perturbation of the DNA Damage Response. Technol Cancer Res Treat 2023; 22:15330338231208608. [PMID: 37880950 PMCID: PMC10605683 DOI: 10.1177/15330338231208608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Introduction: Mantle cell lymphoma (MCL) can be stratified into blastoid and classical subtypes based on morphological features, with the former subtype having a poorer prognosis. Despite recent advances in targeted approaches, including multiple bruton tyrosine kinase inhibitors which yield impressive clinical responses and improve prognoses, MCL remains an incurable disease with frequent relapses. Additional therapeutic interventions are therefore unmet medical needs for the management of patients with MCL. Methods: Cell viability and apoptosis assays were employed to analyze the therapeutic interaction of venetoclax combined with selinexor in MCL cells. Western blot was used to investigate the potential mechanism of action for the synergy of venetoclax in combination with selinexor in MCL cells. Results: In this study, we revealed that both blastoid and classical MCL cells were vulnerable to the cytotoxic effects of selinexor, a well-established XPO1 inhibitor, manifested by loss of cell viability and induction of cell apoptosis. Moreover, our data indicated that the addition of venetoclax to selinexor showed synergistically decreased cell viabilities and increased cell deaths in blastoid and classical MCL cells compared to each single drug treatment. Either selinexor or venetoclax treatment alone decreased MCL1 expressions and increased BAX levels in MCL cells, and these effects were further enhanced by their combined regimen. Mechanistically, our findings demonstrated that induction of DNA damage and inactivation of DNA damage response were involved in the synergistic interaction of the drug combination regimen. Conclusion: Collectively, this study might provide a potential attractive therapy option for the treatment of MCL. However, the conclusion needs additional experimental validation in in vivo models and clinical evaluations are mandatory.
Collapse
Affiliation(s)
- Sheng Yuan
- Department of Pathology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Wei Zuo
- Department of Pathology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Tingting Liu
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Huan Fu
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
35
|
Outcomes among Patients with Mantle Cell Lymphoma Post-Covalent BTK Inhibitor Therapy in the United States: A Real-World Electronic Medical Records Study. Adv Hematol 2022; 2022:8262787. [PMID: 36620778 PMCID: PMC9812614 DOI: 10.1155/2022/8262787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 12/29/2022] Open
Abstract
Purpose There remains a lack of consensus among experts regarding the optimal therapeutic approach for Mantle cell lymphoma (MCL) after failure of covalent Bruton Tyrosine Kinase inhibitor (cBTKi)-based therapy. This study was designed to examine patient characteristics, current treatment patterns, and clinical outcomes using a real-world database to evaluate how MCL is currently managed post-cBTKi therapy in the U.S. Methods A large, deidentified U.S. electronic medical record (EMR) oncology database (ConcertAI) with data from January 2011 to July 2021 was utilized for this study. Eligible patients were adults with MCL who had received at least one cBTKi. Descriptive statistics were used to evaluate patient characteristics and treatment patterns. Time-to-event real-world outcomes of duration of therapy, time to next treatment discontinuation, and overall survival was evaluated using the Kaplan-Meier method. Results A total of 946 patients met eligibility criteria. Of these, 739 (78.1%) discontinued cBTKi treatment before the end of the follow-up period, while the remaining 207 (21.9%) were still receiving cBTKi therapy at the end of the follow-up period. Among those who had discontinued the cBTKi, 352 (47.6%, 352/739) received at least one subsequent (post-cBTKi) treatment. The median duration of the immediate post-cBTKi therapy was 2.6 months (n = 352). Among the 739 patients who discontinued cBTKi treatment, the median time from cBTKi discontinuation to next treatment discontinuation or death was 3.9 months and the median overall survival was 10.3 months. Conclusions This study demonstrates the poor outcomes experienced by patients after cBTKi therapy. There is an urgent need for safe and effective treatments for patients with recurrent or progressive MCL.
Collapse
|
36
|
Kharfan-Dabaja MA, Yassine F, Moustafa MA, Iqbal M, Murthy H. Lisocabtagene Maraleucel in Relapsed or Refractory Diffuse Large B Cell Lymphoma: What is the Evidence? Hematol Oncol Stem Cell Ther 2022; 15:168-175. [PMID: 34699774 DOI: 10.1016/j.hemonc.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 01/14/2023] Open
Abstract
Lisocabtagene maraleucel (liso-cel) is an autologous CD19-directed chimeric antigen receptor (CAR) T cell product, with a CD3ζ activatory domain connected to 4-1BB costimulatory domain. Liso-cel, unlike the other two approved products-axicabtagene ciloleucel and tisagenlecleucel-is manufactured separately from CD4 and CD8 T cells and then administered as a sequential infusion of the two components at equal target doses. The approval of liso-cel was based on the results of Transcend NHL 001, a single-arm, open-label, multicenter, seamless design trial that enrolled 344 patients, of whom 269 received conforming liso-cel. The most common histology was diffuse large B cell lymphoma, not otherwise specified (DLBCL NOS; n = 137, 51%) followed by DLBCL transformed from indolent lymphomas (n = 78, 29%). Encouraging results were reported, yielding an objective response rate across all dose levels of 73% [complete remission (CR) = 53%], with an estimated duration of response at 1 year of 55% for all patients and 65% for those achieving a CR. The estimated 12-month overall survival was 58% for all patients and 86% for those achieving a CR. Cytokine release syndrome and neurological adverse events were reported in 42% and 30%, respectively. This review summarizes the evidence on the safety and effectiveness of liso-cel, resulting in its addition to the current treatment armamentarium of relapsed or refractory large B cell lymphoma.
Collapse
Affiliation(s)
- Mohamed A Kharfan-Dabaja
- Division of Hematology-Oncology and Blood and Marrow Transplantation and Cellular Therapy Programs, Mayo Clinic, Jacksonville, FL, USA
| | - Farah Yassine
- Division of Hematology-Oncology and Blood and Marrow Transplantation and Cellular Therapy Programs, Mayo Clinic, Jacksonville, FL, USA
| | - Muhamad Alhaj Moustafa
- Division of Hematology-Oncology and Blood and Marrow Transplantation and Cellular Therapy Programs, Mayo Clinic, Jacksonville, FL, USA
| | - Madiha Iqbal
- Division of Hematology-Oncology and Blood and Marrow Transplantation and Cellular Therapy Programs, Mayo Clinic, Jacksonville, FL, USA
| | - Hemant Murthy
- Division of Hematology-Oncology and Blood and Marrow Transplantation and Cellular Therapy Programs, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
37
|
Li Q, Zhang W. Progress in Anticancer Drug Development Targeting Ubiquitination-Related Factors. Int J Mol Sci 2022; 23:ijms232315104. [PMID: 36499442 PMCID: PMC9737479 DOI: 10.3390/ijms232315104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022] Open
Abstract
Ubiquitination is extensively involved in critical signaling pathways through monitoring protein stability, subcellular localization, and activity. Dysregulation of this process results in severe diseases including malignant cancers. To develop drugs targeting ubiquitination-related factors is a hotspot in research to realize better therapy of human diseases. Ubiquitination comprises three successive reactions mediated by Ub-activating enzyme E1, Ub-conjugating enzyme E2, and Ub ligase E3. As expected, multiple ubiquitination enzymes have been highlighted as targets for anticancer drug development due to their dominant effect on tumorigenesis and cancer progression. In this review, we discuss recent progresses in anticancer drug development targeting enzymatic machinery components.
Collapse
|
38
|
Feng X, Yang G, Zhang L, Tao S, SHIM JS, Chen L, Wu Q. TRIM59 guards ER proteostasis and prevents Bortezomib-mediated colorectal cancer (CRC) cells’ killing. Invest New Drugs 2022; 40:1244-1253. [DOI: 10.1007/s10637-022-01306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
|
39
|
Ghaderi A, Zhong W, Okhovat MA, Aschan J, Svensson A, Sander B, Schultz J, Olin T, Österborg A, Hojjat-Farsangi M, Mellstedt H. A ROR1 Small Molecule Inhibitor (KAN0441571C) Induced Significant Apoptosis of Mantle Cell Lymphoma (MCL) Cells. Pharmaceutics 2022; 14:pharmaceutics14102238. [PMID: 36297673 PMCID: PMC9607197 DOI: 10.3390/pharmaceutics14102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
The receptor tyrosine kinase orphan receptor 1 (ROR1) is absent in most normal adult tissues but overexpressed in various malignancies and is of importance for tumor cell survival, proliferation, and metastasis. In this study, we evaluated the apoptotic effects of a novel small molecule inhibitor of ROR1 (KAN0441571C) as well as venetoclax (BCL-2 inhibitor), bendamustine, idelalisib (PI3Kδ inhibitor), everolimus (mTOR inhibitor), and ibrutinib (BTK inhibitor) alone or in combination in human MCL primary cells and cell lines. ROR1 expression was evaluated by flow cytometry and Western blot (WB). Cytotoxicity was analyzed by MTT and apoptosis by Annexin V/PI staining as well as signaling and apoptotic proteins (WB). ROR1 was expressed both in patient-derived MCL cells and human MCL cell lines. KAN0441571C alone induced significant time- and dose-dependent apoptosis of MCL cells. Apoptosis was accompanied by decreased expression of MCL-1 and BCL-2 and cleavage of PARP and caspase 3. ROR1 was dephosphorylated as well as ROR1-associated signaling pathway molecules, including the non-canonical WNT signaling pathway (PI3Kδ/AKT/mTOR). The combination of KAN0441571C and ibrutinib, venetoclax, idelalisib, everolimus, or bendamustine had a synergistic apoptotic effect and significantly prevented phosphorylation of ROR1-associated signaling molecules as compared to KAN0441571C alone. Our results suggest that targeting ROR1 by a small molecule inhibitor, KAN0441571C, should be further evaluated particularly in combination with other targeting drugs as a new therapeutic approach for MCL.
Collapse
Affiliation(s)
- Amineh Ghaderi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Wen Zhong
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Mohammad Ali Okhovat
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Johanna Aschan
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Ann Svensson
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Johan Schultz
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Thomas Olin
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Anders Österborg
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
- Correspondence: ; Tel.: +46-735-234-706
| | - Håkan Mellstedt
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| |
Collapse
|
40
|
Experiences with Glofitamab Administration following CAR T Therapy in Patients with Relapsed Mantle Cell Lymphoma. Cells 2022; 11:cells11172747. [PMID: 36078155 PMCID: PMC9454987 DOI: 10.3390/cells11172747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a rare type of B-cell Non-Hodgkin lymphoma (NHL) affecting predominantly male patients. While complete remissions following first-line treatment are frequent, most patients ultimately relapse, with a usually aggressive further disease course. The use of cytarabine-comprising induction chemotherapy and autologous stem cell transplantation, Rituximab maintenance, Bruton’s tyrosine kinase (BTK) inhibitors and CAR T therapy has substantially improved survival. Still, options for patients relapsing after CAR T therapy are limited and recommendations for the treatment of these patients are lacking. We report two cases of patients with mantle cell lymphoma who relapsed after CAR T therapy and were treated with the bispecific CD20/CD3 T cell engaging antibody glofitamab. Both patients showed marked increases of circulating CAR T cells and objective responses after glofitamab administration. Therapy was tolerated without relevant side effects in both patients. One patient completed all 12 planned cycles of glofitamab therapy and was alive and without clinical progression at the last follow-up. The second patient declined further treatment after the first cycle and succumbed to disease progression. We review the literature and investigate possible mechanisms involved in the observed responses after administration of glofitamab, such as proliferation of CAR T cells, anti-tumor effects of the bispecific antibody and the role of other possibly contributing factors. Therapy with bispecific antibodies might offer an effective and well-tolerated option for patients with mantle cell lymphoma relapsing after CAR T therapy.
Collapse
|
41
|
CircCTNNA1 is Upregulated in Mantle Cell Lymphoma and Predicts Poor Survival by Sponging miR-34a to Increase Cell Proliferation. Mediterr J Hematol Infect Dis 2022; 14:e2022047. [PMID: 35865405 PMCID: PMC9266702 DOI: 10.4084/mjhid.2022.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/05/2022] [Indexed: 11/29/2022] Open
Abstract
Background It was reported that circular RNA (circRNA) circCTNNA1 plays an oncogenic role in colorectal cancer, while its role in mantle cell lymphoma (MCL) is unknown. This study aimed to explore the role of circCTNNA1 in MCL. Methods Samples of B lymphocytes were collected from 56 MCL patients and 56 healthy controls. The expression of circCTNNA1 and miR-34a in these samples were determined by RT-qPCR. The direct interaction between circCTNNA1 and miR-34a in MCL cells was detected using RNA-RNA pulldown assay. Overexpression assays were performed to study the interactions between circCTNNA1 and miR-34a. Cell proliferation was assessed with BrdU assay. Results The results showed that circCTNNA1 was upregulated in MCL and high expression levels of circCTNNA1 predicted the poor survival of MCL patients. MiR-34a was downregulated in MCL and inversely correlated with circCTNNA1. CircCTNNA1 was predicted to interact with miR-34a, and the interaction between them was confirmed by RNA pull-down assay. Interestingly, overexpression of circCTNNA1 and miR-34a did not affect the expression of each other. Cell proliferation analysis showed that overexpression of circCTNNA1 reversed the inhibitory effects of overexpression of miR-34a on cell proliferation. Conclusion Upregulation of circCTNNA1 in MCL predicts poor survival of patients and it may sponge miR-34a to promote cancer cell proliferation.
Collapse
|
42
|
Ignatz-Hoover JJ, Murphy EV, Driscoll JJ. Targeting Proteasomes in Cancer and Infectious Disease: A Parallel Strategy to Treat Malignancies and Microbes. Front Cell Infect Microbiol 2022; 12:925804. [PMID: 35873166 PMCID: PMC9302482 DOI: 10.3389/fcimb.2022.925804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
Essential core pathways of cellular biology are preserved throughout evolution, highlighting the importance of these pathways for both bacteria and human cancer cells alike. Cell viability requires a proper balance between protein synthesis and degradation in order to maintain integrity of the proteome. Proteasomes are highly intricate, tightly regulated multisubunit complexes that are critical to achieve protein homeostasis (proteostasis) through the selective degradation of misfolded, redundant and damaged proteins. Proteasomes function as the catalytic core of the ubiquitin-proteasome pathway (UPP) which regulates a myriad of essential processes including growth, survival, differentiation, drug resistance and apoptosis. Proteasomes recognize and degrade proteins that have been marked by covalently attached poly-ubiquitin chains. Deregulation of the UPP has emerged as an essential etiology of many prominent diseases, including cancer. Proteasome inhibitors selectively target cancer cells, including those resistant to chemotherapy, while sparing healthy cells. Proteasome inhibition has emerged as a transformative anti-myeloma strategy that has extended survival for certain patient populations from 3 to 8 years. The structural architecture and functional activity of proteasomes is conserved from Archaea to humans to support the concept that proteasomes are actionable targets that can be inhibited in pathogenic organisms to improve the treatment of infectious diseases. Proteasomes have an essential role during all stages of the parasite life cycle and features that distinguish proteasomes in pathogens from human forms have been revealed. Advancement of inhibitors that target Plasmodium and Mycobacterial proteasomes is a means to improve treatment of malaria and tuberculosis. In addition, PIs may also synergize with current frontline agents support as resistance to conventional drugs continues to increase. The proteasome represents a highly promising, actionable target to combat infectious diseases that devastate lives and livelihoods around the globe.
Collapse
Affiliation(s)
- James J. Ignatz-Hoover
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Elena V. Murphy
- Case Western Reserve University, Department of Biochemistry, Cleveland, OH, United States
| | - James J. Driscoll
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
43
|
Radhakrishnan VS, Lokireddy P, Parihar M, Prakash PS, Menon H. Mantle cell lymphoma: A clinical review of the changing treatment paradigms with the advent of novel therapies, and an insight into Indian data. Cancer Rep (Hoboken) 2022; 5:e1590. [PMID: 34821081 PMCID: PMC9327661 DOI: 10.1002/cnr2.1590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Mantle cell lymphoma (MCL) is a rare type of mature B-cell lymphoid malignancy with the pathologic hallmark of translocation t(11;14) (q13, q32), which leads to an overexpression of Cyclin D1 (CCND1). The disease is also characterized by the presence of a high number of recurrent genetic alterations, which include aberrations in several cellular pathways. MCL is a heterogeneous disease with a wide range of clinical presentations and a majority presenting with aggressive disease in advanced stages. RECENT FINDINGS Management of MCL is bereft with challenges due to its resistant and relapsing pattern. Despite improvements in remission durations, the disease is currently incurable with standard therapy and has a median survival of about 3-5 years. The use of small molecules like the bruton tyrosine kinase (BTK) and BCL2 inhibitors, for treating relapsed MCL has been established leading to a diminishing role for conventional chemotherapy. Combinations of small molecule inhibitors with or without chemoimmunotherapy, are showing promising results. Cellular therapy in the form of CAR-T cell therapy, has been approved recently. CONCLUSIONS Personalized cancer treatment and chemo-free regimens are showing promise and results from well-planned long-term studies are evolving. In India, there is a paucity of epidemiological, clinical, and research data in this field.
Collapse
Affiliation(s)
| | - Padmaja Lokireddy
- Hemato‐Oncology and Stem Cell TransplantApollo HospitalsHyderabadIndia
| | - Mayur Parihar
- Laboratory Hematology and CytogeneticsTata Medical CenterKolkataIndia
| | | | - Hari Menon
- Hemato‐Oncology and Bone Marrow TransplantCytecare HospitalsBangaloreIndia
| |
Collapse
|
44
|
Lu Z, Wang Z, Tu Z, Liu H. HSP90 Inhibitor Ganetespib Enhances the Sensitivity of Mantle Cell Lymphoma to Bruton’s Tyrosine Kinase Inhibitor Ibrutinib. Front Pharmacol 2022; 13:864194. [PMID: 35721157 PMCID: PMC9204102 DOI: 10.3389/fphar.2022.864194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a highly aggressive and heterogeneous B-cell lymphoma. Though Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib has shown great efficacy as a single agent for MCL treatment, the real-world use of ibrutinib is still subject to limitations. Our previous study has shown the treatment with HSP90 inhibitor ganetespib can attack major targets of MCL, luckily complementary to ibrutinib’s targets. In this study, transient ganetespib treatment sensitizes MCL cells to ibrutinib as manifested by the significant decrease of IC50 values, percentages of EdU (5-Ethynyl-2′-deoxyuridine) positive cells, and levels of p-AKT and NF-κB after combinational treatment. Additionally, pretreatment with ganetespib enhanced cell cycle arrest induced by ibrutinib at G0/G1 phase and significantly decreased levels of cell cycle promoting proteins CDK2, 4, and 6. Pretreatment with ganetespib also enhanced cell apoptosis induced by ibrutinib through the upregulation of cleaved-caspase 9 and downregulation of BCL-2 in MCL cells at the molecular level. The sequential administration of ganetespib and ibrutinib had similar effects on increasing DNA damage as the transient treatment with ganetespib as demonstrated by the improved percentage of γH2AX and 53BP1 foci. Furthermore, ganetespib significantly increased inhibition of tumor growth mediated by ibrutinib in vivo, confirmed by the changes of the expression levels of Ki-67 and BCL-2 through immunohistochemistry assays. This study indicates that HSP90 inhibitor ganetespib maybe ideal for the combinational use with BTK inhibitor ibrutinib to target major pathogenesis-associated signaling pathways for MCL treatment which may help identify new possibilities for clinical trials.
Collapse
Affiliation(s)
- Ziwen Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhixin Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- *Correspondence: Zhigang Tu, ; Hanqing Liu,
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- *Correspondence: Zhigang Tu, ; Hanqing Liu,
| |
Collapse
|
45
|
Liu H, Shi X, Fang H, Cao L, Miao Y, Zhao X, Wu W, Xu W, Li J, Fan L. First-Line Autologous Stem Cell Transplantation for Mantle Cell Lymphoma: A Systematic Analysis and Treatment Recommendation. Front Oncol 2022; 12:881346. [PMID: 35646653 PMCID: PMC9130771 DOI: 10.3389/fonc.2022.881346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background In the era of immunotherapy, autologous stem cell transplantation (ASCT) in first-line therapy in patients with mantle cell lymphoma (MCL) has been a controversial topic. This report aimed to explore the association between ASCT and MCL survival through a systematic review with meta-analysis. Methods We performed a systematic search of original articles published from inception to September 2021 using PubMed, MEDLINE, Embase, and Cochrane Library databases. Results We included studies that compared ASCT with non-ASCT consolidation in newly diagnosed transplant-eligible MCL. The endpoints were progression-free survival (PFS) and overall survival (OS). There were seven eligible studies (one randomized clinical trial, one prospective cohort study, and five observational studies) published between 2012 and 2021, in which the total number of participants was 3,271. In the non-intensive induction subgroup, patients with ASCT experienced a significant PFS but no OS benefit compared with those without ASCT. In the intensive induction subgroup, the PFS benefit from ASCT still existed but largely attenuated; no OS benefit was observed though only one study was suitable for evaluation. When compared to the rituximab maintenance arm, ASCT had a worse PFS and OS. Conclusions In the rituximab plus HiDAC era, the benefit of ASCT as a component of first-line treatment has been weakened. First-line maintenance strategy instead of ASCT seems worth exploring .
Collapse
Affiliation(s)
- Hailing Liu
- Department of Hematology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China.,Nanjing Pukou District Central Hospital, Pukou Branch of Jiangsu Province Hospital, Pukou CLL Center, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Xiao Shi
- Department of Hematology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China.,Nanjing Pukou District Central Hospital, Pukou Branch of Jiangsu Province Hospital, Pukou CLL Center, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Huizi Fang
- Nanjing Pukou District Central Hospital, Pukou Branch of Jiangsu Province Hospital, Pukou CLL Center, Nanjing, China
| | - Lei Cao
- Department of Hematology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China.,Nanjing Pukou District Central Hospital, Pukou Branch of Jiangsu Province Hospital, Pukou CLL Center, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Yi Miao
- Department of Hematology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China.,Nanjing Pukou District Central Hospital, Pukou Branch of Jiangsu Province Hospital, Pukou CLL Center, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoli Zhao
- Department of Hematology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China.,Nanjing Pukou District Central Hospital, Pukou Branch of Jiangsu Province Hospital, Pukou CLL Center, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- Department of Hematology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China.,Nanjing Pukou District Central Hospital, Pukou Branch of Jiangsu Province Hospital, Pukou CLL Center, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Xu
- Department of Hematology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China.,Nanjing Pukou District Central Hospital, Pukou Branch of Jiangsu Province Hospital, Pukou CLL Center, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jianyong Li
- Department of Hematology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China.,Nanjing Pukou District Central Hospital, Pukou Branch of Jiangsu Province Hospital, Pukou CLL Center, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Lei Fan
- Department of Hematology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China.,Nanjing Pukou District Central Hospital, Pukou Branch of Jiangsu Province Hospital, Pukou CLL Center, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
46
|
Heini AD, Bacher U, Kronig MN, Wiedemann G, Novak U, Zeerleder S, Mansouri Taleghani B, Daskalakis M, Pabst T. Chimeric antigen receptor T-cell therapy for relapsed mantle cell lymphoma: real-world experience from a single tertiary care center. Bone Marrow Transplant 2022; 57:1010-1012. [PMID: 35383289 DOI: 10.1038/s41409-022-01658-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 01/08/2023]
Affiliation(s)
- Alexander D Heini
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Ulrike Bacher
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Marie-Noëlle Kronig
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Gertrud Wiedemann
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Urban Novak
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Sacha Zeerleder
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Behrouz Mansouri Taleghani
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Michael Daskalakis
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
47
|
Wang YH, Hsieh CY, Hsiao LT, Lin TL, Liu YC, Yao M, Tan TD, Ko BS. Stem cell transplant for mantle cell lymphoma in Taiwan. Sci Rep 2022; 12:5662. [PMID: 35383213 PMCID: PMC8983774 DOI: 10.1038/s41598-022-09539-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a B-cell lymphoma featuring an aggressive course and a progressive relapsing pattern. International guidelines recommend early consolidative autologous stem cell transplant (auto-SCT) for eligible patients while reserving allogeneic SCT (allo-SCT) as therapy for refractory cases. Since data describing the implementation of transplants in the Asian population with MCL are limited, we aimed to analyze post-SCT outcomes of 99 MCL patients from the Taiwan Bone Marrow Transplant Registry database. The median age was 56 years, and 11% of the patients had blastoid variant MCL. Ninety-four patients received auto-SCT, while 13 patients received allo-SCT, eight of which received allo-SCT after failing auto-SCT. Before auto-SCT, 52% of the patients were in their first complete remission (CR1). Overall, 37 patients (39%) relapsed after auto-SCT. The median post-auto-SCT progression-free survival and overall survival (OS) were 43.6 months and not reached, respectively. Blastoid variant MCL, transplant not received in CR1, and disease progression within 12 months post-auto-SCT independently predicted inferior OS in multivariable analysis. The median post-allo-SCT OS was 74 months. Two patients (15%) died of MCL recurrence post-allo-SCT. Three patients with refractory diseases were salvaged with ibrutinib or venetoclax to allo-SCT. Treatment strategies incorporating novel agents warrant further optimization.
Collapse
Affiliation(s)
- Yu-Hung Wang
- Stem Cell and Leukaemia Proteomics Laboratory, University of Manchester, Manchester, UK
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Yun Hsieh
- Division of Hematology and Oncology, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Liang-Tsai Hsiao
- Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tung-Liang Lin
- Division of Hematology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming Yao
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tran-Der Tan
- Division of Hematology and Medical Oncology, Koo Foundation Sun Yat-Sen Cancer Center, No. 125, Lih-Der Road, Pei-Tou District, Taipei, 112, Taiwan.
| | - Bor-Sheng Ko
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Hematological Oncology, National Taiwan University Cancer Center, No. 57, Lane 155, Section 3 of Keelung Rd, Taipei, 100, Taiwan.
| |
Collapse
|
48
|
Cytotoxicity of Callerya speciosa Fractions against Myeloma and Lymphoma Cell Lines. Molecules 2022; 27:molecules27072322. [PMID: 35408721 PMCID: PMC9000591 DOI: 10.3390/molecules27072322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
Callerya speciosa is widely distributed in tropical and subtropical countries and is traditionally used for preventing numerous disorders. In this study, a bioguided fractionation of ethyl acetate extract (SE) from C. speciosa root was carried out to target antioxidant and cytotoxic activities. Of the four fractions (SE1-SE4) obtained by column chromatography, SE4 had the strongest anti-radical ability in the DPPH and ABTS assays (IC50 = 0.05 and 0.17 mg/mL, respectively), with results close to butylated hydroxytoluene (BHT), a common antioxidant agent. The cytotoxic activities against the selected cells were analyzed in this study by MTT assay. Accordingly, SE2, SE3, and SE4 significantly inhibited the viability of multiple myeloma cell lines, comprising U266 (IC50 = 0.38, 0.09, and 0.11 mg/mL, respectively) and KMS11 (IC50 = 0.09, 0.17, and 0.15 mg/mL, respectively), mantle cell lymphoma Mino (IC50 = 0.08, 0.16, and 0.15 mg/mL, respectively), and the noncancerous cell line LCL (IC50 = 0.40, 0.32, and 0.21 mg/mL, respectively). At a concentration of 125 µg/mL, SE2, SE3, and SE4 induced the cell apoptosis of U266 (32.2%, 53.2%, and 55.6%, respectively), KMS11 (36.9%, 40.8%, and 47.9%, respectively), Mino (36.6%, 39.8%, and 22.0%, respectively), and LCL (12.4%, 17.5%, and 23.5%, respectively) via annexin V assay. The dominant compounds detected in fractions by high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (HPLC-ESI-MS/MS), were identified as isoflavones. This is the first report describing C. speciosa as a promising natural source of antileukemia and antimyeloma agents, which may be useful for the development of blood cancer treatments.
Collapse
|
49
|
Alrawashdh N, McBride A, Slack M, Persky D, Andritsos L, Abraham I. Cost-effectiveness and value of information analyses of Bruton's tyrosine kinase inhibitors in the treatment of relapsed or refractory mantle cell lymphoma in the United States. J Manag Care Spec Pharm 2022; 28:390-400. [PMID: 35332792 PMCID: PMC10372983 DOI: 10.18553/jmcp.2022.28.4.390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND: Ibrutinib, acalabrutinib, and zanubrutinib have shown improvements in efficacy and safety over conventional chemoimmunotherapy in refractory or relapsed mantle cell lymphoma (R/R MCL). OBJECTIVE: To evaluate the comparative cost-effectiveness of the Bruton's tyrosine kinase inhibitors (BTKIs) and estimate the expected value of (partial) perfect information (EV[P]PI) in terms of net health benefits (NHBs) and net monetary benefits (NMBs) forgone. METHODS: Using a two-state Markov model (progression-free; progression or death), we estimated in base-case and probabilistic sensitivity analyses (PSAs) the incremental cost-effectiveness (ICER) and cost-utility ratios (ICUR) of, respectively, progression-free survival (PFS) life-years (PFLYs) and PFS quality-adjusted LY (PFQALY) gained (g) against 3-year and 5-year time horizons. A willingness-to-pay threshold of $150,000/PFQALY was used to assess the probability of being cost-effective in the PSA. EVPI was calculated from the respective NHBs and NMBs. RESULTS: Compared with ibrutinib, acalabrutinib yielded a 3-year ICER of $90,571 (PSA = $88,588)/PFLYg and ICUR of $117,098 ($110,063)/PFQALYg, whereas zanubrutinib yielded a 3-year ICER of $58,422 ($58,907)/PFLYg and ICUR of $73,027 ($73,634)/PFQALYg. The corresponding 5-year estimates were ICER of $73,918 ($74,189)/PFLYg and ICUR of $90,512 ($90,844)/PFQALYg for acalabrutinib and ICER of $48,641 ($48,732)/PFLYg and ICUR of $61,612 ($63,727)/PFQALYg for zanubrutinib. Compared with zanubrutinib, treatment with acalabrutinib yielded a 3-year ICER of $144,633 ($134,964)/PFLYg and ICUR of $197,227 ($166,109)/PFQALYg; the corresponding 5-year estimates were $117,579 ($118,161)/PFLYg and $136,144 ($136,818)/PFQALYg. The EVPI/patient was an NHB of 0.036 PFQALYs and NMB of $3,602 forgone, resulting in a population EVPI of $134,766,957 forgone. The EVPPIs/patient for effectiveness were NHB of 0.015 PFQALYs and NMB of $1,479, with corresponding values of 0.032 and $3,187 for costs and 0.015 and $1,519 for health-related quality of life forgone. CONCLUSIONS: This early cost-effectiveness analysis based on phase I/II clinical trials of BTKIs in R/R MCL suggests an additional PFS benefit for second-generation BTKIs compared with ibrutinib. However, the relative uncertainty due to the lack of direct trial evidence may lead to an opportunity cost or lost health benefits if the current evidence is adopted to compare between these products. Additional evidence is needed to address the relative efficacy of the BTKIs. DISCLOSURES: A. McBride serves on speakers bureaus for Coherus BioSciences and Merck. He is now at Bristol-Myers Squibb in a position unrelated to this study. I. Abraham is joint equity owner in Matrix45. By company policy, owners and employees are prohibited from owning equity in client and sponsor organizations (except through mutual funds or other independently administered collective investment instruments), contracting independently with client and sponsor organizations, or receiving compensation independently from such organizations. Matrix45 provides similar services to biopharmaceutical, diagnostics, and medical device companies on a nonexclusivity basis. Of relevance to this article, Matrix45 has not provided any services to this study. I. Abraham is the quantitative methods editor of JAMA Dermatology and deputy editor-in-chief of the Journal of Medical Economics. The remaining authors have no relevant financial or nonfinancial interests to disclose.
Collapse
Affiliation(s)
- Neda Alrawashdh
- Center for Health Outcomes and PharmacoEconomic Research, University of Arizona, Tucson, AZ.,Department of Clinical Translational Sciences, College of Medicine, University of Arizona, Tucson, AZ
| | - Ali McBride
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Marion Slack
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Daniel Persky
- Banner University Medical Center, Tucson, AZ.,University of Arizona Cancer Center, Tucson, AZ
| | - Leslie Andritsos
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | - Ivo Abraham
- Center for Health Outcomes and PharmacoEconomic Research, University of Arizona, Tucson, AZ.,Department of Clinical Translational Sciences, College of Medicine, University of Arizona, Tucson, AZ.,Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ.,University of Arizona Cancer Center, Tucson, AZ.,Matrix45, Tucson, AZ
| |
Collapse
|
50
|
Pu JJ, Savani M, Huang N, Epner EM. Mantle cell lymphoma management trends and novel agents: where are we going? Ther Adv Hematol 2022; 13:20406207221080743. [PMID: 35237397 PMCID: PMC8882940 DOI: 10.1177/20406207221080743] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022] Open
Abstract
The heterogeneity in disease pathology, the unpredictability in disease
prognosis, and the variability in response to therapy make mantle cell lymphoma
(MCL) a focus of novel therapeutic development. MCL is characterized by
dysregulated expression of cyclin D1 through a chromosome
t(11;14) translocation. MCL international prognostic index
(MIPI), ki-67 proliferation index, and TP53
mutation status are currently utilized for prognostication. With advances in
pharmacokinetic analysis and drug discovery, treatment strategy has evolved from
chemotherapy to combination of targeted, epigenetic, and immune therapies. In
this review, we discuss investigational and newly approved treatment approaches.
In a short time, the US Food and Drug Administration (FDA) has approved five
agents for the treatment of MCL: lenalidomide, an immunomodulatory agent;
bortezomib, a proteasome inhibitor; and ibrutinib, acalabrutinib, and
zanubrutinib, all Bruton kinase inhibitors. Epigenetic agents (e.g. cladribine
and vorinostat), mammalian target of rapamycin (mTOR) inhibitors (e.g.
temsirolimus and everolimus), and monoclonal antibodies and/or antibody-drug
conjugates (e.g. obinutuzumab, polatuzumab, and ublituximab) are promising
therapeutic agents currently under clinical trial investigation. Most recently,
chimeric antigen receptor (CAR)-T cell therapy and bispecific T-cell engager
(BiTE) therapy even open a new venue for MCL treatment. However, due to its
intricate pathology nature and high relapse incidence, there are still unmet
needs in developing optimal therapeutic strategies for both frontline and
relapsed/refractory settings. The ultimate goal is to develop innovative
personalized combination therapy approaches for the purpose of delivering
precision medicine to cure this disease.
Collapse
Affiliation(s)
- Jeffrey J. Pu
- University of Arizona Cancer Center, 1515 N Campbell Avenue, Room #1968C, Tucson, AZ 85724, USA
| | - Malvi Savani
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Nick Huang
- State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Elliot M. Epner
- Penn State Hershey Cancer Institute, 100 University Drive, Hershey, PA, USA
| |
Collapse
|