1
|
Ding M, Liu P, Yuan X, Li R, Zhang Y, Ye J, Zhang Y, Kang Y, Ji X. Photogenetic-Like Liposomes Disrupt Neuroligin-3 Dependency to Enhance Glioma Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503631. [PMID: 40326213 DOI: 10.1002/adma.202503631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/15/2025] [Indexed: 05/07/2025]
Abstract
Neuronal activity is shown to potentiate glioma initiation, progression, and/or metastasis. A key mechanism in neural regulation of brain cancer involves the activity-dependent cleavage and release of the synaptic adhesion molecule neuroligin-3 (NLGN3). Here, this report describes the preparation of optogenetics-like liposome Lip-CuRA, which is used to regulate the content of NLGN3 in neurons and mediate phototherapy in cancer cells. Lip-CuRA contains upconversion nanoparticles encapsulating CuS (CuS@PUCNPs), a visible light-activated neurotransmitter prodrug RuBi-GABA, and a disintegrin and metalloproteinase (ADAM10) inhibitors GI254023X. Upon 980 nm laser irradiation, the photothermal conversion of CuS not only induces tumor cell apoptosis, but also destroys liposome structure, releasing Rubi-GABA and GI254023X. The UCNPs convert the 980 nm laser into 540 nm, activating RuBi-GABA into GABA. GABA selectively opens Cl⁻ channels in nerve cells, reducing the expression of NLGN3 and the degree of axonal connections. GI254023X inhibits the activity of the ADAM10 enzyme on the nerve surface, reducing the release of NLGN3, thereby blocking the transmission of proliferation and stemness signals. In the GL261-luc orthotopic glioma model, C6-luc orthotopic glioma model, and glioma patient-derived xenograft (PDX) model, Lip-CuRA effectively inhibits tumor recurrence, reduces glioma stemness, and extends survival through a synergistic photothermal and NLGN3-regulating therapy.
Collapse
Affiliation(s)
- Mengbin Ding
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
| | - Peng Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xue Yuan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Ruiyan Li
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yijing Zhang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jiamin Ye
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yuhan Zhang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, 300072, China
| |
Collapse
|
2
|
Artetxe-Zurutuza A, Iturrioz-Rodriguez N, Elizazu J, Toledano-Pinedo M, Porro-Pérez A, De Goñi I, Elua-Pinin A, Schäker-Hübner L, Azkargorta M, Elortza F, Iriepa I, Lòpez-Muñoz F, Moncho-Amor V, Hansen FK, Sampron N, Marco-Contelles JL, Matheu A. Generation and validation of a novel multitarget small molecule in glioblastoma. Cell Death Dis 2025; 16:250. [PMID: 40185715 PMCID: PMC11971462 DOI: 10.1038/s41419-025-07569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
The development of multitarget small molecules (MSMs) has emerged as a powerful strategy for the treatment of multifactorial diseases such as cancer. Glioblastoma is the most prevalent and malignant primary brain tumor in adults, which is characterized by poor prognosis and a high heterogeneity. Current standards of treatment present limited effectiveness, as patients develop therapy resistance and recur. In this work, we synthesized and characterized a novel multi-target molecule (named DDI199 or contilistat), which is a polyfunctionalized indole derivative developed by juxtaposing selected pharmacophoric moieties of the parent compounds Contilisant and Vorinostat (SAHA) to act as multifunctional ligands that inhibit histone deacetylases (HDACs), monoamine oxidases (MAOs) and cholinesterases (ChEs), and modulate histamine H3 (H3R) and Sigma 1 Receptor (S1R) receptors. DDI199 exerts high cytotoxic activity in conventional glioblastoma cell lines and patient-derived glioma stem cells in vitro. Importantly, it significantly reduces tumor growth in vivo, both alone and in combination with temozolomide (TMZ). The comparison with SAHA showed higher target specificity and antitumor activity of the new molecule. Transcriptomic and proteomic analyses of patient-derived glioma stem cells revealed a deregulation in cell cycle, DNA remodeling and neurotransmission activity by the treatment with DDI199. In conclusion, our data reveal the efficacy of a novel MSM in glioblastoma pre-clinical setting.
Collapse
Affiliation(s)
- Aizpea Artetxe-Zurutuza
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain
| | - Nerea Iturrioz-Rodriguez
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain
| | - Joseba Elizazu
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain
| | - Mireia Toledano-Pinedo
- Laboratory of Medicinal Chemistry (Institute of General Organic Chemistry, CSIC), Madrid, Spain
| | - Alicia Porro-Pérez
- Laboratory of Medicinal Chemistry (Institute of General Organic Chemistry, CSIC), Madrid, Spain
| | - Irati De Goñi
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain
- Neurosurgery Service, Donostia University Hospital, San Sebastian, Spain
| | - Alejandro Elua-Pinin
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain
- Neurosurgery Service, Donostia University Hospital, San Sebastian, Spain
| | - Linda Schäker-Hübner
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Derio, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Derio, Spain
| | - Isabel Iriepa
- Alcala University, Department of Organic and Inorganic Chemistry, Andrés M. del Río Chemistry Research Institute (IQAR); and DISCOBAC group, Castilla-La Mancha Health Research Institute (IDISCAM), Madrid, Spain
| | - Francisco Lòpez-Muñoz
- Faculty of Health Sciences-HM Hospitals, Camilo José Cela University; HM Hospitals Health Research Institute; Neuropsychopharmacology Unit, "Hospital 12 de Octubre" Research Institute, Madrid, Spain
| | - Veronica Moncho-Amor
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Nicolás Sampron
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain
- Neurosurgery Service, Donostia University Hospital, San Sebastian, Spain
| | - Jose Luis Marco-Contelles
- Laboratory of Medicinal Chemistry (Institute of General Organic Chemistry, CSIC), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Ander Matheu
- Cellular Oncology group, Biogipuzkoa (Biodonostia) Health Research Institute, San Sebastian, Spain.
- Centre for Biomedical Network Research on frailty and healthy aging (CIBERFES), ISCIII, Madrid, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
3
|
Zhou W, Ruan H, Zhu L, Chen S, Yang M. Unveiling a Novel Glioblastoma Deep Molecular Profiling: Insight into the Cancer Cell Differentiation-Related Mechanisms. ACS OMEGA 2025; 10:10230-10250. [PMID: 40124014 PMCID: PMC11923693 DOI: 10.1021/acsomega.4c09586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND the sophisticated cellular heterogeneity of cell populations in glioblastoma (GBM) has been a key factor influencing tumor progression and response to therapy. The lack of more precise stratification based on cellular differentiation status poses a great challenge to therapeutic strategies. MATERIALS AND METHODS harnessing the bulk multiomics and single-nucleus RNA sequencing data available from the National Center for Biotechnology Information (NCBI) and The Cancer Genome Atlas (TCGA) Program repositories, we developed a novel and accurate GBM risk classification using an ensemble consensus clustering approach based on the junction of prognosis and trajectory analysis. Comprehensive cluster labeling and multiomics data characterization were also performed. RESULTS a novel GBM stratification model was constructed using 45 malignant cell fate genes: (a) energy metabolism-enhanced-type GBM; (b) invasion-enhanced-type GBM; (c) invasion-attenuated-type GBM; and (d) glycolysis-dominant energy metabolism-enhanced-type GBM. The biological plausibility of the model was verified through a range of comprehensive analyses of multiomics data, showing that cases with invasion-attenuated-type were the best prognosis and energy metabolism-enhanced-type the poorest. CONCLUSIONS the study has uncovered GBM complex cellular heterogeneity and a differentiated hierarchy of cell populations underlying tumorigenesis. This precise stratification system provided implications for further studies of individual therapies.
Collapse
Affiliation(s)
- Weili Zhou
- Department of Radiology, Henan Provincial People’s Hospital & the
People’s Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Hongtao Ruan
- Department of Radiology, Henan Provincial People’s Hospital & the
People’s Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Lihua Zhu
- Department of Radiology, Henan Provincial People’s Hospital & the
People’s Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Shunqiang Chen
- Department of Radiology, Henan Provincial People’s Hospital & the
People’s Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Muyi Yang
- Department of Radiology, Henan Provincial People’s Hospital & the
People’s Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| |
Collapse
|
4
|
Arbatskiy M, Balandin D, Churov A, Varachev V, Nikolaeva E, Mitrofanov A, Bekyashev A, Tkacheva O, Susova O, Nasedkina T. Intratumoral Cell Heterogeneity in Patient-Derived Glioblastoma Cell Lines Revealed by Single-Cell RNA-Sequencing. Int J Mol Sci 2024; 25:8472. [PMID: 39126040 PMCID: PMC11313325 DOI: 10.3390/ijms25158472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Glioblastoma cell lines derived from different patients are widely used in tumor biology research and drug screening. A key feature of glioblastoma is the high level of inter- and intratumor heterogeneity that accounts for treatment resistance. Our aim was to investigate whether intratumor heterogeneity is maintained in cell models. Single-cell RNA sequencing was used to investigate the cellular composition of a tumor sample and six patient-derived glioblastoma cell lines. Three cell lines preserved the mutational profile of the original tumor, whereas three others differed from their precursors. Copy-number variation analysis showed significantly rearranged genomes in all the cell lines and in the tumor sample. The tumor had the most complex cell composition, including cancer cells and microenvironmental cells. Cell lines with a conserved genome had less diverse cellularity, and during cultivation, a relative increase in the stem-cell-derived progenitors was noticed. Cell lines with genomes different from those of the primary tumors mainly contained neural progenitor cells and microenvironmental cells. The establishment of cell lines without the driver mutations that are intrinsic to the original tumors may be related to the selection of clones or cell populations during cultivation. Thus, patient-derived glioblastoma cell lines differ substantially in their cellular profile, which should be taken into account in translational studies.
Collapse
Affiliation(s)
- Mikhail Arbatskiy
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia (A.C.); (O.T.)
| | - Dmitriy Balandin
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia (A.C.); (O.T.)
| | - Alexey Churov
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia (A.C.); (O.T.)
| | - Vyacheslav Varachev
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (T.N.)
| | - Eugenia Nikolaeva
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115522 Moscow, Russia; (E.N.); (A.M.); (A.B.); (O.S.)
| | - Alexei Mitrofanov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115522 Moscow, Russia; (E.N.); (A.M.); (A.B.); (O.S.)
| | - Ali Bekyashev
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115522 Moscow, Russia; (E.N.); (A.M.); (A.B.); (O.S.)
| | - Olga Tkacheva
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia (A.C.); (O.T.)
| | - Olga Susova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115522 Moscow, Russia; (E.N.); (A.M.); (A.B.); (O.S.)
| | - Tatiana Nasedkina
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (T.N.)
| |
Collapse
|
5
|
Ying Q, Fan R, Shen Y, Chen B, Zhang J, Li Q, Shi X. Small Cell Lung Cancer-An Update on Chemotherapy Resistance. Curr Treat Options Oncol 2024; 25:1112-1123. [PMID: 39066852 DOI: 10.1007/s11864-024-01245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
OPINION STATEMENT Compared to other types of lung cancer, small cell lung cancer (SCLC) exhibits aggressive characteristics that promote drug resistance. Despite platinum-etoposide chemotherapy combined with immunotherapy being the current standard treatment, the rapid development of drug resistance has led to unsatisfactory clinical outcomes. This review focuses on the mechanisms contributing to the chemotherapy resistance phenotype in SCLC, such as increased intra-tumoral heterogeneity, alterations in the tumor microenvironment, changes in cellular metabolism, and dysregulation of apoptotic pathways. A comprehensive understanding of these drug resistance mechanisms in SCLC is imperative for ushering in a new era in cancer research, which will promise revolutionary advancements in cancer diagnosis and treatment methodologies.
Collapse
Affiliation(s)
- Qian Ying
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China
| | - Ruiyun Fan
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China
- Department of Respiratory Medicine, Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, Huzhou, People's Republic of China
| | - Yili Shen
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China
- Department of Respiratory Medicine, Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, Huzhou, People's Republic of China
| | - Boyi Chen
- Department of Respiratory Medicine, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, People's Republic of China
| | - Jianhui Zhang
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China
| | - Qiuhui Li
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China.
- Department of Respiratory Medicine, Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, Huzhou, People's Republic of China.
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China.
- Department of Respiratory Medicine, Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, Huzhou, People's Republic of China.
| |
Collapse
|
6
|
Mansuer M, Zhou L, Wang C, Gao L, Jiang Y. Erianin induces ferroptosis in GSCs via REST/LRSAM1 mediated SLC40A1 ubiquitination to overcome TMZ resistance. Cell Death Dis 2024; 15:522. [PMID: 39039049 PMCID: PMC11263394 DOI: 10.1038/s41419-024-06902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
In recent studies, erianin, a natural product isolated from Dendrobium chrysotoxum Lindl, has exhibited notable anticancer properties. Ferroptosis, a novel form of programmed cell death, holds potential as a strategy to overcome Temozolomide (TMZ) resistance in glioma by inducing ferroptosis in TMZ-resistant glioma cells. Here, utilizing various phenotyping experiments, including cell counting kit-8 (CCK-8) assays, EdU assays, transwell assays, neurosphere formation assays and extreme limiting dilution (ELDA) assays, we demonstrated that erianin exerts its anticancer activity on both TMZ sensitive and TMZ-resistant glioma stem cells (GSCs). Furthermore, we made an exciting discovery that erianin enhances TMZ sensitivity in TMZ-resistant GSCs. Subsequently, we demonstrated that erianin induced ferroptosis in TMZ-resistant GSCs and enhances TMZ sensitivity through inducing ferroptosis, which was confirmed by intracellular measurements of ROS, GSH, and MDA, as well as through the use of BODIPY (581/591) C11 and transmission electron microscopy. Conversely, the ferroptosis inhibitor ferrostatin-1 (Fer-1) blocked the effects of erianin. The underlying mechanism of ferroptosis induced by erianin was further explored through co-immunoprecipitation (Co-IP) assays, ubiquitination assays, protein stability assessments, chromatin immunoprecipitation (ChIP) assays and luciferase reporter gene assays. We found that erianin specifically targets REST, inhibiting its transcriptional repression function without altering its expression levels. Consequently, this suppression of REST's role leads to an upregulation of LRSAM1 expression. In turn, LRSAM1 ubiquitinates and degrades SLC40A1, a protein that inhibits ferroptosis by exporting ferrous ions. By downregulating SLC40A1, erianin ultimately induces ferroptosis in TMZ-resistant GSCs. Taken together, our research demonstrates that the natural product erianin inhibits the malignant phenotype of GSCs and increases the sensitivity of TMZ in TMZ-resistant GSCs by inducing ferroptosis. These findings suggest erianin as a prospective compound for the treatment of TMZ-resistant glioma.
Collapse
Affiliation(s)
- Maierdan Mansuer
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lin Zhou
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chengbin Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Yang Jiang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
7
|
Wang R, Lei H, Wang H, Qi L, Liu Y, Liu Y, Shi Y, Chen J, Shen QT. Dysregulated inter-mitochondrial crosstalk in glioblastoma cells revealed by in situ cryo-electron tomography. Proc Natl Acad Sci U S A 2024; 121:e2311160121. [PMID: 38377189 PMCID: PMC10907319 DOI: 10.1073/pnas.2311160121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
Glioblastomas (GBMs) are the most lethal primary brain tumors with limited survival, even under aggressive treatments. The current therapeutics for GBMs are flawed due to the failure to accurately discriminate between normal proliferating cells and distinctive tumor cells. Mitochondria are essential to GBMs and serve as potential therapeutical targets. Here, we utilize cryo-electron tomography to quantitatively investigate nanoscale details of randomly sampled mitochondria in their native cellular context of GBM cells. Our results show that compared with cancer-free brain cells, GBM cells own more inter-mitochondrial junctions of several types for communications. Furthermore, our tomograms unveil microtubule-dependent mitochondrial nanotunnel-like bridges in the GBM cells as another inter-mitochondrial structure. These quantified inter-mitochondrial features, together with other mitochondria-organelle and intra-mitochondrial ones, are sufficient to distinguish GBM cells from cancer-free brain cells under scrutiny with predictive modeling. Our findings decipher high-resolution inter-mitochondrial structural signatures and provide clues for diagnosis and therapeutic interventions for GBM and other mitochondria-related diseases.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen518055, China
| | - Huan Lei
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
| | - Hongxiang Wang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Lei Qi
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
- Biomedical Research Center for Structural Analysis, Shandong University, Jinan250012, China
| | - Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai200092, China
| | - Yunhui Liu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai200092, China
- Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai200092, China
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Qing-Tao Shen
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen518055, China
| |
Collapse
|
8
|
Liguori GL. Challenges and Promise for Glioblastoma Treatment through Extracellular Vesicle Inquiry. Cells 2024; 13:336. [PMID: 38391949 PMCID: PMC10886570 DOI: 10.3390/cells13040336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Glioblastoma (GB) is a rare but extremely aggressive brain tumor that significantly impacts patient outcomes, affecting both duration and quality of life. The protocol established by Stupp and colleagues in 2005, based on radiotherapy and chemotherapy with Temozolomide, following maximum safe surgical resection remains the gold standard for GB treatment; however, it is evident nowadays that the extreme intratumoral and intertumoral heterogeneity, as well as the invasiveness and tendency to recur, of GB are not compatible with a routine and unfortunately ineffective treatment. This review article summarizes the main challenges in the search for new valuable therapies for GB and focuses on the impact that extracellular vesicle (EV) research and exploitation may have in the field. EVs are natural particles delimited by a lipidic bilayer and filled with functional cellular content that are released and uptaken by cells as key means of cell communication. Furthermore, EVs are stable in body fluids and well tolerated by the immune system, and are able to cross physiological, interspecies, and interkingdom barriers and to target specific cells, releasing inherent or externally loaded functionally active molecules. Therefore, EVs have the potential to be ideal allies in the fight against GB and to improve the prognosis for GB patients. The present work describes the main preclinical results obtained so far on the use of EVs for GB treatment, focusing on both the EV sources and molecular cargo used in the various functional studies, primarily in vivo. Finally, a SWOT analysis is performed, highlighting the main advantages and pitfalls of developing EV-based GB therapeutic strategies. The analysis also suggests the main directions to explore to realize the possibility of exploiting EVs for the treatment of GB.
Collapse
Affiliation(s)
- Giovanna L Liguori
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", National Research Council (CNR) of Italy, 80131 Naples, Italy
| |
Collapse
|
9
|
Mahmoudian E, Jahani-Asl A. Establishing Brain Tumor Stem Cell Culture from Patient Brain Tumors and Imaging Analysis of Patient-Derived Xenografts. Methods Mol Biol 2024; 2736:177-192. [PMID: 37243860 DOI: 10.1007/7651_2023_482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Brain tumor stem cells (BTSCs) have been isolated from different types of brain tumors including glioblastoma. Although BTSCs share common characteristics with neural stem cells (NSCs), such as capacity to self-renew and undergo long-term proliferation, they have tumor-propagating capabilities. A small population of BTSC can give rise to secondary tumor when transplanted into severe immunodeficient (SCID) mice. The histological and cytological features, as well as genetic heterogeneity of the xenografted tumors in mice, closely resemble those of primary tumors in patients. Patient-derived xenografts (PDX), therefore, provide a clinically relevant model to study brain tumors. Here, we describe our protocol for establishing BTSC cultures following surgical excision of human brain tumors and the procedures to conduct PDX studies in SCID mice. We also provide our detailed step-by-step protocol on in vivo imaging system (IVIS) of the PDX tumors as a noninvasive method to trace the cells and tumor volume.
Collapse
Affiliation(s)
- Elham Mahmoudian
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada.
- Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
10
|
Amanat MA, Farrukh A, Ishaq MUBM, Bin Shafqat B, Haidri SH, Amin R, Sameen R, Kamal T, Riaz MN, Quresh W, Ikram R, Ali GM, Begum S, Bangash SAK, Kaleem I, Bashir S, Khattak SH. The Potential of Nanotechnology to Replace Cancer Stem Cells. Curr Stem Cell Res Ther 2024; 19:820-831. [PMID: 37264662 DOI: 10.2174/1574888x18666230601140700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 06/03/2023]
Abstract
Stem cells, which were initially identified in the 1900s, are distinct cells with the potential to replenish themselves as well as differentiate into specialised cells with certain forms and functions. Cancer stem cells play a significant role in the growth and recurrence of the tumours and, similar to normal stem cells, are capable of proliferating and differentiating. Traditional cancer treatments are ineffective against cancer stem cells, which leads to tumour regrowth. Cancer stem cells are thought to emerge as a result of epithelial-to-mesenchymal transition pathways. Brain, prostate, pancreatic, blood, ovarian, lung, liver, melanomas, AML, and breast cancer stem cells are among the most prevalent cancer forms. This review aims to comprehend the possibility of using specific forms of nanotechnology to replace cancer stem cells. In terms of nanotechnology, magnetic nanoparticles can deliver medications, especially to the target region without harming healthy cells, and they are biocompatible. In order to kill glioma cancer stem cells, the gold nanoparticles bond with DNA and function as radio sensitizers. In contrast, liposomes can circulate and traverse biological membranes and exhibit high therapeutic efficacy, precise targeting, and better drug release. Similar to carbon nanotubes, grapheme, and grapheme oxide, these substances can be delivered specifically when utilized in photothermal therapy. Recent treatments including signaling pathways and indicators targeted by nanoparticles are being researched. Future research in nanotechnology aims to develop more effective and targeted medicinal approaches. The results of the current investigation also showed that this technology's utilization will improve medical therapy and treatment.
Collapse
Affiliation(s)
- Muhammad Ammar Amanat
- Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat, Gujrat Pakistan
| | | | | | - Binyameen Bin Shafqat
- Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat, Gujrat Pakistan
| | - Saqib Hussain Haidri
- Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat, Gujrat Pakistan
| | - Rehab Amin
- Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat, Gujrat Pakistan
| | - Rafia Sameen
- Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat, Gujrat Pakistan
| | - Tahira Kamal
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre, Islamabad, Pakistan
| | - Muhammad Naeem Riaz
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre, Islamabad, Pakistan
- Animal biotechnology program, Animal Sciences Institute (ASI), National Agriculture Research Centre (NARC), Islamabad, Pakistan
| | - Waleed Quresh
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre, Islamabad, Pakistan
| | - Rabia Ikram
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre, Islamabad, Pakistan
| | - Ghulam Muhammad Ali
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre, Islamabad, Pakistan
| | - Sania Begum
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre, Islamabad, Pakistan
| | | | - Imdad Kaleem
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Shahid Bashir
- Neurosciences Center, King Fahad Specialist Hospital Dammam, P.O. Box 15215, Dammam 31444, Saudi Arabia
| | - Sahir Hameed Khattak
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre, Islamabad, Pakistan
| |
Collapse
|
11
|
Wang WD, Guo YY, Yang ZL, Su GL, Sun ZJ. Sniping Cancer Stem Cells with Nanomaterials. ACS NANO 2023; 17:23262-23298. [PMID: 38010076 DOI: 10.1021/acsnano.3c07828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cancer stem cells (CSCs) drive tumor initiation, progression, and therapeutic resistance due to their self-renewal and differentiation capabilities. Despite encouraging progress in cancer treatment, conventional approaches often fail to eliminate CSCs, necessitating the development of precise targeted strategies. Recent advances in materials science and nanotechnology have enabled promising CSC-targeted approaches, harnessing the power of tailoring nanomaterials in diverse therapeutic applications. This review provides an update on the current landscape of nanobased precision targeting approaches against CSCs. We elucidate the nuanced application of organic, inorganic, and bioinspired nanomaterials across a spectrum of therapeutic paradigms, encompassing targeted therapy, immunotherapy, and multimodal synergistic therapies. By examining the accomplishments and challenges in this potential field, we aim to inform future efforts to advance nanomaterial-based therapies toward more effective "sniping" of CSCs and tumor clearance.
Collapse
Affiliation(s)
- Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Yan-Yu Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhong-Lu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
12
|
Visioli A, Trivieri N, Mencarelli G, Giani F, Copetti M, Palumbo O, Pracella R, Cariglia MG, Barile C, Mischitelli L, Soriano AA, Palumbo P, Legnani F, DiMeco F, Gorgoglione L, Pesole G, Vescovi AL, Binda E. Different states of stemness of glioblastoma stem cells sustain glioblastoma subtypes indicating novel clinical biomarkers and high-efficacy customized therapies. J Exp Clin Cancer Res 2023; 42:244. [PMID: 37735434 PMCID: PMC10512479 DOI: 10.1186/s13046-023-02811-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most malignant among gliomas with an inevitable lethal outcome. The elucidation of the physiology and regulation of this tumor is mandatory to unravel novel target and effective therapeutics. Emerging concepts show that the minor subset of glioblastoma stem cells (GSCs) accounts for tumorigenicity, representing the true target for innovative therapies in GBM. METHODS Here, we isolated and established functionally stable and steadily expanding GSCs lines from a large cohort of GBM patients. The molecular, functional and antigenic landscape of GBM tissues and their derivative GSCs was highlited in a side-by-side comprehensive genomic and transcriptomic characterization by ANOVA and Fisher's exact tests. GSCs' physio-pathological hallmarks were delineated by comparing over time in vitro and in vivo their expansion, self-renewal and tumorigenic ability with hierarchical linear models for repeated measurements and Kaplan-Meier method. Candidate biomarkers performance in discriminating GBM patients' classification emerged by classification tree and patients' survival analysis. RESULTS Here, distinct biomarker signatures together with aberrant functional programs were shown to stratify GBM patients as well as their sibling GSCs population into TCGA clusters. Of importance, GSCs cells were demonstrated to fully resemble over time the molecular features of their patient of origin. Furthermore, we pointed out the existence of distinct GSCs subsets within GBM classification, inherently endowed with different self-renewal and tumorigenic potential. Particularly, classical GSCs were identified by more undifferentiated biological hallmarks, enhanced expansion and clonal capacity as compared to the more mature, relatively slow-propagating mesenchymal and proneural cells, likely endowed with a higher potential for infiltration either ex vivo or in vivo. Importantly, the combination of DCX and EGFR markers, selectively enriched among GSCs pools, almost exactly predicted GBM patients' clusters together with their survival and drug response. CONCLUSIONS In this study we report that an inherent enrichment of distinct GSCs pools underpin the functional inter-cluster variances displayed by GBM patients. We uncover two selectively represented novel functional biomarkers capable of discriminating GBM patients' stratification, survival and drug response, setting the stage for the determination of patient-tailored diagnostic and prognostic strategies and, mostly, for the design of appropriate, patient-selective treatment protocols.
Collapse
Affiliation(s)
| | - Nadia Trivieri
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Gandino Mencarelli
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | | | - Massimiliano Copetti
- Biostatistical Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Orazio Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Riccardo Pracella
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Maria Grazia Cariglia
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Chiara Barile
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Luigi Mischitelli
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Amata Amy Soriano
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Pietro Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Federico Legnani
- Department of Neurosurgery, National Neurologic Institute IRCCS C. Besta, Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, National Neurologic Institute IRCCS C. Besta, Milan, Italy
- Department of Neurosurgery, John Hopkins University, Baltimore, Mariland, USA
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | | | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Angelo L Vescovi
- Scientific Directorate, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
- Hyperstem SA, Lugano, Switzerland.
| | - Elena Binda
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
13
|
Izadpanah A, Mohammadkhani N, Masoudnia M, Ghasemzad M, Saeedian A, Mehdizadeh H, Poorebrahim M, Ebrahimi M. Update on immune-based therapy strategies targeting cancer stem cells. Cancer Med 2023; 12:18960-18980. [PMID: 37698048 PMCID: PMC10557910 DOI: 10.1002/cam4.6520] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Accumulating data reveals that tumors possess a specialized subset of cancer cells named cancer stem cells (CSCs), responsible for metastasis and recurrence of malignancies, with various properties such as self-renewal, heterogenicity, and capacity for drug resistance. Some signaling pathways or processes like Notch, epithelial to mesenchymal transition (EMT), Hedgehog (Hh), and Wnt, as well as CSCs' surface markers such as CD44, CD123, CD133, and epithelial cell adhesion molecule (EpCAM) have pivotal roles in acquiring CSCs properties. Therefore, targeting CSC-related signaling pathways and surface markers might effectively eradicate tumors and pave the way for cancer survival. Since current treatments such as chemotherapy and radiation therapy cannot eradicate all of the CSCs and tumor relapse may happen following temporary recovery, improving novel and more efficient therapeutic options to combine with current treatments is required. Immunotherapy strategies are the new therapeutic modalities with promising results in targeting CSCs. Here, we review the targeting of CSCs by immunotherapy strategies such as dendritic cell (DC) vaccines, chimeric antigen receptors (CAR)-engineered immune cells, natural killer-cell (NK-cell) therapy, monoclonal antibodies (mAbs), checkpoint inhibitors, and the use of oncolytic viruses (OVs) in pre-clinical and clinical studies. This review will mainly focus on blood malignancies but also describe solid cancers.
Collapse
Affiliation(s)
- Amirhossein Izadpanah
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Niloufar Mohammadkhani
- Department of Clinical BiochemistrySchool of Medicine, Shahid Beheshti University of Medical SciencesTehranIran
| | - Mina Masoudnia
- Department of ImmunologySchool of Medicine, Shahid Beheshti University of Medical SciencesTehranIran
| | - Mahsa Ghasemzad
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of Molecular Cell Biology‐Genetics, Faculty of Basic Sciences and Advanced Technologies in BiologyUniversity of Science and CultureTehranIran
| | - Arefeh Saeedian
- Radiation Oncology Research CenterCancer Research Institute, Tehran University of Medical SciencesTehranIran
- Department of Radiation OncologyCancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical SciencesTehranIran
| | - Hamid Mehdizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Mansour Poorebrahim
- Arnie Charbonneau Cancer Research Institute, University of CalgaryAlbertaCalgaryCanada
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of regenerative medicineCell Science research Center, Royan Institute for stem cell biology and technology, ACECRTehranIran
| |
Collapse
|
14
|
Razi S, Haghparast A, Chodari Khameneh S, Ebrahimi Sadrabadi A, Aziziyan F, Bakhtiyari M, Nabi-Afjadi M, Tarhriz V, Jalili A, Zalpoor H. The role of tumor microenvironment on cancer stem cell fate in solid tumors. Cell Commun Signal 2023; 21:143. [PMID: 37328876 PMCID: PMC10273768 DOI: 10.1186/s12964-023-01129-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/15/2023] [Indexed: 06/18/2023] Open
Abstract
In the last few decades, the role of cancer stem cells in initiating tumors, metastasis, invasion, and resistance to therapies has been recognized as a potential target for tumor therapy. Understanding the mechanisms by which CSCs contribute to cancer progression can help to provide novel therapeutic approaches against solid tumors. In this line, the effects of mechanical forces on CSCs such as epithelial-mesenchymal transition, cellular plasticity, etc., the metabolism pathways of CSCs, players of the tumor microenvironment, and their influence on the regulating of CSCs can lead to cancer progression. This review focused on some of these mechanisms of CSCs, paving the way for a better understanding of their regulatory mechanisms and developing platforms for targeted therapies. While progress has been made in research, more studies will be required in the future to explore more aspects of how CSCs contribute to cancer progression. Video Abstract.
Collapse
Affiliation(s)
- Sara Razi
- Vira Pioneers of Modern Science (VIPOMS), Tehran, Iran
| | | | | | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran
- Cytotech and Bioinformatics Research Group, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vahideh Tarhriz
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box 5163639888, Tabriz, Iran.
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran.
- Parvaz Research Ideas Supporter Institute, Tehran, Iran.
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Regulation of Cell Plasticity by Bromodomain and Extraterminal Domain (BET) Proteins: A New Perspective in Glioblastoma Therapy. Int J Mol Sci 2023; 24:ijms24065665. [PMID: 36982740 PMCID: PMC10055343 DOI: 10.3390/ijms24065665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
BET proteins are a family of multifunctional epigenetic readers, mainly involved in transcriptional regulation through chromatin modelling. Transcriptome handling ability of BET proteins suggests a key role in the modulation of cell plasticity, both in fate decision and in lineage commitment during embryonic development and in pathogenic conditions, including cancerogenesis. Glioblastoma is the most aggressive form of glioma, characterized by a very poor prognosis despite the application of a multimodal therapy. Recently, new insights are emerging about the glioblastoma cellular origin, leading to the hypothesis that several putative mechanisms occur during gliomagenesis. Interestingly, epigenome dysregulation associated with loss of cellular identity and functions are emerging as crucial features of glioblastoma pathogenesis. Therefore, the emerging roles of BET protein in glioblastoma onco-biology and the compelling demand for more effective therapeutic strategies suggest that BET family members could be promising targets for translational breakthroughs in glioblastoma treatment. Primarily, “Reprogramming Therapy”, which is aimed at reverting the malignant phenotype, is now considered a promising strategy for GBM therapy.
Collapse
|
16
|
Yang R, Hamilton AM, Sun H, Rawji KS, Sarkar S, Mirzaei R, Pike GB, Yong VW, Dunn JF. Detecting monocyte trafficking in an animal model of glioblastoma using R 2* and quantitative susceptibility mapping. Cancer Immunol Immunother 2023; 72:733-742. [PMID: 36194288 DOI: 10.1007/s00262-022-03297-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 09/07/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND The role of tumor-associated macrophages (TAMs) in glioblastoma (GBM) disease progression has received increasing attention. Recent advances have shown that TAMs can be re-programmed to exert a pro-inflammatory, anti-tumor effect to control GBMs. However, imaging methods capable of differentiating tumor progression from immunotherapy treatment effects have been lacking, making timely assessment of treatment response difficult. We showed that tracking monocytes using iron oxide nanoparticle (USPIO) with MRI can be a sensitive imaging method to detect therapy response directed at the innate immune system. METHODS We implanted syngeneic mouse glioma stem cells into C57/BL6 mice and treated the animals with either niacin (a stimulator of innate immunity) or vehicle. Animals were imaged using an anatomical MRI sequence, R2* mapping, and quantitative susceptibility mapping (QSM) before and after USPIO injection. RESULTS Compared to vehicles, niacin-treated animals showed significantly higher susceptibility and R2*, representing USPIO and monocyte infiltration into the tumor. We observed a significant reduction in tumor size in the niacin-treated group 7 days later. We validated our MRI results with flow cytometry and immunofluoresence, which showed that niacin decreased pro-inflammatory Ly6C high monocytes in the blood but increased CD16/32 pro-inflammatory macrophages within the tumor, consistent with migration of these pro-inflammatory innate immune cells from the blood to the tumor. CONCLUSION MRI with USPIO injection can detect therapeutic responses of innate immune stimulating agents before changes in tumor size have occurred, providing a potential complementary imaging technique to monitor cancer immunotherapies. MANUSCRIPT HIGHLIGHT We show that iron oxide nanoparticles (USPIOs) can be used to label innate immune cells and detect the trafficking of pro-inflammatory monocytes into the glioblastoma. This preceded changes in tumor size, making it a more sensitive imaging technique.
Collapse
Affiliation(s)
- Runze Yang
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - A Max Hamilton
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Hongfu Sun
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia
| | - Khalil S Rawji
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Susobhan Sarkar
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Reza Mirzaei
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - G Bruce Pike
- Department of Radiology, Cumming School of Medicine, University of Calgary, N.W. Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - V Wee Yong
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Oncology, Cumming School of Medicine, Calgary, Canada
| | - Jeff F Dunn
- Department of Radiology, Cumming School of Medicine, University of Calgary, N.W. Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada.
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
17
|
Johanssen T, McVeigh L, Erridge S, Higgins G, Straehla J, Frame M, Aittokallio T, Carragher NO, Ebner D. Glioblastoma and the search for non-hypothesis driven combination therapeutics in academia. Front Oncol 2023; 12:1075559. [PMID: 36733367 PMCID: PMC9886867 DOI: 10.3389/fonc.2022.1075559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Glioblastoma (GBM) remains a cancer of high unmet clinical need. Current standard of care for GBM, consisting of maximal surgical resection, followed by ionisation radiation (IR) plus concomitant and adjuvant temozolomide (TMZ), provides less than 15-month survival benefit. Efforts by conventional drug discovery to improve overall survival have failed to overcome challenges presented by inherent tumor heterogeneity, therapeutic resistance attributed to GBM stem cells, and tumor niches supporting self-renewal. In this review we describe the steps academic researchers are taking to address these limitations in high throughput screening programs to identify novel GBM combinatorial targets. We detail how they are implementing more physiologically relevant phenotypic assays which better recapitulate key areas of disease biology coupled with more focussed libraries of small compounds, such as drug repurposing, target discovery, pharmacologically active and novel, more comprehensive anti-cancer target-annotated compound libraries. Herein, we discuss the rationale for current GBM combination trials and the need for more systematic and transparent strategies for identification, validation and prioritisation of combinations that lead to clinical trials. Finally, we make specific recommendations to the preclinical, small compound screening paradigm that could increase the likelihood of identifying tractable, combinatorial, small molecule inhibitors and better drug targets specific to GBM.
Collapse
Affiliation(s)
- Timothy Johanssen
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Laura McVeigh
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Sara Erridge
- Edinburgh Cancer Centre, Western General Hospital, Edinburgh, United Kingdom
| | - Geoffrey Higgins
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Joelle Straehla
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA, United States
| | - Margaret Frame
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
- Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Neil O. Carragher
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Trivieri N, Visioli A, Mencarelli G, Cariglia MG, Marongiu L, Pracella R, Giani F, Soriano AA, Barile C, Cajola L, Copetti M, Palumbo O, Legnani F, DiMeco F, Gorgoglione L, Vescovi AL, Binda E. Growth factor independence underpins a paroxysmal, aggressive Wnt5aHigh/EphA2Low phenotype in glioblastoma stem cells, conducive to experimental combinatorial therapy. J Exp Clin Cancer Res 2022; 41:139. [PMID: 35414102 PMCID: PMC9004109 DOI: 10.1186/s13046-022-02333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Glioblastoma multiforme (GBM) is an incurable tumor, with a median survival rate of only 14–15 months. Along with heterogeneity and unregulated growth, a central matter in dealing with GBMs is cell invasiveness. Thus, improving prognosis requires finding new agents to inhibit key multiple pathways, even simultaneously. A subset of GBM stem-like cells (GSCs) may account for tumorigenicity, representing, through their pathways, the proper cellular target in the therapeutics of glioblastomas. GSCs cells are routinely enriched and expanded due to continuous exposure to specific growth factors, which might alter some of their intrinsic characteristic and hide therapeutically relevant traits.
Methods
By removing exogenous growth factors stimulation, here we isolated and characterized a subset of GSCs with a “mitogen-independent” phenotype (I-GSCs) from patient’s tumor specimens. Differential side-by-side comparative functional and molecular analyses were performed either in vitro or in vivo on these cells versus their classical growth factor (GF)-dependent counterpart (D-GSCs) as well as their tissue of origin. This was performed to pinpoint the inherent GSCs’ critical regulators, with particular emphasis on those involved in spreading and tumorigenic potential. Transcriptomic fingerprints were pointed out by ANOVA with Benjamini-Hochberg False Discovery Rate (FDR) and association of copy number alterations or somatic mutations was determined by comparing each subgroup with a two-tailed Fisher’s exact test. The combined effects of interacting in vitro and in vivo with two emerging GSCs’ key regulators, such as Wnt5a and EphA2, were then predicted under in vivo experimental settings that are conducive to clinical applications. In vivo comparisons were carried out in mouse-human xenografts GBM model by a hierarchical linear model for repeated measurements and Dunnett’s multiple comparison test with the distribution of survival compared by Kaplan–Meier method.
Results
Here, we assessed that a subset of GSCs from high-grade gliomas is self-sufficient in the activation of regulatory growth signaling. Furthermore, while constitutively present within the same GBM tissue, these GF-independent GSCs cells were endowed with a distinctive functional and molecular repertoire, defined by highly aggressive Wnt5aHigh/EphA2Low profile, as opposed to Wnt5aLow/EphA2High expression in sibling D-GSCs. Regardless of their GBM subtype of origin, I-GSCs, are endowed with a raised in vivo tumorigenic potential than matched D-GSCs, which were fast-growing ex-vivo but less lethal and invasive in vivo. Also, the malignant I-GSCs’ transcriptomic fingerprint faithfully mirrored the original tumor, bringing into evidence key regulators of invasiveness, angiogenesis and immuno-modulators, which became candidates for glioma diagnostic/prognostic markers and therapeutic targets. Particularly, simultaneously counteracting the activity of the tissue invasive mediator Wnt5a and EphA2 tyrosine kinase receptor addictively hindered GSCs’ tumorigenic and invasive ability, thus increasing survival.
Conclusion
We show how the preservation of a mitogen-independent phenotype in GSCs plays a central role in determining the exacerbated tumorigenic and high mobility features distinctive of GBM. The exploitation of the I-GSCs' peculiar features shown here offers new ways to identify novel, GSCs-specific effectors, whose modulation can be used in order to identify novel, potential molecular therapeutic targets. Furthermore, we show how the combined use of PepA, the anti-Wnt5a drug, and of ephrinA1-Fc to can hinder GSCs’ lethality in a clinically relevant xenogeneic in vivo model thus being conducive to perspective, novel combinatorial clinical application.
Collapse
|
19
|
Hu Y, Jiang Y, Behnan J, Ribeiro MM, Kalantzi C, Zhang MD, Lou D, Häring M, Sharma N, Okawa S, Del Sol A, Adameyko I, Svensson M, Persson O, Ernfors P. Neural network learning defines glioblastoma features to be of neural crest perivascular or radial glia lineages. SCIENCE ADVANCES 2022; 8:eabm6340. [PMID: 35675414 PMCID: PMC9177076 DOI: 10.1126/sciadv.abm6340] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glioblastoma is believed to originate from nervous system cells; however, a putative origin from vessel-associated progenitor cells has not been considered. We deeply single-cell RNA-sequenced glioblastoma progenitor cells of 18 patients and integrated 710 bulk tumors and 73,495 glioma single cells of 100 patients to determine the relation of glioblastoma cells to normal brain cell types. A novel neural network-based projection of the developmental trajectory of normal brain cells uncovered two principal cell-lineage features of glioblastoma, neural crest perivascular and radial glia, carrying defining methylation patterns and survival differences. Consistently, introducing tumorigenic alterations in naïve human brain perivascular cells resulted in brain tumors. Thus, our results suggest that glioblastoma can arise from the brains' vasculature, and patients with such glioblastoma have a significantly poorer outcome.
Collapse
Affiliation(s)
- Yizhou Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yiwen Jiang
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jinan Behnan
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mariana Messias Ribeiro
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Chrysoula Kalantzi
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ming-Dong Zhang
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Daohua Lou
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Häring
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nilesh Sharma
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Satoshi Okawa
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Igor Adameyko
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Oscar Persson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Corresponding author.
| |
Collapse
|
20
|
Auzmendi-Iriarte J, Otaegi-Ugartemendia M, Carrasco-Garcia E, Azkargorta M, Diaz A, Saenz-Antoñanzas A, Andermatten JA, Garcia-Puga M, Garcia I, Elua-Pinin A, Ruiz I, Sampron N, Elortza F, Cuervo AM, Matheu A. Chaperone-Mediated Autophagy Controls Proteomic and Transcriptomic Pathways to Maintain Glioma Stem Cell Activity. Cancer Res 2022; 82:1283-1297. [PMID: 35131870 PMCID: PMC9359743 DOI: 10.1158/0008-5472.can-21-2161] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/15/2021] [Accepted: 01/27/2022] [Indexed: 02/07/2023]
Abstract
Chaperone-mediated autophagy (CMA) is a homeostatic process essential for the lysosomal degradation of a selected subset of the proteome. CMA activity directly depends on the levels of LAMP2A, a critical receptor for CMA substrate proteins at the lysosomal membrane. In glioblastoma (GBM), the most common and aggressive brain cancer in adulthood, high levels of LAMP2A in the tumor and tumor-associated pericytes have been linked to temozolomide resistance and tumor progression. However, the role of LAMP2A, and hence CMA, in any cancer stem cell type or in glioblastoma stem cells (GSC) remains unknown. In this work, we show that LAMP2A expression is enriched in patient-derived GSCs, and its depletion diminishes GSC-mediated tumorigenic activities. Conversely, overexpression of LAMP2A facilitates the acquisition of GSC properties. Proteomic and transcriptomic analysis of LAMP2A-depleted GSCs revealed reduced extracellular matrix interaction effectors in both analyses. Moreover, pathways related to mitochondrial metabolism and the immune system were differentially deregulated at the proteome level. Furthermore, clinical samples of GBM tissue presented overexpression of LAMP2, which correlated with advanced glioma grade and poor overall survival. In conclusion, we identified a novel role of CMA in directly regulating GSCs activity via multiple pathways at the proteome and transcriptome levels. SIGNIFICANCE A receptor of chaperone-mediated autophagy regulates glioblastoma stem cells and may serve as a potential biomarker for advanced tumor grade and poor survival in this disease.
Collapse
Affiliation(s)
| | | | | | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Spain
| | - Antonio Diaz
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, New York
| | | | | | - Mikel Garcia-Puga
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Idoia Garcia
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | | | - Irune Ruiz
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,Donostia University Hospital, Osakidetza, San Sebastian, Spain
| | - Nicolas Sampron
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,Donostia University Hospital, Osakidetza, San Sebastian, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Spain
| | - Ana Maria Cuervo
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, New York
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Corresponding Author: Ander Matheu, Cellular Oncology, Biodonostia Health Research Institute, Paseo Dr. Beguiristain s/n, San Sebastian 20014, Spain. E-mail:
| |
Collapse
|
21
|
Xie XP, Laks DR, Sun D, Ganbold M, Wang Z, Pedraza AM, Bale T, Tabar V, Brennan C, Zhou X, Parada LF. Quiescent human glioblastoma cancer stem cells drive tumor initiation, expansion, and recurrence following chemotherapy. Dev Cell 2022; 57:32-46.e8. [PMID: 35016005 PMCID: PMC8820651 DOI: 10.1016/j.devcel.2021.12.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/01/2021] [Accepted: 12/03/2021] [Indexed: 01/12/2023]
Abstract
We test the hypothesis that glioblastoma harbors quiescent cancer stem cells that evade anti-proliferative therapies. Functional characterization of spontaneous glioblastomas from genetically engineered mice reveals essential quiescent stem-like cells that can be directly isolated from tumors. A derived quiescent cancer-stem-cell-specific gene expression signature is enriched in pre-formed patient GBM xenograft single-cell clusters that lack proliferative gene expression. A refined human 118-gene signature is preserved in quiescent single-cell populations from primary and recurrent human glioblastomas. The F3 cell-surface receptor mRNA, expressed in the conserved signature, identifies quiescent tumor cells by antibody immunohistochemistry. F3-antibody-sorted glioblastoma cells exhibit stem cell gene expression, enhance self-renewal in culture, drive tumor initiation and serial transplantation, and reconstitute tumor heterogeneity. Upon chemotherapy, the spared cancer stem cell pool becomes activated and accelerates transition to proliferation. These results help explain conventional treatment failure and lay a conceptual framework for alternative therapies.
Collapse
Affiliation(s)
- Xuanhua P. Xie
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA,Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA,These authors contributed equally,Correspondence: ,
| | - Dan R. Laks
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA,Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA,These authors contributed equally,Present address: Voyager Therapeutics, Cambridge, MA 02139, USA
| | - Daochun Sun
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA,Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA,Present address: Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| | - Mungunsarnai Ganbold
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA,Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Zilai Wang
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA,Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA,Present address: Chicago Biosolutions, Inc, Chicago, IL 60612, USA
| | - Alicia M. Pedraza
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA,Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Tejus Bale
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA,Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Viviane Tabar
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA,Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Cameron Brennan
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA,Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Jiangsu 221002, PR China
| | - Luis F. Parada
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA,Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA,Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA,Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Lead Contact,Correspondence: ,
| |
Collapse
|
22
|
Dixit D, Prager BC, Gimple RC, Miller TE, Wu Q, Yomtoubian S, Kidwell RL, Lv D, Zhao L, Qiu Z, Zhang G, Lee D, Park DE, Wechsler-Reya RJ, Wang X, Bao S, Rich JN. Glioblastoma stem cells reprogram chromatin in vivo to generate selective therapeutic dependencies on DPY30 and phosphodiesterases. Sci Transl Med 2022; 14:eabf3917. [PMID: 34985972 DOI: 10.1126/scitranslmed.abf3917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glioblastomas are universally fatal cancers and contain self-renewing glioblastoma stem cells (GSCs) that initiate tumors. Traditional anticancer drug discovery based on in vitro cultures tends to identify targets with poor therapeutic indices and fails to accurately model the effects of the tumor microenvironment. Here, leveraging in vivo genetic screening, we identified the histone H3 lysine 4 trimethylation (H3K4me3) regulator DPY30 (Dpy-30 histone methyltransferase complex regulatory subunit) as an in vivo–specific glioblastoma dependency. On the basis of the hypothesis that in vivo epigenetic regulation may define critical GSC dependencies, we interrogated active chromatin landscapes of GSCs derived from intracranial patient-derived xenografts (PDXs) and cell culture through H3K4me3 chromatin immunoprecipitation and transcriptome analyses. Intracranial-specific genes marked by H3K4me3 included FOS, NFκB, and phosphodiesterase (PDE) family members. In intracranial PDX tumors, DPY30 regulated angiogenesis and hypoxia pathways in an H3K4me3-dependent manner but was dispensable in vitro in cultured GSCs. PDE4B was a key downstream effector of DPY30, and the PDE4 inhibitor rolipram preferentially targeted DPY30-expressing cells and impaired PDX tumor growth in mice without affecting tumor cells cultured in vitro. Collectively, the MLL/SET1 (mixed lineage leukemia/SET domain-containing 1, histone lysine methyltransferase) complex member DPY30 selectively regulates H3K4me3 modification on genes critical to support angiogenesis and tumor growth in vivo, suggesting the DPY30-PDE4B axis as a specific therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Deobrat Dixit
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Briana C Prager
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tyler E Miller
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Qiulian Wu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Shira Yomtoubian
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Reilly L Kidwell
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Deguan Lv
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Linjie Zhao
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Zhixin Qiu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Guoxin Zhang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Derrick Lee
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Donglim Esther Park
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Xiuxing Wang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Shideng Bao
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44106, USA
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
23
|
Gupta P, Hare DL, Wookey PJ. Strategic Development of an Immunotoxin for the Treatment of Glioblastoma and Other Tumours Expressing the Calcitonin Receptor. Cells 2021; 10:cells10092347. [PMID: 34571996 PMCID: PMC8466289 DOI: 10.3390/cells10092347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
New strategies aimed at treatment of glioblastoma are frequently proposed to overcome poor prognosis. Recently, research has focused on glioma stem cells (GSCs), some quiescent, which drive expansion of glioblastoma and provide the complexity and heterogeneity of the tumour hierarchy. Targeting quiescent GSCs is beyond the capability of conventional drugs such as temozolomide. Here, we discuss the proposal that the calcitonin receptor (CT Receptor), expressed in 76–86% of patient biopsies, is expressed by both malignant glioma cells and GSCs. Forty-two percent (42%) of high-grade glioma (HGG; representative of GSCs) cell lines available from one source express CT Receptor protein in cell culture. The pharmacological calcitonin (CT)-response profiles of four of the HGG cell lines were reported, suggesting mutational/splicing inactivation. Alternative splicing, commonly associated with cancer cells, could result in the predominant expression of the insert-positive isoform and explain the atypical pharmacology exhibited by CT non-responders. A role for the CT Receptor as a putative tumour suppressor and/or oncoprotein is discussed. Both CT responders and non-responders were sensitive to immunotoxins based on an anti-CT Receptor antibody conjugated to ribosomal-inactivating proteins. Sensitivity was increased by several logs with the triterpene glycoside SO1861, an endosomal escape enhancer. Under these conditions, the immunotoxins were 250–300 times more potent than an equivalent antibody conjugated with monomethyl auristatin E. Further refinements for improving the penetration of solid tumours are discussed. With this knowledge, a potential strategy for effective targeting of CSCs expressing this receptor is proposed for the treatment of GBM.
Collapse
|
24
|
Comba A, Faisal SM, Varela ML, Hollon T, Al-Holou WN, Umemura Y, Nunez FJ, Motsch S, Castro MG, Lowenstein PR. Uncovering Spatiotemporal Heterogeneity of High-Grade Gliomas: From Disease Biology to Therapeutic Implications. Front Oncol 2021; 11:703764. [PMID: 34422657 PMCID: PMC8377724 DOI: 10.3389/fonc.2021.703764] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastomas (GBM) are the most common and aggressive tumors of the central nervous system. Rapid tumor growth and diffuse infiltration into healthy brain tissue, along with high intratumoral heterogeneity, challenge therapeutic efficacy and prognosis. A better understanding of spatiotemporal tumor heterogeneity at the histological, cellular, molecular, and dynamic levels would accelerate the development of novel treatments for this devastating brain cancer. Histologically, GBM is characterized by nuclear atypia, cellular pleomorphism, necrosis, microvascular proliferation, and pseudopalisades. At the cellular level, the glioma microenvironment comprises a heterogeneous landscape of cell populations, including tumor cells, non-transformed/reactive glial and neural cells, immune cells, mesenchymal cells, and stem cells, which support tumor growth and invasion through complex network crosstalk. Genomic and transcriptomic analyses of gliomas have revealed significant inter and intratumoral heterogeneity and insights into their molecular pathogenesis. Moreover, recent evidence suggests that diverse dynamics of collective motion patterns exist in glioma tumors, which correlate with histological features. We hypothesize that glioma heterogeneity is not stochastic, but rather arises from organized and dynamic attributes, which favor glioma malignancy and influences treatment regimens. This review highlights the importance of an integrative approach of glioma histopathological features, single-cell and spatially resolved transcriptomic and cellular dynamics to understand tumor heterogeneity and maximize therapeutic effects.
Collapse
Affiliation(s)
- Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed M Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Todd Hollon
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Wajd N Al-Holou
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yoshie Umemura
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Felipe J Nunez
- Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Sebastien Motsch
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, United States
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
25
|
Sun D, Xie XP, Zhang X, Wang Z, Sait SF, Iyer SV, Chen YJ, Brown R, Laks DR, Chipman ME, Shern JF, Parada LF. Stem-like cells drive NF1-associated MPNST functional heterogeneity and tumor progression. Cell Stem Cell 2021; 28:1397-1410.e4. [PMID: 34010628 PMCID: PMC8349880 DOI: 10.1016/j.stem.2021.04.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/18/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022]
Abstract
NF1-associated malignant peripheral nerve sheath tumors (MPNSTs) are the major cause of mortality in neurofibromatosis. MPNSTs arise from benign peripheral nerve plexiform neurofibromas that originate in the embryonic neural crest cell lineage. Using reporter transgenes that label early neural crest lineage cells in multiple NF1 MPNST mouse models, we discover and characterize a rare MPNST cell population with stem-cell-like properties, including quiescence, that is essential for tumor initiation and relapse. Following isolation of these cells, we derive a cancer-stem-cell-specific gene expression signature that includes consensus embryonic neural crest genes and identify Nestin as a marker for the MPNST cell of origin. Combined targeting of cancer stem cells along with antimitotic chemotherapy yields effective tumor inhibition and prolongs survival. Enrichment of the cancer stem cell signature in cognate human tumors supports the generality and relevance of cancer stem cells to MPNST therapy development.
Collapse
Affiliation(s)
- Daochun Sun
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Xuanhua P Xie
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Xiyuan Zhang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Zilai Wang
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Sameer Farouk Sait
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Swathi V Iyer
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Yu-Jung Chen
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Rebecca Brown
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Dan R Laks
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Mollie E Chipman
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Luis F Parada
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
26
|
Paul MR, Zage PE. Overview and recent advances in the targeting of medulloblastoma cancer stem cells. Expert Rev Anticancer Ther 2021; 21:957-974. [PMID: 34047251 DOI: 10.1080/14737140.2021.1932472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Medulloblastoma, an embryonal small round blue cell tumor primarily arising in the posterior fossa, is the most common malignancy of the central nervous system in children and requires intensive multi-modality therapy for cure. Overall 5-year survival is approximately 75% in children with primary disease, but outcomes for relapsed disease are very poor. Recent advances have identified molecular subgroups with excellent prognosis, with 5-year overall survival rates >90%, and subgroups with very poor prognosis with overall survival rates <50%. Molecular subtyping has allowed for more sophisticated risk stratification of patients, but new treatments for the highest risk patients have not yet improved outcomes. Targeting cancer stem cells may improve outcomes, and several candidate targets and novel drugs are under investigation.Areas covered: We discuss medulloblastoma epidemiology, biology, treatment modalities, risk stratification, and molecular subgroup analysis, links between subgroup and developmental biology, cancer stem cell biology in medulloblastoma including previously described cancer stem cell markers and proposed targeted treatments in the current literature.Expert opinion: The understanding of cancer stem cells in medulloblastoma will advance therapies targeting the most treatment-resistant cells within the tumor and therefore reduce the incidence of treatment refractory and relapsed disease.
Collapse
Affiliation(s)
- Megan Rose Paul
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA (M.R.P., P.E.Z.); Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital-San Diego, San Diego, California, USA
| | - Peter E Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA (M.R.P., P.E.Z.); Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital-San Diego, San Diego, California, USA
| |
Collapse
|
27
|
Liu K, Pu J, Nie Z, Shi Y, Jiang L, Wu Q, Chen Y, Yang C. Ivacaftor Inhibits Glioblastoma Stem Cell Maintenance and Tumor Progression. Front Cell Dev Biol 2021; 9:678209. [PMID: 34046412 PMCID: PMC8147559 DOI: 10.3389/fcell.2021.678209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain tumor. Glioblastoma stem cells (GSCs) not only initiate and sustain uncontrolled cell proliferation but also resistant to conventional clinical therapies including temozolomide (TMZ) dependent chemotherapy and radiotherapy, implying that there is an urgent need to identify new therapeutic strategies especially specific targeting GSCs. Here, we provide evidence showing that ivacaftor commonly applied in cystic fibrosis therapy acts as a potent inhibitor for GSCs maintenance. We found that ivacaftor promotes cellular apoptosis in vitro and represses patient-derived xenograft (PDX) tumor growth in vivo. In addition, we demonstrate that ivacaftor decreases stemness marker gene expressions of GSCs, including CD133, CD44, and Sox2. In summary, our findings reveal that ivacaftor inhibits glioblastoma progression via specifically eliminating GSCs, which opens a new avenue for GBM clinical therapy in the future.
Collapse
Affiliation(s)
- Kun Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Pu
- Department of Neurosurgery, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Zhi Nie
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yulin Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Liping Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Qisheng Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Yongbin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Cuiping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Hughes RE, Elliott RJR, Dawson JC, Carragher NO. High-content phenotypic and pathway profiling to advance drug discovery in diseases of unmet need. Cell Chem Biol 2021; 28:338-355. [PMID: 33740435 DOI: 10.1016/j.chembiol.2021.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/10/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
Conventional thinking in modern drug discovery postulates that the design of highly selective molecules which act on a single disease-associated target will yield safer and more effective drugs. However, high clinical attrition rates and the lack of progress in developing new effective treatments for many important diseases of unmet therapeutic need challenge this hypothesis. This assumption also impinges upon the efficiency of target agnostic phenotypic drug discovery strategies, where early target deconvolution is seen as a critical step to progress phenotypic hits. In this review we provide an overview of how emerging phenotypic and pathway-profiling technologies integrate to deconvolute the mechanism-of-action of phenotypic hits. We propose that such in-depth mechanistic profiling may support more efficient phenotypic drug discovery strategies that are designed to more appropriately address complex heterogeneous diseases of unmet need.
Collapse
Affiliation(s)
- Rebecca E Hughes
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Richard J R Elliott
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - John C Dawson
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|
29
|
COL14A1 promotes self-renewal of human liver cancer stem cells through activation of ERK signaling. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
30
|
Sachamitr P, Ho JC, Ciamponi FE, Ba-Alawi W, Coutinho FJ, Guilhamon P, Kushida MM, Cavalli FMG, Lee L, Rastegar N, Vu V, Sánchez-Osuna M, Coulombe-Huntington J, Kanshin E, Whetstone H, Durand M, Thibault P, Hart K, Mangos M, Veyhl J, Chen W, Tran N, Duong BC, Aman AM, Che X, Lan X, Whitley O, Zaslaver O, Barsyte-Lovejoy D, Richards LM, Restall I, Caudy A, Röst HL, Bonday ZQ, Bernstein M, Das S, Cusimano MD, Spears J, Bader GD, Pugh TJ, Tyers M, Lupien M, Haibe-Kains B, Artee Luchman H, Weiss S, Massirer KB, Prinos P, Arrowsmith CH, Dirks PB. PRMT5 inhibition disrupts splicing and stemness in glioblastoma. Nat Commun 2021; 12:979. [PMID: 33579912 PMCID: PMC7881162 DOI: 10.1038/s41467-021-21204-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is a deadly cancer in which cancer stem cells (CSCs) sustain tumor growth and contribute to therapeutic resistance. Protein arginine methyltransferase 5 (PRMT5) has recently emerged as a promising target in GBM. Using two orthogonal-acting inhibitors of PRMT5 (GSK591 or LLY-283), we show that pharmacological inhibition of PRMT5 suppresses the growth of a cohort of 46 patient-derived GBM stem cell cultures, with the proneural subtype showing greater sensitivity. We show that PRMT5 inhibition causes widespread disruption of splicing across the transcriptome, particularly affecting cell cycle gene products. We identify a GBM splicing signature that correlates with the degree of response to PRMT5 inhibition. Importantly, we demonstrate that LLY-283 is brain-penetrant and significantly prolongs the survival of mice with orthotopic patient-derived xenografts. Collectively, our findings provide a rationale for the clinical development of brain penetrant PRMT5 inhibitors as treatment for GBM.
Collapse
Affiliation(s)
- Patty Sachamitr
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Jolene C Ho
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Felipe E Ciamponi
- Center for Molecular Biology and Genetic Engineering, University of Campinas (UNICAMP), Campinas, Brazil
- The Structural Genomics Consortium, University of Campinas (UNICAMP), Campinas, Brazil
| | - Wail Ba-Alawi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Fiona J Coutinho
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Paul Guilhamon
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michelle M Kushida
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Florence M G Cavalli
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lilian Lee
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Naghmeh Rastegar
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - María Sánchez-Osuna
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada
| | | | - Evgeny Kanshin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada
| | - Heather Whetstone
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mathieu Durand
- RNomics Platform, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Kirsten Hart
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Maria Mangos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Joseph Veyhl
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Wenjun Chen
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Nhat Tran
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Bang-Chi Duong
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Ahmed M Aman
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Xinghui Che
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xiaoyang Lan
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Owen Whitley
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Olga Zaslaver
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Laura M Richards
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Ian Restall
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Amy Caudy
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Maple Flavored Solutions, LLC, Stony Brook, NY, USA
| | - Hannes L Röst
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Mark Bernstein
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Sunit Das
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael D Cusimano
- Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Julian Spears
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
| | - H Artee Luchman
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
- Clark H. Smith Brain Tumor Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Samuel Weiss
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
- Clark H. Smith Brain Tumor Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Katlin B Massirer
- Center for Molecular Biology and Genetic Engineering, University of Campinas (UNICAMP), Campinas, Brazil
- The Structural Genomics Consortium, University of Campinas (UNICAMP), Campinas, Brazil
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada.
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Peter B Dirks
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
31
|
Griñan-Lison C, Blaya-Cánovas JL, López-Tejada A, Ávalos-Moreno M, Navarro-Ocón A, Cara FE, González-González A, Lorente JA, Marchal JA, Granados-Principal S. Antioxidants for the Treatment of Breast Cancer: Are We There Yet? Antioxidants (Basel) 2021; 10:205. [PMID: 33572626 PMCID: PMC7911462 DOI: 10.3390/antiox10020205] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most frequent cancer and the leading cause of cancer death in women. Oxidative stress and the generation of reactive oxygen species (ROS) have been related to cancer progression. Compared to their normal counterparts, tumor cells show higher ROS levels and tight regulation of REDOX homeostasis to maintain a low degree of oxidative stress. Traditionally antioxidants have been extensively investigated to counteract breast carcinogenesis and tumor progression as chemopreventive agents; however, there is growing evidence indicating their potential as adjuvants for the treatment of breast cancer. Aimed to elucidate whether antioxidants could be a reality in the management of breast cancer patients, this review focuses on the latest investigations regarding the ambivalent role of antioxidants in the development of breast cancer, with special attention to the results derived from clinical trials, as well as their potential use as plausible agents in combination therapy and their power to ameliorate the side effects attributed to standard therapeutics. Data retrieved herein suggest that antioxidants play an important role in breast cancer prevention and the improvement of therapeutic efficacy; nevertheless, appropriate patient stratification based on "redoxidomics" or tumor subtype is mandatory in order to define the dosage for future standardized and personalized treatments of patients.
Collapse
Affiliation(s)
- Carmen Griñan-Lison
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (C.G.-L.); (J.A.M.)
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Marta Ávalos-Moreno
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Alba Navarro-Ocón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Francisca E. Cara
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Adrián González-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Jose A. Lorente
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
- Department of Legal Medicine, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Juan A. Marchal
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (C.G.-L.); (J.A.M.)
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Sergio Granados-Principal
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18011 Granada, Spain
| |
Collapse
|
32
|
López de Andrés J, Griñán-Lisón C, Jiménez G, Marchal JA. Cancer stem cell secretome in the tumor microenvironment: a key point for an effective personalized cancer treatment. J Hematol Oncol 2020; 13:136. [PMID: 33059744 PMCID: PMC7559894 DOI: 10.1186/s13045-020-00966-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) represent a tumor subpopulation responsible for tumor metastasis and resistance to chemo- and radiotherapy, ultimately leading to tumor relapse. As a consequence, the detection and eradication of this cell subpopulation represent a current challenge in oncology medicine. CSC phenotype is dependent on the tumor microenvironment (TME), which involves stem and differentiated tumor cells, as well as different cell types, such as mesenchymal stem cells, endothelial cells, fibroblasts and cells of the immune system, in addition to the extracellular matrix (ECM), different in composition to the ECM in healthy tissues. CSCs regulate multiple cancer hallmarks through the interaction with cells and ECM in their environment by secreting extracellular vesicles including exosomes, and soluble factors such as interleukins, cytokines, growth factors and other metabolites to the TME. Through these factors, CSCs generate and activate their own tumor niche by recruiting stromal cells and modulate angiogenesis, metastasis, resistance to antitumor treatments and their own maintenance by the secretion of different factors such as IL-6, VEGF and TGF-ß. Due to the strong influence of the CSC secretome on disease development, the new antitumor therapies focus on targeting these communication networks to eradicate the tumor and prevent metastasis, tumor relapse and drug resistance. This review summarizes for the first time the main components of the CSC secretome and how they mediate different tumor processes. Lastly, the relevance of the CSC secretome in the development of more precise and personalized antitumor therapies is discussed.
Collapse
Affiliation(s)
- Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain. .,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain. .,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain. .,Department of Health Sciences, University of Jaén, 23071, Jaén, Spain.
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain. .,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain. .,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain. .,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016, Granada, Spain.
| |
Collapse
|
33
|
Lee HY, Hong IS. Targeting Liver Cancer Stem Cells: An Alternative Therapeutic Approach for Liver Cancer. Cancers (Basel) 2020; 12:cancers12102746. [PMID: 32987767 PMCID: PMC7598600 DOI: 10.3390/cancers12102746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
The first report of cancer stem cell (CSC) from Bruce et al. has demonstrated the relatively rare population of stem-like cells in acute myeloid leukemia (AML). The discovery of leukemic CSCs prompted further identification of CSCs in multiple types of solid tumor. Recently, extensive research has attempted to identity CSCs in multiple types of solid tumors in the brain, colon, head and neck, liver, and lung. Based on these studies, we hypothesize that the initiation and progression of most malignant tumors rely largely on the CSC population. Recent studies indicated that stem cell-related markers or signaling pathways, such as aldehyde dehydrogenase (ALDH), CD133, epithelial cell adhesion molecule (EpCAM), Wnt/β-catenin signaling, and Notch signaling, contribute to the initiation and progression of various liver cancer types. Importantly, CSCs are markedly resistant to conventional therapeutic approaches and current targeted therapeutics. Therefore, it is believed that selectively targeting specific markers and/or signaling pathways of hepatic CSCs is an effective therapeutic strategy for treating chemotherapy-resistant liver cancer. Here, we provide an overview of the current knowledge on the hepatic CSC hypothesis and discuss the specific surface markers and critical signaling pathways involved in the development and maintenance of hepatic CSC subpopulations.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- Department of Biomedical Science, Jungwon University, 85 Goesan-eup, Munmu-ro, Goesan-gun, Chungcheongbuk-do 367700, Korea;
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406840, Korea
- Correspondence: ; Tel.: +82-32-899-6315; Fax: +82-32-899-6350
| |
Collapse
|
34
|
Vue TY, Kollipara RK, Borromeo MD, Smith T, Mashimo T, Burns DK, Bachoo RM, Johnson JE. ASCL1 regulates neurodevelopmental transcription factors and cell cycle genes in brain tumors of glioma mouse models. Glia 2020; 68:2613-2630. [PMID: 32573857 PMCID: PMC7587013 DOI: 10.1002/glia.23873] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022]
Abstract
Glioblastomas (GBMs) are incurable brain tumors with a high degree of cellular heterogeneity and genetic mutations. Transcription factors that normally regulate neural progenitors and glial development are aberrantly coexpressed in GBM, conferring cancer stem‐like properties to drive tumor progression and therapeutic resistance. However, the functional role of individual transcription factors in GBMs in vivo remains elusive. Here, we demonstrate that the basic‐helix–loop–helix transcription factor ASCL1 regulates transcriptional targets that are central to GBM development, including neural stem cell and glial transcription factors, oncogenic signaling molecules, chromatin modifying genes, and cell cycle and mitotic genes. We also show that the loss of ASCL1 significantly reduces the proliferation of GBMs induced in the brain of a genetically relevant glioma mouse model, resulting in extended survival times. RNA‐seq analysis of mouse GBM tumors reveal that the loss of ASCL1 is associated with downregulation of cell cycle genes, illustrating an important role for ASCL1 in controlling the proliferation of GBM.
Collapse
Affiliation(s)
- Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rahul K Kollipara
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mark D Borromeo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tyler Smith
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tomoyuki Mashimo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dennis K Burns
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert M Bachoo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
35
|
Auzmendi-Iriarte J, Saenz-Antoñanzas A, Mikelez-Alonso I, Carrasco-Garcia E, Tellaetxe-Abete M, Lawrie CH, Sampron N, Cortajarena AL, Matheu A. Characterization of a new small-molecule inhibitor of HDAC6 in glioblastoma. Cell Death Dis 2020; 11:417. [PMID: 32488056 PMCID: PMC7265429 DOI: 10.1038/s41419-020-2586-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Histone deacetylase 6 (HDAC6) is an epigenetic modifier that is an attractive pharmacological target in cancer. In this work, we show that HDAC6 is elevated in glioblastoma, the most malignant and common brain tumor in adults, in which its high levels correlate with poor patient survival and is more abundant in glioma stem cell subpopulation. Moreover, we identified a new small-molecule inhibitor of HDAC6, which presents strong sensitivity for HDAC6 inhibition and exerts high cytotoxic activity, alone or in combination with temozolomide. It is also able to significantly reduce tumor growth in vivo. Transcriptomic analysis of patient-derived glioma stem cells revealed an increase in cell differentiation and cell death pathways, as well as a decrease in cell-cycle activity and cell division by the treatment with the compound. Finally, the comparison with a pan-HDAC inhibitor, Vorinostat (SAHA), or HDAC6-specific inhibitor, Tubastatin A, showed higher target specificity and antitumor activity of the new HDAC6 inhibitor. In conclusion, our data reveal the efficacy of a novel HDAC6 inhibitor in glioblastoma preclinical setting.
Collapse
Affiliation(s)
| | | | - Idoia Mikelez-Alonso
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Estefania Carrasco-Garcia
- Cellular Oncology group, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBERfes, Carlos III Institute, Madrid, Spain
| | | | - Charles H Lawrie
- Molecular Oncology group, Biodonostia Health Research Institute, San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nicolás Sampron
- Cellular Oncology group, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBERfes, Carlos III Institute, Madrid, Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ander Matheu
- Cellular Oncology group, Biodonostia Health Research Institute, San Sebastian, Spain. .,CIBERfes, Carlos III Institute, Madrid, Spain. .,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
36
|
Paul MR, Huo Y, Liu A, Lesperance J, Garancher A, Wechsler-Reya RJ, Zage PE. Characterization of G-CSF receptor expression in medulloblastoma. Neurooncol Adv 2020; 2:vdaa062. [PMID: 32642714 PMCID: PMC7316203 DOI: 10.1093/noajnl/vdaa062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Identifying mechanisms of medulloblastoma recurrence is a key to improving patient survival, and targeting treatment-resistant subpopulations within tumors could reduce disease recurrence. Expression of the granulocyte colony-stimulating factor receptor (G-CSF-R, CD114) is a potential marker of cancer stem cells, and therefore we hypothesized that a subpopulation of medulloblastoma cells would also express CD114 and would demonstrate chemoresistance and responsiveness to G-CSF. Methods Prevalence of CD114-positive (CD114+) cells in medulloblastoma cell lines, patient-derived xenograft (PDX) tumors, and primary patient tumor samples were assessed by flow cytometry. Growth rates, chemoresistance, and responses to G-CSF of CD114+ and CD114-negative (CD114−) cells were characterized in vitro using continuous live cell imaging and flow cytometry. Gene expression profiles were compared between CD114+ and CD114− medulloblastoma cells using quantitative RT-PCR. Results CD114+ cells were identifiable in medulloblastoma cell lines, PDX tumors, and primary patient tumors and have slower growth rates than CD114− or mixed populations. G-CSF accelerates the growth of CD114+ cells, and CD114+ cells are more chemoresistant. The CD114+ population is enriched when G-CSF treatment follows chemotherapy. The CD114+ population also has higher expression of the CSF3R, NRP-1, TWIST1, and MYCN genes. Conclusions Our data demonstrate that a subpopulation of CD114+ medulloblastoma cells exists in cell lines and tumors, which may evade traditional chemotherapy and respond to exogenous G-CSF. These properties invite further investigation into the role of G-CSF in medulloblastoma therapy and methods to specifically target these cells.
Collapse
Affiliation(s)
- Megan Rose Paul
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA.,Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital-San Diego, San Diego, California, USA
| | - Yuchen Huo
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA
| | - Andrea Liu
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA
| | - Jacqueline Lesperance
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA
| | - Alexandra Garancher
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Peter E Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA.,Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital-San Diego, San Diego, California, USA
| |
Collapse
|
37
|
The therapeutic potential of Aurora kinases targeting in glioblastoma: from preclinical research to translational oncology. J Mol Med (Berl) 2020; 98:495-512. [PMID: 32219470 DOI: 10.1007/s00109-020-01895-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma is the most common aggressive primary brain tumor. Standard care includes maximal safe surgical resection, radiation, and chemotherapy with temozolomide. However, the impact of this therapeutic approach on patient survival is disappointing and poor outcomes are frequently observed. Therefore, new therapeutic targets are needed to treat this potentially deadly tumor. Aurora kinases are one of today's most sought-after classes of therapeutic targets to glioblastoma therapy. They are a family of proteins composed of three members: Aurora-A, Aurora-B, and Aurora-C that play different roles in the cell division through regulation of chromosome segregation. Deregulation of these genes has been reported in glioblastoma and a progressive number of studies have shown that inhibition of these proteins could be a promising strategy for the treatment of this tumor. This review discusses the preclinical and early clinical findings on the potential use of the Aurora kinases as new targets for the treatment of glioblastoma. KEY MESSAGES: GBM is a very aggressive tumor with limited therapeutic options. Aurora kinases are a family of serine/threonine kinases implicated in GBM pathology. Aurora kinases are critical for glioblastoma cell growth, apoptosis, and chemoresistance. Inhibition of Aurora kinases has a synergistic or sensitizing effect with chemotherapy drugs, radiotherapy, or with other targeted molecules in GBM. Several Aurora kinase inhibitors are currently in clinical trials.
Collapse
|
38
|
Bone Morphogenetic Protein 4 Targeting Glioma Stem-Like Cells for Malignant Glioma Treatment: Latest Advances and Implications for Clinical Application. Cancers (Basel) 2020; 12:cancers12020516. [PMID: 32102285 PMCID: PMC7072475 DOI: 10.3390/cancers12020516] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Malignant gliomas are heterogeneous neoplasms. Glioma stem-like cells (GSCs) are undifferentiated and self-renewing cells that develop and maintain these tumors. These cells are the main population that resist current therapies. Genomic and epigenomic analyses has identified various molecular subtypes. Bone morphogenetic protein 4 (BMP4) reduces the number of GSCs through differentiation and induction of apoptosis, thus increasing therapeutic sensitivity. However, the short half-life of BMP4 impedes its clinical application. We previously reviewed BMP4 signaling in central nervous system development and glioma tumorigenesis and its potential as a treatment target in human gliomas. Recent advances in understanding both adult and pediatric malignant gliomas highlight critical roles of BMP4 signaling pathways in the regulation of tumor biology, and indicates its potential as a therapeutic molecule. Furthermore, significant progress has been made on synthesizing BMP4 biocompatible delivery materials, which can bind to and markedly extend BMP4 half-life. Here, we review current research associated with BMP4 in brain tumors, with an emphasis on pediatric malignant gliomas. We also summarize BMP4 delivery strategies, highlighting biocompatible BMP4 binding peptide amphiphile nanostructures as promising novel delivery platforms for treatment of these devastating tumors.
Collapse
|
39
|
Petővári G, Dankó T, Krencz I, Hujber Z, Rajnai H, Vetlényi E, Raffay R, Pápay J, Jeney A, Sebestyén A. Inhibition of Metabolic Shift can Decrease Therapy Resistance in Human High-Grade Glioma Cells. Pathol Oncol Res 2020; 26:23-33. [PMID: 31187466 PMCID: PMC7109188 DOI: 10.1007/s12253-019-00677-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022]
Abstract
The high-grade brain malignancy, glioblastoma multiforme (GBM), is one of the most aggressive tumours in central nervous system. The developing resistance against recent therapies and the recurrence rate of GBMs are extremely high. In spite several new ongoing trials, GBM therapies could not significantly increase the survival rate of the patients as significantly. The presence of inter- and intra-tumoral heterogeneity of GBMs arise the problem to find both the pre-existing potential resistant clones and the cellular processes which promote the adaptation mechanisms such as multidrug resistance, stem cell-ness or metabolic alterations, etc. In our work, the in situ metabolic heterogeneity of high-grade human glioblastoma cases were analysed by immunohistochemistry using tissue-microarray. The potential importance of the detected metabolic heterogeneity was tested in three glioma cell lines (grade III-IV) using protein expression analyses (Western blot and WES Simple) and therapeutic drug (temozolomide), metabolic inhibitor treatments (including glutaminase inhibitor) to compare the effects of rapamycin (RAPA) and glutaminase inhibitor combinations in vitro (Alamar Blue and SRB tests). The importance of individual differences and metabolic alterations were observed in mono-therapeutic failures, especially the enhanced Rictor expressions after different mono-treatments in correlation to lower sensitivity (temozolomide, doxycycline, etomoxir, BPTES). RAPA combinations with other metabolic inhibitors were the best strategies except for RAPA+glutaminase inhibitor. These observations underline the importance of multi-targeting metabolic pathways. Finally, our data suggest that the detected metabolic heterogeneity (the high mTORC2 complex activity, enhanced expression of Rictor, p-Akt, p-S6, CPT1A, and LDHA enzymes in glioma cases) and the microenvironmental or treatment induced metabolic shift can be potential targets in combination therapy. Therefore, it should be considered to map tissue heterogeneity and alterations with several cellular metabolism markers in biopsy materials after applying recently available or new treatments.
Collapse
Affiliation(s)
- Gábor Petővári
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Ildikó Krencz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Zoltán Hujber
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Hajnalka Rajnai
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Enikő Vetlényi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Regina Raffay
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Judit Pápay
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - András Jeney
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary.
| |
Collapse
|
40
|
Zarco N, Norton E, Quiñones-Hinojosa A, Guerrero-Cázares H. Overlapping migratory mechanisms between neural progenitor cells and brain tumor stem cells. Cell Mol Life Sci 2019; 76:3553-3570. [PMID: 31101934 PMCID: PMC6698208 DOI: 10.1007/s00018-019-03149-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/16/2019] [Accepted: 05/13/2019] [Indexed: 01/18/2023]
Abstract
Neural stem cells present in the subventricular zone (SVZ), the largest neurogenic niche of the mammalian brain, are able to self-renew as well as generate neural progenitor cells (NPCs). NPCs are highly migratory and traverse the rostral migratory stream (RMS) to the olfactory bulb, where they terminally differentiate into mature interneurons. NPCs from the SVZ are some of the few cells in the CNS that migrate long distances during adulthood. The migratory process of NPCs is highly regulated by intracellular pathway activation and signaling from the surrounding microenvironment. It involves modulation of cell volume, cytoskeletal rearrangement, and isolation from compact extracellular matrix. In malignant brain tumors including high-grade gliomas, there are cells called brain tumor stem cells (BTSCs) with similar stem cell characteristics to NPCs but with uncontrolled cell proliferation and contribute to tumor initiation capacity, tumor progression, invasion, and tumor maintenance. These BTSCs are resistant to chemotherapy and radiotherapy, and their presence is believed to lead to tumor recurrence at distal sites from the original tumor location, principally due to their high migratory capacity. BTSCs are able to invade the brain parenchyma by utilizing many of the migratory mechanisms used by NPCs. However, they have an increased ability to infiltrate the tight brain parenchyma and utilize brain structures such as myelin tracts and blood vessels as migratory paths. In this article, we summarize recent findings on the mechanisms of cellular migration that overlap between NPCs and BTSCs. A better understanding of the intersection between NPCs and BTSCs will to provide a better comprehension of the BTSCs' invasive capacity and the molecular mechanisms that govern their migration and eventually lead to the development of new therapies to improve the prognosis of patients with malignant gliomas.
Collapse
Affiliation(s)
- Natanael Zarco
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Emily Norton
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Alfredo Quiñones-Hinojosa
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Hugo Guerrero-Cázares
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
41
|
An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell 2019; 178:835-849.e21. [PMID: 31327527 DOI: 10.1016/j.cell.2019.06.024] [Citation(s) in RCA: 1548] [Impact Index Per Article: 258.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/27/2019] [Accepted: 06/13/2019] [Indexed: 12/25/2022]
Abstract
Diverse genetic, epigenetic, and developmental programs drive glioblastoma, an incurable and poorly understood tumor, but their precise characterization remains challenging. Here, we use an integrative approach spanning single-cell RNA-sequencing of 28 tumors, bulk genetic and expression analysis of 401 specimens from the The Cancer Genome Atlas (TCGA), functional approaches, and single-cell lineage tracing to derive a unified model of cellular states and genetic diversity in glioblastoma. We find that malignant cells in glioblastoma exist in four main cellular states that recapitulate distinct neural cell types, are influenced by the tumor microenvironment, and exhibit plasticity. The relative frequency of cells in each state varies between glioblastoma samples and is influenced by copy number amplifications of the CDK4, EGFR, and PDGFRA loci and by mutations in the NF1 locus, which each favor a defined state. Our work provides a blueprint for glioblastoma, integrating the malignant cell programs, their plasticity, and their modulation by genetic drivers.
Collapse
|
42
|
Liu H, Sun Y, Qi X, Gordon RE, O'Brien JA, Yuan H, Zhang J, Wang Z, Zhang M, Song Y, Yu C, Gu C. EZH2 Phosphorylation Promotes Self-Renewal of Glioma Stem-Like Cells Through NF-κB Methylation. Front Oncol 2019; 9:641. [PMID: 31380279 PMCID: PMC6652807 DOI: 10.3389/fonc.2019.00641] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
Cancer stem-like cells (CSCs) is a cell population in glioma with capacity of self-renewal and is critical in glioma tumorigenesis. Parallels between CSCs and normal stem cells suggest that CSCs give rise to tumors. Oncogenic roles of maternal embryonic leucine-zipper kinase (MELK) and enhancer of zeste homolog 2 (EZH2) have been reported to play a crucial role in glioma tumorigenesis. Herein, we focus on mechanistic contributions of downstream molecules to maintaining stemness of glioma stem-like cells (GSCs). Transcriptional factor, NF-κB, co-locates with MELK/EZH2 complex. Clinically, we observe that the proportion of MELK/EZH2/NF-κB complex is elevated in high-grade gliomas, which is associated with poor prognosis in patients and correlates negatively with survival. We describe the interaction between these three proteins. Specifically, MELK induces EZH2 phosphorylation, which subsequently binds to and methylates NF-κB, leading to tumor proliferation and persistence of stemness. Furthermore, the interaction between MELK/EZH2 complex and NF-κB preferentially occurs in GSCs compared with non-stem-like tumor cells. Conversely, loss of this signaling dramatically suppresses the self-renewal capability of GSCs. In conclusion, our findings suggest that the GSCs depend on EZH2 phosphorylation to maintain the immature status and promote self-proliferation through NF-κB methylation, and represent a novel therapeutic target in this difficult to treat malignancy.
Collapse
Affiliation(s)
- Hailong Liu
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, China.,Department of Neurosurgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Youliang Sun
- School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Xueling Qi
- Department of Neuropathology, Sanbo Brain Hospital Capital Medical University, Beijing, China
| | - Renata E Gordon
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Jenny A O'Brien
- Department of Internal Medicine, Temple University Health System, Philadelphia, PA, United States
| | - Hongyu Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junping Zhang
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, China
| | - Zeyuan Wang
- School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Mingshan Zhang
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunjiang Yu
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, China
| | - Chunyu Gu
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma. Nature 2019; 567:341-346. [PMID: 30842654 PMCID: PMC6655586 DOI: 10.1038/s41586-019-0993-x] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 02/06/2019] [Indexed: 01/18/2023]
Abstract
Cancer specific inhibitors reflective of unique metabolic needs, are rare. We describe a novel small molecule, Gboxin, that specifically inhibits primary mouse and human glioblastoma (GBM) cell growth but not mouse embryo fibroblasts or neonatal astrocytes. Gboxin rapidly and irreversibly compromises GBM oxygen consumption. Reliant on its positive charge, Gboxin associates with mitochondrial oxidative phosphorylation complexes in a proton gradient dependent manner and inhibits F0F1 ATP synthase activity. Gboxin resistant cells require a functional mitochondrial permeability transition pore that regulates pH impeding matrix accumulation. Administration of a pharmacologically stable Gboxin analog inhibits GBM allografts and patient derived xenografts. Gboxin toxicity extends to established human cancer cell lines of diverse organ origin and exposes the elevated proton gradient pH in cancer cell mitochondria as a new mode of action for antitumor reagent development.
Collapse
|
44
|
Affiliation(s)
- Ingo K Mellinghoff
- Ingo K. Mellinghoff, Memorial Sloan Kettering Cancer Center, New York, NY; and Richard J. Gilbertson, University of Cambridge, Cambridge, United Kingdom
| | - Richard J Gilbertson
- Ingo K. Mellinghoff, Memorial Sloan Kettering Cancer Center, New York, NY; and Richard J. Gilbertson, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|