1
|
Tapescu I, Madsen PJ, Lowenstein PR, Castro MG, Bagley SJ, Fan Y, Brem S. The transformative potential of mRNA vaccines for glioblastoma and human cancer: technological advances and translation to clinical trials. Front Oncol 2024; 14:1454370. [PMID: 39399167 PMCID: PMC11466887 DOI: 10.3389/fonc.2024.1454370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Originally devised for cancer control, mRNA vaccines have risen to the forefront of medicine as effective instruments for control of infectious disease, notably their pivotal role in combating the COVID-19 pandemic. This review focuses on fundamental aspects of the development of mRNA vaccines, e.g., tumor antigens, vector design, and precise delivery methodologies, - highlighting key technological advances. The recent, promising success of personalized mRNA vaccines against pancreatic cancer and melanoma illustrates the potential value for other intractable, immunologically resistant, solid tumors, such as glioblastoma, as well as the potential for synergies with a combinatorial, immunotherapeutic approach. The impact and progress in human cancer, including pancreatic cancer, head and neck cancer, bladder cancer are reviewed, as are lessons learned from first-in-human CAR-T cell, DNA and dendritic cell vaccines targeting glioblastoma. Going forward, a roadmap is provided for the transformative potential of mRNA vaccines to advance cancer immunotherapy, with a particular focus on the opportunities and challenges of glioblastoma. The current landscape of glioblastoma immunotherapy and gene therapy is reviewed with an eye to combinatorial approaches harnessing RNA science. Preliminary preclinical and clinical data supports the concept that mRNA vaccines could be a viable, novel approach to prolong survival in patients with glioblastoma.
Collapse
Affiliation(s)
- Iulia Tapescu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peter J. Madsen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Pedro R. Lowenstein
- Department of Neurosurgery, The University of Michigan, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI, United States
| | - Maria G. Castro
- Department of Neurosurgery, The University of Michigan, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| | - Stephen J. Bagley
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Yi Fan
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Steven Brem
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
2
|
Detchou D, Barrie U. Interleukin 6 and cancer resistance in glioblastoma multiforme. Neurosurg Rev 2024; 47:541. [PMID: 39231832 DOI: 10.1007/s10143-024-02783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Despite unprecedented survival in patients with glioblastoma (GB), the aggressive primary brain cancer remains largely incurable and its mechanisms of treatment resistance have gained particular attention. The cytokine interleukin 6 (IL-6) and its receptor weave through the hallmarks of malignant gliomas and may represent a key vulnerability to GB. Known for activating the STAT3 pathway in autocrine fashion, IL-6 is amplified in GB and has been recognized as a negative biomarker for GB prognosis, rendering it a putative target of novel GB therapies. While it has been recognized as a biologically active component of GB for three decades only with concurrent advances in understanding of complementary immunotherapy has the concept of targeting IL-6 for a human clinical trial gained scientific footing.
Collapse
Affiliation(s)
- Donald Detchou
- School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Umaru Barrie
- Department of Neurosurgery, New York University Grossman School of Medicine, New York City, NYC, USA
| |
Collapse
|
3
|
Park JH, Lee HK. Current Understanding of Hypoxia in Glioblastoma Multiforme and Its Response to Immunotherapy. Cancers (Basel) 2022; 14:1176. [PMID: 35267480 PMCID: PMC8909860 DOI: 10.3390/cancers14051176] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is a hallmark of glioblastoma multiforme (GBM), the most aggressive cancer of the central nervous system, and is associated with multiple aspects of tumor pathogenesis. For example, hypoxia induces resistance to conventional cancer therapies and inhibits antitumor immune responses. Thus, targeting hypoxia is an attractive strategy for GBM therapy. However, traditional studies on hypoxia have largely excluded the immune system. Recently, the critical role of the immune system in the defense against multiple tumors has become apparent, leading to the development of effective immunotherapies targeting numerous cancer types. Critically, however, GBM is classified as a "cold tumor" due to poor immune responses. Thus, to improve GBM responsiveness against immunotherapies, an improved understanding of both immune function in GBM and the role of hypoxia in mediating immune responses within the GBM microenvironment is needed. In this review, we discuss the role of hypoxia in GBM from a clinical, pathological, and immunological perspective.
Collapse
Affiliation(s)
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| |
Collapse
|
4
|
Phillips LM, Li S, Gumin J, Daou M, Ledbetter D, Yang J, Singh S, Parker Kerrigan BC, Hossain A, Yuan Y, Gomez-Manzano C, Fueyo J, Lang FF. An immune-competent, replication-permissive Syrian Hamster glioma model for evaluating Delta-24-RGD oncolytic adenovirus. Neuro Oncol 2021; 23:1911-1921. [PMID: 34059921 DOI: 10.1093/neuonc/noab128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Oncolytic adenoviruses are promising new treatments against solid tumors, particularly for glioblastoma (GBM), and preclinical models are required to evaluate the mechanisms of efficacy. However, due to the species selectivity of adenovirus, there is currently no single animal model that supports viral replication, tumor oncolysis, and a virus-mediated immune response. To address this gap, we took advantage of the Syrian hamster to develop the first intracranial glioma model that is both adenovirus replication-permissive and immunocompetent. METHODS We generated hamster glioma stem-like cells (hamGSCs) by transforming hamster neural stem cells with hTERT, simian virus 40 large T antigen, and h-RasV12. Using a guide-screw system, we generated an intracranial tumor model in the hamster. The efficacy of the oncolytic adenovirus Delta-24-RGD was assessed by survival studies, and tumor-infiltrating lymphocytes were evaluated by flow cytometry. RESULTS In vitro, hamster GSCs supported viral replication and were susceptible to Delta-24-RGD mediated cell death. In vivo, hamster GSCs consistently developed into highly proliferative tumors resembling high-grade glioma. Flow cytometric analysis of hamster gliomas revealed significantly increased T cell infiltration in Delta-24-RGD infected tumors, indicative of immune activation. Treating tumor-bearing hamsters with Delta-24-RGD led to significantly increased survival compared to hamsters treated with PBS. CONCLUSIONS This adenovirus-permissive, immunocompetent hamster glioma model overcomes the limitations of previous model systems and provides a novel platform in which to study the interactions between tumor cells, the host immune system, and oncolytic adenoviral therapy; understanding of which will be critical to implementing oncolytic adenovirus in the clinic.
Collapse
Affiliation(s)
- Lynette M Phillips
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shoudong Li
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Marc Daou
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Daniel Ledbetter
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jing Yang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sanjay Singh
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Brittany C Parker Kerrigan
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anwar Hossain
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Candelaria Gomez-Manzano
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Juan Fueyo
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
5
|
Zhang X, Wang H, Sun Y, Qi M, Li W, Zhang Z, Zhang XE, Cui Z. Enterovirus A71 Oncolysis of Malignant Gliomas. Mol Ther 2020; 28:1533-1546. [PMID: 32304669 PMCID: PMC7264442 DOI: 10.1016/j.ymthe.2020.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022] Open
Abstract
Malignant gliomas, the most lethal type of primary brain tumor, continue to be a major therapeutic challenge. Here, we found that enterovirus A71 (EV-A71) can be developed as a novel oncolytic agent against malignant gliomas. EV-A71 preferentially infected and killed malignant glioma cells relative to normal glial cells. The virus receptor human scavenger receptor class B, member 2 (SCARB2), and phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1)-mediated cell death were involved in EV-A71-induced oncolysis. In mice with implanted subcutaneous gliomas, intraneoplastic inoculation of EV-A71 caused significant tumor growth inhibition. Furthermore, in mice bearing intracranial orthotopic gliomas, intraneoplastic inoculation of EV-A71 substantially prolonged survival. By insertion of brain-specific microRNA-124 (miR124) response elements into the viral genome, we improved the tumor specificity of EV-A71 oncolytic therapy by reducing its neurotoxicity while maintaining its replication potential and oncolytic capacity in gliomas. Our study reveals that EV-A71 is a potent oncolytic agent against malignant gliomas and may have a role in treating this tumor in the clinical setting.
Collapse
Affiliation(s)
- Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hanzhong Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuhan Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mi Qi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhiping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Muir M, Gopakumar S, Traylor J, Lee S, Rao G. Glioblastoma multiforme: novel therapeutic targets. Expert Opin Ther Targets 2020; 24:605-614. [PMID: 32394767 DOI: 10.1080/14728222.2020.1762568] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The increasingly detailed genetic characterization of glioblastoma (GBM) has failed to translate into meaningful breakthroughs in treatment. This is likely to be attributed to molecular heterogeneity of GBM. However, the understanding of the tumor microenvironment in GBM has become more refined and has revealed a wealth of therapeutic targets that may enable the disruption of angiogenesis or immunosuppression. AREAS COVERED This review discusses the selective targeting of tumor-intrinsic pathways, therapies that target the GBM tumor microenvironment and relevant preclinical studies and their limitations. Relevant literature was derived from a PubMed search encompassing studies from 1989 to 2020. EXPERT OPINION Despite appropriate target engagement, attempts to directly inhibit oncogenic pathways in GBM have yielded little success. This is likely attributed to the molecular heterogeneity of GBM and the presence of redundant signaling that allow for accumulation of adaptive mutations and development of drug resistance. Subsequently, there has been a shift toward therapies modulating the pro-angiogenic, immunosuppressive tumor microenvironment in GBM. The non-transformed cells in the microenvironment which includes endothelial cells, myeloid cells, and T cells, are presumably genetically stable, less susceptible to heterogeneity, and easier to target. This approach offers the highest potential for a therapeutic breakthrough in GBM.
Collapse
Affiliation(s)
- Matthew Muir
- Department of Neurosurgery, Baylor College of Medicine , Houston, TX, USA
| | | | - Jeffrey Traylor
- Department of Neurosurgery, Baylor College of Medicine , Houston, TX, USA
| | - Sungho Lee
- Department of Neurosurgery, Baylor College of Medicine , Houston, TX, USA
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine , Houston, TX, USA.,Department of Neurosurgery, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| |
Collapse
|
7
|
Galldiks N, Lohmann P, Werner JM, Ceccon G, Fink GR, Langen KJ. Molecular imaging and advanced MRI findings following immunotherapy in patients with brain tumors. Expert Rev Anticancer Ther 2019; 20:9-15. [PMID: 31842635 DOI: 10.1080/14737140.2020.1705788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Currently, immunotherapy using vaccination strategies or oncolytic virus approaches, cell-based immunotherapy, and the blockade of immune checkpoints are under evaluation in patients with brain cancer. Here we summarize clinically significant imaging findings such as treatment-related changes detected by advanced neuroimaging techniques following the most suitable immunotherapy options currently used in neuro-oncology. We, furthermore, provide an overview of how these advanced imaging techniques may help to overcome shortcomings of standard MRI in the assessment and follow-up of patients with brain cancer.Areas covered: The current literature on neuroimaging for immunotherapy in the field of brain tumors, with a focus on gliomas and brain metastases is summarized.Expert commentary: Data suggest that imaging parameters primarily derived from amino acid PET, diffusion- and perfusion-weighted MRI, or MR spectroscopy are particularly helpful for the evaluation of treatment response and provide valuable information for the differentiation of treatment-induced changes from actual brain tumor progression following various immunotherapy approaches.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Jülich, Germany.,Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Jülich, Germany
| | - Jan-Michael Werner
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Garry Ceccon
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Jülich, Germany.,Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
8
|
Kasten BB, Udayakumar N, Leavenworth JW, Wu AM, Lapi SE, McConathy JE, Sorace AG, Bag AK, Markert JM, Warram JM. Current and Future Imaging Methods for Evaluating Response to Immunotherapy in Neuro-Oncology. Theranostics 2019; 9:5085-5104. [PMID: 31410203 PMCID: PMC6691392 DOI: 10.7150/thno.34415] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/20/2019] [Indexed: 12/28/2022] Open
Abstract
Imaging plays a central role in evaluating responses to therapy in neuro-oncology patients. The advancing clinical use of immunotherapies has demonstrated that treatment-related inflammatory responses mimic tumor growth via conventional imaging, thus spurring the development of new imaging approaches to adequately distinguish between pseudoprogression and progressive disease. To this end, an increasing number of advanced imaging techniques are being evaluated in preclinical and clinical studies. These novel molecular imaging approaches will serve to complement conventional response assessments during immunotherapy. The goal of these techniques is to provide definitive metrics of tumor response at earlier time points to inform treatment decisions, which has the potential to improve patient outcomes. This review summarizes the available immunotherapy regimens, clinical response criteria, current state-of-the-art imaging approaches, and groundbreaking strategies for future implementation to evaluate the anti-tumor and immune responses to immunotherapy in neuro-oncology applications.
Collapse
Affiliation(s)
- Benjamin B. Kasten
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Neha Udayakumar
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianmei W. Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anna M. Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Suzanne E. Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jonathan E. McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anna G. Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Asim K. Bag
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - James M. Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jason M. Warram
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Buerki RA, Chheda ZS, Okada H. Immunotherapy of Primary Brain Tumors: Facts and Hopes. Clin Cancer Res 2018; 24:5198-5205. [PMID: 29871908 PMCID: PMC6214775 DOI: 10.1158/1078-0432.ccr-17-2769] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/28/2022]
Abstract
The field of cancer immunotherapy has made exciting progress for some cancer types in recent years. However, recent failures of late-phase clinical trials evaluating checkpoint blockade in patients with glioblastoma (GBM) represent continued challenges for brain cancer immunotherapy. This is likely due to multiple factors including but not limited to marked genetic and antigenic heterogeneity, relatively low mutational loads, and paucity of GBM-infiltrating T cells. We review recent and ongoing studies targeting the checkpoint molecules as monotherapy or in combination with other modalities, and discuss the mechanisms underlying the unresponsiveness of GBM to single-modality immunotherapy approaches. We also discuss other novel immunotherapy approaches that may promote T-cell responses and overcome the "cold tumor" status of GBM, including oncolytic viruses and adoptive T-cell therapy. Clin Cancer Res; 24(21); 5198-205. ©2018 AACR.
Collapse
Affiliation(s)
- Robin A Buerki
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Zinal S Chheda
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.
- The Parker Institute for Cancer Immunotherapy, San Francisco, California
- Cancer Immunotherapy Program, University of California, San Francisco, San Francisco, California
| |
Collapse
|