1
|
Romandini D, Sobczuk P, Cicala CM, Serrano C. Next questions on gastrointestinal stromal tumors: unresolved challenges and future directions. Curr Opin Oncol 2025:00001622-990000000-00251. [PMID: 40207474 DOI: 10.1097/cco.0000000000001145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
PURPOSE OF REVIEW Despite remarkable progress in the management of gastrointestinal stromal tumors (GISTs), critical challenges persist. Key aspects such as risk stratification, the optimal duration of adjuvant therapy, and strategies to enhance the efficacy of first-line treatment remain subjects of ongoing debate. This review explores emerging concepts and innovative approaches aimed at refining patient selection and optimizing therapeutic decision-making to further improve clinical outcomes. RECENT FINDINGS Molecular and genomic parameters have the potential to enhance traditional risk models, enabling more precise stratification of high-risk patients. Innovations in artificial intelligence and liquid biopsy are emerging as powerful tools for refining predictions of recurrence and treatment response. Meanwhile, the definition and prognostic significance of tumor rupture remain pivotal challenges that influence both risk assessment and adjuvant therapy decisions. Furthermore, transcriptomic and multiomic analyses have unveiled distinct GIST subtypes with significant prognostic and therapeutic implications, paving the way for more tailored treatment strategies. SUMMARY Integrating molecular features into clinical decision making may refine risk assessment and personalize the treatment in patients with GIST. Future research should focus on validating these tools and redefine clinical trial designs to accelerate drug development for this rare disease.
Collapse
Affiliation(s)
- Davide Romandini
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO)
| | - Pawel Sobczuk
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO)
| | - Carlo M Cicala
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO)
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO)
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
2
|
Min V, Corradini N, Macagno N, Orbach D, Reguerre Y, Petit P, Blay JY, Verschuur A. Gastrointestinal stromal tumours (GIST) in children: An update of this orphan disease. Bull Cancer 2025; 112:348-357. [PMID: 39455327 DOI: 10.1016/j.bulcan.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/31/2024] [Accepted: 07/04/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Gastrointestinal stromal tumours (GIST) are tumours of the digestive tract that mainly develop in adults. Recommendations for the management of GIST in pediatrics are limited. MATERIAL AND METHODS We performed an updated review of the literature serving as a basis for the development of diagnostic and therapeutic recommendations for GIST in children and young adults (YA). RESULTS GIST in pediatric population can have a sporadic presentation but occur more often in a syndromic and/or familial context. Currently more than 170 cases of sporadic GIST or in association with Carney-Stratakis syndrome or Carney's triad family cases of familial GIST have been described in children and YA. These syndromes are frequently associated with germline or somatic alterations in a sub-unit of Succinate Dehydrogenase (SDH). In contrast, the frequency of somatic KIT and PDGFRα oncogene mutations (±15%) is significantly lower as compared to adults with GIST. The recommendations for the management of children with GIST are generally comparable to those used for adult patients, although certain biological differences influence the therapeutic attitude. CONCLUSIONS International collaborations have been deployed in order to increase the clinical and biological knowledge of this orphan pathology in pediatrics.
Collapse
Affiliation(s)
- Victoria Min
- Pediatric Hematology Oncology Department, La Timone Children's Hospital, AP-HM, 264, rue St Pierre, 13385 Marseille cedex, France
| | - Nadège Corradini
- Pediatric Hematology Oncology Department, Institute of Pediatric Hematology and Oncology (IHOPe), Léon Bérard Cancer Centre, Lyon, France
| | | | - Daniel Orbach
- SIREDO Oncology Centre (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), PSL University, Institut Curie, Paris, France
| | - Yves Reguerre
- Pediatric Oncology Department, University Hospital Center La Reunion, Saint-Denis, Reunion
| | - Philippe Petit
- Department of pediatric and prenatal radiology, La Timone Children's Hospital, Aix Marseille University, AP-HM, 264, rue St-Pierre, 13385 Marseille cedex, France
| | - Jean-Yves Blay
- Department of Medicine, Centre Leon Berard, UNICANCER & University Lyon I, Lyon, France
| | - Arnauld Verschuur
- Pediatric Hematology Oncology Department, La Timone Children's Hospital, AP-HM, 264, rue St Pierre, 13385 Marseille cedex, France.
| |
Collapse
|
3
|
He C, Yu J, Mao S, Yang S, Jiang X, Huang L, Li M, He Y, Zhang X, Xiang X. SHP2 inhibition and adjuvant therapy synergistically target KIT-mutant GISTs via ERK1/2-regulated GSK3β/cyclin D1 pathway. Clin Transl Med 2025; 15:e70231. [PMID: 39981588 PMCID: PMC11843164 DOI: 10.1002/ctm2.70231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Most gastrointestinal stromal tumours (GISTs) are driven by KIT proto-oncogene, receptor tyrosine kinase (KIT). Targeted treatment with imatinib has been successful in primary GIST patients. However, resistance and relapse gradually develop due to secondary KIT mutations. Identifying novel therapeutic targets for advanced GIST with KIT mutants is critical. METHODS Clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 gene editing, immunoblotting, immunoprecipitation and cell-based assays were used to characterise the role of Src homology region 2 domain-containing phosphatase 2 (SHP2) in GIST. Immunoblotting, cell cycle analysis, transcriptome analysis and rescue experiments were performed to investigate the molecular mechanisms underlying SHP2 inhibition. Synergistic effects of SHP2 inhibition with approved KIT tyrosine kinase inhibitors (TKIs) were demonstrated using cell proliferation assay, spheroid formation assay, cell cycle analysis and immunoblotting. The combination of SHP2 inhibition and imatinib was further evaluated in GIST mouse models. RESULTS In KIT-mutant GIST, SHP2 was hyperactive and coprecipitated with KIT. Activated SHP2 transduced signals from KIT to the downstream MAPK/ERK pathway. SHP2 inhibition significantly reduced cell viability and arrested cell at G0/G1 phase in GIST cells. Mechanistically, SHP2 regulated the MAPK/ERK, GSK3β/cyclin D1 and mTORC1 pathways in GIST. Specifically, SHP2 inhibition relieved GSK3β self-inhibition, leading to a reduction in cyclin D1 via phosphorylation at Thr286 and subsequent G0/G1 cell cycle arrest. Rescue experiments confirmed that cyclin D1 is functional and critical for cell proliferation. Additionally, SHP2 inhibition synergised with approved KIT TKIs in inhibiting GIST cells. In GIST mouse models, SHP2 inhibitor (SHP099) combined with imatinib significantly inhibited proliferation of imatinib-sensitive and -insensitive GIST cells. CONCLUSIONS SHP2 functioned as a key signal transducer for the MAPK/ERK signalling pathway and regulated the cell cycle through GSK3β/cyclin D1/Rb pathway. SHP2 inhibition demonstrates significant efficacy towards GIST cells and synergises with approved TKIs. Therefore, SHP2 represents a promising therapeutic target for advanced GIST. KEY POINTS SHP2 plays a pivotal role as a signal transducer in the MAPK/ERK signaling pathway. SHP2 controls the cell cycle via the GSK3β/cyclin D1/Rb pathway in oncogenic KIT-driven GIST. Inhibition of SHP2 synergizes with adjuvant therapy drugs in inhibiting KIT-driven GIST with primary and secondary mutations both in vitro and in vivo.
Collapse
Affiliation(s)
- Chunxiao He
- Scientific Research CenterThe Seventh Affiliated Hospital, Sun Yat‐sen UniversityShenzhenGuangdongChina
| | - Jiaying Yu
- Scientific Research CenterThe Seventh Affiliated Hospital, Sun Yat‐sen UniversityShenzhenGuangdongChina
| | - Shuang Mao
- Scientific Research CenterThe Seventh Affiliated Hospital, Sun Yat‐sen UniversityShenzhenGuangdongChina
| | - Shaohua Yang
- Guangdong Provincial Key Laboratory of Digestive Cancer ResearchThe Seventh Affiliated Hospital, Sun Yat‐sen UniversityShenzhenGuangdongChina
| | - Xianming Jiang
- Guangdong Provincial Key Laboratory of Digestive Cancer ResearchThe Seventh Affiliated Hospital, Sun Yat‐sen UniversityShenzhenGuangdongChina
| | - Lei Huang
- School of MedicineSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Mingzhe Li
- Guangdong Provincial Key Laboratory of Digestive Cancer ResearchThe Seventh Affiliated Hospital, Sun Yat‐sen UniversityShenzhenGuangdongChina
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer ResearchThe Seventh Affiliated Hospital, Sun Yat‐sen UniversityShenzhenGuangdongChina
| | - Xinhua Zhang
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xi Xiang
- Scientific Research CenterThe Seventh Affiliated Hospital, Sun Yat‐sen UniversityShenzhenGuangdongChina
| |
Collapse
|
4
|
Ji P, Chen T, Li C, Zhang J, Li X, Zhu H. Comprehensive review of signaling pathways and therapeutic targets in gastrointestinal cancers. Crit Rev Oncol Hematol 2025; 206:104586. [PMID: 39653094 DOI: 10.1016/j.critrevonc.2024.104586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
Targeted therapy, the milestone in the development of human medicine, originated in 2004 when the FDA approved the first targeted agent bevacizumab for colorectal cancer treatment. This new development has resulted from drug developers moving beyond traditional chemotherapy, and several trials have popped up in the last two decades with an unprecedented speed. Specifically, EGF/EGFR, VEGF/VEGFR, HGF/c-MET, and Claudin 18.2 therapeutic targets have been developed in recent years. Some targets previously thought to be undruggable are now being newly explored, such as the RAS site. However, the efficacy of targeted therapy is extremely variable, especially with the emergence of new drugs and the innovative use of traditional targets for other tumors in recent years. Accordingly, this review provides an overview of the major signaling pathway mechanisms and recent advances in targeted therapy for gastrointestinal cancers, as well as future perspectives.
Collapse
Affiliation(s)
- Pengfei Ji
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China
| | - Tingting Chen
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Chao Li
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Jinyuan Zhang
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Xiao Li
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Peng J, Hong Y, Chen Q, Xu F, Zhang D, Yao J, Zou Q, Yuan L, Li L, Long Q, Liao L, Liu M, Liu X, Wang S, Yi W. Comparison of neoadjuvant chemotherapy response and prognosis between HR-low/HER2-negative BC and TNBC: an exploratory real-world multicentre cohort study. Front Endocrinol (Lausanne) 2024; 15:1347762. [PMID: 38567311 PMCID: PMC10985142 DOI: 10.3389/fendo.2024.1347762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVE Hormone receptor (HR)-low/HER2-negative breast cancers (BCs) are more likely to be basal-like BCs, with similar molecular features and gene expression profiles to HR-negative (estrogen receptor <1% or negative and progesterone receptor <1% or negative) BCs. Recently, with the clinical application of adjuvant intensive therapy for triple-negative breast cancer (TNBC), the prognosis of TNBC patients without pathological complete response (pCR) has significantly improved. Therefore, it is necessary to reanalyse the prognostic characteristics of clinically high-risk HR-low/HER2-negative BC. METHODS According to the inclusion and exclusion standards, 288 patients with HR-low/HER2-negative BC and TNBC who received NAC and were followed up between 2015 and 2022 at three breast centres in Hunan Province, China, were enrolled. Inverse probability of treatment weighting (IPTW) was utilized to mitigate imbalances in baseline characteristics between the HR-low/HER2-negative BC group and TNBC group regarding event-free survival (EFS) and overall survival (OS). The primary clinical endpoints were pCR and EFS, while the secondary endpoints included OS, objective response rate (ORR), and clinical benefit rate (CBR). RESULTS The pCR rate (27.1% vs. 28.0%, P = 1.000), ORR rate (76.9% vs. 78.3%, P = 0.827) and CBR rate (89.7% vs. 96.5%, P = 0.113) after NAC were similar between the HR-low/HER2-negative BC and the TNBC group. EFS in patients with non-pCR from the 2 groups was significantly inferior in comparison to patients with pCR (P = 0.001), and the 3-year EFS was 94.74% (95% CI = 85.21% to 100.00%) and 57.39% (95% CI =43.81% to 75.19%) in patients with pCR and non-pCR from the HR-low/HER2-negative BC group, respectively, and 89.70% (95% CI = 82.20% to 97.90%) and 69.73% (95% CI = 62.51% to 77.77%) in the TNBC patients with pCR and non-pCR, respectively. CONCLUSIONS In the real world, the therapeutic effects of NAC for HR-low/HER2-negative BCs and TNBCs were similar. EFS of patients with non-pCR in the HR-low/HER2-negative BC group was inferior to that of the TNBC group with non-pCR, suggesting that it is necessary to explore new adjuvant intensive therapy strategies for these patients.
Collapse
Affiliation(s)
- Jing Peng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Centre For Breast Disease In Hunan Province, Changsha, China
| | - Yue Hong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Centre For Breast Disease In Hunan Province, Changsha, China
| | - Qitong Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Centre For Breast Disease In Hunan Province, Changsha, China
| | - Feng Xu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Centre For Breast Disease In Hunan Province, Changsha, China
| | - Danhua Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Centre For Breast Disease In Hunan Province, Changsha, China
| | - Jia Yao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Centre For Breast Disease In Hunan Province, Changsha, China
| | - Qiongyan Zou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Centre For Breast Disease In Hunan Province, Changsha, China
| | - Liqin Yuan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Centre For Breast Disease In Hunan Province, Changsha, China
| | - Lun Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Centre For Breast Disease In Hunan Province, Changsha, China
| | - Qian Long
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Centre For Breast Disease In Hunan Province, Changsha, China
| | - Liqiu Liao
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Mingwen Liu
- Department of Breast Surgery, the First People's Hospital of Xiangtan City, Xiangtan, Hunan, China
| | - Xuan Liu
- Department of Breast Surgery, the First People's Hospital of Xiangtan City, Xiangtan, Hunan, China
| | - Shouman Wang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Centre For Breast Disease In Hunan Province, Changsha, China
| |
Collapse
|
6
|
Cicala CM, Olivares-Rivas I, Aguirre-Carrillo JA, Serrano C. KIT/PDGFRA inhibitors for the treatment of gastrointestinal stromal tumors: getting to the gist of the problem. Expert Opin Investig Drugs 2024; 33:159-170. [PMID: 38344849 DOI: 10.1080/13543784.2024.2318317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
INTRODUCTION Approximately 90% of gastrointestinal stromal tumors (GISTs) are driven by activating mutations in receptor tyrosine-kinases KIT or PDGFRA. Despite the outstanding results of first-line imatinib in advanced GIST, resistance ultimately occurs mainly through secondary mutations in KIT/PDGFRA. Other tyrosine-kinase inhibitors (TKIs) with a broader spectrum of activity against these mutations are approved after imatinib failure. However, response rates and progression-free survival are drastically lower compared to imatinib. Notably, imatinib also triggers early tolerance adaptation mechanisms, which precede the occurrence of secondary mutations. AREAS COVERED In this review, we outline the current landscape of KIT inhibitors, discuss the novel agents, and present additional biological pathways that may be therapeutically exploitable. EXPERT OPINION The development of broad-spectrum and highly selective TKIs able to induce a sustained KIT/PDGFRA inhibition is the pillar of preclinical and clinical investigation in GIST. However, it is now recognized that the situation is more intricate, with various factors interacting with KIT and PDGFRA, playing a crucial role in the response and resistance to treatments. Future strategies in the management of advanced GIST should integrate driver inhibition with the blockade of other molecules to enhance cell death and establish enduring responses in patients.
Collapse
Affiliation(s)
- Carlo María Cicala
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Iván Olivares-Rivas
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - César Serrano
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
7
|
Zhou S, Abdihamid O, Tan F, Zhou H, Liu H, Li Z, Xiao S, Li B. KIT mutations and expression: current knowledge and new insights for overcoming IM resistance in GIST. Cell Commun Signal 2024; 22:153. [PMID: 38414063 PMCID: PMC10898159 DOI: 10.1186/s12964-023-01411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/25/2023] [Indexed: 02/29/2024] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common sarcoma located in gastrointestinal tract and derived from the interstitial cell of Cajal (ICC) lineage. Both ICC and GIST cells highly rely on KIT signal pathway. Clinically, about 80-90% of treatment-naive GIST patients harbor primary KIT mutations, and special KIT-targeted TKI, imatinib (IM) showing dramatic efficacy but resistance invariably occur, 90% of them was due to the second resistance mutations emerging within the KIT gene. Although there are multiple variants of KIT mutant which did not show complete uniform biologic characteristics, most of them have high KIT expression level. Notably, the high expression level of KIT gene is not correlated to its gene amplification. Recently, accumulating evidences strongly indicated that the gene coding, epigenetic regulation, and pre- or post- protein translation of KIT mutants in GIST were quite different from that of wild type (WT) KIT. In this review, we elucidate the biologic mechanism of KIT variants and update the underlying mechanism of the expression of KIT gene, which are exclusively regulated in GIST, providing a promising yet evidence-based therapeutic landscape and possible target for the conquer of IM resistance. Video Abstract.
Collapse
Affiliation(s)
- Shishan Zhou
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China, Xiangya road 87
| | - Omar Abdihamid
- Garissa Cancer Center, Garissa County Referral Hospital, Kismayu road, Garissa town, P.O BOX, 29-70100, Kenya
| | - Fengbo Tan
- Division of Surgery, Xiangya Hospital, Central South University, China, Hunan, Changsha
| | - Haiyan Zhou
- Division of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heli Liu
- Division of Surgery, Xiangya Hospital, Central South University, China, Hunan, Changsha
| | - Zhi Li
- Center for Molecular Medicine of Xiangya Hospital, Collaborative Innovation Center for Cancer Medicine, Central South University, Changsha, Hunan, China, 410008
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, 410008, MA, USA
| | - Bin Li
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China, Xiangya road 87#.
| |
Collapse
|
8
|
Venkataraman V, George S, Cote GM. Molecular Advances in the Treatment of Advanced Gastrointestinal Stromal Tumor. Oncologist 2023:oyad167. [PMID: 37315115 PMCID: PMC10400151 DOI: 10.1093/oncolo/oyad167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023] Open
Abstract
Most gastrointestinal stromal tumors (GIST) are driven by activating mutations in Proto-oncogene c-KIT (KIT) or PDGFRA receptor tyrosine kinases (RTK). The emergence of effective therapies targeting these mutations has revolutionized the management of advanced GIST. However, following initiation of first-line imatinib, a tyrosine kinase inhibitor (TKI), nearly all patients will develop resistance within 2 years through the emergence of secondary resistance mutations in KIT, typically in the Adenosine Triphosphate (ATP)-binding site or activation loop of the kinase domain. Moreover, some patients have de novo resistance to imatinib, such as those with mutations in PDGFRA exon 18 or those without KIT or PDGFRA mutation. To target resistance, research efforts are primarily focused on developing next-generation inhibitors of KIT and/or PDGFRA, which can inhibit alternate receptor conformations or unique mutations, and compounds that impact complimentary pathogenic processes or epigenetic events. Here, we review the literature on the medical management of high-risk localized and advanced GIST and provide an update on clinical trial approaches to this disease.
Collapse
Affiliation(s)
- Vinayak Venkataraman
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA
- Mass General Hospital Cancer Center, Center for Sarcoma and Connective Tissue Oncology, Boston, MA, USA
| | - Suzanne George
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA
| | - Gregory M Cote
- Mass General Hospital Cancer Center, Center for Sarcoma and Connective Tissue Oncology, Boston, MA, USA
| |
Collapse
|
9
|
Naito Y, Nishida T, Doi T. Current status of and future prospects for the treatment of unresectable or metastatic gastrointestinal stromal tumours. Gastric Cancer 2023; 26:339-351. [PMID: 36913072 PMCID: PMC10115693 DOI: 10.1007/s10120-023-01381-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Gastrointestinal stromal tumours (GISTs) are soft-tissue sarcomas of the gastrointestinal tract. Surgery is the standard treatment for localised disease, but the risk of relapse and progression to more advanced disease is substantial. Following the discovery of the molecular mechanisms underlying GISTs, targeted therapies for advanced GIST were developed, with the first being the tyrosine kinase inhibitor (TKI) imatinib. Imatinib is recommended in international guidelines as first-line therapy to reduce the risk of GIST relapse in high-risk patients, and for locally advanced, inoperable and metastatic disease. Unfortunately, imatinib resistance frequently occurs and, therefore, second-line (sunitinib) and third-line (regorafenib) TKIs have been developed. Treatment options are limited for patients with GIST that has progressed despite these therapies. A number of other TKIs for advanced/metastatic GIST have been approved in some countries. Ripretinib is approved as fourth-line treatment of GIST and avapritinib is approved for GIST harbouring specific genetic mutations, while larotrectinib and entrectinib are approved for solid tumours (including GIST) with specific genetic mutations. In Japan, pimitespib, a heat shock protein 90 (HSP90) inhibitor, is now available as a fourth-line therapy for GIST. Clinical studies of pimitespib have indicated that it has good efficacy and tolerability, importantly not displaying the ocular toxicity of previously developed HSP90 inhibitors. Additional approaches for advanced GIST have been investigated, including alternative uses of currently available TKIs (such as combination therapy), novel TKIs, antibody-drug conjugates, and immunotherapies. Given the poor prognosis of advanced GIST, the development of new therapies remains an important goal.
Collapse
Affiliation(s)
- Yoichi Naito
- Department of General Internal Medicine, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan.
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| | - Toshirou Nishida
- Department of Surgery, Japan Community Health Care Organization Osaka Hospital, Osaka, Japan
- National Cancer Center Hospital, Tsukiji, Tokyo, Japan
| | - Toshihiko Doi
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
10
|
Ruiz-Demoulin S, Trenquier E, Dekkar S, Deshayes S, Boisguérin P, Serrano C, de Santa Barbara P, Faure S. LIX1 Controls MAPK Signaling Reactivation and Contributes to GIST-T1 Cell Resistance to Imatinib. Int J Mol Sci 2023; 24:ijms24087138. [PMID: 37108337 PMCID: PMC10138740 DOI: 10.3390/ijms24087138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Gastrointestinal stromal tumor (GIST), the most common sarcoma, is mainly caused by an oncogenic mutation in the KIT receptor tyrosine kinase. Targeting KIT using tyrosine kinase inhibitors, such as imatinib and sunitinib, provides substantial benefit; however, in most patients, the disease will eventually progress due to KIT secondary mutations leading to treatment failure. Understanding how GIST cells initially adapt to KIT inhibition should guide the selection of appropriate therapies to overcome the emergence of resistance. Several mechanisms have been broadly implicated in the resistance to imatinib anti-tumoral effects, including the reactivation of MAPK signaling upon KIT/PDGFRA targeted inhibition. This study provides evidence that LImb eXpression 1 (LIX1), a protein we identified as a regulator of the Hippo transducers YAP1 and TAZ, is upregulated upon imatinib or sunitinib treatment. LIX1 silencing in GIST-T1 cells impaired imatinib-induced MAPK signaling reactivation and enhanced imatinib anti-tumor effect. Our findings identified LIX1 as a key regulator of the early adaptative response of GIST cells to targeted therapies.
Collapse
Affiliation(s)
- Salomé Ruiz-Demoulin
- Physiology and Experimental Medicine of the Heart and Muscles (PhyMedExp), University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Eva Trenquier
- Physiology and Experimental Medicine of the Heart and Muscles (PhyMedExp), University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Sanaa Dekkar
- Physiology and Experimental Medicine of the Heart and Muscles (PhyMedExp), University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Sébastien Deshayes
- Physiology and Experimental Medicine of the Heart and Muscles (PhyMedExp), University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Prisca Boisguérin
- Physiology and Experimental Medicine of the Heart and Muscles (PhyMedExp), University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - César Serrano
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Pascal de Santa Barbara
- Physiology and Experimental Medicine of the Heart and Muscles (PhyMedExp), University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Sandrine Faure
- Physiology and Experimental Medicine of the Heart and Muscles (PhyMedExp), University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| |
Collapse
|
11
|
Liu G, Chen T, Zhang X, Ma X, Shi H. Small molecule inhibitors targeting the cancers. MedComm (Beijing) 2022; 3:e181. [PMID: 36254250 PMCID: PMC9560750 DOI: 10.1002/mco2.181] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Compared with traditional therapies, targeted therapy has merits in selectivity, efficacy, and tolerability. Small molecule inhibitors are one of the primary targeted therapies for cancer. Due to their advantages in a wide range of targets, convenient medication, and the ability to penetrate into the central nervous system, many efforts have been devoted to developing more small molecule inhibitors. To date, 88 small molecule inhibitors have been approved by the United States Food and Drug Administration to treat cancers. Despite remarkable progress, small molecule inhibitors in cancer treatment still face many obstacles, such as low response rate, short duration of response, toxicity, biomarkers, and resistance. To better promote the development of small molecule inhibitors targeting cancers, we comprehensively reviewed small molecule inhibitors involved in all the approved agents and pivotal drug candidates in clinical trials arranged by the signaling pathways and the classification of small molecule inhibitors. We discussed lessons learned from the development of these agents, the proper strategies to overcome resistance arising from different mechanisms, and combination therapies concerned with small molecule inhibitors. Through our review, we hoped to provide insights and perspectives for the research and development of small molecule inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Gui‐Hong Liu
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Tao Chen
- Department of CardiologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xin Zhang
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Xue‐Lei Ma
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Hua‐Shan Shi
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
12
|
Nakayama H, Ogawa C, Sekimizu M, Fujisaki H, Kosaka Y, Hashimoto H, Saito AM, Horibe K. A phase I study of inotuzumab ozogamicin as a single agent in pediatric patients in Japan with relapsed/refractory CD22-positive acute lymphoblastic leukemia (INO-Ped-ALL-1). Int J Hematol 2022; 116:612-621. [PMID: 35635686 DOI: 10.1007/s12185-022-03388-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
Abstract
Inotuzumab ozogamicin (InO) is a CD22-directed antibody conjugated with calicheamicin approved for adult relapsed or refractory CD22-positive acute lymphoblastic leukemia (ALL). This phase 1 study primarily aimed to determine the pediatric recommended doses of InO through the standard 3 + 3 design, and to evaluate the safety, tolerability, pharmacokinetic (PK) profile, immunogenicity and efficacy of InO. Dose level 1 (DL1) was 1.8 mg/m2 (days 1, 8, and 15: 0.8, 0.5, and 0.5 mg/m2, respectively). Six of the seven registered patients were eligible [median age, 7.5 (2-17) years]. Although all six patients started DL1, only five completed the dose. No dose-limiting toxicity was observed. All patients experienced adverse events (AEs), including increased alanine aminotransferase and aspartate aminotransferase in four patients. Three patients experienced serious AEs, which were hepatic veno-occlusive disease (VOD), ALL, and fever. Five patients achieved complete remission (CR) or CR with incomplete blood cell recovery (CRi), among whom 3 (60%) were negative for minimal residual disease. PK findings were similar to those in adults. No patient had anti-drug antibodies to InO. In conclusion, InO was well tolerated in children and promoted similar antileukemic efficacy as in adults. Nonetheless, the risk for VOD requires attention.
Collapse
Affiliation(s)
- Hideki Nakayama
- Department of Pediatrics, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan.
| | - Chitose Ogawa
- Department of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Masahiro Sekimizu
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Department of Pediatrics, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Hiroyuki Fujisaki
- Department of Pediatric Hematology/Oncology, Osaka City General Hospital, Osaka, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Hiroya Hashimoto
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Core Laboratory, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Akiko M Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Department of Pediatrics, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| |
Collapse
|
13
|
Sun Y, Yue L, Xu P, Hu W. An overview of agents and treatments for PDGFRA-mutated gastrointestinal stromal tumors. Front Oncol 2022; 12:927587. [PMID: 36119525 PMCID: PMC9471148 DOI: 10.3389/fonc.2022.927587] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Platelet-derived growth factor receptor A (PDGFRA) mutations occur in approximately 10-15% of gastrointestinal stromal tumors (GISTs). These tumors with PDGFRA mutations have a different pathogenesis, clinical characteristics, and treatment response compared to tumors with receptor tyrosine kinase protein (KIT) mutations (60-70%). Many clinical studies have investigated the use of tyrosine kinase inhibitors mainly in patients with KIT mutations; however, there is a lack of attention to the PDGFRA-mutated molecular subtype. The main effective inhibitors of PDGFRA are ripretinib, avapritinib, and crenolanib, and their mechanisms and efficacy in GIST (as confirmed in clinical trials) are described in this review. Some multi-targeted tyrosine kinase inhibitors with inhibitory effects on this molecular subtype are also introduced and summarized in this paper. This review focuses on PDGFRA-mutated GISTs, introduces their clinical characteristics, downstream molecular signaling pathways, and existing resistance mechanisms. We focus on the most recent literature that describes the development of PDGFRA inhibitors and their use in clinical trials, as well as the potential benefits from different combination therapy strategies.
Collapse
Affiliation(s)
- Yingchao Sun
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Lei Yue
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Pengfu Xu
- Department of Gastrointestinal Surgery, Taizhou Hospital, Zhejiang University, Taizhou, China
| | - Weiling Hu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University (IGZJU), Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Since its approval in 2002, imatinib remains the standard first-line treatment for patients with advanced gastrointestinal stromal tumors (GISTs). Overall, all the drugs approved for patients who have developed secondary resistance to imatinib are less effective than imatinib in first-line. Even if, overall survival of patients with advanced GIST has improved over time the last 20 years, imatinib-resistant GIST remains therefore a difficult-to-treat cancer. The aim of this review is to elaborate on the potential strategies to improve outcome for patients with imatinib-refractory disease. RECENT FINDINGS New-generation potent KIT and PDGFRA inhibitors such as ripretinib and avapritinib developed for the treatment of GIST have shown very promising clinical activity in patients with highly refractory disease. However, both failed to improve outcome in comparison with standard of care in earlier lines settings. Clinical trials investigating the efficacy of multikinase inhibitor with highly specific KIT inhibitors are currently ongoing. Targeting the microenvironment of GIST may also represent a promising approach and is investigated in several clinical studies. SUMMARY Imatinib-refractory GIST still represent a therapeutic challenge. It is likely that only combination therapies with new generation of tyrosine kinase inhibitors (TKIs) and/or immune-oncology agents might potentially result in an enhanced therapeutic efficacy compared with current standard of care.
Collapse
|
15
|
Klug LR, Khosroyani HM, Kent JD, Heinrich MC. New treatment strategies for advanced-stage gastrointestinal stromal tumours. Nat Rev Clin Oncol 2022; 19:328-341. [PMID: 35217782 PMCID: PMC11488293 DOI: 10.1038/s41571-022-00606-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
When gastrointestinal stromal tumour (GIST), the most common form of sarcoma, was first recognized as a distinct pathological entity in the 1990s, patients with advanced-stage disease had a very poor prognosis owing to a lack of effective medical therapies. The discovery of KIT mutations as the first and most prevalent drivers of GIST and the subsequent development of the first KIT tyrosine kinase inhibitor (TKI), imatinib, revolutionized the treatment of patients with this disease. We can now identify the driver mutation in 99% of patients with GIST via molecular diagnostic testing, and therapies have been developed to treat many, but not all, molecular subtypes of the disease. At present, seven drugs are approved by the FDA for the treatment of advanced-stage GIST (imatinib, sunitinib, regorafenib, ripretinib, avapritinib, larotrectinib and entrectinib), all of which are TKIs. Although these agents can be very effective for treating certain GIST subtypes, challenges remain and new therapeutic approaches are needed. In this Review, we discuss the molecular subtypes of GIST and the evolution of current treatments, as well as their therapeutic limitations. We also highlight emerging therapeutic approaches that might overcome clinical challenges through novel strategies predicated on the biological features of the distinct GIST molecular subtypes.
Collapse
Affiliation(s)
- Lillian R Klug
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Homma M Khosroyani
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jason D Kent
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Michael C Heinrich
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|