1
|
Pizzamiglio M, Soulabaille A, Lahlou W, Pilla L, Zaanan A, Taieb J. Advances and challenges in targeted therapies for HER2-amplified colorectal cancer. Eur J Cancer 2025; 222:115471. [PMID: 40311507 DOI: 10.1016/j.ejca.2025.115471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 05/03/2025]
Abstract
Colorectal cancer is the third most common cancer in terms of incidence rate in adults and the second most common cause of cancer-related death in Europe. Despite an increase in overall survival throughout the years, the prognosis of metastatic colorectal cancer remains poor. Until recently, its treatment was based on the use of standard chemotherapy combined with, anti-epidermal growth factor receptor (for RAS wild-type tumors) or anti-vascular endothelial growth factor, or immunotherapy for tumors with mismatch repair deficiency. Over the last years, precision medicine has become a challenge in oncology and there has been an increasing development of biomarker-driven therapies for metastatic colorectal cancer leading to better outcomes for specific molecular subgroups of patients. Human epidermal growth factor receptor 2 (HER2) amplification/overexpression has been identified in about 6 % of patients with RAS wild-type metastatic CRC and established as an important and drugable biomarker. Its prognostic and predictive implications are still debated but HER2 becoming a therapeutic target with promising results of anti-HER2 therapies for HER2-positive metastatic CRC. Multiple HER2-targeted regimens are now part of National Comprehensive Cancer Network and European Society for Medical Oncology guidelines with two recent Food and Drug Administration approvals for previously treated HER2-positive metastatic colorectal cancer for tucatinib (in combination with trastuzumab) and for trastuzumab-deruxtecan in patients with previously treated HER2-positive metastatic colorectal cancer. This review explores the prognostic and predictive value of HER2 as a biomarker in CRC, describing its molecular structure, the clinical characteristics of patients with HER2 alterations, diagnostic approaches and the most relevant clinical trials assessing its current and future role as a therapeutic target in metastatic colorectal cancer.
Collapse
Affiliation(s)
- Margot Pizzamiglio
- Université Paris Cité, Assistance Publique - Hôpitaux de Paris, Department of Digestive Oncology, Hôpital européen Georges Pompidou, Paris, France
| | - Audrey Soulabaille
- Université Paris Cité, Assistance Publique - Hôpitaux de Paris, Department of Digestive Oncology, Hôpital européen Georges Pompidou, Paris, France
| | - Widad Lahlou
- Université Paris Cité, Assistance Publique - Hôpitaux de Paris, Department of Digestive Oncology, Hôpital européen Georges Pompidou, Paris, France
| | - Lorenzo Pilla
- Université Paris Cité, Assistance Publique - Hôpitaux de Paris, Department of Digestive Oncology, Hôpital européen Georges Pompidou, Paris, France
| | - Aziz Zaanan
- Université Paris Cité, Assistance Publique - Hôpitaux de Paris, Department of Digestive Oncology, Hôpital européen Georges Pompidou, Paris, France
| | - Julien Taieb
- Université Paris Cité, Assistance Publique - Hôpitaux de Paris, Department of Digestive Oncology, Hôpital européen Georges Pompidou, Paris, France.
| |
Collapse
|
2
|
Liu Y, Zhong Y, Sang Y, Zhu S, Xu K, Zhu X, Cui X, Liu X, Wang X, Chen H, Jing C, Chong W, Li L. Molecular characteristics and cancer immunity of LRP1B and its relationship with the Hedgehog signaling pathway in colorectal cancer. Front Immunol 2025; 16:1567102. [PMID: 40170839 PMCID: PMC11959038 DOI: 10.3389/fimmu.2025.1567102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 02/21/2025] [Indexed: 04/03/2025] Open
Abstract
Background Colorectal cancer (CRC) is a malignant tumor of the digestive tract that significantly impacts human health. LDL receptor-related protein 1B (LRP1B) may play a crucial role in tumorigenesis and disease progression. Methods We performed a comparative analysis of differential gene expression, mutation patterns, drug sensitivity, and cellular phenotypes across different subgroups with varying LRP1B expression levels. Cellular and molecular experiments were conducted to validate our findings. Results Our analysis implicated LRP1B as a tumor suppressor gene. Experimental results confirmed that LRP1B expression was reduced in CRC and its knockdown was associated with poor prognosis. Molecular mechanism studies revealed that LRP1B negatively regulated the Hedgehog (Hh) signaling pathway, influencing cell cycle and apoptosis processes. Single-cell analysis showed significant differences in the infiltration of T cells, B cells, epithelial cells, and myeloid cells between high and low LRP1B expression groups. Immune cell infiltration and drug sensitivity analyses demonstrated that LRP1B plays a crucial role in immunotherapy and targeted therapy, suggesting that restoring LRP1B function could be a promising treatment strategy for CRC. Conclusion Our results indicate that LRP1B may function as a tumor suppressor factor in CRC, playing a significant role in mutation, therapy, and immune infiltration. Knockdown of LRP1B activates the Hh pathway in tumor cells, leading to the inhibition of several malignant biological behaviors.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yang Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Clinical Research Center of Shandong University, Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yaodong Sang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Siqiang Zhu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Kang Xu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xingyu Zhu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoling Cui
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xinyu Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaohan Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hao Chen
- Clinical Research Center of Shandong University, Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Chong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
3
|
Cheng PTM, Topham JT, Aldeheshi A, Taylor GA, Pleasance E, McConechy MK, Nelson JMT, Schaeffer DF, Jones SJM, Marra MA, Laskin J, Renouf DJ. Whole-genome analysis of an aggressive metastatic pancreatic solid pseudopapillary neoplasm. NPJ Precis Oncol 2025; 9:59. [PMID: 40038436 PMCID: PMC11880304 DOI: 10.1038/s41698-025-00843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/20/2025] [Indexed: 03/06/2025] Open
Abstract
Pancreatic solid pseudopapillary neoplasms (SPNs) are uncommon tumors that rarely exhibit aggressive behavior. Given disease rarity, comprehensive studies to understand tumor biology, clinical course, and optimal management are limited. We describe an unusual case of a 55-year-old man with metastatic pancreatic SPN, where whole-genome and transcriptome analyses of the primary tumor and a metastatic liver lesion revealed a shared homozygous non-canonical mutation in APC. The patient received upfront modified FOLFIRINOX (infusional 5-fluorouracil, irinotecan, and oxaliplatin) chemotherapy due to rapidly progressive symptoms, demonstrating an early and sustained treatment response. Therefore, we identified potential genetic determinants of tumorigenesis and progression in a pathologically and clinically aggressive SPN, which may have important prognostic and treatment implications.
Collapse
Affiliation(s)
- Phoebe T M Cheng
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada.
| | - James T Topham
- Pancreas Centre BC, Vancouver, BC, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Ayman Aldeheshi
- Department, Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gregory A Taylor
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Erin Pleasance
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Melissa K McConechy
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Jessica M T Nelson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - David F Schaeffer
- Pancreas Centre BC, Vancouver, BC, Canada
- Department, Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Daniel J Renouf
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada.
- Pancreas Centre BC, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Suzuki S, Akahane T, Tanimoto A, Higashi M, Kitazono I, Kirishima M, Nishigaki M, Ikeda T, Kanemitsu S, Nakazawa J, Akahane E, Nishihara H, Uozumi K, Yoshimitsu M, Ishitsuka K, Ueno SI. Comparison of actionable alterations in cancers with kinase fusion, mutation, and copy number alteration. PLoS One 2025; 20:e0305025. [PMID: 39847581 PMCID: PMC11756797 DOI: 10.1371/journal.pone.0305025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025] Open
Abstract
Kinase-related gene fusion and point mutations play pivotal roles as drivers in cancer, necessitating optimized, targeted therapy against these alterations. The efficacy of molecularly targeted therapeutics varies depending on the specific alteration, with great success reported for such therapeutics in the treatment of cancer with kinase fusion proteins. However, the involvement of actionable alterations in solid tumors, especially regarding kinase fusions, remains unclear. Therefore, in this study, we aimed to compare the number of actionable alterations in patients with tyrosine or serine/threonine kinase domain fusions, mutations, and copy number alterations (CNAs). We analyzed 613 patients with 40 solid cancer types who visited our division between June 2020 and April 2024. Furthermore, to detect alterations involving multiple-fusion calling, we performed comprehensive genomic sequencing using FoundationOne® companion diagnostic (F1CDx) and FoundationOne® Liquid companion diagnostic (F1LCDx). Patient characteristics and genomic profiles were analyzed to assess the frequency and distribution of actionable alterations across different cancer types. Notably, 44 of the 613 patients had fusions involving kinases, transcriptional regulators, or tumor suppressors. F1CDx and F1LCDx detected 13 cases with kinase-domain fusions. We identified 117 patients with kinase-domain mutations and 58 with kinase-domain CNAs. The number of actionable alterations in patients with kinase-domain fusion, mutation, or CNA (median [interquartile range; IQR]) was 2 (1-3), 5 (3-7), and 6 (4-8), respectively. Patients with kinase fusion had significantly fewer actionable alterations than those with kinase-domain mutations and CNAs. However, those with fusion involving tumor suppressors tended to have more actionable alterations (median [IQR]; 4 [2-9]). Cancers with kinase fusions exhibited fewer actionable alterations than those with kinase mutations and CNAs. These findings underscore the importance of detecting kinase alterations and indicate the pivotal role of kinase fusions as strong drivers of cancer development, highlighting their potential as prime targets for molecular therapeutics.
Collapse
Affiliation(s)
- Shinsuke Suzuki
- Cancer Center, Kagoshima University Hospital, Kagoshima, Japan
- Department of Clinical Oncology, Course of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Toshiaki Akahane
- Cancer Center, Kagoshima University Hospital, Kagoshima, Japan
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Michiyo Higashi
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ikumi Kitazono
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mari Kirishima
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | - Toshiro Ikeda
- Department of Genetic Counseling, Kagoshima University Hospital, Kagoshima, Japan
| | | | - Junichi Nakazawa
- Department of Medical Oncology, Kagoshima City Hospital, Kagoshima, Japan
| | - Erina Akahane
- Cancer Center, Kagoshima University Hospital, Kagoshima, Japan
| | - Hiroshi Nishihara
- Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Kimiharu Uozumi
- Department of Medical Oncology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Makoto Yoshimitsu
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Kenji Ishitsuka
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Shin-ichi Ueno
- Cancer Center, Kagoshima University Hospital, Kagoshima, Japan
- Department of Clinical Oncology, Course of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
5
|
Zhao J, Yu Y, Ren W, Ding L, Chen Y, Yuan P, Yue J, Yang Y, Zou G, Chen T, Chai J, Zhang L, Wu W, Zeng Y, Gui X, Cai Y, Luo S, Yuan Z, Zhang K, Yao H, Wang Y. Combined pyrotinib and fulvestrant for hormone receptor-positive and HER2-positive metastatic breast cancer: A multicenter, single-arm, phase II trial. MedComm (Beijing) 2025; 6:e70031. [PMID: 39712455 PMCID: PMC11661908 DOI: 10.1002/mco2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
This multicenter, single-arm, phase II clinical trial (NCT04034589) evaluated the efficacy and safety of pyrotinib combined with fulvestrant in patients with HR-positive/HER2-positive metastatic breast cancer who had experienced trastuzumab treatment failure. A total of 46 patients were enrolled, receiving pyrotinib orally once daily and fulvestrant intramuscularly on days 1 and 15 of cycle 1, followed by monthly doses on day 1. The primary endpoint was progression-free survival (PFS), while secondary endpoints included overall survival (OS), objective response rate (ORR), disease control rate (DCR), and safety. The median PFS was 18.2 months (95% CI, 11.9-31.1) overall, 19.5 months (95% CI, 10.6-NA) for those receiving the combination as first-line therapy, and 18.4 months (95% CI, 16.7-NA) for patients with brain metastases. Median OS was not reached, with a 3-year OS rate of 75.2% (95% CI, 62.8-90.2%). The ORR was 32.5%, and the DCR was 97.5%. Responses were observed in patients with low tumor mutation burden and ZNF217 mutation. Importantly, no grade 4 or higher treatment-related adverse events or deaths were reported, indicating a favorable safety profile. In conclusion, the combination of pyrotinib and fulvestrant demonstrated promising antitumor activity and acceptable safety in HR-positive/HER2-positive metastatic breast cancer patients.
Collapse
Affiliation(s)
- Jianli Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Faculty of MedicineMacau University of Science and TechnologyTaipaMacaoPR China
| | - Wei Ren
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Linxiaoxiao Ding
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yongjian Chen
- Dermatology and Venereology DivisionDepartment of Medicine SolnaCenter for Molecular MedicineKarolinska InstituteStockholmStockholmSweden
| | - Peng Yuan
- Department of VIP Medical ServicesNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jian Yue
- Department of VIP Medical ServicesNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yaping Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Guorong Zou
- Department of Medical Oncologythe Affiliated Panyu Central Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Tao Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jie Chai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Li Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Wenjing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yinduo Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiujuan Gui
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yangyang Cai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Simin Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhongyu Yuan
- Department of Medical OncologySun Yat‐Sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouGuangdongChina
| | - Kang Zhang
- Faculty of MedicineMacau University of Science and TechnologyTaipaMacaoPR China
- Guangzhou National LaboratoryGuangzhouGuangdongChina
- Advanced Institute for Eye Health and DiseasesWenzhou Medical UniversityWenzhouChina
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
6
|
Roazzi L, Patelli G, Bencardino KB, Amatu A, Bonazzina E, Tosi F, Amoruso B, Bombelli A, Mariano S, Stabile S, Porta C, Siena S, Sartore-Bianchi A. Ongoing Clinical Trials and Future Research Scenarios of Circulating Tumor DNA for the Treatment of Metastatic Colorectal Cancer. Clin Colorectal Cancer 2024; 23:295-308. [PMID: 38519391 DOI: 10.1016/j.clcc.2024.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/04/2024] [Accepted: 02/11/2024] [Indexed: 03/24/2024]
Abstract
Liquid biopsy using circulating tumor DNA (ctDNA) has emerged as a minimally invasive, timely approach to provide molecular diagnosis and monitor tumor evolution in patients with cancer. Since the molecular landscape of metastatic colorectal cancer (mCRC) is substantially heterogeneous and dynamic over space and time, ctDNA holds significant advantages as a biomarker for this disease. Numerous studies have demonstrated that ctDNA broadly recapitulates the molecular profile of the primary tumor and metastases, and have mainly focused on the genotyping of RAS and BRAF, that is propaedeutic for anti-EGFR treatment selection. However, ctDNA soon broadened its scope towards the assessment of early tumor response, as well as the identification of drug resistance biomarkers to drive potential molecular actionability. In this review article, we provide an overview of the current state-of-the-art of this methodology and its applications, focusing on ongoing clinical trials that employ ctDNA to prospectively guide treatment in patients with mCRC.
Collapse
Affiliation(s)
- Laura Roazzi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giorgio Patelli
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy; IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Katia Bruna Bencardino
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alessio Amatu
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Erica Bonazzina
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Federica Tosi
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Brunella Amoruso
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy; Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Bombelli
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Sara Mariano
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Stefano Stabile
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Camillo Porta
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy; Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy.
| | - Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Division of Clinical Research and Innovation, Grande Ospedale Metropolitano Niguarda, Milan, Italy.
| |
Collapse
|
7
|
Battaglin F, Lenz HJ. Clinical Applications of Circulating Tumor DNA Profiling in GI Cancers. JCO Oncol Pract 2024; 20:1481-1490. [PMID: 39531845 PMCID: PMC11567053 DOI: 10.1200/op.24.00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 11/16/2024] Open
Abstract
Over the next few years, the analysis of circulating tumor DNA (ctDNA) through liquid biopsy is expected to enter clinical practice and revolutionize the approach to biomarker testing and treatment selection in GI cancers. In fact, growing evidence support the use of ctDNA testing as a noninvasive, effective, and highly specific tool for molecular profiling in GI cancers. Analysis of blood ctDNA has been investigated in multiple settings including early tumor detection, minimal residual disease evaluation, tumor diagnosis and evaluation of prognostic/predictive biomarkers for targeted treatment selection, longitudinal monitoring of treatment response, and identification of resistance mechanisms. Here, we review the clinical applications, advantages, and limitations of ctDNA profiling for precision oncology in GI cancers.
Collapse
Affiliation(s)
- Francesca Battaglin
- Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Heinz-Josef Lenz
- Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Campani C, Imbeaud S, Couchy G, Ziol M, Hirsch TZ, Rebouissou S, Noblet B, Nahon P, Hormigos K, Sidali S, Seror O, Taly V, Ganne Carrie N, Laurent-Puig P, Zucman-Rossi J, Nault JC. Circulating tumour DNA in patients with hepatocellular carcinoma across tumour stages and treatments. Gut 2024; 73:1870-1882. [PMID: 39054058 DOI: 10.1136/gutjnl-2024-331956] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Circulating tumour DNA (ctDNA) is a promising non-invasive biomarker in cancer. We aim to assess the dynamic of ctDNA in patients with hepatocellular carcinoma (HCC). DESIGN We analysed 772 plasmas from 173 patients with HCC collected at the time of diagnosis or treatment (n=502), 24 hours after locoregional treatment (n=154) and during follow-up (n=116). For controls, 56 plasmas from patients with chronic liver disease without HCC were analysed. All samples were analysed for cell free DNA (cfDNA) concentration, and for mutations in TERT promoter, CTNNB1, TP53, PIK3CA and NFE2L2 by sequencing and droplet-based digital PCR. Results were compared with 232 corresponding tumour samples. RESULTS In patients with active HCC, 40.2% of the ctDNA was mutated vs 14.6% in patients with inactive HCC and 1.8% in controls (p<0.001). In active HCC, we identified 27.5% of mutations in TERT promoter, 21.3% in TP53, 13.1% in CTNNB1, 0.4% in PIK3CA and 0.2% in NFE2L2, most of the times similar to those identified in the corresponding tumour. CtDNA mutation rate increased with advanced tumour stages (p<0.001). In 103 patients treated by percutaneous ablation, the presence and number of mutations in the ctDNA before treatment were associated with higher risk of death (p=0.001) and recurrence (p<0.001). Interestingly, cfDNA concentration and detectable mutations increased 24 hours after a locoregional treatment. Among 356 plasmas collected in 53 patients treated by systemic treatments, we detected mutations at baseline in 60.4% of the cases. In patients treated by atezolizumab-bevacizumab, persistence of mutation in ctDNA was associated with radiological progression (63.6% vs 36.4% for disappearance, p=0.019). In two patients progressing under systemic treatments, we detected the occurrence of mutations in CTNNB1 in the plasma that was subclonal in the tumour for one patient and not detectable in the tumour for the other one. CONCLUSION ctDNA offers dynamic information reflecting tumour biology. It represents a non-invasive tool useful to guide HCC clinical management.
Collapse
Affiliation(s)
- Claudia Campani
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Internal Medicine and Hepatology Unit, Department of Experimental and Clinical Medicine, University of Firenze, Florence, Italy
| | - Sandrine Imbeaud
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
| | - Gabrielle Couchy
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
| | - Marianne Ziol
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Pathology Department and Biological Resource Center Center (BB-0033-00027), Paris-Seine-Saint-Denis, University Hospital, Avicenne Hospital, APHP, Sorbonne Paris Nord University, Bobugny, France
| | - Theo Z Hirsch
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
| | - Sandra Rebouissou
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
| | - Bénédicte Noblet
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
| | - Pierre Nahon
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Liver Unit, Avicenne Hospital, APHP, University Sorbonne Paris Nord, Bobigny, France
| | - Katia Hormigos
- Cordeliers Research Center, INSERM, CNRS SNC 5096, Sorbonne University, Paris Cité University, Paris, France
| | - Sabrina Sidali
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Liver unit, Paris Cité University, Beaujon Hospital, APHP, DMU DIGEST, Clichy, France
| | - Olivier Seror
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Interventional Radiology Unit, Avicenne Hospital, APHP, Bobigny, Paris, France
| | - Valerie Taly
- Cordeliers Research Center, INSERM, CNRS SNC 5096, Sorbonne University, Paris Cité University, Paris, France
| | - Nathalie Ganne Carrie
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Liver Unit, Avicenne Hospital, APHP, University Sorbonne Paris Nord, Bobigny, France
| | - Pierre Laurent-Puig
- Cordeliers Research Center, INSERM, Sorbonne University, Paris Cité University, Institut of Cancer Paris CARPEM, AP-HP-Hôpital Européen Georges Pompidou, Paris, France
| | - Jessica Zucman-Rossi
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Cordeliers Research Center, INSERM, Sorbonne University, Paris Cité University, Institut of Cancer Paris CARPEM, AP-HP-Hôpital Européen Georges Pompidou, Paris, France
| | - Jean-Charles Nault
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Liver Unit, Avicenne Hospital, APHP, University Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
9
|
Lee SB, Kim JW, Kim HG, Hwang SH, Kim KJ, Lee JH, Seo J, Kang M, Jung EH, Suh KJ, Kim SH, Kim JW, Kim YJ, Kim JH, Kwon NJ, Lee KW. Longitudinal Comparative Analysis of Circulating Tumor DNA and Matched Tumor Tissue DNA in Patients with Metastatic Colorectal Cancer Receiving Palliative First-Line Systemic Anti-Cancer Therapy. Cancer Res Treat 2024; 56:1171-1182. [PMID: 38697850 PMCID: PMC11491242 DOI: 10.4143/crt.2024.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
PURPOSE This study aimed to compare tumor tissue DNA (ttDNA) and circulating tumor DNA (ctDNA) to explore the clinical applicability of ctDNA and to better understand clonal evolution in patients with metastatic colorectal cancer undergoing palliative first-line systemic therapy. MATERIALS AND METHODS We performed targeted sequencing analysis of 88 cancer-associated genes using germline DNA, ctDNA at baseline (baseline-ctDNA), and ctDNA at progressive disease (PD-ctDNA). The results were compared with ttDNA data. RESULTS Among 208 consecutively enrolled patients, we selected 84 (41 males; median age, 59 years; range, 35 to 90 years) with all four sample types available. A total of 202 driver mutations were found in 34 genes. ttDNA exhibited the highest mutation frequency (n=232), followed by baseline-ctDNA (n=155) and PD-ctDNA (n=117). Sequencing ctDNA alongside ttDNA revealed additional mutations in 40 patients (47.6%). PD-ctDNA detected 13 novel mutations in 10 patients (11.9%) compared to ttDNA and baseline-ctDNA. Notably, seven mutations in five patients (6.0%) were missense or nonsense mutations in APC, TP53, SMAD4, and CDH1 genes. In baseline-ctDNA, higher maximal variant allele frequency (VAF) values (p=0.010) and higher VAF values of APC (p=0.012), TP53 (p=0.012), and KRAS (p=0.005) mutations were significantly associated with worse overall survival. CONCLUSION While ttDNA remains more sensitive than ctDNA, our ctDNA platform demonstrated validity and potential value when ttDNA was unavailable. Post-treatment analysis of PD-ctDNA unveiled new pathogenic mutations, signifying cancer's clonal evolution. Additionally, baseline-ctDNA's VAF values were prognostic after treatment.
Collapse
Affiliation(s)
| | - Ji-Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | | | - Sung-Hyun Hwang
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kui-Jin Kim
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ju Hyun Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of Statistics, Hankuk University of Foreign Studies, Yongin, Korea
| | - Jeongmin Seo
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Minsu Kang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Eun Hee Jung
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Koung Jin Suh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Se Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | | | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
10
|
Hsieh RW, Symonds LK, Siu J, Cohen SA. Identification of circulating tumor DNA as a biomarker for diagnosis and response to therapies in cancer patients. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 391:43-93. [PMID: 39939078 DOI: 10.1016/bs.ircmb.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
The sampling of circulating biomarkers provides an opportunity for non-invasive evaluation and monitoring of cancer activity. In modern day practice, this has typically been in the form of circulating tumor DNA (ctDNA) detected in plasma. The field of ctDNA has been a burgeoning technology, with prominent applications for blood-based cancer screening and in disease status assessment, especially after curative-intent surgery to evaluate for minimal residual disease (MRD). Clinical applications for the latter show an incredibly high sensitivity in certain cancer types with a need for additional studies to determine how much clinical decision-making should be adapted based on ctDNA results and which cancer types, stages, and treatments are best informed by ctDNA results. This chapter provides an overview of ctDNA detection as tool for cancer screening, detecting MRD, and/or molecularly characterizing a cancer, highlighting the rapidly amassing research as a prognostic biomarker and emerging data on ctDNA as a predictive biomarker.
Collapse
Affiliation(s)
- Ronan W Hsieh
- Division of Hematology/Oncology, University of Washington, Seattle, WA, United States; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Lynn K Symonds
- Division of Hematology/Oncology, University of Washington, Seattle, WA, United States; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Jason Siu
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States
| | - Stacey A Cohen
- Division of Hematology/Oncology, University of Washington, Seattle, WA, United States; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States.
| |
Collapse
|
11
|
Loree JM, Titmuss E, Topham JT, Kennecke HF, Feilotter H, Virk S, Lee YS, Banks K, Quinn K, Karsan A, Renouf DJ, Jonker DJ, Tu D, O’Callaghan CJ, Chen EX. Plasma versus Tissue Tumor Mutational Burden as Biomarkers of Durvalumab plus Tremelimumab Response in Patients with Metastatic Colorectal Cancer in the CO.26 Trial. Clin Cancer Res 2024; 30:3189-3199. [PMID: 38727700 PMCID: PMC11292199 DOI: 10.1158/1078-0432.ccr-24-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/24/2024] [Accepted: 05/08/2024] [Indexed: 08/02/2024]
Abstract
PURPOSE Tissue-derived tumor mutation burden (TMB) of ≥10 mutations/Mb is a histology-agnostic biomarker for the immune checkpoint inhibitor (ICI) pembrolizumab. However, the dataset in which this was validated lacked colorectal cancers (CRC), and there is limited evidence for immunotherapy benefits in CRC using this threshold. PATIENTS AND METHODS CO.26 was a randomized phase II study of 180 patients, comparing durvalumab and tremelimumab (D + T, n = 119 patients) versus best supportive care (BSC; n = 61 patients). ctDNA sequencing was available for 168 patients (n = 118 D + T; n = 50), of whom 165 had evaluable plasma TMB (pTMB). Tissue sequencing was available for 108 patients. Optimal thresholds for stratifying patients based on OS were determined using a minimal P value approach. This report includes the final OS analysis. RESULTS Tissue TMB ≥10 mutations/Mb was not predictive of benefit from D + T compared with BSC in microsatellite stable (MSS) metastatic CRC [HR, 0.71 (95% CI, 0.28-1.80); P = 0.47]. No tissue TMB threshold could identify a high TMB group that benefited from ICI. By contrast, plasma TMB (pTMB) ≥28 mutations/Mb was predictive of benefit from D + T [HR, 0.34 (95% CI, 0.13-0.85); P = 0.022], as was clonal pTMB ≥10.6 mutations/Mb [HR, 0.10 (95% CI, 0.014-0.79); P = 0.029] and subclonal pTMB ≥25.9/Mb [HR, 0.20 (95% CI, 0.061-0.69); P = 0.010]. Higher pTMB was associated with length of time on cytotoxic agents (P = 0.021) and prior anti-EGFR exposure (P = 2.44 × 10-06). CONCLUSIONS pTMB derived from either clonal or subclonal mutations may identify a group likely to benefit from immunotherapy, although validation is required. Tissue TMB provided no predictive utility for immunotherapy in this trial.
Collapse
Affiliation(s)
| | - Emma Titmuss
- BC Cancer, University of British Columbia, Vancouver, Canada.
| | - James T. Topham
- BC Cancer, University of British Columbia, Vancouver, Canada.
| | | | | | - Shakeel Virk
- Canadian Clinical Trials Group, Kingston, Canada.
| | | | | | | | - Aly Karsan
- BC Cancer, University of British Columbia, Vancouver, Canada.
| | | | | | - Dongsheng Tu
- Canadian Clinical Trials Group, Kingston, Canada.
| | | | - Eric X. Chen
- Princess Margaret Cancer Centre, Toronto, Canada.
| |
Collapse
|
12
|
Wu FT, Topham JT, O'Callaghan CJ, Feilotter H, Kennecke HF, Drusbosky L, Renouf DJ, Jonker DJ, Tu D, Chen EX, Loree JM. Kinetic Profiling of RAS Mutations With Circulating Tumor DNA in the Canadian Cancer Trials Group CO.26 Trial Suggests the Loss of RAS Mutations in Neo- RAS-Wildtype Metastatic Colorectal Cancer Is Transient. JCO Precis Oncol 2024; 8:e2400031. [PMID: 39178370 PMCID: PMC11371075 DOI: 10.1200/po.24.00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024] Open
Abstract
PURPOSE In metastatic colorectal cancer (mCRC), RAS mutations drive resistance to anti-epidermal growth factor receptor antibodies. It is unclear whether RAS mutations ever become clonally undetectable. METHODS CO.26 was a phase II clinical trial that assessed durvalumab + tremelimumab in heavily pretreated mCRC. RAS mutation status was tracked over time using circulating tumor DNA (ctDNA) sequencing at baseline, week 8, and on progression. RESULTS Among the 95 patients with KRAS/NRAS mutations in their archival tumor tissue, 6.3% (6/95) had undetectable RAS mutations in ctDNA collected at baseline or week 8 of the CO.26 study. Of these, 67% (4/6) of disappearances were transient, with the same mutation reappearing with progressive disease. In three cases, the simultaneous persistence of other preexisting CRC-associated truncal mutations could not be demonstrated, suggestive of low tumor shedding of ctDNA, leaving the incidence of true clonal reversion to RAS-wildtype (WT) possibly as low as 3.2% (3/95). Fewer patients in the neo-RAS-WT group (33%) had greater than four lesions at trial baseline compared with patients with persistent RAS mutations (75%), P = .046. The likelihood of synchronous metastases at cancer diagnosis (33% v 63%; P = .15) or liver metastases at trial baseline (50% v 68.5%; P = .17) was not significantly different between patients with disappearing versus persistent RAS mutations. Overall survival from stage IV diagnosis (hazard ratio, 0.77 [95% CI, 0.35 to 1.72]; P = .52) was not significantly different between those with disappearing versus persistent RAS mutations. The disappearance of RAS mutations was not associated with primary tumor sidedness (P = .41), archival BRAF/MEK/ERK-mutant status (P = .16/1.00/.09), nor baseline ctDNA HER2 amplifications (P = 1.00). CONCLUSION We identified a 3.2%-6.3% prevalence of the neo-RAS-WT phenomenon in the CO.26 trial. However, 67% of apparent cases were transient with subsequent re-emergence.
Collapse
Affiliation(s)
- Florence T.H. Wu
- BC Cancer, University of British Columbia, Vancouver, BC, Canada
| | - James T. Topham
- BC Cancer, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | - Daniel J. Renouf
- BC Cancer, University of British Columbia, Vancouver, BC, Canada
| | - Derek J. Jonker
- The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Dongsheng Tu
- Canadian Cancer Trials Group, Kingston, ON, Canada
| | - Eric X. Chen
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | | |
Collapse
|
13
|
Boukovala M, Westphalen CB, Probst V. Liquid biopsy into the clinics: Current evidence and future perspectives. THE JOURNAL OF LIQUID BIOPSY 2024; 4:100146. [PMID: 40027149 PMCID: PMC11863819 DOI: 10.1016/j.jlb.2024.100146] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2025]
Abstract
As precision oncology has become a major part of the treatment landscape in oncology, liquid biopsies have developed as a particularly powerful tool as it surmounts several limitations of traditional tissue biopsies. These biopsies involve most commonly the isolation of circulating extracellular nucleic acids, including cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA), as well as circulating tumor cells (CTCs), typically from blood. The clinical applications of liquid biopsies are diverse, encompassing the initial diagnosis and cancer detection, the application as a tool for prognostication in early and advanced tumor settings, the identification of potentially actionable alterations, the monitoring of response and resistance under systemic therapy and the detection of resistance mechanisms, the differentiation of distinct immune checkpoint blockade response patterns through serial samples, the prediction of immune checkpoint blockade responses based on initial liquid biopsy characteristics and the assessment of tumor heterogeneity. Moreover, molecular relapse monitoring in early-stage cancers and the personalization of adjuvant or additive therapy via MRD have become a major field of research in recent years. Compared to tissue biopsies, liquid biopsies are less invasive and can be collected serially, offering real-time molecular insights. Furthermore, liquid biopsies may allow for a more holistic evaluation of a patient's disease, as they assess material from all tumor sites and can theoretically reflect tumor heterogeneity. Furthermore, quicker turnaround-time also constitutes an advantage of liquid biopsies. Disadvantages or hurdles include the challenge of detecting low amounts of tumor deposits in peripheral blood or other fluids and the potential of different amounts tumor-shedding from different metastatic sites, as well as potentially false-positive from clonal hematopoietic mutations of indeterminate potential (CHIP) mutations. The clinical utility of liquid biopsies still must be validated in most settings and further research has to be done. Clinal trials including alternate bodily fluids and leveraging AI-technology are expected to revolutionize the field of liquid biopsies.
Collapse
|
14
|
Zhang X, Wu M, Chen J, Zheng K, Du H, Li B, Gu Y, Jiang J. Comparative efficacy of immune checkpoint inhibitors combined with chemotherapy in patients with advanced driver-gene negative non-small cell lung cancer: A systematic review and network meta-analysis. Heliyon 2024; 10:e30809. [PMID: 38774326 PMCID: PMC11107224 DOI: 10.1016/j.heliyon.2024.e30809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024] Open
Abstract
Objective To evaluate the efficacy of different combinations of immune checkpoint inhibitors (ICIs) and chemotherapy (CT) in the treatment of advanced non-small cell lung cancer (NSCLC). Methods We obtained relevant randomized controlled trials (RCTs) from databases such as PubMed, Embase, Web of Science, and The Cochrane Library up to May 31, 2023. The analysis of clinical prognostic factors was performed using R 4.2.3 and STATA 15.0. The main outcomes measured were overall survival (OS) and progression-free survival (PFS), while secondary outcomes included the objective response rate (ORR), disease control rate (DCR), and treatment-related adverse events of grade 3-5 severity (Grade ≥3 TRAE). Results A total of 17 randomized controlled trials (RCTs) were conducted between 2012 and 2023, involving 7792 patients. These trials evaluated 11 different treatment methods. The results of these trials showed that in terms of overall survival (OS) and progression-free survival (PFS), the combination of tislelizumab with chemotherapy and the combination of camrelizumab with chemotherapy were particularly effective. Moreover, when compared with other combination therapies, pembrolizumab combined with chemotherapy showed superiority in terms of disease control rate (DCR) and objective response rate (ORR). Subgroup analyses further demonstrated that the addition of immune checkpoint inhibitors (ICIs) to chemotherapy significantly improved PFS and OS in patients without liver metastasis and in those with brain metastasis. Additionally, carboplatin-based combination therapy was found to confer favorable survival benefits in terms of PFS, while cisplatin-based combination therapy showed the most favorable outcomes in terms of OS. The results of subgroup analyses for overall survival (OS) showed that the combination of immunotherapy and chemotherapy yielded positive outcomes in specific subgroups. These subgroups were characterized by PD-L1 Tumor Proportion Score (TPS) of 50 % or higher, usage of anti-PD-1 medications, age below 65, male gender, smoking history, and non-squamous cell carcinoma histology. Superior effectiveness was demonstrated only in extending the progression-free survival (PFS) of female patients and patients with squamous carcinoma. Meanwhile, other patient cohorts did not show the same level of improvement. Conclusions Tislelizumab, camrelizumab or pembrolizumab combined with chemotherapy may be the optimal first-line treatment strategies for NSCLC.
Collapse
Affiliation(s)
- Xuewen Zhang
- Department of Oncology, Graduate School of Qinghai University, Qinghai, China
| | - Min Wu
- Department of Oncology, Graduate School of Qinghai University, Qinghai, China
| | - Jie Chen
- Department of Oncology, Graduate School of Qinghai University, Qinghai, China
| | - Kaiman Zheng
- Department of Oncology, Graduate School of Qinghai University, Qinghai, China
| | - Huchen Du
- Department of Oncology, 903 Hosptial, Sichuan, China
| | - Bo Li
- Department of Oncology, Graduate School of Qinghai University, Qinghai, China
| | - Yujia Gu
- Department of Oncology, Graduate School of Qinghai University, Qinghai, China
| | - Jun Jiang
- Division III, Department of Medical Oncology, Affiliated Hospital of Qinghai University, Qinghai, China
| |
Collapse
|
15
|
Spiekman IAC, Zeverijn LJ, Geurts BS, Verkerk K, Haj Mohammad SF, van der Noort V, Roepman P, de Leng WWJ, Jansen AML, Gootjes EC, de Groot DJA, Kerver ED, van Voorthuizen T, Roodhart JML, Valkenburg-van Iersel LBJ, Gelderblom H, Voest EE, Verheul HMW. Trastuzumab plus pertuzumab for HER2-amplified advanced colorectal cancer: Results from the drug rediscovery protocol (DRUP). Eur J Cancer 2024; 202:113988. [PMID: 38471288 DOI: 10.1016/j.ejca.2024.113988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND In 2-5% of patients with colorectal cancer (CRC), human epidermal growth factor 2 (HER2) is amplified or overexpressed. Despite prior evidence that anti-HER2 therapy confers clinical benefit (CB) in one-third of these patients, it is not approved for this indication in Europe. In the Drug Rediscovery Protocol (DRUP), patients are treated with off-label drugs based on their molecular profile. Here, we present the results of the cohort 'trastuzumab/pertuzumab for treatment-refractory patients with RAS/BRAF-wild-type HER2amplified metastatic CRC (HER2+mCRC)'. METHODS Patients with progressive treatment-refractory RAS/BRAF-wild-type HER2+mCRC with measurable disease were included for trastuzumab plus pertuzumab treatment. Primary endpoints of DRUP are CB (defined as confirmed objective response (OR) or stable disease (SD) ≥ 16 weeks) and safety. Patients were enrolled using a Simon-like 2-stage model, with 8 patients in stage 1 and 24 patients in stage 2 if at least 1/8 patients had CB. To identify biomarkers for response, whole genome sequencing (WGS) was performed on pre-treatment biopsies. RESULTS CB was observed in 11/24 evaluable patients (46%) with HER2+mCRC, seven patients achieved an OR (29%). Median duration of response was 8.4 months. Patients had undergone a median of 3 prior treatment lines. Median progression-free survival and overall survival were 4.3 months (95% CI 1.9-10.3) and 8.2 months (95% CI 7.2-14.7), respectively. No unexpected toxicities were observed. WGS provided potential explanations for resistance in 3/10 patients without CB, for whom WGS was available. CONCLUSIONS The results of this study confirm a clinically significant benefit of trastuzumab plus pertuzumab treatment in patients with HER2+mCRC.
Collapse
Affiliation(s)
- Ilse A C Spiekman
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Laurien J Zeverijn
- Oncode Institute, Utrecht, the Netherlands; Department of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Birgit S Geurts
- Oncode Institute, Utrecht, the Netherlands; Department of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Karlijn Verkerk
- Oncode Institute, Utrecht, the Netherlands; Department of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Soemeya F Haj Mohammad
- Department of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, the Netherlands
| | - Wendy W J de Leng
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Anne M L Jansen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Elske C Gootjes
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Derk-Jan A de Groot
- Department of Medical Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Emile D Kerver
- Department of Medical Oncology, OLVG, Amsterdam, the Netherlands
| | | | - Jeanine M L Roodhart
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Liselot B J Valkenburg-van Iersel
- Division of Medical Oncology, Department of Internal Medicine, GROW school of Oncology and Development Biology, Maastricht University Center+, Maastricht, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Emile E Voest
- Oncode Institute, Utrecht, the Netherlands; Department of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
16
|
Zarkavelis G, Amylidi AL, Torounidou N, Yerolatsite M, Keravasili A, Keramisanou V, Mauri D. Exploring RAS mutation incidence and temporal heterogeneity in metastatic colorectal cancer patients - a single-institution experience utilising circulating tumour DNA. Contemp Oncol (Pozn) 2024; 28:45-50. [PMID: 38800532 PMCID: PMC11117156 DOI: 10.5114/wo.2024.138899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Colorectal cancer (CRC) remains a significant global health challenge, ranking among the leading causes of neoplastic mortality. Despite transformative therapeutic advances, a considerable proportion of patients are diagnosed with metastatic disease, and 15-30% of those initially presenting with early-stage CRC eventually experience recurrence. Comprehensive molecular testing, especially the evaluation of microsatellite instability and mutations in KRAS/NRAS or BRAF genes, is essential upon diagnosis of stage IV disease, guiding treatment decisions. Material and methods This manuscript explores the mutational landscape of KRAS and NRAS in patients with CRC, employing digital polymerase chain reaction (PCR) BEAMing for the detection of mutations in liquid biopsy. Our study enrolled patients with histologically confirmed CRC and stage IV disease, focusing on identifying mutations in KRAS and NRAS genes during various stages of therapy. Results Evaluating baseline, midline, and progression samples, we found that 66.6% maintained consistent mutational status post-disease progression, while 33.3% exhibited a shift in mutational status. The application of techniques with high sensitivity, such as BEAMing Digital PCR, is pivotal for accurate circulating tumour DNA (ctDNA) mutation detection. The study underscores the significance of continuous molecular monitoring in guiding therapeutic decisions for patients with metastatic CRC. Conclusions Our findings contribute to our understanding of the evolving mutational landscape and the potential clinical implications of ctDNA ana- lysis in the era of personalised cancer medicine.
Collapse
Affiliation(s)
- George Zarkavelis
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), Ioannina, Greece
| | - Anna Lea Amylidi
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), Ioannina, Greece
| | - Nanteznta Torounidou
- Department of Medical Oncology, University Hospital of Ioannina, Ioannina, Greece
| | - Melina Yerolatsite
- Department of Medical Oncology, University Hospital of Ioannina, Ioannina, Greece
| | - Athanasia Keravasili
- Department of Medical Oncology, University Hospital of Ioannina, Ioannina, Greece
| | - Varvara Keramisanou
- Department of Medical Oncology, University Hospital of Ioannina, Ioannina, Greece
| | - Davide Mauri
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), Ioannina, Greece
| |
Collapse
|
17
|
Li W, Huang Y, Xiao M, Zhao J, Du S, Wang Z, Hu S, Yang L, Cai J. PBRM1 presents a potential ctDNA marker to monitor response to neoadjuvant chemotherapy in cervical cancer. iScience 2024; 27:109160. [PMID: 38414861 PMCID: PMC10897912 DOI: 10.1016/j.isci.2024.109160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/06/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
Neoadjuvant chemotherapy (NACT) is a therapeutic option for locally advanced cervical cancer (LACC) patients. This study was aimed to identify potential liquid biopsy biomarkers to monitor the NACT response. Through targeted next-generation sequencing (NGS) analysis of circulating tumor DNA (ctDNA) and tumor tissue DNA (ttDNA) taken from LACC patients undergoing platinum-based NACT, 64 genes with mutations emerge during NACT in the non-responders but none in the responders. Among them, the PBRM1, SETD2, and ROS1 mutations were frequently detected in the ctDNA and ttDNA of the non-responders, and mutant PBRM1 was associated with poorer survival of patients. In vitro, PBRM1 knockdown promoted resistance to cisplatin through boosting STAT3 signaling in cervical cancer cells, while it sensitized tumor cells to poly-ADP-ribose-polymerase inhibitor olaparib. These findings suggest that mutant PBRM1 is a potential ctDNA marker of emerging resistance to NACT and of increased sensitivity to olaparib, which warrants further clinical validation.
Collapse
Affiliation(s)
- Wenhan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhui Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Man Xiao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shi Du
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sha Hu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lu Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
18
|
Hanrahan AJ, Chen Z, Rosen N, Solit DB. BRAF - a tumour-agnostic drug target with lineage-specific dependencies. Nat Rev Clin Oncol 2024; 21:224-247. [PMID: 38278874 PMCID: PMC11857949 DOI: 10.1038/s41571-023-00852-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
In June 2022, the FDA granted Accelerated Approval to the BRAF inhibitor dabrafenib in combination with the MEK inhibitor trametinib for the treatment of adult and paediatric patients (≥6 years of age) with unresectable or metastatic BRAFV600E-mutant solid tumours, except for BRAFV600E-mutant colorectal cancers. The histology-agnostic approval of dabrafenib plus trametinib marks the culmination of two decades of research into the landscape of BRAF mutations in human cancers, the biochemical mechanisms underlying BRAF-mediated tumorigenesis, and the clinical development of selective RAF and MEK inhibitors. Although the majority of patients with BRAFV600E-mutant tumours derive clinical benefit from BRAF inhibitor-based combinations, resistance to treatment develops in most. In this Review, we describe the biochemical basis for oncogenic BRAF-induced activation of MAPK signalling and pan-cancer and lineage-specific mechanisms of intrinsic, adaptive and acquired resistance to BRAF inhibitors. We also discuss novel RAF inhibitors and drug combinations designed to delay the emergence of treatment resistance and/or expand the population of patients with BRAF-mutant cancers who benefit from molecularly targeted therapies.
Collapse
Affiliation(s)
- Aphrothiti J Hanrahan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ziyu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, Cornell University, New York, NY, USA.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
19
|
Germani MM, Vetere G, Giordano M, Ciracì P, Capone I, Tamborini E, Conca E, Busico A, Pietrantonio F, Piva VM, Boccaccino A, Simionato F, Bortolot M, Manca P, Lonardi S, Conca V, Borelli B, Carullo M, Del Re M, Fontanini G, Rossini D, Cremolini C. Molecular screening with liquid biopsy for anti-EGFR retreatment in metastatic colorectal cancer: preliminary data from the randomized phase 2 PARERE trial. Front Oncol 2024; 13:1307545. [PMID: 38406172 PMCID: PMC10889120 DOI: 10.3389/fonc.2023.1307545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 02/27/2024] Open
Abstract
Background Retreatment with anti-EGFR monoclonal antibodies is a promising strategy in patients with RAS/BRAF wild-type (wt) metastatic colorectal cancer (mCRC) who achieved benefit from previous anti-EGFR exposure upon exclusion of mutations in RAS/BRAF genes according to circulating tumor DNA (ctDNA) analysis by means of liquid biopsy (LB). This treatment approach is now being investigated in the randomized phase II trial PARERE (NCT04787341). We here present preliminary findings of molecular screening. Methods Patients with RAS/BRAFV600E wt mCRC according to tissue genotyping who benefited from previous anti-EGFR-based treatment (fluoropyrimidines, oxaliplatin, irinotecan, and antiangiogenics) and then experienced disease progression to EGFR targeting were eligible for screening in the PARERE trial. The next-generation sequencing (NGS) panel Oncomine™ was employed for ctDNA testing. Results A total of 218 patients underwent LB, and ctDNA sequencing was successful in 201 of them (92%). RAS/BRAFV600E mutations were found in 68 (34%) patients and were mainly subclonal (median variant allele fraction [VAF] for KRAS, NRAS, and BRAF mutant clones: 0.52%, 0.62%, and 0.12%, respectively; p = 0.01), with KRASQ61H being the most frequently detected (31%). Anti-EGFR-free intervals did not predict ctDNA molecular status (p = 0.12). Among the 133 patients with RAS/BRAFV600E wt tumors according to LB, 40 (30%) harbored a mutation in at least another gene potentially implied in anti-EGFR resistance, mainly with subclonal expression (median VAF, 0.56%). In detail, alterations in PIK3CA, FBXW7, GNAS, MAP2K, ERBB2, BRAF (class I and II non-BRAFV600E), SMAD, EGFR, AKT1, and CTNNB1 occurred in 13%, 8%, 7%, 3%, 2%, 2%, 1%, 1%, 1%, and 1% cases, respectively. Co-mutations were detected in 13 (33%) out of 40 patients. Conclusions This is the largest prospective cohort of mCRC patients screened with LB for anti-EGFR retreatment in a randomized study. ctDNA genotyping reveals that at least one out of three patients candidate for retreatment should be excluded from this therapy, and other potential drivers of anti-EGFR resistance are found in approximately one out of three patients with RAS/BRAFV600E wt ctDNA.
Collapse
Affiliation(s)
- Marco Maria Germani
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Guglielmo Vetere
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mirella Giordano
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Paolo Ciracì
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Iolanda Capone
- Molecular Pathology Laboratory, Department of Pathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale Dei Tumori, Milan, Italy
| | - Elena Tamborini
- Molecular Pathology Laboratory, Department of Pathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale Dei Tumori, Milan, Italy
| | - Elena Conca
- Molecular Pathology Laboratory, Department of Pathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale Dei Tumori, Milan, Italy
| | - Adele Busico
- Molecular Pathology Laboratory, Department of Pathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale Dei Tumori, Milan, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Vittoria Matilde Piva
- Oncology Unit 1, Veneto Institute of Oncology - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padua, Italy
- Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Alessandra Boccaccino
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Martina Bortolot
- Department of Medicine (DAME), University of Udine, Udine, Italy
- Department of Oncology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Paolo Manca
- Department of Medical Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Lonardi
- Oncology Unit 3, Veneto Institute of Oncology - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padua, Italy
| | - Veronica Conca
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Beatrice Borelli
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Martina Carullo
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriella Fontanini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Daniele Rossini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Torresan S, de Scordilli M, Bortolot M, Di Nardo P, Foltran L, Fumagalli A, Guardascione M, Ongaro E, Puglisi F. Liquid biopsy in colorectal cancer: Onward and upward. Crit Rev Oncol Hematol 2024; 194:104242. [PMID: 38128627 DOI: 10.1016/j.critrevonc.2023.104242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths worldwide. In recent years, liquid biopsy has emerged as one of the most interesting areas of research in oncology, leading to innovative trials and practical changes in all aspects of CRC management. RNAs and cell free DNA (cfDNA) methylation are emerging as promising biomarkers for early diagnosis. Post-surgical circulating tumour DNA (ctDNA) can aid in evaluating minimal residual disease and personalising adjuvant treatment. In rectal cancer, ctDNA could improve response assessment to neoadjuvant therapy and risk stratification, especially in the era of organ-preservation trials. In the advanced setting, ctDNA analysis offers the opportunity to monitor treatment response and identify driver and resistance mutations more comprehensively than traditional tissue analysis, providing prognostic and predictive information. The aim of this review is to provide a detailed overview of the clinical applications and future perspectives of liquid biopsy in CRC.
Collapse
Affiliation(s)
- Sara Torresan
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Marco de Scordilli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy.
| | - Martina Bortolot
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Paola Di Nardo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Luisa Foltran
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Arianna Fumagalli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Michela Guardascione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Elena Ongaro
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Fabio Puglisi
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
21
|
Kuboki Y, Fakih M, Strickler J, Yaeger R, Masuishi T, Kim EJ, Bestvina CM, Kopetz S, Falchook GS, Langer C, Krauss J, Puri S, Cardona P, Chan E, Varrieur T, Mukundan L, Anderson A, Tran Q, Hong DS. Sotorasib with panitumumab in chemotherapy-refractory KRAS G12C-mutated colorectal cancer: a phase 1b trial. Nat Med 2024; 30:265-270. [PMID: 38177853 PMCID: PMC11135132 DOI: 10.1038/s41591-023-02717-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024]
Abstract
The current third-line (and beyond) treatment options for RAS-mutant metastatic colorectal cancer have yielded limited efficacy. At the time of study start, the combination of sotorasib, a KRAS (Kirsten rat sarcoma viral oncogene homolog)-G12C inhibitor, and panitumumab, an epidermal growth factor receptor (EGFR) inhibitor, was hypothesized to overcome treatment-induced resistance. This phase 1b substudy of the CodeBreaK 101 master protocol evaluated sotorasib plus panitumumab in patients with chemotherapy-refractory KRASG12C-mutated metastatic colorectal cancer. Here, we report the results in a dose-exploration cohort and a dose-expansion cohort. Patients received sotorasib (960 mg, once daily) plus panitumumab (6 mg kg-1, once every 2 weeks). The primary endpoints were safety and tolerability. Secondary endpoints included efficacy and pharmacokinetics. Exploratory biomarkers at baseline were assessed. Forty-eight patients (dose-exploration cohort, n = 8; dose-expansion cohort, n = 40) were treated. Treatment-related adverse events of any grade and grade ≥3 occurred in 45 (94%) and 13 (27%) patients, respectively. In the dose-expansion cohort, the confirmed objective response rate was 30.0% (95% confidence interval (CI) 16.6%, 46.5%). Median progression-free survival was 5.7 months (95% CI 4.2, 7.7 months). Median overall survival was 15.2 months (95% CI 12.5 months, not estimable). Prevalent genomic coalterations included APC (84%), TP53 (74%), SMAD4 (33%), PIK3CA (28%) and EGFR (26%). Sotorasib-panitumumab demonstrated acceptable safety with promising efficacy in chemotherapy-refractory KRASG12C-mutated metastatic colorectal cancer. ClinicalTrials.gov identifier: NCT04185883 .
Collapse
Affiliation(s)
| | - Marwan Fakih
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Rona Yaeger
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Edward J Kim
- UC Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | | | - Scott Kopetz
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Corey Langer
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Sonam Puri
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | | | | | | | | | | | - Qui Tran
- Amgen Inc., Thousand Oaks, CA, USA
| | - David S Hong
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
22
|
Krell M, Llera B, Brown ZJ. Circulating Tumor DNA and Management of Colorectal Cancer. Cancers (Basel) 2023; 16:21. [PMID: 38201448 PMCID: PMC10778183 DOI: 10.3390/cancers16010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Although the incidence of colorectal cancer (CRC) has decreased as a result of increased screening and awareness, it still remains a major cause of cancer-related death. Additionally, early detection of CRC recurrence by conventional means such as CT, endoscopy, and CEA has not translated into an improvement in survival. Liquid biopsies, such as the detection circulating tumor DNA (ctDNA), have been investigated as a biomarker for patients with CRC in terms of prognosis and recurrence, as well as their use to guide therapy. In this manuscript, we provide an overview of ctDNA as well as its utility in providing prognostic information, using it to guide therapy, and monitoring for recurrence in patients with CRC. In addition, we discuss the influence the site of disease may have on the ability to detect ctDNA in patients with metastatic CRC.
Collapse
Affiliation(s)
| | | | - Zachary J. Brown
- Department of Surgery, Division of Surgical Oncology, NYU Langone Health, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (M.K.); (B.L.)
| |
Collapse
|
23
|
Patelli G, Mauri G, Tosi F, Amatu A, Bencardino K, Bonazzina E, Pizzutilo EG, Villa F, Calvanese G, Agostara AG, Stabile S, Ghezzi S, Crisafulli G, Di Nicolantonio F, Marsoni S, Bardelli A, Siena S, Sartore-Bianchi A. Circulating Tumor DNA to Drive Treatment in Metastatic Colorectal Cancer. Clin Cancer Res 2023; 29:4530-4539. [PMID: 37436743 PMCID: PMC10643999 DOI: 10.1158/1078-0432.ccr-23-0079] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023]
Abstract
In the evolving molecular treatment landscape of metastatic colorectal cancer (mCRC), the identification of druggable alterations is pivotal to achieve the best therapeutic opportunity for each patient. Because the number of actionable targets is expanding, there is the need to timely detect their presence or emergence to guide the choice of different available treatment options. Liquid biopsy, through the analysis of circulating tumor DNA (ctDNA), has proven safe and effective as a complementary method to address cancer evolution while overcoming the limitations of tissue biopsy. Even though data are accumulating regarding the potential for ctDNA-guided treatments applied to targeted agents, still major gaps in knowledge exist as for their application to different areas of the continuum of care. In this review, we recapitulate how ctDNA information could be exploited to drive different targeted treatment strategies in mCRC patients, by refining molecular selection before treatment by addressing tumor heterogeneity beyond tumor tissue biopsy; longitudinally monitoring early-tumor response and resistance mechanisms to targeted agents, potentially leading to tailored, molecular-driven, therapeutic options; guiding the molecular triage towards rechallenge strategies with anti-EGFR agents, suggesting the best time for retreatment; and providing opportunities for an "enhanced rechallenge" through additional treatments or combos aimed at overcoming acquired resistance. Besides, we discuss future perspectives concerning the potential role of ctDNA to fine-tune investigational strategies such as immuno-oncology.
Collapse
Affiliation(s)
- Giorgio Patelli
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- IFOM ETS – The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Gianluca Mauri
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- IFOM ETS – The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Federica Tosi
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alessio Amatu
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Katia Bencardino
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Erica Bonazzina
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Elio Gregory Pizzutilo
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Federica Villa
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Gabriele Calvanese
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alberto Giuseppe Agostara
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Stefano Stabile
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Silvia Ghezzi
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Federica Di Nicolantonio
- Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Silvia Marsoni
- IFOM ETS – The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Division of Clinical Research and Innovation, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
24
|
Parseghian C, Eluri M, Kopetz S, Raghav K. Mechanisms of resistance to EGFR-targeted therapies in colorectal cancer: more than just genetics. Front Cell Dev Biol 2023; 11:1176657. [PMID: 37791069 PMCID: PMC10542118 DOI: 10.3389/fcell.2023.1176657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/12/2023] [Indexed: 10/05/2023] Open
Abstract
The development of acquired resistance to anti-EGFR therapies remains poorly understood, with most research to date exploring, and trying to overcome, various genomic mechanisms of resistance. However, recent work supports a model of resistance whereby transcriptomic mechanisms of resistance predominate in the presence of active cytotoxic chemotherapy combined with anti-EGFR therapy in the first-line setting, with a greater predominance of acquired MAPK mutations after single-agent anti-EGFR therapy in the later-line setting. The proposed model has implications for prospective studies evaluating anti-EGFR rechallenge strategies guided by acquired MAPK mutations and highlights the need to address transcriptional mechanisms of resistance.
Collapse
Affiliation(s)
- Christine Parseghian
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Madhulika Eluri
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kanwal Raghav
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
25
|
Bou Antoun N, Chioni AM. Dysregulated Signalling Pathways Driving Anticancer Drug Resistance. Int J Mol Sci 2023; 24:12222. [PMID: 37569598 PMCID: PMC10418675 DOI: 10.3390/ijms241512222] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
One of the leading causes of death worldwide, in both men and women, is cancer. Despite the significant development in therapeutic strategies, the inevitable emergence of drug resistance limits the success and impedes the curative outcome. Intrinsic and acquired resistance are common mechanisms responsible for cancer relapse. Several factors crucially regulate tumourigenesis and resistance, including physical barriers, tumour microenvironment (TME), heterogeneity, genetic and epigenetic alterations, the immune system, tumour burden, growth kinetics and undruggable targets. Moreover, transforming growth factor-beta (TGF-β), Notch, epidermal growth factor receptor (EGFR), integrin-extracellular matrix (ECM), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR), wingless-related integration site (Wnt/β-catenin), Janus kinase/signal transducers and activators of transcription (JAK/STAT) and RAS/RAF/mitogen-activated protein kinase (MAPK) signalling pathways are some of the key players that have a pivotal role in drug resistance mechanisms. To guide future cancer treatments and improve results, a deeper comprehension of drug resistance pathways is necessary. This review covers both intrinsic and acquired resistance and gives a comprehensive overview of recent research on mechanisms that enable cancer cells to bypass barriers put up by treatments, and, like "satellite navigation", find alternative routes by which to carry on their "journey" to cancer progression.
Collapse
Affiliation(s)
| | - Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Biomolecular Sciences Department, Kingston University London, Kingston-upon-Thames KT1 2EE, UK;
| |
Collapse
|
26
|
Lin CY, Shen MY, Chen WTL, Yang CA. Evaluation of the Prognostic Value of Low-Frequency KRAS Mutation Detection in Circulating Tumor DNA of Patients with Metastatic Colorectal Cancer. J Pers Med 2023; 13:1051. [PMID: 37511664 PMCID: PMC10381461 DOI: 10.3390/jpm13071051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
KRAS mutation in tumor tissue is a well-known predictor of resistance to the treatment of anti-EGFR antibodies in metastatic colorectal cancers (mCRC). However, the prognostic value of low-frequency plasma circulating tumor DNA (ctDNA) KRAS mutation in predicting treatment resistance in pretreated mCRC patients remains controversial. This study retrospectively reviewed the clinical course, including response to anti-EGFR and anti-VEGF therapies, and changes in serum tumor marker levels along with image studies in mCRC patients with <1.5% KRAS mutations detected in plasma ctDNA by next-generation sequencing (NGS) at a single center in Taiwan. We identified six pretreated mCRC patients with low-frequency KRAS G12V/G12D/G12S/G13D mutations (variant allele frequency 0.26~1.23%) in plasma ctDNA. Co-occurring low-frequency ctDNA mutations in APC, TP53, MAP2K1, KEAP1, or CTNNB1 were also detected. Although all six patients had treatment adjustments within one month after the ctDNA genetic test, image-evident tumor progression was noted in all patients within a median of 4 months afterwards. Re-challenge therapy with a combination of anti-EGFR, anti-VEGF, and FOLFIRI chemotherapy was found to be ineffective in a patient with 0.38% KRAS G12D mutation in baseline ctDNA. Our study suggests that the detection of low-frequency KRAS mutations in ctDNA could be used as a predictor of treatment response in mCRC patients.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Integrated Precision Health and Immunodiagnostic Center, Department of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
| | - Ming-Yin Shen
- Department of Colorectal Surgery, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Chin-An Yang
- Integrated Precision Health and Immunodiagnostic Center, Department of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
27
|
Fu J, Jin X, Chen W, Chen Z, Wu P, Xiao W, Liu Y, Deng S. Identification of the molecular characteristics associated with microsatellite status of colorectal cancer patients for the clinical application of immunotherapy. Front Pharmacol 2023; 14:1083449. [PMID: 36814498 PMCID: PMC9939640 DOI: 10.3389/fphar.2023.1083449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Background: Mismatch repair-proficient (pMMR) microsatellite stability (MSS) in colorectal cancer (CRC) indicates an unfavorable therapeutic response to immunotherapy with immune checkpoint inhibitors (ICIs). However, the molecular characteristics of CRC patients with pMMR MSS remain largely unknown. Methods: Heterogeneities between mismatch repair-deficient (dMMR) microsatellite instability (MSI) and pMMR MSS CRC patients were investigated at the single-cell level. Next, an MSS-related risk score was constructed by single-sample gene set enrichment analysis (ssGSEA). The differences in immune and functional characteristics between the high- and low-score groups were systematically analyzed. Results: Based on the single-cell RNA (scRNA) atlas, an MSS-specific cancer cell subpopulation was identified. By taking the intersection of the significant differentially expressed genes (DEGs) between different cancer cell subtypes of the single-cell training and validation cohorts, 29 MSS-specific cancer cell marker genes were screened out for the construction of the MSS-related risk score. This risk score signature could efficiently separate pMMR MSS CRC patients into two subtypes with significantly different immune characteristics. The interactions among the different cell types were stronger in the MSS group than in the MSI group, especially for the outgoing signals of the cancer cells. In addition, functional differences between the high- and low-score groups were preliminarily investigated. Conclusion: In this study, we constructed an effective risk model to classify pMMR MSS CRC patients into two completely different groups based on the specific genes identified by single-cell analysis to identify potential CRC patients sensitive to immunotherapy and screen effective synergistic targets.
Collapse
|
28
|
Courneya KS, Friedenreich CM. Designing, analyzing, and interpreting observational studies of physical activity and cancer outcomes from a clinical oncology perspective. Front Oncol 2023; 13:1098278. [PMID: 37124538 PMCID: PMC10147404 DOI: 10.3389/fonc.2023.1098278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Observational studies may play an important role in evaluating physical activity (PA) as a cancer treatment; however, few studies have been designed, analyzed, or interpreted from a clinical oncology perspective. The purpose of the present paper is to apply the Exercise as Cancer Treatment (EXACT) Framework to assess current observational studies of PA and cancer outcomes from a clinical oncology perspective and provide recommendations to improve their clinical utility. Recent systematic reviews and meta-analyses of over 130 observational studies have concluded that higher prediagnosis and postdiagnosis PA are associated with lower risks of cancer-specific and all-cause mortality. Most of these studies, however, have: (a) included cancer patients receiving heterogeneous treatment protocols, (b) provided minimal details about those cancer treatments, (c) assessed PA prediagnosis and/or postdiagnosis without reference to those cancer treatments, (d) reported mainly mortality outcomes, and (e) examined subgroups based on demographic and disease variables but not cancer treatments. As a result, current observational studies on PA and cancer outcomes have played a modest role in informing clinical exercise trials and clinical oncology practice. To improve their clinical utility, we recommend that future observational studies of PA and cancer outcomes: (a) recruit cancer patients receiving the same or similar first-line treatment protocols, (b) collect detailed data on all planned and unplanned cancer treatments beyond whether or not cancer treatments were received, (c) assess PA in relation to cancer treatments (i.e., before, during, between, after) rather than in relation to the cancer diagnosis (i.e., various time periods before and after diagnosis), (d) collect data on cancer-specific outcomes (e.g., disease response, progression, recurrence) in addition to mortality, (e) conduct subgroup analyses based on cancer treatments received in addition to demographic and disease variables, and (f) interpret mechanisms for any associations between PA and cancer-specific outcomes based on the clinical oncology scenario that is recapitulated rather than referencing generic mechanisms or discordant preclinical models. In conclusion, observational studies are well-suited to contribute important knowledge regarding the role of PA as a cancer treatment; however, modifications to study design and analysis are necessary if they are to inform clinical research and practice.
Collapse
Affiliation(s)
- Kerry S. Courneya
- Faculty of Kinesiology, Sport, and Recreation, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Kerry S. Courneya,
| | - Christine M. Friedenreich
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, AB, Canada
- Departments of Oncology and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
29
|
Topham JT, Renouf DJ, Schaeffer DF. Circulating tumor DNA: toward evolving the clinical paradigm of pancreatic ductal adenocarcinoma. Ther Adv Med Oncol 2023; 15:17588359231157651. [PMID: 36895849 PMCID: PMC9989430 DOI: 10.1177/17588359231157651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Over a decade of sequencing-based genomics research has unveiled a diverse somatic mutation landscape across patients with pancreatic ductal adenocarcinoma (PDAC), and the identification of druggable mutations has aligned with the development of novel targeted therapeutics. However, despite these advances, direct translation of years of PDAC genomics research into the clinical care of patients remains a critical and unmet need. Technologies that enabled the initial mapping of the PDAC mutation landscape, namely whole-genome and transcriptome sequencing, remain overly expensive in terms of both time and financial resources. Consequentially, dependence on these technologies to identify the relatively small subset of patients with actionable PDAC alterations has greatly impeded enrollment for clinical trials testing novel targeted therapies. Liquid biopsy tumor profiling using circulating tumor DNA (ctDNA) generates new opportunities by overcoming these challenges while further addressing issues particularly relevant to PDAC, namely, difficulty of obtaining tumor tissue via fine-needle biopsy and the need for faster turnaround time due to rapid disease progression. Meanwhile, ctDNA-based approaches for tracking disease kinetics with respect to surgical and therapeutic interventions offer a means to elevate the current clinical management of PDAC toward higher granularity and accuracy. This review provides a clinically focused summary of ctDNA advances, limitations, and opportunities in PDAC and postulates ctDNA sequencing technology as a catalyst for evolving the clinical decision-making paradigm of this disease.
Collapse
Affiliation(s)
| | - Daniel J Renouf
- Pancreas Centre BC, Vancouver, BC, Canada.,Division of Medical Oncology, BC Cancer, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David F Schaeffer
- Division of Anatomic Pathology, Vancouver General Hospital, 910 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada.,Pancreas Centre BC, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada
| |
Collapse
|
30
|
Doleschal B, Petzer A, Rumpold H. Current concepts of anti-EGFR targeting in metastatic colorectal cancer. Front Oncol 2022; 12:1048166. [PMID: 36465407 PMCID: PMC9714621 DOI: 10.3389/fonc.2022.1048166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2023] Open
Abstract
Anti-EGFR targeting is one of the key strategies in the treatment of metastatic colorectal cancer (mCRC). For almost two decades oncologists have struggled to implement EGFR antibodies in the mCRC continuum of care. Both sidedness and RAS mutational status rank high among the predictive factors for the clinical efficacy of EGFR inhibitors. A prospective phase III trial has recently confirmed that anti-EGFR targeting confers an overall survival benefit only in left sided RAS-wildtype tumors when given in first line. It is a matter of discussion if more clinical benefit can be reached by considering putative primary resistance mechanisms (e.g., HER2, BRAF, PIK3CA, etc.) at this early stage of treatment. The value of this procedure in daily routine clinical utility has not yet been clearly delineated. Re-exposure to EGFR antibodies becomes increasingly crucial in the disease journey of mCRC. Yet re- induction or re-challenge strategies have been problematic as they relied on mathematical models that described the timely decay of EGFR antibody resistant clones. The advent of liquid biopsy and the implementation of more accurate next-generation sequencing (NGS) based high throughput methods allows for tracing of EGFR resistant clones in real time. These displays the spatiotemporal heterogeneity of metastatic disease compared to the former standard radiographic assessment and re-biopsy. These techniques may move EGFR inhibition in mCRC into the area of precision medicine in order to apply EGFR antibodies with the increase or decrease of EGFR resistant clones. This review critically discusses established concepts of tackling the EGFR pathway in mCRC and provides insight into the growing field of liquid biopsy guided personalized approaches of EGFR inhibition in mCRC.
Collapse
Affiliation(s)
- Bernhard Doleschal
- Department of Internal Medicine I for Hematology With Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz, Linz, Austria
| | - Andreas Petzer
- Department of Internal Medicine I for Hematology With Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz, Linz, Austria
| | - Holger Rumpold
- Gastrointestinal Cancer Center, Ordensklinikum Linz, Linz, Austria
- Johannes Kepler University Linz, Medical Faculty, Linz, Austria
| |
Collapse
|