1
|
Determining factors of the cognitive outcome in early treated PKU: A study of 39 pediatric patients. Mol Genet Metab Rep 2019; 20:100498. [PMID: 31384561 PMCID: PMC6664159 DOI: 10.1016/j.ymgmr.2019.100498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 11/23/2022] Open
Abstract
Phenylketonuria (PKU) is a disorder of phenylalanine metabolism, characterized by a neurotoxic phenylalanine (Phe) accumulation, and treatable with a life-long Phe-restricted diet. Though early and continuously treated PKU (ETPKU) patients exhibit normal IQ, their cognitive outcome remains suboptimal. In this longitudinal study, we aimed at assessing the determinants of IQ subscales and quality of metabolic control in ETPKU children. We collected blood Phe levels, numbers of blood samples for Phe determination, parents' socio-professional categories and school achievement data of 39 classical and moderate ETPKU patients who underwent two cognitive evaluations performed by the same neuropsychologist (at 6.5 and 10y of mean age). We then sought to evaluate the determinants of 1) the changes in their IQ between the two testings (delta IQ) and 2) the quality of metabolic control (evaluated by the median Phe levels during the year before the second test) with multivariate regression analysis. Though in the normal range, mean total IQ slightly decreased between the two evaluations, and we observed a better verbal than performance outcome. Modeling the determining factors of the delta IQ, we found a significant influence of the number of blood samples (β = 0.46, 95%CI = 0.13 to 0.79, p < 0.01) and the moderate type of PKU (β = 12.40, 95%CI = 3.69 to 21.11, p < 0.01) on verbal outcome. We failed to find any determining factors that would statistically influence metabolic control. In conclusion, ETPKU cognitive outcome is influenced by a network of metabolic and environmental factors, which is not reflected by the sole metabolic control.
Collapse
|
2
|
Porta F, Spada M, Ponzone A. Early Screening for Tetrahydrobiopterin Responsiveness in Phenylketonuria. Pediatrics 2017; 140:e20161591. [PMID: 28679641 DOI: 10.1542/peds.2016-1591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 11/24/2022] Open
Abstract
Since 2007, synthetic tetrahydrobiopterin (BH4) has been approved as a therapeutic option in BH4-responsive phenylketonuria (PKU) and since 2015 extended to infants younger than 4 years in Europe. The current definition of BH4 responsiveness relies on the observation of a 20% to 30% blood phenylalanine (Phe) decrease after BH4 administration, under nonstandardized conditions. By this definition, however, patients with the same genotype or even the same patients were alternatively reported as responsive or nonresponsive to the cofactor. These inconsistencies are troubling, as frustrating patient expectations and impairing cost-effectiveness of BH4-therapy. Here we tried a quantitative procedure through the comparison of the outcome of a simple Phe and a combined Phe plus BH4 loading in a series of infants with PKU, most of them harboring genotypes already reported as BH4 responsive. Under these ideal conditions, blood Phe clearance did not significantly differ after the 2 types of loading, and a 20% to 30% decrease of blood Phe occurred irrespective of BH4 administration in milder forms of PKU. Such early screening for BH4 responsiveness, based on a quantitative assay, is essential for warranting an evidence-based and cost-effective therapy in those patients with PKU eventually but definitely diagnosed as responsive to the cofactor.
Collapse
Affiliation(s)
- Francesco Porta
- Department of Pediatrics, University of Torino, Torino, Italy
| | - Marco Spada
- Department of Pediatrics, University of Torino, Torino, Italy
| | - Alberto Ponzone
- Department of Pediatrics, University of Torino, Torino, Italy
| |
Collapse
|
3
|
Abstract
More than 950 phenylalanine hydroxylase (PAH) gene variants have been identified in people with phenylketonuria (PKU). These vary in their consequences for the residual level of PAH activity, from having little or no effect to abolishing PAH activity completely. Advances in genotyping technology and the availability of locus-specific and genotype databases have greatly expanded our understanding of the correlations between individual gene variant, residual PAH activity, tetrahydrobiopterin (BH4 ) responsiveness, and the clinical PKU phenotype. Most patients (∼76%) have compound heterozygous PAH gene variants and one mutated allele may markedly influence the activity of the second mutated allele, which in turn may influence either positively or negatively the activity of the biologically active heterotetrameric form of the PAH. While it is possible to predict the level of BH4 responsiveness (∼71%) and PKU severity (∼78%) from the nature of the underlying gene variants, these relationships remain complex and incompletely understood. A greater understanding of these relationships may increase the potential for individualized management of PKU in future. Inherited deficiencies in BH4 metabolism account for about 1%-2% of all hyperphenylalaninemias and are clinically more severe than PKU. Almost 90% of all patients are deficient in 6-pyruvoyl-tetrahydropterin synthase and dihydropteridine reductase.
Collapse
Affiliation(s)
- Nenad Blau
- Dietmar-Hopp-Metabolic Center, University Children's Hospital, Heidelberg, Germany
| |
Collapse
|
4
|
Anjema K, Hofstede FC, Bosch AM, Rubio-Gozalbo ME, de Vries MC, Boelen CCA, van Rijn M, van Spronsen FJ. The neonatal tetrahydrobiopterin loading test in phenylketonuria: what is the predictive value? Orphanet J Rare Dis 2016; 11:10. [PMID: 26822130 PMCID: PMC4731980 DOI: 10.1186/s13023-016-0394-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is unknown whether the neonatal tetrahydrobiopterin (BH4) loading test is adequate to diagnose long-term BH4 responsiveness in PKU. Therefore we compared the predictive value of the neonatal (test I) versus the 48-h BH4 loading test (test II) and long-term BH4 responsiveness. METHODS Data on test I (>1991, 20 mg/kg) at T = 8 (n = 85) and T = 24 (n = 5) were collected and compared with test II and long-term BH4 responsiveness at later age, with ≥30% Phe decrease used as the cut-off. RESULTS The median (IQR) age at hospital diagnosis was 9 (7-11) days and the age at test II was 11.8 (6.6-13.7) years. The baseline Phe concentrations at test I were significantly higher compared to test II (1309 (834-1710) versus 514 (402-689) μmol/L, respectively, P = 0.000). 15/85 patients had a positive test I T = 8. All, except one patient who was not tested for long-term BH4 responsiveness, showed long-term BH4 responsiveness. In 20/70 patients with a negative test I T = 8, long-term BH4 responsiveness was confirmed. Of 5 patients with a test I T = 24, 1/5 was positive at both tests and showed long-term BH4 responsiveness, 2/5 had negative results at both tests and 2/5 showed a negative test I T = 24, but a positive test II with 1/2 showing long-term BH4 responsiveness. CONCLUSIONS Both a positive neonatal 8- and 24-h BH4 loading test are predictive for long-term BH4 responsiveness. However, a negative test does not rule out long-term BH4 responsiveness. Other alternatives to test for BH4 responsiveness at neonatal age should be investigated.
Collapse
Affiliation(s)
- Karen Anjema
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, PO box 30.001, CA33, 9700 RB, Groningen, The Netherlands
| | - Floris C Hofstede
- University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Annet M Bosch
- Academic Medical Center, Emma Children's Hospital, Amsterdam, The Netherlands
| | | | - Maaike C de Vries
- Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | - Margreet van Rijn
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, PO box 30.001, CA33, 9700 RB, Groningen, The Netherlands
| | - Francjan J van Spronsen
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, PO box 30.001, CA33, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
5
|
Bueno MA, Lage S, Delgado C, Andrade F, Couce ML, González-Lamuño D, Pérez M, Aldámiz-Echevarría L. New evidence for assessing tetrahydrobiopterin (BH(4)) responsiveness. Metabolism 2012; 61:1809-16. [PMID: 22921945 DOI: 10.1016/j.metabol.2012.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 07/20/2012] [Accepted: 07/21/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To evaluate the protocol we propose for detecting BH(4)-responsive patients and the possibility of delimiting more precisely the population to be tested. METHODS We recruited 102 phenylketonuric patients on a phenylalanine (Phe)-restricted diet. The initial stage of the protocol was a 24-h BH(4) loading test involving Phe loading and subsequent ingestion of the cofactor, a 50% fall in blood Phe levels being considered a positive response. The non-responders at this stage then completed a one-week therapeutic test combining BH(4) administration and daily protein intake meeting recommended dietary allowances, to assess whether the 24-h test had detected all responders. RESULTS The 24-h test detected almost all BH(4) responders (30.3% of the 99 patients included in the analysis), with just two patients (2.0%) subsequently responding positively to the therapeutic test. The 24-h test did not give any false positive results. CONCLUSIONS The 24-h BH(4) loading test is clinically useful for screening phenylketonuric patients. Specifically, 95% of patients with Phe levels <700 μmol/L, and none with Phe levels >1500 μmol/L were BH(4)-responsive. Given these results, we conclude that patients with Phe levels<700 μmol/L or>1500 μmol/L probably do not need to be tested, prioritising the identification of BH(4)-responsiveness among individuals with intermediate Phe concentrations, between the aforementioned values. Additionally, our results suggest that the therapeutic test only needs to be performed in cases where the reduction in blood Phe levels after cofactor administration is within the range 40%-50%.
Collapse
Affiliation(s)
- María A Bueno
- Metabolic Disorders, Dietetics and Nutrition Unit, Virgen del Rocío Teaching Hospital, s/n, 41013, Sevilla, Spain
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Opladen T, Hoffmann GF, Blau N. An international survey of patients with tetrahydrobiopterin deficiencies presenting with hyperphenylalaninaemia. J Inherit Metab Dis 2012; 35:963-73. [PMID: 22729819 DOI: 10.1007/s10545-012-9506-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 05/12/2012] [Accepted: 05/28/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The present study summarizes clinical and biochemical findings, current treatment strategies and follow-up in patients with tetrahydrobiopterin (BH(4)) deficiencies. METHODS We analyzed the clinical, biochemical and treatment data of 626 patients with BH(4) deficiencies [355 with 6-pyruvoyl-tetrahydropterin synthase (PTPS), 217 with dihydropteridine reductase (DHPR), 31 with autosomal recessive GTP cyclohydrolase I (GTPCH), and 23 with pterin-4a-carbinolamine dehydratase (PCD) deficiencies] from the BIODEF Database. Patients with autosomal dominant GTPCH and SR deficiencies will not be discussed in detail. RESULTS Up to 57 % of neonates with BH(4) deficiencies are already clinically symptomatic. During infancy and childhood, the predominant symptoms are muscular hypotonia, mental retardation and age-dependent movement disorders, including dystonia. The laboratory diagnosis of BH(4) deficiency is based on a positive newborn screening (NBS) for phenylketonuria (PKU), characteristic profiles of urinary or dried blood spot pterins (biopterin, neopterin, and primapterin), and the measurement of DHPR activity in blood. Some patients with autosomal recessive GTPCH deficiency and all with sepiapterin reductase deficiency may be diagnosed late due to normal blood phenylalanine in NBS. L-dopa, 5-hydroxytryptophan, and BH(4) are supplemented in PTPS and GTPCH-deficient patients, whereas L-dopa, 5-hydroxytryptophan, folinic acid and diet are used in DHPR-deficient patients. Medication doses vary widely among patients, and our understanding of the effects of dopamine agonists and monoamine catabolism inhibitors are limited. CONCLUSIONS BH(4) deficiencies are a group of treatable pediatric neurotransmitter disorders that are characterized by motor dysfunction, mental retardation, impaired muscle tone, movement disorders and epileptic seizures. Although the outcomes of BH(4) deficiencies are highly variable, early diagnosis and treatment result in improved outcomes.
Collapse
Affiliation(s)
- Thomas Opladen
- Division of Inborn Metabolic Diseases, University Childrens Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | | | | |
Collapse
|
7
|
Ponzone A, Porta F, Mussa A, Alluto A, Ferraris S, Spada M. Unresponsiveness to tetrahydrobiopterin of phenylalanine hydroxylase deficiency. Metabolism 2010; 59:645-52. [PMID: 19913839 DOI: 10.1016/j.metabol.2009.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 08/02/2009] [Accepted: 09/09/2009] [Indexed: 11/28/2022]
Abstract
Conflicting results have been reported concerning the efficacy of tetrahydrobiopterin (BH4), the cofactor of phenylalanine hydroxylase, for reducing phenylalanine (Phe) concentration in phenylketonuria (PKU). We aimed to test quantitatively the effects of BH4 in PKU patients. Seven fully characterized patients were selected among a population of 130 PKU subjects as harboring PKU mutations predicted as BH4 responsive and previously considered responsive to a cofactor challenge. They received a simple Phe (100 mg/kg) and 2 combined Phe (100 mg/kg) and BH4 (20 mg/kg) oral loading tests. Cofactor was administered either before or after the amino acid. The concentrations of Phe, tyrosine (Tyr), and biopterin were measured over 24 hours after loading. The comparative analysis of the loading tests showed that in all patients plasma Phe concentrations peaked within 3 hours, and fell within 24 hours by about 50% in benign, 20% in mild, and 15% in severe phenylalanine hydroxylase deficiency regardless of BH4 administration. A consistent or moderate increase of plasma Tyr, again independent of the cofactor challenge, was observed only in the less severe forms of PAH deficiency. Mean blood biopterin concentration increased 6 times after simple Phe and 34 to 39 times after combined loading tests. The administration of BH4 does not alter Phe and Tyr metabolism in PKU patients. The clearance of plasma Phe after oral loading and, as well as Tyr production, is not related to cofactor challenge but to patient's phenotype. The assessment of BH4 responsiveness by the methods so far used is not reliable, and the occurrence of BH4-responsive forms of PKU still has to be definitely proven.
Collapse
Affiliation(s)
- Alberto Ponzone
- Department of Pediatrics, University of Torino, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
8
|
Jäggi L, Zurflüh MR, Schuler A, Ponzone A, Porta F, Fiori L, Giovannini M, Santer R, Hoffmann GF, Ibel H, Wendel U, Ballhausen D, Baumgartner MR, Blau N. Outcome and long-term follow-up of 36 patients with tetrahydrobiopterin deficiency. Mol Genet Metab 2008; 93:295-305. [PMID: 18060820 DOI: 10.1016/j.ymgme.2007.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/06/2007] [Accepted: 10/06/2007] [Indexed: 10/22/2022]
Abstract
We describe the treatment, the clinical, and biochemical findings and the outcome of 26 patients with 6-pyruvoyl-tetrahydropterin synthase (PTPS) deficiency and 10 patients with dihydropteridine reductase (DHPR) deficiency. These are the two most common forms of the autosomal-recessively inherited tetrahydrobiopterin (BH4) deficiency. Time of diagnosis, dosage of BH4 and neurotransmitter precursors, folinic acid substitution, and levels of 5-hydroxyindoleacetic acid (5HIAA) and homovanillic acid (HVA) in cerebrospinal fluid (CSF) are essential parameters in the follow-up of patients. Unfortunately, treatment protocols vary greatly among patients and clinical centers, and CSF investigations and outcome assessments are not always available. Seventeen patients with PTPS deficiency and four patients with DHPR deficiency were diagnosed within 2 months after birth. In 14 patients with PTPS deficiency (54%; 9 early and 5 late diagnosed) and 2 patients with DHPR deficiency (20%; all early diagnosed) no developmental delay is observed, while in 10 patients with PTPS deficiency (38%; 6 early and 4 late diagnosed) and 8 patients with DHPR deficiency (80%; 2 early and 6 late diagnosed) development was delayed. Two PTPS-deficient patients died in the newborn period. DHPR deficiency seems to be more severe than PTPS deficiency and it is clearly the onset of treatment that determines the outcome. Our data suggest that diagnosis within the first month of life is essential for a good outcome and that low CSF5 HIAA and HVA values in CSF could be an indicator for the ongoing developmental impairment
Collapse
Affiliation(s)
- Leandra Jäggi
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital, Steinwiesstrasse 75, CH-8032 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Nutritional genomics has tremendous potential to change the future of dietary guidelines and personal recommendations. Nutrigenetics will provide the basis for personalized dietary recommendations based on the individual's genetic make up. This approach has been used for decades for certain monogenic diseases; however, the challenge is to implement a similar concept for common multifactorial disorders and to develop tools to detect genetic predisposition and to prevent common disorders decades before their manifestation. The preliminary results involving gene-diet interactions for cardiovascular diseases and cancer are promising, but mostly inconclusive. Success in this area will require the integration of different disciplines and investigators working on large population studies designed to adequately investigate gene-environment interactions. Despite the current difficulties, preliminary evidence strongly suggests that the concept should work and that we will be able to harness the information contained in our genomes to achieve successful aging using behavioral changes; nutrition will be the cornerstone of this endeavor.
Collapse
Affiliation(s)
- Jose M Ordovas
- Nutrition and Genomics Laboratory, Jean Mayer-U.S. Department of Agriculture, Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA.
| | | |
Collapse
|
10
|
Ponzone A, Spada M, Ferraris S, Dianzani I, de Sanctis L. Dihydropteridine reductase deficiency in man: from biology to treatment. Med Res Rev 2004; 24:127-50. [PMID: 14705166 DOI: 10.1002/med.10055] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In 1975, dihydropteridine reductase (DHPR) deficiency was first recognized as a cause of tetrahydrobiopterin (BH(4)) deficiency, leading to hyperphenylalaninemia (HPA) and impaired biogenic amine deficiency. So far, more than 150 patients scattered worldwide have been reported and major progresses have been made in the understanding of physiopathology, screening, diagnosis, treatment, and molecular genetics of this inherited disease. Present knowledge on different aspects of DHPR deficiency, largely derived from authors' personal experience, is traced in this article.
Collapse
|
11
|
Blau N, Erlandsen H. The metabolic and molecular bases of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Mol Genet Metab 2004; 82:101-11. [PMID: 15171997 DOI: 10.1016/j.ymgme.2004.03.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 03/23/2004] [Accepted: 03/23/2004] [Indexed: 11/28/2022]
Abstract
About two-thirds of all mild phenylketonuria (PKU) patients are tetrahydrobiopterin (BH4)-responsive and thus can be potentially treated with BH4 instead of a low-phenylalanine diet. Although there has been an increase in the amount of information relating to the diagnosis and treatment of this new variant of PKU, very little is know about the mechanisms of BH4-responsiveness. This review will focus on laboratory investigations and possible molecular and structural mechanisms involved in this process.
Collapse
Affiliation(s)
- Nenad Blau
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital, Zurich, Switzerland.
| | | |
Collapse
|
12
|
|
13
|
Bernegger C, Blau N. High frequency of tetrahydrobiopterin-responsiveness among hyperphenylalaninemias: a study of 1,919 patients observed from 1988 to 2002. Mol Genet Metab 2002; 77:304-13. [PMID: 12468276 DOI: 10.1016/s1096-7192(02)00171-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tetrahydrobiopterin (BH(4))-responsive hyperphenylalaninemia (HPA) is a recently described variant of phenylalanine hydroxylase deficiency. In contrast to patients with classical phenylketonuria, these patients respond to BH(4) loading tests (20mg/kg) with decrease of plasma phenylalanine levels 4 and 8 h after administration and they can be treated with BH(4) monotherapy. We retrospectively evaluated 1,919 loading tests from 33 different countries performed in our laboratory between 1988 and 2002 of which 278 loading tests were performed with 6R-BH(4), which is about 33% more active than the formerly used 6R,S-BH(4). The loading tests were performed between the ages of one week and 4.6 years, using 2.6-30.0 mg 6R,S- or 6R-BH(4)/kg. Plasma phenylalanine levels before the test ranged from 121 to 4,705 micromol/L. We calculated the phenylalanine "hydroxylation rate" 4 and 8 h after BH(4) administration and plotted the slope of the hydroxylation rate against the phenylalanine levels at time 0. The slope was greater than 3.75 in 65, 74, 33, 17, 0, and 10% of patients with basal phenylalanine levels of 120-400, 400-800, 800-1,200, 1,200-1,600, 1,600-2,200, and >2,200 micromol/L, respectively, when loaded with 20 mg 6R-BH(4)/kg (p>0.0001). This is 5-20 times higher compared with tests using 6R,S-BH(4) or lower doses of BH(4). More than 70% of patients with mild HPA (<800 micromol/L) are found to be BH(4) responders. Therapy with BH(4) (approximately 10mg/kg/day) was initiated in several patients instead of a low-phenylalanine diet, resulting in much better treatment compliance. Our data further demonstrate that BH(4) loading tests can only distinguish between BH(4) responders and non-responders. To differentiate between BH(4) and phenylalanine hydroxylase deficiencies additional tests are essential.
Collapse
Affiliation(s)
- Caroline Bernegger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | | |
Collapse
|
14
|
Kakoki M, Hirata Y, Hayakawa H, Suzuki E, Nagata D, Tojo A, Nishimatsu H, Nakanishi N, Hattori Y, Kikuchi K, Nagano T, Omata M. Effects of tetrahydrobiopterin on endothelial dysfunction in rats with ischemic acute renal failure. J Am Soc Nephrol 2000; 11:301-309. [PMID: 10665937 DOI: 10.1681/asn.v112301] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The role of nitric oxide (NO) in ischemic renal injury is still controversial. NO release was measured in rat kidneys subjected to ischemia and reperfusion to determine whether (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4), a cofactor of NO synthase (NOS), reduces ischemic injury. Twenty-four hours after bilateral renal arterial clamp for 45 min, acetylcholine-induced vasorelaxation and NO release were reduced and renal excretory function was impaired in Wistar rats. Administration of BH4 (20 mg/kg, by mouth) before clamping resulted in a marked improvement of those parameters (10(-8) M acetylcholine, delta renal perfusion pressure: sham-operated control -45 +/- 5, ischemia -30 +/- 2, ischemia + BH4 -43 +/- 4%; delta NO: control +30 +/- 6, ischemia + 10 +/- 2, ischemia + BH4 +23 +/- 4 fmol/min per g kidney; serum creatinine: control 23 +/- 2, ischemia 150 +/- 27, ischemia + BH4 48 +/- 6 microM; mean +/- SEM). Most of renal NOS activity was calcium-dependent, and its activity decreased in the ischemic kidney. However, it was restored by BH4 (control 5.0 +/- 0.9, ischemia 2.2 +/- 0.4, ischemia + BH4 4.3 +/- 1.2 pmol/min per mg protein). Immunoblot after low-temperature sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the dimeric form of endothelial NOS decreased in the ischemic kidney and that it was restored by BH4. These results suggest that the decreased activity of endothelium-derived NO may worsen the ischemic tissue injury, in which depletion of BH4 may be involved.
Collapse
Affiliation(s)
- Masao Kakoki
- The Second Department of Internal Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasunobu Hirata
- The Second Department of Internal Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Hayakawa
- The Second Department of Internal Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Etsu Suzuki
- The Second Department of Internal Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Nagata
- The Second Department of Internal Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akihiro Tojo
- The Second Department of Internal Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Nishimatsu
- The Second Department of Internal Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuo Nakanishi
- Department of Biochemistry, Meikai University School of Dentistry, Saitama, Japan
| | - Yoshiyuki Hattori
- Department of Endocrinology, Dokkyo University School of Medicine, Tochigi, Japan
| | - Kazuya Kikuchi
- Faculty of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Nagano
- Faculty of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Masao Omata
- The Second Department of Internal Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Kure S, Hou DC, Ohura T, Iwamoto H, Suzuki S, Sugiyama N, Sakamoto O, Fujii K, Matsubara Y, Narisawa K. Tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. J Pediatr 1999; 135:375-8. [PMID: 10484807 DOI: 10.1016/s0022-3476(99)70138-1] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Serum phenylalanine concentrations decreased in 4 patients with hyperphenylalaninemia after loading with tetrahydrobiopterin. There were no abnormalities in urinary pteridine excretion or in dihydropteridine reductase activity. However, mutations were detected in the phenylalanine hydroxylase gene, suggesting a novel subtype of phenylalanine hydroxylase deficiency that may respond to treatment with cofactor supplementation.
Collapse
Affiliation(s)
- S Kure
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Approximately 2% of newborns with hyperphenylalaninaemia are deficient in tetrahydrobiopterin. Selective screening must be performed in all instances where hyperphenylalaninaemia is detected by neonatal screening. In the last 20 years, 308 patients with tetrahydrobiopterin deficiencies have been recognized as a result of screening carried out, worldwide, in Departments of Paediatrics. Of these 308 patients, 181 suffered from 6-pyruvoyltetrahydropterin synthase deficiency, 92 from dihydropteridine reductase deficiency, 13 from pterin-4a-carbinolamine dehydratase deficiency, 12 from GTP cyclohydrolase I deficiency, and 10 are still unclassified. In the BIODEF database we have tabulated the most common clinical and laboratory data related to hyperphenylalaninaemia and tetrahydrobiopterin deficiencies. Additionally, there are data regarding treatment, outcome, and DNA analysis. Preliminary evaluation reveals that the degree of hyperphenylalaninaemia can vary from normal to 2500 mumol/L. Analyses of pterins in urine and measurement of dihydropteridine reductase activity from Guthrie cards are absolutely essential tests for accurate diagnosis. There is a regional (demographic) variation in the frequency of tetrahydrobiopterin deficiencies indicating the highest incidence in Saudi Arabia, probably a consequence of the high consanguinity rate.
Collapse
Affiliation(s)
- N Blau
- Division of Clinical Chemistry, University Children's Hospital, Zürich, Switzerland
| | | | | |
Collapse
|
17
|
Ponzone A, Guardamagna O, Spada M, Ferraris S, Ponzone R, Kierat L, Blau N. Differential diagnosis of hyperphenylalaninaemia by a combined phenylalanine-tetrahydrobiopterin loading test. Eur J Pediatr 1993; 152:655-61. [PMID: 8404969 DOI: 10.1007/bf01955242] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We describe a new fully reliable method for the differential diagnosis of tetrahydrobiopterin-dependent hyperphenylalaninaemia (HPA). The method comprises the combined phenylalanine (Phe) plus tetrahydrobiopterin (BH4) oral loading test and enables the selective screening of BH4 deficiency when pterin analysis is not available or when a clear diagnosis has not been previously made. It should be performed together with the measurement of dihydropteridine reductase (DHPR) activity in blood. The new combined loading test was performed in nine patients with primary HPA, three with classical phenylketonuria (PKU), three with DHPR deficiency, and three with 6-pyruvoyl tetrahydropterin synthase (PTPS) deficiency. Three hours after oral Phe loading (100 mg/kg body weight), synthetic BH4 was administered orally at doses of either 7.5 or 20 mg/kg body weight. Amino acid (Phe and tyrosine) and pterin (neopterin and biopterin) metabolism and kinetics were analysed. By exploiting the decrease in serum Phe 4 and 8 h after administration, a clear response was obtained with the higher BH4 dose (20 mg/kg body weight), allowing detection of all cases of BH4 deficiency, as well as differentiation of BH4 synthesis from regeneration defects. Since DHPR deficient patients who were previously shown to be non-responsive to the simple BH4 loading test gave a positive response, the combined Phe plus BH4 loading test can be used as a more reliable tool for the differential diagnosis of HPA in these patients. Moreover, it takes advantage of being performed while patients are on a Phe-restricted diet.
Collapse
Affiliation(s)
- A Ponzone
- Department of Paediatrics, University of Sassari, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Ponzone A, Guardamagna O, Spada M, Ponzone R, Sartore M, Kierat L, Heizmann CW, Blau N. Hyperphenylalaninemia and pterin metabolism in serum and erythrocytes. Clin Chim Acta 1993; 216:63-71. [PMID: 8222274 DOI: 10.1016/0009-8981(93)90139-u] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The relationship between blood phenylalanine concentrations and serum and erythrocyte biopterin and neopterin concentrations was investigated in 20 phenylketonuric patients with different dietary compliance. At serum phenylalanine concentrations ranging from 43 to 1004 mumol/l, a good correlation was found with serum biopterin (r = 0.76, P < 0.001) and with red blood cell biopterin (r = 0.62, P < 0.001). A similar correlation was found between serum neopterin and phenylalanine (r = 0.60, P < 0.001). The correlation between red blood cell neopterin and serum phenylalanine was less evident, however (r = 0.47, P < 0.005). After oral loading with phenylalanine (100 mg/kg body weight), serum and red blood cell biopterin concentrations increased in patients with classical phenylketonuria as well as in one patient with dihydropteridine reductase deficiency in response to the induced acute hyperphenylalaninemia. One patient suffering from 6-pyruvoyl tetrahydropterin synthase deficiency was loaded orally with tetrahydrobiopterin (20 mg/kg body weight). The kinetics of administered cofactor confirmed its rapid absorption, with early increase of serum concentrations followed by its transport into the red blood cells. The half-life of biopterin was approximately 7 h in serum and 15 h in red blood cells. Because both values are less than the half-life of phenylalanine (20-30 h) in serum, biopterin measurement offers no advantage in monitoring dietary control in hyperphenylalaninemic patients.
Collapse
Affiliation(s)
- A Ponzone
- Department of Pediatric Clinic, University of Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Dianzani I, Howells DW, Ponzone A, Saleeba JA, Smooker PM, Cotton RG. Two new mutations in the dihydropteridine reductase gene in patients with tetrahydrobiopterin deficiency. J Med Genet 1993; 30:465-9. [PMID: 8326489 PMCID: PMC1016417 DOI: 10.1136/jmg.30.6.465] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two new mutations have been identified within the dihydropteridine reductase (DHPR) gene in two patients with DHPR deficiency. The total coding sequence of the cDNA has been screened by chemical cleavage of mismatch in both patients and selected portions of the cDNA have been sequenced. The first mutation identified causes a glycine to aspartic acid substitution at codon 23 and seems particularly frequent in Mediterranean patients. Its occurrence within a glycine string common to the amino-terminal region in NADH dependent enzymes suggests a possible causal mechanism for the defect. The second change involves a tryptophan to glycine substitution at codon 108 and is carried by both alleles in the second patient. It occurs in a motif which shows similarities with a region of dihydrofolate reductase (DHFR) and is highly conserved within different animal species.
Collapse
Affiliation(s)
- I Dianzani
- Istituto di Clinica Pediatrica, Torino, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Blau N, Dhondt JL. Tetrahydrobiopterin deficiency and an international database of patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 338:255-61. [PMID: 8304121 DOI: 10.1007/978-1-4615-2960-6_52] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- N Blau
- Department of Pediatrics, University of Zurich, Switzerland
| | | |
Collapse
|