1
|
Fajardo C, Belzu M, Bernal Benitez M, Hoyos Á, Hernández Patiño R, Monterrosa L, Villegas C. Therapeutic hypothermia success for hypoxic-ischaemic encephalopathy in Latin America: Eight-year experience in EpicLatino Neonatal Network. Acta Paediatr 2025; 114:922-928. [PMID: 39558197 PMCID: PMC11976138 DOI: 10.1111/apa.17504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
AIM A study reported that therapeutic hypothermia (TH) did not reduce the combined prognosis of mortality and disability at 18 months, in low- and middle-income countries for patients with hypoxic ischaemic encephalopathy (HIE) who received TH, suggesting its no implementation in these regions. We described characteristics, mortality, and neurological response before and after the use of TH in newborns with HIE within the EpicLatino Neonatal Network (ENN) and described the population of infants with HIE treated and not treated with TH. METHODS Data were collected from 2015 to 2022 for patients with HIE. Mortality rates and Sarnat scores were compared before and after TH. The Wilcoxon Signed-Rank Test was used for comparisons. RESULTS In this observational study 518 neonates of our total population of 26 970, had HIE (1.92%) of whom 150 underwent TH. Ten out of 21 neonatal intensive care units (NICUs) provided TH. The Wilcoxon Signed Rank Test for 138 cases with complete data showed a significant difference. CONCLUSION The findings support the benefits of TH in HIE within this cohort. TH should not be withheld solely due to the economic status of the country. A strict patient selection and TH protocol are essential.
Collapse
Affiliation(s)
- Carlos Fajardo
- PediatricsUniversity of CalgaryCalgaryAlbertaCanada
- EpicLatino Neonatal NetworkCalgaryAlbertaCanada
| | - Marco Belzu
- EpicLatino Neonatal NetworkCalgaryAlbertaCanada
- Clínica Las AmericasSanta CrúzBolivia
| | - Manuel Bernal Benitez
- EpicLatino Neonatal NetworkCalgaryAlbertaCanada
- Hospital Miguel HidalgoAguas CalientesMexico
| | - Ángela Hoyos
- EpicLatino Neonatal NetworkCalgaryAlbertaCanada
- Universidad del BosqueBogotáColombia
| | - Rubén Hernández Patiño
- EpicLatino Neonatal NetworkCalgaryAlbertaCanada
- Hospital Miguel HidalgoAguas CalientesMexico
| | - Luis Monterrosa
- EpicLatino Neonatal NetworkCalgaryAlbertaCanada
- DalHousie UniversitySaint JohnNew BrunswickCanada
| | - Carolina Villegas
- EpicLatino Neonatal NetworkCalgaryAlbertaCanada
- Hospital CentralSan Luis PotosíMexico
| | | |
Collapse
|
2
|
McDouall A, Zhou KQ, Wassink G, Davies A, Bennet L, Gunn AJ, Davidson JO. Lack of additional benefit from slow rewarming after therapeutic hypothermia for ischaemic brain injury in near-term fetal sheep. J Physiol 2024; 602:7085-7101. [PMID: 39530479 DOI: 10.1113/jp287453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The optimal rate of rewarming after therapeutic hypothermia is unclear. Slow rewarming may reduce cardiovascular instability and rebound seizures, but there is little controlled evidence to support this. The present study aimed to determine whether slow rewarming can improve neuroprotection after 72 h of hypothermia. Fetal sheep (0.85 gestation) received sham occlusion (n = 8) or 30 min of global cerebral ischaemia followed by normothermia (n = 7), or hypothermia from 3 to 72 h with either fast, spontaneous rewarming within 1 h (n = 8) or slow rewarming at 0.5°C h-1 over 10 h (n = 8). Hypothermia improved EEG and spectral edge recovery, with no significant difference between fast and slow rewarming. Hypothermia reduced the number of seizures, with no significant difference in seizure activity between fast and slow rewarming. Hypothermia improved neuronal survival in the cortex, CA1, CA3, CA4 and dentate gyrus regions of the hippocampus, with no significant difference between fast and slow rewarming. Hypothermia attenuated microglia counts in the cortex, with no significant difference between fast and slow rewarming. The rate of rewarming after a clinically relevant duration of hypothermia did not affect neurophysiological recovery, neuronal survival or attenuation of microglia after global cerebral ischaemia in term-equivalent fetal sheep. KEY POINTS: The rate of rewarming after 72 h of hypothermia did not affect recovery of EEG or spectral edge. There was no difference in the occurrence of seizures as a result of the rate of rewarming after hypothermia. The rate of rewarming after 72 h of hypothermia did not affect neuronal survival in the cortex or hippocampus.
Collapse
Affiliation(s)
- Alice McDouall
- Department of Physiology, the University of Auckland, Auckland, New Zealand
| | - Kelly Q Zhou
- Department of Physiology, the University of Auckland, Auckland, New Zealand
| | - Guido Wassink
- Department of Physiology, the University of Auckland, Auckland, New Zealand
| | - Anthony Davies
- Department of Physiology, the University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, the University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, the University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Collins B, Lemanski EA, Wright-Jin E. The Importance of Including Maternal Immune Activation in Animal Models of Hypoxic-Ischemic Encephalopathy. Biomedicines 2024; 12:2559. [PMID: 39595123 PMCID: PMC11591850 DOI: 10.3390/biomedicines12112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a perinatal brain injury that is the leading cause of cerebral palsy, developmental delay, and poor cognitive outcomes in children born at term, occurring in about 1.5 out of 1000 births. The only proven therapy for HIE is therapeutic hypothermia. However, despite this treatment, many children ultimately suffer disability, brain injury, and even death. Barriers to implementation including late diagnosis and lack of resources also lead to poorer outcomes. This demonstrates a critical need for additional treatments for HIE, and to facilitate this, we need translational models that accurately reflect risk factors and interactions present in HIE. Maternal or amniotic infection is a significant risk factor and possible cause of HIE in humans. Maternal immune activation (MIA) is a well-established model of maternal infection and inflammation that has significant developmental consequences largely characterized within the context of neurodevelopmental disorders such as autism spectrum disorder and schizophrenia. MIA can also lead to long-lasting changes within the neuroimmune system, which lead to compounding negative outcomes following a second insult. This supports the importance of understanding the interaction of maternal inflammation and hypoxic-ischemic outcomes. Animal models have been invaluable to understanding the pathophysiology of this injury and to the development of therapeutic hypothermia. However, each model system has its own limitations. Large animal models such as pigs may more accurately represent the brain and organ development and complexity in humans, while rodent models are more cost-effective and offer more possible molecular techniques. Recent studies have utilized MIA or direct inflammation prior to HIE insult. Investigators should thoughtfully consider the risk factors they wish to include in their HIE animal models. In the incorporation of MIA, investigators should consider the type, timing, and dose of the inflammatory stimulus, as well as the timing, severity, and type of hypoxic insult. Using a variety of animal models that incorporate the maternal-placental-fetal system of inflammation will most likely lead to a more robust understanding of the mechanisms of this injury that can guide future clinical decisions and therapies.
Collapse
Affiliation(s)
- Bailey Collins
- Division of Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA; (B.C.); (E.A.L.)
- Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Elise A. Lemanski
- Division of Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA; (B.C.); (E.A.L.)
- Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Elizabeth Wright-Jin
- Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
- Division of Neurology, Nemours Children’s Health, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
4
|
Gunn AJ, Davidson JO. Stay cool and keep moving forwards. Pediatr Res 2024:10.1038/s41390-024-03546-0. [PMID: 39242940 DOI: 10.1038/s41390-024-03546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024]
Affiliation(s)
- Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand.
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Laptook AR, Shankaran S, Faix RG. Hypothermia for Hypoxic-ischemic Encephalopathy: Second-generation Trials to Address Gaps in Knowledge. Clin Perinatol 2024; 51:587-603. [PMID: 39095098 PMCID: PMC11298012 DOI: 10.1016/j.clp.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Multiple randomized controlled trials of hypothermia for moderate or severe neonatal hypoxic-ischemic encephalopathy (HIE) have uniformly demonstrated a reduction in death or disability at early childhood evaluation. These initial trials along with other smaller studies established hypothermia as a standard of care in the neonatal community for moderate or severe HIE. The results of the initial trials have identified gaps in knowledge. This article describes 3 randomized controlled trials of hypothermia (second-generation trials) to address refinement of hypothermia therapy (longer and/or deeper cooling), late initiation of hypothermia (after 6 hours following birth), and use of hypothermia in preterm newborns.
Collapse
Affiliation(s)
- Abbot R Laptook
- Department of Pediatrics, Warren Alpert School of Medicine, Women and Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA.
| | - Seetha Shankaran
- Department of Pediatrics, University of Texas at Austin and Dell Medical School, Wayne State University, 15601 Madriena Way, Austin, TX 78738, USA
| | - Roger G Faix
- Department of Pediatrics, University of Utah School of Medicine, 295 Chipeta Way, Salt Lake City, UT 84108, USA
| |
Collapse
|
6
|
Austin T. The development of neonatal neurointensive care. Pediatr Res 2024; 96:868-874. [PMID: 31852010 DOI: 10.1038/s41390-019-0729-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/06/2023]
Abstract
Brain injury remains one of the major unsolved problems in neonatal care, with survivors at high risk of lifelong neurodisability. It is unlikely that a single intervention can ameliorate neonatal brain injury, given the complex interaction between pathological processes, developmental trajectory, genetic susceptibility, and environmental influences. However, a coordinated, interdisciplinary approach to understand the root cause enables early detection, and diagnosis with enhanced clinical care offering the best chance of improving outcomes and facilitate new lines of neuroprotective treatments. Adult neurointensive care has existed as a speciality in its own right for over 20 years; however, it is only recently that large prospective studies have demonstrated the benefit of this model of care. The 'Neuro-intensive Care Nursery' model originated at the University of California San Francisco in 2008, and since then a growing number of units worldwide have adopted this approach. As well as providing consistent coordinated care for infants from a multidisciplinary team, it provides opportunities for specialist education and training in neonatal neurology, neuromonitoring, neuroimaging and nursing. This review outlines the origins of brain-oriented care of the neonate and the development of the Neuro-NICU (neonatal intensive care unit) and discusses some of the challenges and opportunities in expanding this model of care.
Collapse
Affiliation(s)
- Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
7
|
Garegrat R, Burgod C, Muraleedharan P, Thayyil S. Moving the Needle in Low-Resource Settings: Is Hypothermia a Friend or a Foe? Clin Perinatol 2024; 51:665-682. [PMID: 39095103 DOI: 10.1016/j.clp.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Hypoxic-ischemic encephalopathy in low resource settings is associated with low occurrence of perinatal sentinel events, growth restriction, short birth depression, early seizure onset, white matter injury, and non-acute hypoxia on whole genome expression profile suggesting that intra-partum hypoxia might be occurring from a normal or augmented labor process in an already compromised fetus. Induced hypothermia increases mortality and does not reduce brain injury. Strict adherence to the updated National Neonatology forum guidelines is essential to prevent harm from induced hypothermia in low resource settings.
Collapse
Affiliation(s)
- Reema Garegrat
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Constance Burgod
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Pallavi Muraleedharan
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Sudhin Thayyil
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
8
|
Nour Eldine M, Alhousseini M, Nour-Eldine W, Noureldine H, Vakharia KV, Krafft PR, Noureldine MHA. The Role of Oxidative Stress in the Progression of Secondary Brain Injury Following Germinal Matrix Hemorrhage. Transl Stroke Res 2024; 15:647-658. [PMID: 36930383 DOI: 10.1007/s12975-023-01147-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Germinal matrix hemorrhage (GMH) can be a fatal condition responsible for the death of 1.7% of all neonates in the USA. The majority of GMH survivors develop long-term sequalae with debilitating comorbidities. Higher grade GMH is associated with higher mortality rates and higher prevalence of comorbidities. The pathophysiology of GMH can be broken down into two main titles: faulty hemodynamic autoregulation and structural weakness at the level of tissues and cells. Prematurity is the most significant risk factor for GMH, and it predisposes to both major pathophysiological mechanisms of the condition. Secondary brain injury is an important determinant of survival and comorbidities following GMH. Mechanisms of brain injury secondary to GMH include apoptosis, necrosis, neuroinflammation, and oxidative stress. This review will have a special focus on the mechanisms of oxidative stress following GMH, including but not limited to inflammation, mitochondrial reactive oxygen species, glutamate toxicity, and hemoglobin metabolic products. In addition, this review will explore treatment options of GMH, especially targeted therapy.
Collapse
Affiliation(s)
- Mariam Nour Eldine
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | | | - Wared Nour-Eldine
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Hussein Noureldine
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Kunal V Vakharia
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Paul R Krafft
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Mohammad Hassan A Noureldine
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA.
| |
Collapse
|
9
|
Burgod C, Mazlan M, Pant S, Krishnan V, Garegrat R, Montaldo P, Muraleedharan P, Bandiya P, Kamalaratnam CN, Chandramohan R, Manerkar S, Jahan I, Moni SC, Shahidullah M, Rodrigo R, Sumanasena S, Sujatha R, Sathyanathan BP, Joshi AR, Pressler RR, Bassett P, Shankaran S, Thayyil S. Duration of birth depression and neurodevelopmental outcomes after whole-body hypothermia for hypoxic ischemic encephalopathy in India, Sri Lanka and Bangladesh - an exploratory analysis of the HELIX trial. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2024; 20:100284. [PMID: 38234698 PMCID: PMC10794099 DOI: 10.1016/j.lansea.2023.100284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 01/19/2024]
Abstract
Background Effect of duration of birth depression on neurodevelopmental outcomes in low- and middle-income countries (LMICs) is not known. We examined the association of birth depression with brain injury, neurodevelopmental outcomes, and hypothermia after hypoxic ischemic encephalopathy (HIE) in south Asia. Methods We compared cerebral magnetic resonance (MR) at 2 weeks, and adverse outcomes (death or moderate or severe disability) at 18 months in 408 babies with moderate or severe HIE who had long birth depression (positive pressure ventilation (PPV) >10 min or Apgar score<6 at 10 min or cord pH < 7.0) and short birth depression (PPV for 5-10 min or Apgar score<6 at 5 min, but ≥6 at 10 min). Findings Long depression group (n = 201) had more severe HIE (32.8% versus 6.8%), mortality (47.5% versus 26.4%), death or disability at 18 months (62.2% versus 35.4%) (all p < 0.001), MR injury (Odds ratio; 95% CI) to basal ganglia (2.4 (1.3, 4.1); p = 0.003), posterior limb of internal capsule (2.3 (1.3, 4.3); p < 0.001) and white matter (1.7 (1.1, 2.7); p = 0.021), and lower thalamic N-acetylaspartate levels (7.69 ± 1.84 versus 8.29 ± 1.60); p = 0.031) than short depression group (n = 207). Three babies had no heartbeat at 5 min, of which 1 died and 2 survived with severe disability. No significant interaction between the duration of birth depression and whole-body hypothermia was seen for any of the MR biomarker or clinical outcomes. Interpretation Long birth depression was associated with more brain injury and adverse outcomes than short depression. Effect of hypothermia was not modified by duration of birth depression. Funding National Institute for Health Research.
Collapse
Affiliation(s)
- Constance Burgod
- Centre for Perinatal Neuroscience, Imperial College, London, United Kingdom
| | - Munirah Mazlan
- Centre for Perinatal Neuroscience, Imperial College, London, United Kingdom
| | - Stuti Pant
- Centre for Perinatal Neuroscience, Imperial College, London, United Kingdom
| | - Vaisakh Krishnan
- Centre for Perinatal Neuroscience, Imperial College, London, United Kingdom
| | - Reema Garegrat
- Centre for Perinatal Neuroscience, Imperial College, London, United Kingdom
| | - Paolo Montaldo
- Centre for Perinatal Neuroscience, Imperial College, London, United Kingdom
| | | | - Prathik Bandiya
- Neonatal Unit, Indira Gandhi Institute of Child Health, Bangalore, India
| | | | | | - Swati Manerkar
- Neonatal Unit and Radiology, Lokmanya Tilak Municipal Medical College, Mumbai, India
| | - Ismat Jahan
- Neonatal Unit, Bangabandhu Sheikh Mujib Medical University, Bangladesh
| | - Sadeka C. Moni
- Neonatal Unit, Bangabandhu Sheikh Mujib Medical University, Bangladesh
| | | | | | | | - Radhika Sujatha
- Neonatal Unit, Sree Avittom Thirunal Hospital and Government Medical College, Thiruvananthapuram, India
| | | | - Anagha R. Joshi
- Neonatal Unit and Radiology, Lokmanya Tilak Municipal Medical College, Mumbai, India
| | - Ronit R. Pressler
- Department of Neurophysiology, Great Ormond Street Hospital, United Kingdom
| | | | - Seetha Shankaran
- Department of Neonatal-Perinatal Medicine, Wayne State University, Detroit, MI, USA
- University of Texas at Austin, Dell Children's Hospital, Austin, USA
| | - Sudhin Thayyil
- Centre for Perinatal Neuroscience, Imperial College, London, United Kingdom
| |
Collapse
|
10
|
Whitelaw A, Thoresen M. Therapeutic Hypothermia for Hypoxic-Ischemic Brain Injury Is More Effective in Newborn Infants than in Older Patients: Review and Hypotheses. Ther Hypothermia Temp Manag 2023; 13:170-174. [PMID: 37638830 DOI: 10.1089/ther.2023.0050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Posthypoxic therapeutic hypothermia has been tested in newborn infants, with seven randomized trials showing consistent evidence of reduction in death, cerebral palsy, and cognitive impairment at school age. In contrast, randomized trials of hypothermia after cardiac arrest in adults have not shown consistent evidence of lasting neurological protection. The apparently greater effectiveness of therapeutic hypothermia in newborns may be due to important biological and clinical differences. One such difference is that adults are heavily colonized with microbes, and many have active inflammatory processes at the time of arrest, but few newborns are heavily colonized or infected at the time of birth. Inflammation can interfere with hypothermia's neuroprotection. A second difference is that apoptosis is more commonly the pathway of neuronal death in newborns than in adults. Hypothermia inhibits apoptosis but not necrosis. Newborns have a larger endogenous supply of stem cells (which reduce apoptosis) than adults and this may favor regeneration and protection from hypothermia and regeneration. A third difference is that immature oligodendroglia are more sensitive to free radical attack then mature oligodendroglia. Hypothermia reduces free radical release. In addition, immature brain has increased N-methyl-D-aspartate receptor subunits compared with adults and hypothermia reduces excitotoxic amino acids. Adults suffering cardiac arrest often have comorbidities such as diabetes, hypertension, and atherosclerosis, which complicate recovery, but newborn infants rarely have comorbidities before asphyxia. Adult hypothermia treatment may have been too short as no trial has cooled for longer than 48 hours, some only 24 or 12 hours, but neonatal therapeutic hypothermia has routinely lasted 72 hours. We hypothesize that this combination of differences favors the effectiveness of therapeutic hypothermia in newborn infants compared with adults.
Collapse
Affiliation(s)
- Andrew Whitelaw
- Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Marianne Thoresen
- Translational Health Sciences, University of Bristol, Bristol, United Kingdom
- Department of Physiology, Institute of Basic Medical Research, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Harvey-Jones K, Lange F, Verma V, Bale G, Meehan C, Avdic-Belltheus A, Hristova M, Sokolska M, Torrealdea F, Golay X, Parfentyeva V, Durduran T, Bainbridge A, Tachtsidis I, Robertson NJ, Mitra S. Early assessment of injury with optical markers in a piglet model of neonatal encephalopathy. Pediatr Res 2023; 94:1675-1683. [PMID: 37308684 PMCID: PMC10624614 DOI: 10.1038/s41390-023-02679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Opportunities for adjunct therapies with cooling in neonatal encephalopathy are imminent; however, robust biomarkers of early assessment are lacking. Using an optical platform of broadband near-infrared spectroscopy and diffuse correlation spectroscopy to directly measure mitochondrial metabolism (oxCCO), oxygenation (HbD), cerebral blood flow (CBF), we hypothesised optical indices early (1-h post insult) after hypoxia-ischaemia (HI) predicts insult severity and outcome. METHODS Nineteen newborn large white piglets underwent continuous neuromonitoring as controls or following moderate or severe HI. Optical indices were expressed as mean semblance (phase difference) and coherence (spectral similarity) between signals using wavelet analysis. Outcome markers included the lactate/N-acetyl aspartate (Lac/NAA) ratio at 6 h on proton MRS and TUNEL cell count. RESULTS CBF-HbD semblance (cerebrovascular dysfunction) correlated with BGT and white matter (WM) Lac/NAA (r2 = 0.46, p = 0.004, r2 = 0.45, p = 0.004, respectively), TUNEL cell count (r2 = 0.34, p = 0.02) and predicted both initial insult (r2 = 0.62, p = 0.002) and outcome group (r2 = 0.65 p = 0.003). oxCCO-HbD semblance (cerebral metabolic dysfunction) correlated with BGT and WM Lac/NAA (r2 = 0.34, p = 0.01 and r2 = 0.46, p = 0.002, respectively) and differentiated between outcome groups (r2 = 0.43, p = 0.01). CONCLUSION Optical markers of both cerebral metabolic and vascular dysfunction 1 h after HI predicted injury severity and subsequent outcome in a pre-clinical model. IMPACT This study highlights the possibility of using non-invasive optical biomarkers for early assessment of injury severity following neonatal encephalopathy, relating to the outcome. Continuous cot-side monitoring of these optical markers can be useful for disease stratification in the clinical population and for identifying infants who might benefit from future adjunct neuroprotective therapies beyond cooling.
Collapse
Affiliation(s)
| | - Frederic Lange
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Vinita Verma
- Institute for Women's Health, University College London, London, UK
| | - Gemma Bale
- Department of Engineering and Department of Physics, University of Cambridge, Cambridge, UK
| | | | | | - Mariya Hristova
- Institute for Women's Health, University College London, London, UK
| | - Magdalena Sokolska
- Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | - Francisco Torrealdea
- Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | - Xavier Golay
- Institute of Neurology, University College London, London, UK
| | - Veronika Parfentyeva
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Alan Bainbridge
- Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | | | - Subhabrata Mitra
- Institute for Women's Health, University College London, London, UK.
| |
Collapse
|
12
|
Andelius TCK, Bøgh N, Pedersen MV, Omann C, Andersen M, Andersen HB, Hjortdal VE, Pedersen M, Rasmussen MB, Kyng KJ, Henriksen TB. Early changes in cerebral metabolism after perinatal hypoxia-ischemia: a study in normothermic and hypothermic piglets. Front Pediatr 2023; 11:1167396. [PMID: 37325341 PMCID: PMC10264796 DOI: 10.3389/fped.2023.1167396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Hypoxic ischemic encephalopathy (HIE) after a perinatal insult is a dynamic process that evolves over time. Therapeutic hypothermia (TH) is standard treatment for severe to moderate HIE. There is a lack of evidence on the temporal change and interrelation of the underlying mechanisms that constitute HIE under normal and hypothermic conditions. We aimed to describe early changes in intracerebral metabolism after a hypoxic-ischemic insult in piglets treated with and without TH and in controls. Methods Three devices were installed into the left hemisphere of 24 piglets: a probe measuring intracranial pressure, a probe measuring blood flow and oxygen tension, and a microdialysis catheter measuring lactate, glucose, glycerol, and pyruvate. After a standardized hypoxic ischemic insult, the piglets were randomized to either TH or normothermia. Results Glycerol, a marker of cell lysis, increased immediately after the insult in both groups. There was a secondary increase in glycerol in normothermic piglets but not in piglets treated with TH. Intracerebral pressure, blood flow, oxygen tension, and extracellular lactate remained stable during the secondary increase in glycerol. Conclusion This exploratory study depicted the development of the pathophysiological mechanisms in the hours following a perinatal hypoxic-ischemic insult with and without TH and controls.
Collapse
Affiliation(s)
- Ted C. K. Andelius
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Nikolaj Bøgh
- The MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Mette V. Pedersen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Camilla Omann
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Mads Andersen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Hannah B. Andersen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Vibeke E. Hjortdal
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Aarhus University Hospital, Aarhus, Denmark
| | - Martin B. Rasmussen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Kasper J. Kyng
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Tine B. Henriksen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Thayyil S, Montaldo P, Krishnan V, Ivain P, Pant S, Lally PJ, Bandiya P, Benkappa N, Kamalaratnam CN, Chandramohan R, Manerkar S, Mondkar J, Jahan I, Moni SC, Shahidullah M, Rodrigo R, Sumanasena S, Sujatha R, Burgod C, Garegrat R, Mazlan M, Chettri I, Babu Peter S, Joshi AR, Swamy R, Chong K, Pressler RR, Bassett P, Shankaran S. Whole-Body Hypothermia, Cerebral Magnetic Resonance Biomarkers, and Outcomes in Neonates With Moderate or Severe Hypoxic-Ischemic Encephalopathy Born at Tertiary Care Centers vs Other Facilities: A Nested Study Within a Randomized Clinical Trial. JAMA Netw Open 2023; 6:e2312152. [PMID: 37155168 PMCID: PMC10167567 DOI: 10.1001/jamanetworkopen.2023.12152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Importance The association between place of birth and hypothermic neuroprotection after hypoxic-ischemic encephalopathy (HIE) in low- and middle-income countries (LMICs) is unknown. Objective To ascertain the association between place of birth and the efficacy of whole-body hypothermia for protection against brain injury measured by magnetic resonance (MR) biomarkers among neonates born at a tertiary care center (inborn) or other facilities (outborn). Design, Setting, and Participants This nested cohort study within a randomized clinical trial involved neonates at 7 tertiary neonatal intensive care units in India, Sri Lanka, and Bangladesh between August 15, 2015, and February 15, 2019. A total of 408 neonates born at or after 36 weeks' gestation with moderate or severe HIE were randomized to receive whole-body hypothermia (reduction of rectal temperatures to between 33.0 °C and 34.0 °C; hypothermia group) for 72 hours or no whole-body hypothermia (rectal temperatures maintained between 36.0 °C and 37.0 °C; control group) within 6 hours of birth, with follow-up until September 27, 2020. Exposure 3T MR imaging, MR spectroscopy, and diffusion tensor imaging. Main Outcomes and Measures Thalamic N-acetyl aspartate (NAA) mmol/kg wet weight, thalamic lactate to NAA peak area ratios, brain injury scores, and white matter fractional anisotropy at 1 to 2 weeks and death or moderate or severe disability at 18 to 22 months. Results Among 408 neonates, the mean (SD) gestational age was 38.7 (1.3) weeks; 267 (65.4%) were male. A total of 123 neonates were inborn and 285 were outborn. Inborn neonates were smaller (mean [SD], 2.8 [0.5] kg vs 2.9 [0.4] kg; P = .02), more likely to have instrumental or cesarean deliveries (43.1% vs 24.7%; P = .01), and more likely to be intubated at birth (78.9% vs 29.1%; P = .001) than outborn neonates, although the rate of severe HIE was not different (23.6% vs 17.9%; P = .22). Magnetic resonance data from 267 neonates (80 inborn and 187 outborn) were analyzed. In the hypothermia vs control groups, the mean (SD) thalamic NAA levels were 8.04 (1.98) vs 8.31 (1.13) among inborn neonates (odds ratio [OR], -0.28; 95% CI, -1.62 to 1.07; P = .68) and 8.03 (1.89) vs 7.99 (1.72) among outborn neonates (OR, 0.05; 95% CI, -0.62 to 0.71; P = .89); the median (IQR) thalamic lactate to NAA peak area ratios were 0.13 (0.10-0.20) vs 0.12 (0.09-0.18) among inborn neonates (OR, 1.02; 95% CI, 0.96-1.08; P = .59) and 0.14 (0.11-0.20) vs 0.14 (0.10-0.17) among outborn neonates (OR, 1.03; 95% CI, 0.98-1.09; P = .18). There was no difference in brain injury scores or white matter fractional anisotropy between the hypothermia and control groups among inborn or outborn neonates. Whole-body hypothermia was not associated with reductions in death or disability, either among 123 inborn neonates (hypothermia vs control group: 34 neonates [58.6%] vs 34 [56.7%]; risk ratio, 1.03; 95% CI, 0.76-1.41), or 285 outborn neonates (hypothermia vs control group: 64 neonates [46.7%] vs 60 [43.2%]; risk ratio, 1.08; 95% CI, 0.83-1.41). Conclusions and Relevance In this nested cohort study, whole-body hypothermia was not associated with reductions in brain injury after HIE among neonates in South Asia, irrespective of place of birth. These findings do not support the use of whole-body hypothermia for HIE among neonates in LMICs. Trial Registration ClinicalTrials.gov Identifier: NCT02387385.
Collapse
Affiliation(s)
- Sudhin Thayyil
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Paolo Montaldo
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
- Neonatal Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Vaisakh Krishnan
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Phoebe Ivain
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Stuti Pant
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Peter J Lally
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Prathik Bandiya
- Neonatal Unit, Indira Gandhi Institute of Child Health, Bengaluru, India
| | - Naveen Benkappa
- Neonatal Unit, Indira Gandhi Institute of Child Health, Bengaluru, India
| | | | | | - Swati Manerkar
- Neonatal Unit, Lokmanya Tilak Municipal Medical College, Mumbai, India
| | - Jayshree Mondkar
- Neonatal Unit, Lokmanya Tilak Municipal Medical College, Mumbai, India
| | - Ismat Jahan
- Neonatal Unit, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Sadeka C Moni
- Neonatal Unit, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | | | - Ranmali Rodrigo
- Department of Pediatrics, University of Kelaniya, Kelaniya, Sri Lanka
| | | | - Radhika Sujatha
- Neonatal Unit, Sree Avittom Thirunal Hospital, Government Medical College, Thiruvananthapuram, India
| | - Constance Burgod
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Reema Garegrat
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Munirah Mazlan
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Ismita Chettri
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | | | - Anagha R Joshi
- Department of Radiology, Lokmanya Tilak Municipal Medical College, Mumbai, India
| | - Ravi Swamy
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Kling Chong
- Department of Neuroradiology, Great Ormond Street Hospital, London, United Kingdom
| | - Ronit R Pressler
- Department of Neurophysiology, Great Ormond Street Hospital, London, United Kingdom
| | | | - Seetha Shankaran
- Division of Neonatal-Perinatal Medicine, Wayne State University, Detroit, Michigan
| |
Collapse
|
14
|
Narayanamurthy R, Armstrong EA, Yang JLJ, Yager JY, Unsworth LD. Administration of selective brain hypothermia using a simple cooling device in neonatal rats. J Neurosci Methods 2023; 390:109838. [PMID: 36933705 DOI: 10.1016/j.jneumeth.2023.109838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND The interruption of oxygen and blood supply to the newborn brain around the time of birth is a risk factor for hypoxic-ischemic encephalopathy and may lead to infant mortality or lifelong neurological impairments. Currently, therapeutic hypothermia, the cooling of the infant's head or entire body, is the only treatment to curb the extent of brain damage. NEW METHOD In this study, we designed a focal brain cooling device that circulates cooled water at a steady state temperature of 19 ± 1 °C through a coil of tubing fitted onto the neonatal rat's head. We tested its ability to selectively decrease brain temperature and offer neuroprotection in a neonatal rat model of hypoxic-ischemic brain injury. RESULTS Our method cooled the brain to 30-33 °C in conscious pups, while keeping the core body temperature approximately 3.2 °C warmer. Furthermore, the application of the cooling device to the neonatal rat model demonstrated a reduction in brain volume loss compared to pups maintained at normothermia and achieved a level of brain tissue protection the same as that of whole-body cooling. COMPARISON WITH EXISTING METHODS Prevailing methods of selective brain hypothermia are designed for adult animal models rather than for immature animals such as the rat as a conventional model of developmental brain pathology. Contrary to existing methods, our method of cooling does not require surgical manipulation or anaesthesia. CONCLUSION Our simple, economical, and effective method of selective brain cooling is a useful tool for rodent studies in neonatal brain injury and adaptive therapeutic interventions.
Collapse
Affiliation(s)
- Rukhmani Narayanamurthy
- Department of Pediatrics, Division of Pediatric Neurosciences, University of Alberta, 11405 87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - Edward A Armstrong
- Department of Pediatrics, Division of Pediatric Neurosciences, University of Alberta, 11405 87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - Jung-Lynn Jonathan Yang
- Department of Chemical and Materials Engineering, University of Alberta, 11487 89 Avenue, Edmonton, Alberta T6G 2M7, Canada
| | - Jerome Y Yager
- Department of Pediatrics, Division of Pediatric Neurosciences, University of Alberta, 11405 87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, 11487 89 Avenue, Edmonton, Alberta T6G 2M7, Canada.
| |
Collapse
|
15
|
Callaway CW. Targeted temperature management with hypothermia for comatose patients after cardiac arrest. Clin Exp Emerg Med 2023; 10:5-17. [PMID: 36796779 PMCID: PMC10090724 DOI: 10.15441/ceem.23.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Targeted temperature management with mild hypothermia (TTM-hypothermia; 32-34 °C) is a treatment strategy for adult patients who are comatose after cardiac arrest. Robust preclinical data support the beneficial effects of hypothermia beginning within 4 hours of reperfusion and maintained during the several days of postreperfusion brain dysregulation. TTM-hypothermia increased survival and functional recovery after adult cardiac arrest in several trials and in realworld implementation studies. TTM-hypothermia also benefits neonates with hypoxic-ischemic brain injury. However, larger and methodologically more rigorous adult trials do not detect benefit. Reasons for inconsistency of adult trials include the difficulty delivering differential treatment between randomized groups within 4 hours and the use of shorter durations of treatment. Furthermore, adult trials enrolled populations that vary in illness severity and brain injury, with individual trials enriched for higher or lower illness severity. There are interactions between illness severity and treatment effect. Current data indicate that TTM-hypothermia implemented quickly for adult patients after cardiac arrest, may benefit select patients at risk of severe brain injury but not benefit other patients. More data are needed on how to identify treatment-responsive patients and on how to titrate the timing and duration of TTM-hypothermia.
Collapse
Affiliation(s)
- Clifton W. Callaway
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Early Plasma Magnesium in Near-Term and Term Infants with Neonatal Encephalopathy in the Context of Perinatal Asphyxia. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9081233. [PMID: 36010122 PMCID: PMC9406851 DOI: 10.3390/children9081233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Magnesium ions are implicated in brain functioning. The disruption of brain metabolism subsequent to a perinatal hypoxic-ischaemic insult may be reflected by plasma magnesium. Infants at 36 weeks after birth or later with neonatal encephalopathy and who were admitted to our neonatal unit from 2011 to 2019 were retrospectively included. The kinetics of plasma magnesium were investigated for the first 72 h of life and correlated to the Barkovich MRI score. Among the 125 infants who met the inclusion criteria, 45 patients (36%) had moderate to severe brain lesions on neonatal MRI. Plasma magnesium values were not strongly associated with the severity of clinical encephalopathy, initial EEG background and brain lesions. Intriguingly, higher plasma magnesium values during the 0−6 h period were linked to the presence of brain injuries that predominated within the white matter (p < 0.001) and to the requirement of cardiac resuscitation in the delivery room (p = 0.001). The occurrence of seizures was associated with a lower mean magnesium value around the 24th hour of life (p = 0.005). This study supports that neonatal encephalopathy is a complex and multifactorial condition. Plasma magnesium could help to better identify the subtypes of neonatal encephalopathy. Further studies are needed to confirm these results in this prospect.
Collapse
|
17
|
Martinello KA, Meehan C, Avdic-Belltheus A, Lingam I, Mutshiya T, Yang Q, Akin MA, Price D, Sokolska M, Bainbridge A, Hristova M, Tachtsidis I, Tann CJ, Peebles D, Hagberg H, Wolfs TGAM, Klein N, Kramer BW, Fleiss B, Gressens P, Golay X, Robertson NJ. Hypothermia is not therapeutic in a neonatal piglet model of inflammation-sensitized hypoxia-ischemia. Pediatr Res 2022; 91:1416-1427. [PMID: 34050269 PMCID: PMC8160560 DOI: 10.1038/s41390-021-01584-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Perinatal inflammation combined with hypoxia-ischemia (HI) exacerbates injury in the developing brain. Therapeutic hypothermia (HT) is standard care for neonatal encephalopathy; however, its benefit in inflammation-sensitized HI (IS-HI) is unknown. METHODS Twelve newborn piglets received a 2 µg/kg bolus and 1 µg/kg/h infusion over 52 h of Escherichia coli lipopolysaccharide (LPS). HI was induced 4 h after LPS bolus. After HI, piglets were randomized to HT (33.5 °C 1-25 h after HI, n = 6) or normothermia (NT, n = 6). Amplitude-integrated electroencephalogram (aEEG) was recorded and magnetic resonance spectroscopy (MRS) was acquired at 24 and 48 h. At 48 h, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive brain cell death, microglial activation/proliferation, astrogliosis, and cleaved caspase-3 (CC3) were quantified. Hematology and plasma cytokines were serially measured. RESULTS Two HT piglets died. aEEG recovery, thalamic and white matter MRS lactate/N-acetylaspartate, and TUNEL-positive cell death were similar between groups. HT increased microglial activation in the caudate, but had no other effect on glial activation/proliferation. HT reduced CC3 overall. HT suppressed platelet count and attenuated leukocytosis. Cytokine profile was unchanged by HT. CONCLUSIONS We did not observe protection with HT in this piglet IS-HI model based on aEEG, MRS, and immunohistochemistry. Immunosuppressive effects of HT and countering neuroinflammation by LPS may contribute to the observed lack of HT efficacy. Other immunomodulatory strategies may be more effective in IS-HI. IMPACT Acute infection/inflammation is known to exacerbate perinatal brain injury and can worsen the outcomes in neonatal encephalopathy. Therapeutic HT is the current standard of care for all infants with NE, but the benefit in infants with coinfection/inflammation is unknown. In a piglet model of inflammation (LPS)-sensitized HI, we observed no evidence of neuroprotection with cooling for 24 h, based on our primary outcome measures: aEEG, MRS Lac/NAA, and histological brain cell death. Additional neuroprotective agents, with beneficial immunomodulatory effects, require exploration in IS-HI models.
Collapse
Affiliation(s)
- Kathryn A Martinello
- Institute for Women's Health, University College London, London, UK
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | | | | | - Ingran Lingam
- Institute for Women's Health, University College London, London, UK
| | - Tatenda Mutshiya
- Institute for Women's Health, University College London, London, UK
| | - Qin Yang
- Institute for Women's Health, University College London, London, UK
| | - Mustafa Ali Akin
- Department of Paediatrics, Ondokuz Mayıs University, Samsun, Turkey
| | - David Price
- Medical Physics and Biomedical Engineering, University College London NHS Foundation Trust, London, UK
| | - Magdalena Sokolska
- Medical Physics and Biomedical Engineering, University College London NHS Foundation Trust, London, UK
| | - Alan Bainbridge
- Medical Physics and Biomedical Engineering, University College London NHS Foundation Trust, London, UK
| | - Mariya Hristova
- Institute for Women's Health, University College London, London, UK
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Cally J Tann
- Adolescent, Reproductive and Child Health Centre, London School of Hygiene and Tropical Medicine, London, UK
| | - Donald Peebles
- Institute for Women's Health, University College London, London, UK
| | - Henrik Hagberg
- Department of Clinical Sciences, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Centre for the Developing Brain, Kings College London, London, UK
| | - Tim G A M Wolfs
- Department of Pediatrics, University of Maastricht, Maastricht, The Netherlands
| | - Nigel Klein
- Paediatric Infectious Diseases and Immunology, Institute of Child Health, University College London, London, UK
| | - Boris W Kramer
- Department of Pediatrics, University of Maastricht, Maastricht, The Netherlands
| | - Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | | | - Xavier Golay
- Institute of Neurology, University College London, London, UK
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
18
|
Leon RL, Krause KE, Sides RS, Koch MB, Trautman MS, Mietzsch U. Therapeutic Hypothermia in Transport Permits Earlier Treatment Regardless of Transfer Distance. Am J Perinatol 2022; 39:633-639. [PMID: 33053593 DOI: 10.1055/s-0040-1718372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Therapeutic hypothermia (TH) is currently the only effective therapy available to improve outcomes in neonates with hypoxic-ischemic encephalopathy (HIE) and has maximal effect when initiated within 6 hours of birth. Neonates affected by HIE are commonly born outside of cooling centers and transport is a barrier to timely initiation. In this study, we sought to determine if the initiation of servo-controlled TH in transport allowed neonates to reach target temperature earlier, without a significant delay in the transfer process, for both local and long-distance transport. STUDY DESIGN In this single-center cohort study of neonates referred to a level IV neonatal intensive care unit for TH, we determined the chronologic age at which target temperature was reached for those cooled in transport. Short-term outcome measures were assessed, including survival, incidence of electrographic seizures, discharge feeding method, and length of hospitalization. RESULTS In a study population of 85 neonates, those receiving TH during transport (n = 23), achieved target temperature (33-34°C) 77 minutes sooner (230 ± 71 vs. 307 ± 79 minutes of life (MOL); p < 0.001). Locally transported neonates (<15 miles) achieved target temperature 69 minutes earlier (215 ± 48 vs. 284 ± 74 MOL; p < 0.01). TH during long-distance transports allowed neonates to reach target temperature 81 minutes sooner (213 ± 85 vs. 294 ± 79 MOL; p < 0.01). Infants who were cooled in transport discharged 4 days earlier (13.7 ± 8 vs. 17.8 ± 13 days; p = 0.18) and showed a significantly higher rate of oral feeding at discharge (95 vs. 71%; p = 0.03). CONCLUSION For those starting TH in transport, time to target temperature was decreased. In our cohort, cooling in transport was associated with improved short-term outcomes, although additional studies are needed to correlate these findings with long-term outcomes. KEY POINTS · Therapeutic hypothermia started during transport allows shorter time to target temperature.. · Transfer was minimally delayed by starting cooling in transport.. · Cooling in transport was associated with increased rate of oral feeding at hospital discharge..
Collapse
Affiliation(s)
- Rachel L Leon
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Katherine E Krause
- Departments of Pediatrics and Internal Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rebecca S Sides
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mary Beth Koch
- Riley Hospital for Children at IU Health, Indianapolis, Indiana
| | - Michael S Trautman
- Indiana University Health Lifeline Transport Services, Indianapolis, Indiana
| | - Ulrike Mietzsch
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pediatrics, Division of Neonatology, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
19
|
Austin T, Chakkarapani E. Therapeutic hypothermia for neonatal encephalopathy: importance of early management. Arch Dis Child Fetal Neonatal Ed 2022; 107:2-3. [PMID: 34753784 DOI: 10.1136/archdischild-2021-322563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/24/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Topun Austin
- Neonatal Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | |
Collapse
|
20
|
Kerrn-Jespersen S, Andersen M, Bennedsgaard K, Andelius TCK, Pedersen M, Kyng KJ, Henriksen TB. Remote ischemic postconditioning increased cerebral blood flow and oxygenation assessed by magnetic resonance imaging in newborn piglets after hypoxia-ischemia. Front Pediatr 2022; 10:933962. [PMID: 36245727 PMCID: PMC9559709 DOI: 10.3389/fped.2022.933962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND We have previously investigated neurological outcomes following remote ischemic postconditioning (RIPC) in a newborn piglet model of hypoxic-ischemic encephalopathy. The aim of this study was to further investigate potential mechanisms of neuroprotection by comparing newborn piglets subjected to global hypoxia-ischemia (HI) treated with and without RIPC with regards to measures of cerebral blood flow and oxygenation assessed by functional magnetic resonance imaging. MATERIALS AND METHODS A total of 50 piglets were subjected to 45 min global HI and randomized to either no treatment or RIPC treatment. Magnetic resonance imaging was performed 72 h after the HI insult with perfusion-weighted (arterial spin labeling, ASL) and oxygenation-weighted (blood-oxygen-level-dependent, BOLD) sequences in the whole brain, basal ganglia, thalamus, and cortex. Four sham animals received anesthesia and mechanical ventilation only. RESULTS Piglets treated with RIPC had higher measures of cerebral blood flow in all regions of interest and the whole brain (mean difference: 2.6 ml/100 g/min, 95% CI: 0.1; 5.2) compared with the untreated controls. They also had higher BOLD values in the basal ganglia and the whole brain (mean difference: 4.2 T2*, 95% CI: 0.4; 7.9). Measures were similar between piglets treated with RIPC and sham animals. CONCLUSION Piglets treated with RIPC had higher measures of cerebral blood flow and oxygenation assessed by magnetic resonance imaging in the whole brain and several regions of interest compared with untreated controls 72 h after the HI insult. Whether this reflects a potential neuroprotective mechanism of RIPC requires further study.
Collapse
Affiliation(s)
- Sigrid Kerrn-Jespersen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mads Andersen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Kristine Bennedsgaard
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ted Carl Kejlberg Andelius
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kasper Jacobsen Kyng
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Tine Brink Henriksen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
21
|
Verma V, Lange F, Bainbridge A, Harvey-Jones K, Robertson NJ, Tachtsidis I, Mitra S. Brain temperature monitoring in newborn infants: Current methodologies and prospects. Front Pediatr 2022; 10:1008539. [PMID: 36268041 PMCID: PMC9577084 DOI: 10.3389/fped.2022.1008539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/15/2022] [Indexed: 02/02/2023] Open
Abstract
Brain tissue temperature is a dynamic balance between heat generation from metabolism, passive loss of energy to the environment, and thermoregulatory processes such as perfusion. Perinatal brain injuries, particularly neonatal encephalopathy, and seizures, have a significant impact on the metabolic and haemodynamic state of the developing brain, and thereby likely induce changes in brain temperature. In healthy newborn brains, brain temperature is higher than the core temperature. Magnetic resonance spectroscopy (MRS) has been used as a viable, non-invasive tool to measure temperature in the newborn brain with a reported accuracy of up to 0.2 degrees Celcius and a precision of 0.3 degrees Celcius. This measurement is based on the separation of chemical shifts between the temperature-sensitive water peaks and temperature-insensitive singlet metabolite peaks. MRS thermometry requires transport to an MRI scanner and a lengthy single-point measurement. Optical monitoring, using near infrared spectroscopy (NIRS), offers an alternative which overcomes this limitation in its ability to monitor newborn brain tissue temperature continuously at the cot side in real-time. Near infrared spectroscopy uses linear temperature-dependent changes in water absorption spectra in the near infrared range to estimate the tissue temperature. This review focuses on the currently available methodologies and their viability for accurate measurement, the potential benefits of monitoring newborn brain temperature in the neonatal intensive care unit, and the important challenges that still need to be addressed.
Collapse
Affiliation(s)
- Vinita Verma
- Institute for Women's Health, University College London, London, United Kingdom
| | - Frederic Lange
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Alan Bainbridge
- Medical Physics and Engineering, University College London Hospital, London, United Kingdom
| | - Kelly Harvey-Jones
- Institute for Women's Health, University College London, London, United Kingdom
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, United Kingdom
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Subhabrata Mitra
- Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
22
|
Lespay-Rebolledo C, Tapia-Bustos A, Perez-Lobos R, Vio V, Casanova-Ortiz E, Farfan-Troncoso N, Zamorano-Cataldo M, Redel-Villarroel M, Ezquer F, Quintanilla ME, Israel Y, Morales P, Herrera-Marschitz M. Sustained Energy Deficit Following Perinatal Asphyxia: A Shift towards the Fructose-2,6-bisphosphatase (TIGAR)-Dependent Pentose Phosphate Pathway and Postnatal Development. Antioxidants (Basel) 2021; 11:74. [PMID: 35052577 PMCID: PMC8773255 DOI: 10.3390/antiox11010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Labor and delivery entail a complex and sequential metabolic and physiologic cascade, culminating in most circumstances in successful childbirth, although delivery can be a risky episode if oxygen supply is interrupted, resulting in perinatal asphyxia (PA). PA causes an energy failure, leading to cell dysfunction and death if re-oxygenation is not promptly restored. PA is associated with long-term effects, challenging the ability of the brain to cope with stressors occurring along with life. We review here relevant targets responsible for metabolic cascades linked to neurodevelopmental impairments, that we have identified with a model of global PA in rats. Severe PA induces a sustained effect on redox homeostasis, increasing oxidative stress, decreasing metabolic and tissue antioxidant capacity in vulnerable brain regions, which remains weeks after the insult. Catalase activity is decreased in mesencephalon and hippocampus from PA-exposed (AS), compared to control neonates (CS), in parallel with increased cleaved caspase-3 levels, associated with decreased glutathione reductase and glutathione peroxidase activity, a shift towards the TIGAR-dependent pentose phosphate pathway, and delayed calpain-dependent cell death. The brain damage continues long after the re-oxygenation period, extending for weeks after PA, affecting neurons and glial cells, including myelination in grey and white matter. The resulting vulnerability was investigated with organotypic cultures built from AS and CS rat newborns, showing that substantia nigra TH-dopamine-positive cells from AS were more vulnerable to 1 mM of H2O2 than those from CS animals. Several therapeutic strategies are discussed, including hypothermia; N-acetylcysteine; memantine; nicotinamide, and intranasally administered mesenchymal stem cell secretomes, promising clinical translation.
Collapse
Affiliation(s)
- Carolyne Lespay-Rebolledo
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Andrea Tapia-Bustos
- School of Pharmacy, Faculty of Medicine, Universidad Andres Bello, Santiago 8370149, Chile;
| | - Ronald Perez-Lobos
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Valentina Vio
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Emmanuel Casanova-Ortiz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Nancy Farfan-Troncoso
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Marta Zamorano-Cataldo
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Martina Redel-Villarroel
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Fernando Ezquer
- Center for Regenerative Medicine, Faculty of Medicine-Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile;
| | - Maria Elena Quintanilla
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Yedy Israel
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
- Center for Regenerative Medicine, Faculty of Medicine-Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile;
| | - Paola Morales
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Mario Herrera-Marschitz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| |
Collapse
|
23
|
Martini S, Castellini L, Parladori R, Paoletti V, Aceti A, Corvaglia L. Free Radicals and Neonatal Brain Injury: From Underlying Pathophysiology to Antioxidant Treatment Perspectives. Antioxidants (Basel) 2021; 10:2012. [PMID: 34943115 PMCID: PMC8698308 DOI: 10.3390/antiox10122012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/23/2023] Open
Abstract
Free radicals play a role of paramount importance in the development of neonatal brain injury. Depending on the pathophysiological mechanisms underlying free radical overproduction and upon specific neonatal characteristics, such as the GA-dependent maturation of antioxidant defenses and of cerebrovascular autoregulation, different profiles of injury have been identified. The growing evidence on the detrimental effects of free radicals on the brain tissue has led to discover not only potential biomarkers for oxidative damage, but also possible neuroprotective therapeutic approaches targeting oxidative stress. While a more extensive validation of free radical biomarkers is required before considering their use in routine neonatal practice, two important treatments endowed with antioxidant properties, such as therapeutic hypothermia and magnesium sulfate, have become part of the standard of care to reduce the risk of neonatal brain injury, and other promising therapeutic strategies are being tested in clinical trials. The implementation of currently available evidence is crucial to optimize neonatal neuroprotection and to develop individualized diagnostic and therapeutic approaches addressing oxidative brain injury, with the final aim of improving the neurological outcome of this population.
Collapse
Affiliation(s)
- Silvia Martini
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Laura Castellini
- School of Medicine and Surgery, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Roberta Parladori
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Vittoria Paoletti
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Arianna Aceti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Luigi Corvaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
24
|
Olson L, Lothian C, Ådén U, Lagercrantz H, Robertson NJ, Setterwall F. Phase-Changing Glauber Salt Solution for Medical Applications in the 28-32 °C Interval. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7106. [PMID: 34885261 PMCID: PMC8658730 DOI: 10.3390/ma14237106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022]
Abstract
(1) Background: The field of medicine requires simple cooling materials. However, there is little knowledge documented about phase change materials (PCM) covering the range of 28 to 40 degrees Celsius, as needed for medical use. Induced mild hypothermia, started within 6 h after birth, is an emerging therapy for reducing death and severe disabilities in asphyxiated infants. Currently, this hypothermia is accomplished with equipment that needs a power source and a liquid supply. Neonatal cooling is more frequent in low-resource settings, where ~1 million deaths are caused by birth-asphyxia. (2) Methods: A simple and safe cooling method suitable for medical application is needed for the 28 to 37.5 °C window. (3) Results: Using empirical experiments in which the ingredients in Glauber salt were changed, we studied the effects of temperature on material in the indicated temperature range. The examination, in a controlled manner, of different mixtures of NaCl, Na2SO4 and water resulted in a better understanding of how the different mixtures act and how to compose salt solutions that can satisfy clinical cooling specifications. (4) Conclusions: Our Glauber salt solution is a clinically suited PCM in the temperature interval needed for the cooling of infants suffering from asphyxia.
Collapse
Affiliation(s)
- Linus Olson
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (U.Å.); (H.L.)
- Department of Neonatology, Vietnam National Children’s Hospital, Hanoi, Vietnam
| | - Carina Lothian
- Neonatal Unit, Stockholm Söder Hospital, 11883 Stockholm, Sweden;
| | - Ulrika Ådén
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (U.Å.); (H.L.)
| | - Hugo Lagercrantz
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (U.Å.); (H.L.)
| | - Nicola J. Robertson
- Institute for Women’s Health, University College London, London WC1E 6HU, UK;
| | - Fredrik Setterwall
- Division of Energy Processes, Chemical Engineering and Technology, Royal Institute of Technology, 10044 Stockholm, Sweden;
| |
Collapse
|
25
|
Sabir H, Bonifacio SL, Gunn AJ, Thoresen M, Chalak LF. Unanswered questions regarding therapeutic hypothermia for neonates with neonatal encephalopathy. Semin Fetal Neonatal Med 2021; 26:101257. [PMID: 34144931 DOI: 10.1016/j.siny.2021.101257] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Therapeutic hypothermia (TH) is now well established to improve intact survival after neonatal encephalopathy (NE). However, many questions could not be addressed by the randomized controlled trials. Should late preterm newborns with NE be cooled? Is cooling beneficial for mild NE? Is the current therapeutic time window optimal, or could it be shortened or prolonged? Will either milder or deeper hypothermia be effective? Does infection/inflammation exposure in the perinatal period in combination with NE offer potentially beneficial preconditioning or might it obviate hypothermic neuroprotection? In the present review, we dissect the evidence, for whom, when and how can TH best be delivered, and highlight areas that need further research.
Collapse
Affiliation(s)
- Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital University of Bonn, Bonn, Germany; German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | | | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| | - Marianne Thoresen
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Neonatal Neuroscience, Translational Medicine, University of Bristol, Bristol, United Kingdom.
| | - Lina F Chalak
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical School, Dallas, TX, USA.
| |
Collapse
|
26
|
Oleuropein Activates Neonatal Neocortical Proteasomes, but Proteasome Gene Targeting by AAV9 Is Variable in a Clinically Relevant Piglet Model of Brain Hypoxia-Ischemia and Hypothermia. Cells 2021; 10:cells10082120. [PMID: 34440889 PMCID: PMC8391411 DOI: 10.3390/cells10082120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 10/26/2022] Open
Abstract
Cerebral hypoxia-ischemia (HI) compromises the proteasome in a clinically relevant neonatal piglet model. Protecting and activating proteasomes could be an adjunct therapy to hypothermia. We investigated whether chymotrypsin-like proteasome activity differs regionally and developmentally in the neonatal brain. We also tested whether neonatal brain proteasomes can be modulated by oleuropein, an experimental pleiotropic neuroprotective drug, or by targeting a proteasome subunit gene using recombinant adeno-associated virus-9 (AAV). During post-HI hypothermia, we treated piglets with oleuropein, used AAV-short hairpin RNA (shRNA) to knock down proteasome activator 28γ (PA28γ), or enforced PA28γ using AAV-PA28γ with green fluorescent protein (GFP). Neonatal neocortex and subcortical white matter had greater proteasome activity than did liver and kidney. Neonatal white matter had higher proteasome activity than did juvenile white matter. Lower arterial pH 1 h after HI correlated with greater subsequent cortical proteasome activity. With increasing brain homogenate protein input into the assay, the initial proteasome activity increased only among shams, whereas HI increased total kinetic proteasome activity. OLE increased the initial neocortical proteasome activity after hypothermia. AAV drove GFP expression, and white matter PA28γ levels correlated with proteasome activity and subunit levels. However, AAV proteasome modulation varied. Thus, neonatal neocortical proteasomes can be pharmacologically activated. HI slows the initial proteasome performance, but then augments ongoing catalytic activity. AAV-mediated genetic manipulation in the piglet brain holds promise, though proteasome gene targeting requires further development.
Collapse
|
27
|
Aridas JD, Yawno T, Sutherland AE, Nitsos I, Wong FY, Hunt RW, Ditchfield M, Fahey MC, Malhotra A, Wallace EM, Gunn AJ, Jenkin G, Miller SL. Melatonin augments the neuroprotective effects of hypothermia in lambs following perinatal asphyxia. J Pineal Res 2021; 71:e12744. [PMID: 34032315 DOI: 10.1111/jpi.12744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Therapeutic hypothermia (TH) is standard care in high-resource birth settings for infants with neonatal encephalopathy. TH is partially effective and adjuvant therapies are needed. Here, we examined whether the antioxidant melatonin (MLT) provides additive benefit with TH, compared to TH alone or MLT alone, to improve recovery from acute encephalopathy in newborn lambs. Immediately before cesarean section delivery, we induced asphyxia in fetal sheep via umbilical cord occlusion until mean arterial blood pressure fell from 55 ± 3 mm Hg in sham controls to 18-20 mm Hg (10.1 ± 1.5 minutes). Lambs were delivered and randomized to control, control + MLT (60 mg iv, from 30 minutes to 24 hours), asphyxia, asphyxia + TH (whole-body cooling to 35.1 ± 0.8°C vs. 38.3 ± 0.17°C in sham controls, from 4-28 hours), asphyxia + MLT, and asphyxia + TH + MLT. At 72 hours, magnetic resonance spectroscopy (MRS) was undertaken, and then brains were collected for neuropathology assessment. Asphyxia induced abnormal brain metabolism on MRS with increased Lactate:NAA (P = .003) and reduced NAA:Choline (P = .005), induced apoptotic and necrotic cell death across gray and white matter brain regions (P < .05), and increased neuroinflammation and oxidative stress (P < .05). TH and MLT were independently associated with region-specific reductions in oxidative stress, inflammation, and cell death, compared to asphyxia alone. There was an interaction between TH and MLT such that the NAA:Choline ratio was not significantly different after asphyxia + TH + MLT compared to sham controls but had a greater overall reduction in neuropathology than either treatment alone. This study demonstrates that, in newborn lambs, combined TH + MLT for neonatal encephalopathy provides significantly greater neuroprotection than either alone. These results will guide the development of further trials for neonatal encephalopathy.
Collapse
Affiliation(s)
- James Ds Aridas
- Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Vic., Australia
| | - Tamara Yawno
- Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Vic., Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Vic., Australia
| | - Amy E Sutherland
- Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Vic., Australia
| | - Ilias Nitsos
- Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Vic., Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Vic., Australia
| | - Flora Y Wong
- Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Vic., Australia
- Department of Paediatrics, Monash University, Clayton, Vic., Australia
- Monash Children's Hospital, Monash Health, Clayton, Vic., Australia
| | - Rod W Hunt
- Department of Paediatrics, Monash University, Clayton, Vic., Australia
- Monash Children's Hospital, Monash Health, Clayton, Vic., Australia
- Murdoch Children's Research Institute, Melbourne, Vic., Australia
| | | | - Michael C Fahey
- Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Vic., Australia
- Department of Paediatrics, Monash University, Clayton, Vic., Australia
- Monash Children's Hospital, Monash Health, Clayton, Vic., Australia
| | - Atul Malhotra
- Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Vic., Australia
- Department of Paediatrics, Monash University, Clayton, Vic., Australia
- Monash Children's Hospital, Monash Health, Clayton, Vic., Australia
| | - Euan M Wallace
- Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Vic., Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Vic., Australia
| | - Alistair J Gunn
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Graham Jenkin
- Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Vic., Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Vic., Australia
| | - Suzanne L Miller
- Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Vic., Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Vic., Australia
| |
Collapse
|
28
|
Robertson NJ, Meehan C, Martinello KA, Avdic-Belltheus A, Boggini T, Mutshiya T, Lingam I, Yang Q, Sokolska M, Charalambous X, Bainbridge A, Hristova M, Kramer BW, Golay X, Weil B, Lowdell MW. Human umbilical cord mesenchymal stromal cells as an adjunct therapy with therapeutic hypothermia in a piglet model of perinatal asphyxia. Cytotherapy 2021; 23:521-535. [PMID: 33262073 PMCID: PMC8139415 DOI: 10.1016/j.jcyt.2020.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/12/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND With therapeutic hypothermia (HT) for neonatal encephalopathy, disability rates are reduced, but not all babies benefit. Pre-clinical rodent studies suggest mesenchymal stromal cells (MSCs) augment HT protection. AIMS The authors studied the efficacy of intravenous (IV) or intranasal (IN) human umbilical cord-derived MSCs (huMSCs) as adjunct therapy to HT in a piglet model. METHODS A total of 17 newborn piglets underwent transient cerebral hypoxia-ischemia (HI) and were then randomized to (i) HT at 33.5°C 1-13 h after HI (n = 7), (ii) HT+IV huMSCs (30 × 106 cells) at 24 h and 48 h after HI (n = 5) or (iii) HT+IN huMSCs (30 × 106 cells) at 24 h and 48 h after HI (n = 5). Phosphorus-31 and hydrogen-1 magnetic resonance spectroscopy (MRS) was performed at 30 h and 72 h and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells and oligodendrocytes quantified. In two further piglets, 30 × 106 IN PKH-labeled huMSCs were administered. RESULTS HI severity was similar between groups. Amplitude-integrated electroencephalogram (aEEG) recovery was more rapid for HT+IN huMSCs compared with HT from 25 h to 42 h and 49 h to 54 h (P ≤ 0.05). MRS phosphocreatine/inorganic phosphate was higher on day 2 in HT+IN huMSCs than HT (P = 0.035). Comparing HT+IN huMSCs with HT and HT+IV huMSCs, there were increased OLIG2 counts in hippocampus (P = 0.011 and 0.018, respectively), internal capsule (P = 0.013 and 0.037, respectively) and periventricular white matter (P = 0.15 for IN versus IV huMSCs). Reduced TUNEL-positive cells were seen in internal capsule with HT+IN huMSCs versus HT (P = 0.05). PKH-labeled huMSCs were detected in the brain 12 h after IN administration. CONCLUSIONS After global HI, compared with HT alone, the authors saw beneficial effects of HT+IN huMSCs administered at 24 h and 48 h (30 × 106 cells/kg total dose) based on more rapid aEEG recovery, improved 31P MRS brain energy metabolism and increased oligodendrocyte survival at 72 h.
Collapse
Affiliation(s)
| | | | | | | | - Tiziana Boggini
- Institute for Women's Health, University College London, London, UK
| | - Tatenda Mutshiya
- Institute for Women's Health, University College London, London, UK
| | - Ingran Lingam
- Institute for Women's Health, University College London, London, UK
| | - Qin Yang
- Institute for Women's Health, University College London, London, UK
| | | | | | - Alan Bainbridge
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Mariya Hristova
- Institute for Women's Health, University College London, London, UK
| | - Boris W Kramer
- Department of Pediatrics, University of Maastricht, Maastricht, the Netherlands
| | - Xavier Golay
- Institute for Women's Health, University College London, London, UK
| | - Ben Weil
- Royal Free London NHS Foundation Trust, London, UK
| | - Mark W Lowdell
- Institute for Women's Health, University College London, London, UK; Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
29
|
Cardozo V, Vaamonde L, Parodi-Talice A, Zuluaga MJ, Agrati D, Portela M, Lima A, Blasina F, Dajas F, Bedó G. Multitarget neuroprotection by quercetin: Changes in gene expression in two perinatal asphyxia models. Neurochem Int 2021; 147:105064. [PMID: 33951501 DOI: 10.1016/j.neuint.2021.105064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) causes mortality and long-term neurologic morbidities in newborns, affecting pathways related to energy failure, excitotoxicity and oxidative stress that often lead to cell death. The whole process of HIE injury is coupled to changes in the expression of a great array of proteins. A nanoliposomal preparation of the flavonoid quercetin has been shown to exert neuroprotective effects in perinatal asphyxia models. This study aimed to identify neonatal HIE markers and explore the effect of quercetin administration in two perinatal asphyxia models: newborn rats and piglets. In the rat model, nanoliposomal quercetin administration reduced mortality after asphyxia. In the piglet model, quercetin partially overrode the reduction of HIF-1α mRNA levels in the cortex induced by asphyxia. Quercetin administration also reduced increased level of HO-1 mRNA in asphyctic piglets. These results suggest that quercetin neuroprotection might be involved in the regulation of HIF-1α, HO-1 and their targets. A proteomic approach revealed that the glycolytic pathway is strongly regulated by quercetin in both species. We also identified a set of proteins differentially expressed that could be further considered as markers. In piglets, this set includes Acidic Leucine-rich nuclear phosphoprotein 32 (ANP32A), associated with nervous system differentiation, proteins related with death pathways and alpha-enolase which can be converted to neuron-specific enolase, a glycolytic enzyme that may promote neuroprotection. In newborn rats, other promising proteins associated with neurogenesis and neuroprotection emerged, such as dihydropyrimidinase-related proteins, catalytic and regulatory subunits of phosphatases and heterogeneous nuclear ribonucleoprotein K (hnRNPK). Our results show that a nanoliposomal preparation of quercetin, with protective effect in two HIE mammal models, modulates the expression of proteins involved in energy metabolism and other putative neuroprotective signals in the cortex. Identification of these signals could reveal potential molecular pathways involved in disease onset and the novel quercetin neuroprotective strategy.
Collapse
Affiliation(s)
- V Cardozo
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay
| | - L Vaamonde
- Dept. Neonatología, Facultad de Medicina, Universidad de la República (Udelar), Montevideo, Uruguay
| | - A Parodi-Talice
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay; Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - M J Zuluaga
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay
| | - D Agrati
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay
| | - M Portela
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo; Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay
| | - A Lima
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo; Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - F Blasina
- Dept. Neonatología, Facultad de Medicina, Universidad de la República (Udelar), Montevideo, Uruguay.
| | - F Dajas
- Dept. Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - G Bedó
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay.
| |
Collapse
|
30
|
Drug delivery platforms for neonatal brain injury. J Control Release 2021; 330:765-787. [PMID: 33417984 DOI: 10.1016/j.jconrel.2020.12.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE), initiated by the interruption of oxygenated blood supply to the brain, is a leading cause of death and lifelong disability in newborns. The pathogenesis of HIE involves a complex interplay of excitotoxicity, inflammation, and oxidative stress that results in acute to long term brain damage and functional impairments. Therapeutic hypothermia is the only approved treatment for HIE but has limited effectiveness for moderate to severe brain damage; thus, pharmacological intervention is explored as an adjunct therapy to hypothermia to further promote recovery. However, the limited bioavailability and the side-effects of systemic administration are factors that hinder the use of the candidate pharmacological agents. To overcome these barriers, therapeutic molecules may be packaged into nanoscale constructs to enable their delivery. Yet, the application of nanotechnology in infants is not well examined, and the neonatal brain presents unique challenges. Novel drug delivery platforms have the potential to magnify therapeutic effects in the damaged brain, mitigate side-effects associated with high systemic doses, and evade mechanisms that remove the drugs from circulation. Encouraging pre-clinical data demonstrates an attenuation of brain damage and increased structural and functional recovery. This review surveys the current progress in drug delivery for treating neonatal brain injury.
Collapse
|
31
|
Harvey-Jones K, Lange F, Tachtsidis I, Robertson NJ, Mitra S. Role of Optical Neuromonitoring in Neonatal Encephalopathy-Current State and Recent Advances. Front Pediatr 2021; 9:653676. [PMID: 33898363 PMCID: PMC8062863 DOI: 10.3389/fped.2021.653676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/15/2021] [Indexed: 11/19/2022] Open
Abstract
Neonatal encephalopathy (NE) in term and near-term infants is a significant global health problem; the worldwide burden of disease remains high despite the introduction of therapeutic hypothermia. Assessment of injury severity and effective management in the neonatal intensive care unit (NICU) relies on multiple monitoring modalities from systemic to brain-specific. Current neuromonitoring tools provide information utilized for seizure management, injury stratification, and prognostication, whilst systemic monitoring ensures multi-organ dysfunction is recognized early and supported wherever needed. The neuromonitoring technologies currently used in NE however, have limitations in either their availability during the active treatment window or their reliability to prognosticate and stratify injury confidently in the early period following insult. There is therefore a real need for a neuromonitoring tool that provides cot side, early and continuous monitoring of brain health which can reliably stratify injury severity, monitor response to current and emerging treatments, and prognosticate outcome. The clinical use of near-infrared spectroscopy (NIRS) technology has increased in recent years. Research studies within this population have also increased, alongside the development of both instrumentation and signal processing techniques. Increasing use of commercially available cerebral oximeters in the NICU, and the introduction of advanced optical measurements using broadband NIRS (BNIRS), frequency domain NIRS (FDNIRS), and diffuse correlation spectroscopy (DCS) have widened the scope by allowing the direct monitoring of oxygen metabolism and cerebral blood flow, both key to understanding pathophysiological changes and predicting outcome in NE. This review discusses the role of optical neuromonitoring in NE and why this modality may provide the next significant piece of the puzzle toward understanding the real time state of the injured newborn brain.
Collapse
Affiliation(s)
- Kelly Harvey-Jones
- Neonatology, EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Frederic Lange
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Nicola J Robertson
- Neonatology, EGA Institute for Women's Health, University College London, London, United Kingdom.,Edinburgh Neuroscience & Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Subhabrata Mitra
- Neonatology, EGA Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
32
|
Zhou M, Yu T, Fang X, Ge Q, Song F, Huang Z, Jiang L, Wang P. Short-term dietary restriction ameliorates brain injury after cardiac arrest by modulation of mitochondrial biogenesis and energy metabolism in rats. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:8. [PMID: 33553301 PMCID: PMC7859767 DOI: 10.21037/atm-20-3075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Dietary restriction (DR) is a well-known intervention that increases lifespan and resistance to multiple forms of acute stress, including ischemia reperfusion injury. However, the effect of DR on neurological injury after cardiac arrest (CA) remains unknown. Methods The effect of short-term DR (one week of 70% reduced daily diet) on neurological injury was investigated in rats using an asphyxial CA model. The survival curve was obtained using Kaplan-Meier survival analysis. Serum S-100β levels were detected by enzyme linked immunosorbent assay. Cellular apoptosis and neuronal damage were assessed by terminal deoxyribonucleotide transferase dUTP nick end labeling assay and Nissl staining. The oxidative stress was evaluated by immunohistochemical staining of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Mitochondrial biogenesis was examined by electron microscopy and mitochondrial DNA copy number determination. The protein expression was detected by western blot. The reactive oxygen species (ROS) and metabolite levels were measured by corresponding test kits. Results Short-term DR significantly improved 3-day survival, neurologic deficit scores (NDS) and decreased serum S-100β levels after CA. Short-term DR also significantly attenuated cellular apoptosis, neuronal damage and oxidative stress in the brain after CA. In addition, short-term DR increased mitochondrial biogenesis as well as brain PGC-1α and SIRT1 protein expression after CA. Moreover, short-term DR increased adenosine triphosphate, β-hydroxybutyrate, acetyl-CoA levels and nicotinamide adenine dinucleotide (NAD+)/reduced form of NAD+ (NADH) ratios as well as decreased serum lactate levels. Conclusions Reduction of oxidative stress, upregulation of mitochondrial biogenesis and increase of ketone body metabolism may play a crucial role in preserving neuronal function after CA under short-term DR.
Collapse
Affiliation(s)
- Minggen Zhou
- Department of Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Yu
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Xiangshao Fang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Qiulin Ge
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Fengqing Song
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Zitong Huang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Longyuan Jiang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Peng Wang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Phadke A, Kumble A, Ravikumar K. Early clinical outcome and complications associated in neonates with hypoxic ischemic encephalopathy grade II/III who underwent treatment with servo controlled whole-body therapeutic hypothermia: A prospective observational study. J Clin Neonatol 2021. [DOI: 10.4103/jcn.jcn_119_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
34
|
Hwang M, Khaw K, Sridharan A, Poznick L, Hallowell T, Delso N, Roberts AL, Kilbaugh TJ. Brain Contrast-Enhanced Ultrasound Evaluation of a Pediatric Swine Model. Ultrasound Q 2020; 38:31-35. [PMID: 34264586 PMCID: PMC11459365 DOI: 10.1097/ruq.0000000000000544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Brain injury remains a leading cause of morbidity and mortality in children. We evaluated the feasibility of using a pediatric swine model to develop contrast-enhanced ultrasound (CEUS)-based measures of brain perfusion for clinical application in various types of brain injury monitoring. Six-week-old, 10-kg swine (N = 10) were anesthetized, and an acoustic window was created in the right frontal cranium to provide visualization of an oblique coronal plane and bilateral thalami. Ultrasound contrast agent was administered via a femoral venous catheter as a weight-based (0.03 mL/kg) bolus. After localization of the imaging plane, CEUS cine clips were acquired for 90 seconds. Bolus injection of contrast agent provided global visualization of cerebral perfusion and highlighted microvasculature in the brain. Preliminary evaluation of bolus kinetics in piglets showed a central gray nuclei-to-cortex ratio similar to human infants with a steep wash-in that crossed and remained above the 1.0 threshold for most of the enhancement period. We demonstrated the similarity in brain perfusion between piglets and human infants, specifically central gray nuclei-to-cortex ratio, showing preliminary feasibility of its use as a pediatric model of brain perfusion. Contrast-enhanced ultrasound can be performed at the bedside as a minimally invasive procedure, and quantitative CEUS may provide critical information regarding changes in brain perfusion as a result of injury or as a response to therapy.
Collapse
Affiliation(s)
- Misun Hwang
- Department of Radiology, Hospital of the University of Pennsylvania
- Department of Radiology, Children’s Hospital of Philadelphia
| | - Kristina Khaw
- School of Engineering, Department of Bioengineering, University of Pennsylvania
| | - Anush Sridharan
- Department of Radiology, Children’s Hospital of Philadelphia
| | - Laura Poznick
- Department of Radiology, Children’s Hospital of Philadelphia
| | - Thomas Hallowell
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Nile Delso
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Anna L. Roberts
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
35
|
Zhang X, Peng K, Zhang X. The Function of the NMDA Receptor in Hypoxic-Ischemic Encephalopathy. Front Neurosci 2020; 14:567665. [PMID: 33117117 PMCID: PMC7573650 DOI: 10.3389/fnins.2020.567665] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is one of the main forms of neonatal brain injury which could lead to neonatal disability or even cause neonatal death. Therefore, HIE strongly affects the health of newborns and brings heavy burden to the family and society. It has been well studied that N-methyl-D-aspartate (NMDA) receptors are involved in the excitotoxicity induced by hypoxia ischemia in adult brain. Recently, it has been shown that the NMDA receptor also plays important roles in HIE. In the present review, we made a summary of the molecular mechanism of NMDA receptor in the pathological process of HIE, focusing on the distinct role of GluN2A- and GluN2B-containing NMDA receptor subtypes and aiming to provide some insights into the clinical treatment and drug development of HIE.
Collapse
|
36
|
Kovács V, Remzső G, Tóth-Szűki V, Varga V, Németh J, Domoki F. Inhaled H 2 or CO 2 Do Not Augment the Neuroprotective Effect of Therapeutic Hypothermia in a Severe Neonatal Hypoxic-Ischemic Encephalopathy Piglet Model. Int J Mol Sci 2020; 21:E6801. [PMID: 32948011 PMCID: PMC7555370 DOI: 10.3390/ijms21186801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is still a major cause of neonatal death and disability as therapeutic hypothermia (TH) alone cannot afford sufficient neuroprotection. The present study investigated whether ventilation with molecular hydrogen (2.1% H2) or graded restoration of normocapnia with CO2 for 4 h after asphyxia would augment the neuroprotective effect of TH in a subacute (48 h) HIE piglet model. Piglets were randomized to untreated naïve, control-normothermia, asphyxia-normothermia (20-min 4%O2-20%CO2 ventilation; Tcore = 38.5 °C), asphyxia-hypothermia (A-HT, Tcore = 33.5 °C, 2-36 h post-asphyxia), A-HT + H2, or A-HT + CO2 treatment groups. Asphyxia elicited severe hypoxia (pO2 = 19 ± 5 mmHg) and mixed acidosis (pH = 6.79 ± 0.10). HIE development was confirmed by altered cerebral electrical activity and neuropathology. TH was significantly neuroprotective in the caudate nucleus but demonstrated virtually no such effect in the hippocampus. The mRNA levels of apoptosis-inducing factor and caspase-3 showed a ~10-fold increase in the A-HT group compared to naïve animals in the hippocampus but not in the caudate nucleus coinciding with the region-specific neuroprotective effect of TH. H2 or CO2 did not augment TH-induced neuroprotection in any brain areas; rather, CO2 even abolished the neuroprotective effect of TH in the caudate nucleus. In conclusion, the present findings do not support the use of these medical gases to supplement TH in HIE management.
Collapse
MESH Headings
- Acidosis/blood
- Acidosis/etiology
- Acidosis/prevention & control
- Administration, Inhalation
- Animals
- Animals, Newborn
- Apoptosis Inducing Factor/biosynthesis
- Apoptosis Inducing Factor/genetics
- Asphyxia Neonatorum/complications
- Asphyxia Neonatorum/drug therapy
- Asphyxia Neonatorum/therapy
- Brain Damage, Chronic/etiology
- Brain Damage, Chronic/prevention & control
- Brain-Derived Neurotrophic Factor/biosynthesis
- Brain-Derived Neurotrophic Factor/genetics
- Carbon Dioxide/administration & dosage
- Carbon Dioxide/therapeutic use
- Carbon Dioxide/toxicity
- Caspase 3/biosynthesis
- Caspase 3/genetics
- Caudate Nucleus/pathology
- Cerebral Cortex/metabolism
- Cerebral Cortex/pathology
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Electroencephalography
- Evoked Potentials, Visual/drug effects
- Gene Expression Regulation/drug effects
- Hippocampus/pathology
- Hydrogen/administration & dosage
- Hydrogen/analysis
- Hydrogen/therapeutic use
- Hypothermia, Induced
- Hypoxia-Ischemia, Brain/complications
- Hypoxia-Ischemia, Brain/drug therapy
- Hypoxia-Ischemia, Brain/pathology
- Hypoxia-Ischemia, Brain/therapy
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Neuroprotection/drug effects
- Neuroprotective Agents/administration & dosage
- Neuroprotective Agents/therapeutic use
- Organ Specificity
- Random Allocation
- Swine
Collapse
Affiliation(s)
- Viktória Kovács
- Department of Physiology, University of Szeged Faculty of Medicine, H-6720 Szeged, Hungary; (G.R.); (V.T.-S.); (V.V.); (J.N.); (F.D.)
| | | | | | | | | | | |
Collapse
|
37
|
Bruschettini M, Romantsik O, Moreira A, Ley D, Thébaud B. Stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants. Cochrane Database Syst Rev 2020; 8:CD013202. [PMID: 32813884 PMCID: PMC7438027 DOI: 10.1002/14651858.cd013202.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hypoxic-ischaemic encephalopathy (HIE) is a leading cause of mortality and long-term neurological sequelae, affecting thousands of children worldwide. Current therapies to treat HIE are limited to cooling. Stem cell-based therapies offer a potential therapeutic approach to repair or regenerate injured brain tissue. These preclinical findings have now culminated in ongoing human neonatal trials. OBJECTIVES To determine the efficacy and safety of stem cell-based interventions for the treatment of hypoxic-ischaemic encephalopathy (HIE) in newborn infants. SEARCH METHODS We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2020, Issue 5), MEDLINE via PubMed (1966 to 8 June 2020), Embase (1980 to 8 June 2020), and CINAHL (1982 to 8 June 2020). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA Randomised controlled trials, quasi-randomised controlled trials and cluster trials comparing 1) stem cell-based interventions (any type) compared to control (placebo or no treatment); 2) use of mesenchymal stem/stromal cells (MSCs) of type (e.g. number of doses or passages) or source (e.g. autologous versus allogeneic, or bone marrow versus cord) versus MSCs of other type or source; 3) use of stem cell-based interventions other than MSCs of type (e.g. mononuclear cells, oligodendrocyte progenitor cells, neural stem cells, hematopoietic stem cells, and inducible pluripotent stem cells) or source (e.g. autologous versus allogeneic, or bone marrow versus cord) versus stem cell-based interventions other than MSCs of other type or source; or 4) MSCs versus stem cell-based interventions other than MSCs. DATA COLLECTION AND ANALYSIS For each of the included trials, two authors independently planned to extract data (e.g. number of participants, birth weight, gestational age, type and source of MSCs or other stem cell-based interventions) and assess the risk of bias (e.g. adequacy of randomisation, blinding, completeness of follow-up). The primary outcomes considered in this review are all-cause neonatal mortality, major neurodevelopmental disability, death or major neurodevelopmental disability assessed at 18 to 24 months of age. We planned to use the GRADE approach to assess the quality of evidence. MAIN RESULTS Our search strategy yielded 616 references. Two review authors independently assessed all references for inclusion. We did not find any completed studies for inclusion. Fifteen RCTs are currently registered and ongoing. We describe the three studies we excluded. AUTHORS' CONCLUSIONS There is currently no evidence from randomised trials that assesses the benefit or harms of stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants.
Collapse
Affiliation(s)
- Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Lund University, Skåne University Hospital, Lund, Sweden
| | - Olga Romantsik
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Alvaro Moreira
- Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - David Ley
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Bernard Thébaud
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
38
|
Rodríguez M, Valez V, Cimarra C, Blasina F, Radi R. Hypoxic-Ischemic Encephalopathy and Mitochondrial Dysfunction: Facts, Unknowns, and Challenges. Antioxid Redox Signal 2020; 33:247-262. [PMID: 32295425 DOI: 10.1089/ars.2020.8093] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Hypoxic-ischemic events due to intrapartum complications represent the second cause of neonatal mortality and initiate an acute brain disorder known as hypoxic-ischemic encephalopathy (HIE). In HIE, the brain undergoes primary and secondary energy failure phases separated by a latent phase in which partial neuronal recovery is observed. A hypoxic-ischemic event leads to oxygen restriction causing ATP depletion, neuronal oxidative stress, and cell death. Mitochondrial dysfunction and enhanced oxidant formation in brain cells are characteristic phenomena associated with energy failure. Recent Advances: Mitochondrial sources of oxidants in neurons include complex I of the mitochondrial respiratory chain, as a key contributor to O2•- production via succinate by a reverse electron transport mechanism. The reaction of O2•- with nitric oxide (•NO) yields peroxynitrite, a mitochondrial and cellular toxin. Quantitation of the redox state of cytochrome c oxidase, through broadband near-infrared spectroscopy, represents a promising monitoring approach to evaluate mitochondrial dysfunction in vivo in humans, in conjunction with the determination of cerebral oxygenation and their correlation with the severity of brain injury. Critical Issues: The energetic failure being a key phenomenon in HIE connected with the severity of the encephalopathy, measurement of mitochondrial dysfunction in vivo provides an approach to assess evolution, prognosis, and adequate therapies. Restoration of mitochondrial redox homeostasis constitutes a key therapeutic goal. Future Directions: While hypothermia is the only currently accepted therapy in clinical management to preserve mitochondrial function, other mitochondria-targeted and/or redox-based treatments are likely to synergize to ensure further efficacy.
Collapse
Affiliation(s)
- Marianela Rodríguez
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) and Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay.,Departamento de Neonatología, Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Valeria Valez
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) and Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Carolina Cimarra
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) and Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Fernanda Blasina
- Departamento de Neonatología, Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) and Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
39
|
Variability and sex-dependence of hypothermic neuroprotection in a rat model of neonatal hypoxic-ischaemic brain injury: a single laboratory meta-analysis. Sci Rep 2020; 10:10833. [PMID: 32616806 PMCID: PMC7331720 DOI: 10.1038/s41598-020-67532-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/03/2020] [Indexed: 01/19/2023] Open
Abstract
Therapeutic hypothermia (HT) is standard care for term infants with hypoxic–ischaemic (HI) encephalopathy. However, the efficacy of HT in preclinical models, such as the Vannucci model of unilateral HI in the newborn rat, is often greater than that reported from clinical trials. Here, we report a meta-analysis of data from every experiment in a single laboratory, including pilot data, examining the effect of HT in the Vannucci model.
Across 21 experiments using 106 litters, median (95% CI) hemispheric area loss was 50.1% (46.0–51.9%; n = 305) in the normothermia group, and 41.3% (35.1–44.9%; n = 317) in the HT group, with a bimodal injury distribution. Median neuroprotection by HT was 17.6% (6.8–28.3%), including in severe injury, but was highly-variable across experiments. Neuroprotection was significant in females (p < 0.001), with a non-significant benefit in males (p = 0.07). Animals representing the median injury in each group within each litter (n = 277, 44.5%) were also analysed using formal neuropathology, which showed neuroprotection by HT throughout the brain, particularly in females. Our results suggest an inherent variability and sex-dependence of the neuroprotective response to HT, with the majority of studies in the Vannucci model vastly underpowered to detect true treatment effects due to the distribution of injury.
Collapse
|
40
|
Martini S, Austin T, Aceti A, Faldella G, Corvaglia L. Free radicals and neonatal encephalopathy: mechanisms of injury, biomarkers, and antioxidant treatment perspectives. Pediatr Res 2020; 87:823-833. [PMID: 31655487 DOI: 10.1038/s41390-019-0639-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Neonatal encephalopathy (NE), most commonly a result of the disruption of cerebral oxygen delivery, is the leading cause of neurologic disability in term neonates. Given the key role of free radicals in brain injury development following hypoxia-ischemia-reperfusion, several oxidative biomarkers have been explored in preclinical and clinical models of NE. Among these, antioxidant enzyme activity, uric acid excretion, nitric oxide, malondialdehyde, and non-protein-bound iron have shown promising results as possible predictors of NE severity and outcome. Owing to high costs and technical complexity, however, their routine use in clinical practice is still limited. Several strategies aimed at reducing free radical production or upregulating physiological scavengers have been proposed for NE. Room-air resuscitation has proved to reduce oxidative stress following perinatal asphyxia and is now universally adopted. A number of medications endowed with antioxidant properties, such as melatonin, erythropoietin, allopurinol, or N-acetylcysteine, have also shown potential neuroprotective effects in perinatal asphyxia; nevertheless, further evidence is needed before these antioxidant approaches could be implemented as standard care.
Collapse
Affiliation(s)
- Silvia Martini
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Arianna Aceti
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giacomo Faldella
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luigi Corvaglia
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
41
|
Kariholu U, Montaldo P, Markati T, Lally PJ, Pryce R, Teiserskas J, Liow N, Oliveira V, Soe A, Shankaran S, Thayyil S. Therapeutic hypothermia for mild neonatal encephalopathy: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 2020; 105:225-228. [PMID: 30567775 DOI: 10.1136/archdischild-2018-315711] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To examine if therapeutic hypothermia reduces the composite outcome of death, moderate or severe disability at 18 months or more after mild neonatal encephalopathy (NE). DATA SOURCE MEDLINE, Cochrane database, Scopus and ISI Web of Knowledge databases, using 'hypoxic ischaemic encephalopathy', 'newborn' and 'hypothermia', and 'clinical trials' as medical subject headings and terms. Manual search of the reference lists of all eligible articles and major review articles and additional data from the corresponding authors of selected articles. STUDY SELECTION Randomised and quasirandomised controlled trials comparing therapeutic hypothermia with usual care. DATA EXTRACTION Safety and efficacy data extracted independently by two reviewers and analysed. RESULTS We included the data on 117 babies with mild NE inadvertently recruited to five cooling trials (two whole-body cooling and three selective head cooling) of moderate and severe NE, in the meta-analysis. Adverse outcomes occurred in 11/56 (19.6%) of the cooled babies and 12/61 (19.7%) of the usual care babies (risk ratio 1.11 (95% CIs 0.55 to 2.25)). CONCLUSIONS Current evidence is insufficient to recommend routine therapeutic hypothermia for babies with mild encephalopathy and significant benefits or harm cannot be excluded.
Collapse
Affiliation(s)
- Ujwal Kariholu
- Centre for Perinatal Neuroscience, Imperial College London, London, UK.,Neonatal Unit, Imperial College Healthcare NHS Trust, London, UK
| | - Paolo Montaldo
- Centre for Perinatal Neuroscience, Imperial College London, London, UK
| | - Theodora Markati
- Centre for Perinatal Neuroscience, Imperial College London, London, UK.,Neonatal Unit, Imperial College Healthcare NHS Trust, London, UK
| | - Peter J Lally
- Centre for Perinatal Neuroscience, Imperial College London, London, UK
| | - Russell Pryce
- Centre for Perinatal Neuroscience, Imperial College London, London, UK.,Neonatal Unit, Medway Hospital NHS Trust, Gillingham, UK
| | | | - Natasha Liow
- Neonatal Unit, Imperial College Healthcare NHS Trust, London, UK
| | - Vânia Oliveira
- Centre for Perinatal Neuroscience, Imperial College London, London, UK
| | - Aung Soe
- Neonatal Unit, Medway Hospital NHS Trust, Gillingham, UK
| | - Seetha Shankaran
- Neonatal Perinatal Medicine, Wayne State University, Detroit, Michigan, USA
| | - Sudhin Thayyil
- Centre for Perinatal Neuroscience, Imperial College London, London, UK
| |
Collapse
|
42
|
Yamato SH, Nakamura S, Htun Y, Nakamura M, Jinnai W, Nakao Y, Mitsuie T, Koyano K, Wakabayashi T, Morimoto AH, Sugino M, Iwase T, Kondo SI, Yasuda S, Ueno M, Miki T, Kusaka T. Intravenous Edaravone plus Therapeutic Hypothermia Offers Limited Neuroprotection in the Hypoxic-Ischaemic Newborn Piglet. Neonatology 2020; 117:713-720. [PMID: 33113527 DOI: 10.1159/000511085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/22/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Therapeutic hypothermia (TH) is a standard therapy for neonatal hypoxic-ischaemic encephalopathy. One potential additional therapy is the free radical scavenger edaravone (EV; 3-methyl-1-phenyl-2-pyrazolin-5-one). OBJECTIVES AND METHODS This study aimed to compare the neuroprotective effects of edaravone plus therapeutic hypothermia (TH + EV) with those of TH alone after a hypoxic-ischaemic insult in the newborn piglet. Anaesthetized piglets were subjected to 40 min of hypoxia (3-5% inspired oxygen), and cerebral ischaemia was assessed using cerebral blood volume. Body temperature was maintained at 39.0 ± 0.5°C in the normothermia group (NT, n = 8) and at 33.5 ± 0.5°C (24 h after the insult) in the TH (n = 7) and TH + EV (3 mg/kg intravenous every 12 h for 3 days after the insult; n = 6) groups under mechanical ventilation. RESULTS Five days after the insult, the mean (standard deviation) neurological scores were 10.9 (5.7) in the NT group, 17.0 (0.4) in the TH group (p = 0.025 vs. NT), and 15.0 (3.9) in the TH + EV group. The histopathological score of the TH + EV group showed no significant improvement compared with that of the other groups. CONCLUSION TH + EV had no additive neuroprotective effects after hypoxia-ischaemia in neurological and histopathological assessments.
Collapse
Affiliation(s)
| | - Shinji Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan,
| | - Yinmon Htun
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Makoto Nakamura
- Department of Neonatology, National Hospital Organization Okayama Medical Center, Okayam, Japan
| | - Wataru Jinnai
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yasuhiro Nakao
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tsutomu Mitsuie
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kosuke Koyano
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | | | | | - Masashiro Sugino
- Division of Neonatology, Shikoku Medical Center for Children and Adults, Kagawa, Japan
| | - Takashi Iwase
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Sonoko Ijichi Kondo
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Saneyuki Yasuda
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
43
|
Lingam I, Meehan C, Avdic-Belltheus A, Martinello K, Hristova M, Kaynezhad P, Bauer C, Tachtsidis I, Golay X, Robertson NJ. Short-term effects of early initiation of magnesium infusion combined with cooling after hypoxia-ischemia in term piglets. Pediatr Res 2019; 86:699-708. [PMID: 31357208 DOI: 10.1038/s41390-019-0511-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Neuroprotection from therapeutic hypothermia (HT) is incomplete, therefore additional strategies are necessary to improve long-term outcomes. We assessed the neuroprotective efficacy of magnesium sulfate (MgSO4) bolus and infusion over 48 h plus HT in a piglet model of term neonatal encephalopathy (NE). METHODS Fifteen newborn piglets were randomized following hypoxia-ischemia (HI) to: (i) MgSO4 180 mg/kg bolus and 8 mg/kg/h infusion with HT (Mg+HT) or (ii) HT and saline 0.5 ml/h (HT). Treatments were initiated 1 h post-HI; HT administered for 12 h (33.5 °C). HI was performed by transient carotid occlusion and inhalation of 6% O2 for 20-25 min. Primary outcomes included aEEG, magnetic resonance spectroscopy (MRS) at 24, and 48 h, and immunohistochemistry. RESULTS MgSO4 bolus and infusion was well tolerated (no hypotension) and doubled serum magnesium (0.72 vs 1.52 mmol/L) with modest (16%) rise in CSF. In Mg+HT compared to HT, there was overall reduced cell death (p = 0.01) and increased oligodendrocytes (p = 0.002). No improvement was seen on aEEG recovery (p = 0.084) or MRS (Lac/NAA; PCr/Pi; NTP/epp) (p > 0.05) at 48 h. CONCLUSION Doubling serum magnesium with HT was safe; however, the small incremental benefit of Mg+HT compared to HT is unlikely to translate into substantive long-term improvement. Such an incremental effect might justify further study of MgSO4 in combination with multiple therapies.
Collapse
Affiliation(s)
- Ingran Lingam
- Neonatology, Institute for Women's Health, University College London, London, UK.
| | - Chris Meehan
- Neonatology, Institute for Women's Health, University College London, London, UK
| | | | - Kathryn Martinello
- Neonatology, Institute for Women's Health, University College London, London, UK
| | - Mariya Hristova
- Neonatology, Institute for Women's Health, University College London, London, UK
| | - Pardis Kaynezhad
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Cornelius Bauer
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Xavier Golay
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,Institute of Neurology, University College London, London, UK
| | - Nicola J Robertson
- Neonatology, Institute for Women's Health, University College London, London, UK.,Neonatology, Sidra Medicine, Al Luqta Street, Education City, North Campus, Qatar Foundation, PO Box 26999, Doha, Qatar
| |
Collapse
|
44
|
Abstract
Brain injury in the full-term and near-term neonates is a significant cause of mortality and long-term morbidity, resulting in injury patterns distinct from that seen in premature infants and older patients. Therapeutic hypothermia improves long-term outcomes for many of these infants, but there is a continued search for therapies to enhance the plasticity of the newborn brain, resulting in long-term repair. It is likely that a combination strategy utilizing both early and late interventions may have the most benefit, capitalizing on endogenous mechanisms triggered by hypoxia or ischemia. Optimizing care of these critically ill newborns in the acute setting is also vital for improving both short- and long-term outcomes.
Collapse
|
45
|
Parturition and Its Relationship with Stillbirths and Asphyxiated Piglets. Animals (Basel) 2019; 9:ani9110885. [PMID: 31683527 PMCID: PMC6912372 DOI: 10.3390/ani9110885] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Piglets that experience a long labour are more likely to die during birth or immediately following birth, or to grow slowly during life. This is because the longer the piglet experiences contractions during labour, blood supply and oxygen delivery to the brain will be impaired. Even before the first piglet in the litter is born, sows that will have a delayed labour can be identified. This means that the key to saving piglets that are at risk of death because of long labours lies in managing the sow before she gives birth. Abstract The transition from an intra- to extrauterine existence is extremely challenging for the pig. This is evidenced by the fact that conservative estimates place intrapartum piglet death at between 5% and 10%. The main cause of this loss is the parturition process itself, with a long farrowing duration resulting in reduced oxygenation to the piglet via uterine contractions stretching, and in some cases, causing rupture of the umbilical cord. Sows that experience a long expulsive stage of parturition are likely compromised before the birth of the first piglet, and so any strategy to reduce stillbirth should be applied before this. Even in piglets born alive, 15% to 20% will have suffered asphyxiation because of a long cumulative farrowing duration. These individuals are significantly disadvantaged with regards to behavioural progression, colostrum intake, growth and survival extending past the lactation phase, and so require more labour and resources than littermates in order to make them viable. Given these immediate and longer-term impacts, identifying ways to correctly manage the sow before parturition leading to a reduction in farrowing duration should be a priority in order to maximise piglet performance.
Collapse
|
46
|
Solevåg AL, Schmölzer GM, Cheung PY. Novel interventions to reduce oxidative-stress related brain injury in neonatal asphyxia. Free Radic Biol Med 2019; 142:113-122. [PMID: 31039399 DOI: 10.1016/j.freeradbiomed.2019.04.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 01/10/2023]
Abstract
Perinatal asphyxia-induced brain injury may present as hypoxic-ischemic encephalopathy in the neonatal period, and disability including cerebral palsy in the long term. The brain injury is secondary to both the hypoxic-ischemic event and the reoxygenation-reperfusion following resuscitation. Early events in the cascade of brain injury can be classified as either inflammation or oxidative stress through the generation of free radicals. The objective of this paper is to present efforts that have been made to limit the oxidative stress associated with hypoxic-ischemic encephalopathy. In the acute phase of ischemia/hypoxia and reperfusion/reoxygenation, the outcomes of asphyxiated infants can be improved by optimizing the initial delivery room stabilization. Interventions include limiting oxygen exposure, and shortening the time to return of spontaneous circulation through improved methods for supporting hemodynamics and ventilation. Allopurinol, melatonin, noble gases such as xenon and argon, and magnesium administration also target the acute injury phase. Therapeutic hypothermia, N-acetylcysteine2-iminobiotin, remote ischemic postconditioning, cannabinoids and doxycycline target the subacute phase. Erythropoietin, mesenchymal stem cells, topiramate and memantine could potentially limit injury in the repair phase after asphyxia. To limit the injurious biochemical processes during the different stages of brain injury, determination of the stage of injury in any particular infant remains essential. Currently, therapeutic hypothermia is the only established treatment in the subacute phase of asphyxia-induced brain injury. The effects and side effects of oxidative stress reducing/limiting medications may however be difficult to predict in infants during therapeutic hypothermia. Future neuroprotection in asphyxiated infants may indeed include a combination of therapies. Challenges include timing, dosing and administration route for each neuroprotectant.
Collapse
Affiliation(s)
- A L Solevåg
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway
| | - G M Schmölzer
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - P-Y Cheung
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
47
|
Enweronu‐Laryea C, Martinello KA, Rose M, Manu S, Tann CJ, Meek J, Ahor‐Essel K, Boylan GB, Robertson NJ. Core temperature after birth in babies with neonatal encephalopathy in a sub-Saharan African hospital setting. J Physiol 2019; 597:4013-4024. [PMID: 31168907 PMCID: PMC6767688 DOI: 10.1113/jp277820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/25/2019] [Indexed: 01/06/2023] Open
Abstract
KEY POINTS Therapeutic hypothermia (HT) to 33.0-34.0°C for 72 h provides optimal therapy for infants with neonatal encephalopathy (NE) in high-resource settings. HT is not universally implemented in low- and middle-income countries as a result of both limited resources and evidence. Facilitated passive cooling, comprising infants being allowed to passively lower their body temperature in the days after birth, is an emerging practice in some West African neonatal units. In this observational study, we demonstrate that infants undergoing facilitated passive cooling in a neonatal unit in Accra, Ghana, achieve temperatures within the HT target range ∼20% of the 72 h. Depth of HT fluctuates and can be excessive, as well as not maintained, especially after 24 h. Sustained and deeper passive cooling was evident for severe NE and for those that died. It is important to prevent excessive cooling, to understand that severe NE babies cool more and to be aware of facilitated passive cooling with respect to the design of clinical trials in low- and mid-resource settings. ABSTRACT Neonatal encephalopathy (NE) is a significant worldwide problem with the greatest burden in sub-Saharan Africa. Therapeutic hypothermia (HT), comprising the standard of care for infants with moderate-to-severe NE in settings with sophisticated intensive care, is not available to infants in many sub-Saharan African countries, including Ghana. We prospectively assessed the temperature response in relation to outcome in the 80 h after birth in a cohort of babies with NE undergoing 'facilitated passive cooling' at Korle Bu Teaching Hospital, Accra, Ghana. We hypothesized that NE infants demonstrate passive cooling. Thirteen infants (69% male) ≥36 weeks with moderate-to-severe NE were enrolled. Ambient mean ± SD temperature was 28.3 ± 0.7°C. Infant core temperature was 34.2 ± 1.2°C over the first 24 h and 35.0 ± 1.0°C over 80 h. Nadir mean temperature occurred at 15 h. Temperatures were within target range for HT with respect to 18 ± 14% of measurements within the first 72 h. Axillary temperature was 0.5 ± 0.2°C below core. Three infants died before discharge. Core temperature over 80 h for surviving infants was 35.3 ± 0.9°C and 33.96 ± 0.7°C for those that died (P = 0.043). Temperature profile negatively correlated with Thompson NE score on day 4 (r2 = 0.66): infants with a Thompson score of 0-6 had higher temperatures than those with a score of 7-15 (P = 0.021) and a score of 16+/deceased (P = 0.007). More severe NE was associated with lower core temperatures. Passive cooling is a physiological response after hypoxia-ischaemia; however, the potential neuroprotective effect of facilitated passive cooling is unknown. An awareness of facilitated passive cooling in babies with NE is important for the design of clinical trials of neuroprotection in low and mid resource settings.
Collapse
Affiliation(s)
- Christabel Enweronu‐Laryea
- Department of Child HealthUniversity of Ghana School of Medicine and DentistryAccraGhana
- Neonatal Intensive Care UnitKorle Bu Teaching HospitalAccraGhana
| | - Kathryn A Martinello
- Institute for Women's HealthUniversity College LondonLondonUK
- Robinson Research InstituteUniversity of AdelaideAdelaideAustralia
- NeonatologyUniversity College London Hospital NHS Foundation TrustLondonUK
| | - Maggie Rose
- NeonatologyUniversity College London Hospital NHS Foundation TrustLondonUK
| | - Sally Manu
- Neonatal Intensive Care UnitKorle Bu Teaching HospitalAccraGhana
| | - Cally J Tann
- NeonatologyUniversity College London Hospital NHS Foundation TrustLondonUK
- Maternal, Adolescent, Reproductive and Child Health Centre, Department of Infectious Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | - Judith Meek
- NeonatologyUniversity College London Hospital NHS Foundation TrustLondonUK
| | - Kojo Ahor‐Essel
- Neonatal Intensive Care UnitKorle Bu Teaching HospitalAccraGhana
| | - Geraldine B Boylan
- INFANT Research CentreUniversity College CorkCorkIreland
- Department of Paediatrics & Child HealthUniversity College CorkCorkIreland
| | - Nicola J Robertson
- Institute for Women's HealthUniversity College LondonLondonUK
- Division of NeonatologySidra MedicineDohaQatar
| |
Collapse
|
48
|
Groenendaal F. Time to start hypothermia after perinatal asphyxia: does it matter? BMJ Paediatr Open 2019; 3:e000494. [PMID: 31206085 PMCID: PMC6542417 DOI: 10.1136/bmjpo-2019-000494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 12/02/2022] Open
Affiliation(s)
- Floris Groenendaal
- Department of Neonatology, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
49
|
Dong X, Zhao Y, Huang Y, Yu L, Yang X, Gao F. Analysis of long noncoding RNA expression profiles in the whole blood of neonates with hypoxic-ischemic encephalopathy. J Cell Biochem 2019; 120:8499-8509. [PMID: 30474258 DOI: 10.1002/jcb.28138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been shown to participate in many biological processes. To investigate the expression profiles of lncRNAs and their potential functions in neonatal hypoxic-ischemic encephalopathy (HIE), we detected the lncRNA and messenger RNA (mRNA) expression in the peripheral blood samples from HIE patients and controls using a microarray. A total of 376 lncRNAs and 126 mRNAs were differentially expressed between the HIE and the non-HIE samples (fold change > 2). Quantitative real-time polymerase chain reaction was used to validate the microarray data. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed to determine the gene function. Furthermore, the lncRNA-mRNA coexpression network was generated to predict the potential targets of lncRNAs. In conclusion, our study first demonstrated the differential expression profiles of lncRNAs in the whole blood of infants with HIE and may provide a new view of the distinct lncRNA functions in HIE.
Collapse
Affiliation(s)
- Xiaohua Dong
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang, Jiangsu, China
| | - Yingmin Zhao
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang, Jiangsu, China
| | - Yun Huang
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang, Jiangsu, China
| | - Lingling Yu
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang, Jiangsu, China
| | - Xiaojing Yang
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang, Jiangsu, China
| | - Feng Gao
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang, Jiangsu, China
| |
Collapse
|
50
|
Wassink G, Davidson JO, Dhillon SK, Zhou K, Bennet L, Thoresen M, Gunn AJ. Therapeutic Hypothermia in Neonatal Hypoxic-Ischemic Encephalopathy. Curr Neurol Neurosci Rep 2019; 19:2. [PMID: 30637551 DOI: 10.1007/s11910-019-0916-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Therapeutic hypothermia reduces death or disability in term and near-term infants with moderate-severe hypoxic-ischemic encephalopathy. Nevertheless, many infants still survive with disability, despite hypothermia, supporting further research in to ways to further improve neurologic outcomes. RECENT FINDINGS Recent clinical and experimental studies have refined our understanding of the key parameters for hypothermic neuroprotection, including timing of initiation, depth, and duration of hypothermia, and subsequent rewarming rate. However, important knowledge gaps remain. There is encouraging clinical evidence from a small phase II trial that combined treatment of hypothermia with recombinant erythropoietin further reduces risk of disability but definitive studies are still needed. In conclusion, recent studies suggest that current protocols for therapeutic hypothermia are near-optimal, and that the key to better neurodevelopmental outcomes is earlier diagnosis and initiation of hypothermia after birth. Further research is essential to find and evaluate ways to further improve outcomes after hypoxic-ischemic encephalopathy, including add-on therapies for therapeutic hypothermia and preventing pyrexia during labor and delivery.
Collapse
Affiliation(s)
- Guido Wassink
- Department of Physiology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Joanne O Davidson
- Department of Physiology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Simerdeep K Dhillon
- Department of Physiology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Kelly Zhou
- Department of Physiology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Laura Bennet
- Department of Physiology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Marianne Thoresen
- Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Neonatal Neuroscience, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Alistair J Gunn
- Department of Physiology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag, Auckland, 92019, New Zealand.
| |
Collapse
|