3
|
Roos D, Kuhns DB, Maddalena A, Roesler J, Lopez JA, Ariga T, Avcin T, de Boer M, Bustamante J, Condino-Neto A, Di Matteo G, He J, Hill HR, Holland SM, Kannengiesser C, Köker MY, Kondratenko I, van Leeuwen K, Malech HL, Marodi L, Nunoi H, Stasia MJ, Maria Ventura A, Witwer CT, Wolach B, Gallin JI. Hematologically important mutations: X-linked chronic granulomatous disease (third update). Blood Cells Mol Dis 2010; 45:246-65. [PMID: 20729109 PMCID: PMC4360070 DOI: 10.1016/j.bcmd.2010.07.012] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 07/20/2010] [Indexed: 10/19/2022]
Abstract
Chronic granulomatous disease (CGD) is an immunodeficiency disorder affecting about 1 in 250,000 individuals. The disease is caused by a lack of superoxide production by the leukocyte enzyme NADPH oxidase. Superoxide is used to kill phagocytosed micro-organisms in neutrophils, eosinophils, monocytes and macrophages. The leukocyte NADPH oxidase is composed of five subunits, of which the enzymatic component is gp91-phox, also called Nox2. This protein is encoded by the CYBB gene on the X chromosome. Mutations in this gene are found in about 70% of all CGD patients. This article lists all mutations identified in CYBB in the X-linked form of CGD. Moreover, apparently benign polymorphisms in CYBB are also given, which should facilitate the recognition of future disease-causing mutations.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | | | | | - Joachim Roesler
- Dept of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | | | - Tadashi Ariga
- Dept of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tadej Avcin
- Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, Ljubljana, Slovenia
| | - Martin de Boer
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, INSERM, U550, and René Descartes University, Necker Medical School, Paris, France
| | - Antonio Condino-Neto
- Dept of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gigliola Di Matteo
- Dept of Public Health and Cellular Biology, Tor Vergata University, Rome, Italy
| | - Jianxin He
- Lung Function Lab, Pediatric Research Institute, Beijing Children’ Hospital affiliated to Capital Medical University, Beijing, People’s Republic of China
| | - Harry R. Hill
- Depts of Pathology, Pediatrics and Medicine, University of Utah, and the ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Steven M. Holland
- Laboratory of Clinical Infectious Disease, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Caroline Kannengiesser
- Assistance Publique des Hôpitaux de Paris, Bichat-Claude Bernard Hospital, Hormonal Biochemistry and Genetic Service, Paris, F-75018, and INSERM, Biomedical Research Center Bichat-Beaujon, U773, Paris, F-75018, France
| | - M. Yavuz Köker
- Immunology Laboratory and Cappadocia Transplant Centre, University of Erciyes, Kayseri, Turkey
| | - Irina Kondratenko
- Dept of Clinical Immunology, Russian Children’s Clinical Hospital, Moscow, Russia
| | - Karin van Leeuwen
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Harry L. Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA ()
| | - László Marodi
- Dept of Infectiology and Pediatric Immunology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Hiroyuki Nunoi
- Dept of Reproductive and Developmental Medicine, Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Marie-José Stasia
- Chronic Granulomatous Disease Diagnosis and Research Centre, University Hospital Grenoble, Therex-TIMC/Imag UMR CNRS 5525, University J. Fourrier, Grenoble, France
| | - Anna Maria Ventura
- Department of Biomedicine of Development Age, University of Bari, Bari, Italy
| | - Carl T. Witwer
- Depts of Pathology, Pediatrics and Medicine, University of Utah, and the ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Baruch Wolach
- Dept of Pediatrics and Laboratory for Leukocyte Function, Meir Medical Centre, Kfar Saba, Israel
| | - John I. Gallin
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA ()
| |
Collapse
|
7
|
Molecular analysis of 9 new families with chronic granulomatous disease caused by mutations in CYBA, the gene encoding p22phox. Blood 2000. [DOI: 10.1182/blood.v96.3.1106.015k44_1106_1112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic granulomatous disease is a rare inherited disorder caused by nonexistent or severely decreased phagocyte superoxide production that results in a severe defect in host defense and consequent predisposition to microbial infection. The enzyme responsible for generating the superoxide, NADPH oxidase, involves at least 5 protein components. The absence of, or a defect in, any 1 of 4 of these proteins (p22phox, p47phox, p67phox, or gp91phox) gives rise to the known types of chronic granulomatous disease. One of the rarest forms of the disease is due to defects in the CYBA gene encoding p22phox, which together with gp91phox forms flavocytochromeb558, the catalytic core of NADPH oxidase. To date, only 9 kindreds with p22phoxdeficiency have been described in the literature comprising 10 mutant alleles. Four polymorphisms in the CYBA gene have also been reported. Here we describe 9 new, unrelated kindreds containing 12 mutations, 9 of which are novel. In addition, we report 3 new polymorphisms. The novel mutations are (a) deletion of exons 2 and 3, (b) a missense mutation in exon 3 (T155→C), (c) a splice site mutation at the 5′ end of intron 3, (d) a missense mutation in exon 2 (G74→T), (e) a nonsense mutation in exon 1 (G26→A), (f) a missense mutation in exon 4 (C268→T), (g) a frameshift in exon 3 due to the insertion of C at C162, (h) a nonsense mutation in exon 2 (G107→A), and (i) a missense mutation in exon 2 (G70→A).
Collapse
|
8
|
Molecular analysis of 9 new families with chronic granulomatous disease caused by mutations in CYBA, the gene encoding p22phox. Blood 2000. [DOI: 10.1182/blood.v96.3.1106] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractChronic granulomatous disease is a rare inherited disorder caused by nonexistent or severely decreased phagocyte superoxide production that results in a severe defect in host defense and consequent predisposition to microbial infection. The enzyme responsible for generating the superoxide, NADPH oxidase, involves at least 5 protein components. The absence of, or a defect in, any 1 of 4 of these proteins (p22phox, p47phox, p67phox, or gp91phox) gives rise to the known types of chronic granulomatous disease. One of the rarest forms of the disease is due to defects in the CYBA gene encoding p22phox, which together with gp91phox forms flavocytochromeb558, the catalytic core of NADPH oxidase. To date, only 9 kindreds with p22phoxdeficiency have been described in the literature comprising 10 mutant alleles. Four polymorphisms in the CYBA gene have also been reported. Here we describe 9 new, unrelated kindreds containing 12 mutations, 9 of which are novel. In addition, we report 3 new polymorphisms. The novel mutations are (a) deletion of exons 2 and 3, (b) a missense mutation in exon 3 (T155→C), (c) a splice site mutation at the 5′ end of intron 3, (d) a missense mutation in exon 2 (G74→T), (e) a nonsense mutation in exon 1 (G26→A), (f) a missense mutation in exon 4 (C268→T), (g) a frameshift in exon 3 due to the insertion of C at C162, (h) a nonsense mutation in exon 2 (G107→A), and (i) a missense mutation in exon 2 (G70→A).
Collapse
|
9
|
Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM. Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore) 2000; 79:170-200. [PMID: 10844936 DOI: 10.1097/00005792-200005000-00004] [Citation(s) in RCA: 611] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The reduced nicotinamide dinucleotide phosphate (NADPH) oxidase complex allows phagocytes to rapidly convert O2 to superoxide anion which then generates other antimicrobial reactive oxygen intermediates, such as H2O2, hydroxyl anion, and peroxynitrite anion. Chronic granulomatous disease (CGD) results from a defect in any of the 4 subunits of the NADPH oxidase and is characterized by recurrent life-threatening bacterial and fungal infections and abnormal tissue granuloma formation. Activation of the NADPH oxidase requires translocation of the cytosolic subunits p47phox (phagocyte oxidase), p67phox, and the low molecular weight GT-Pase Rac, to the membrane-bound flavocytochrome, a heterodimer composed of the heavy chain gp91phox and the light chain p22phox. This complex transfers electrons from NADPH on the cytoplasmic side to O2 on the vacuolar or extracellular side, thereby generating superoxide anion. Activation of the NADPH oxidase requires complex rearrangements between the protein subunits, which are in part mediated by noncovalent binding between src-homology 3 domains (SH3 domains) and proline-rich motifs. Outpatient management of CGD patients relies on the use of prophylactic antibiotics and interferon-gamma. When infection is suspected, aggressive effort to obtain culture material is required. Treatment of infections involves prolonged use of systemic antibiotics, surgical debridement when feasible, and, in severe infections, use of granulocyte transfusions. Mouse knockout models of CGD have been created in which to examine aspects of pathophysiology and therapy. Gene therapy and bone marrow transplantation trials in CGD patients are ongoing and show great promise.
Collapse
Affiliation(s)
- B H Segal
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
10
|
Yamada M, Ariga T, Kawamura N, Ohtsu M, Imajoh-Ohmi S, Ohshika E, Tatsuzawa O, Kobayashi K, Sakiyama Y. Genetic studies of three Japanese patients with p22-phox-deficient chronic granulomatous disease: detection of a possible common mutant CYBA allele in Japan and a genotype-phenotype correlation in these patients. Br J Haematol 2000; 108:511-7. [PMID: 10759707 DOI: 10.1046/j.1365-2141.2000.01857.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chronic granulomatous disease (CGD) is a disorder caused by defects in the NADPH oxidase responsible for superoxide generation in phagocytes. Cytochrome b558, an essential component of this enzyme, is a heterodimer formed by a 91 kDa glycoprotein (gp91-phox) and a 22 kDa polypeptide (p22-phox). Mutations in the p22-phox gene (CYBA) locus in 16q24 result in one of the rare autosomal recessive forms of CGD. We performed mutation analysis in three female CGD patients suspected of having this form of the disease and found two novel mutations in CYBA. Whereas patient 1 with severe phenotype had a homozygous nonsense mutation in exon 1 (C-35 --> T, Gln-3 --> stop), patients 2 and 3 with mild phenotype shared the same homozygous missense mutation in exon 2 (G-98 --> A, Gly-24 --> Arg). None of the parents of patients 2 and 3 is related. Therefore, this mutation could be a hot-spot or a common mutation in the Japanese population. Patients 2 and 3, but not patient 1, were demonstrated to have detectable p22-phox expression and significant granulocyte respiratory burst (ROB) activity. In this study, we were able to demonstrate an excellent correlation between genotype, p22-phox expression, ROB activity and clinical phenotype in these patients.
Collapse
Affiliation(s)
- M Yamada
- Departments of Paediatrics, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|