1
|
Sinclair AJ. Navigating my career in lipid research. Eur J Clin Nutr 2025; 79:1-6. [PMID: 38802606 PMCID: PMC11717703 DOI: 10.1038/s41430-024-01452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Affiliation(s)
- Andrew J Sinclair
- Faculty of Health, Deakin University, Burwood, VIC, 3125, Australia.
- Department of Nutrition, Dietetics and Food, Notting Hill, VIC, 3168, Australia.
| |
Collapse
|
2
|
Rotarescu RD, Mathur M, Bejoy AM, Anderson GH, Metherel AH. Serum measures of docosahexaenoic acid (DHA) synthesis underestimates whole body DHA synthesis in male and female mice. J Nutr Biochem 2024; 131:109689. [PMID: 38876393 DOI: 10.1016/j.jnutbio.2024.109689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Females have higher docosahexaenoic acid (DHA) levels than males, proposed to be a result of higher DHA synthesis rates from α-linolenic acid (ALA). However, DHA synthesis rates are reported to be low, and have not been directly compared between sexes. Here, we apply a new compound specific isotope analysis model to determine n-3 PUFA synthesis rates in male and female mice and assess its potential translation to human populations. Male and female C57BL/6N mice were allocated to one of three 12-week dietary interventions with added ALA, eicosapentaenoic acid (EPA) or DHA. The diets included low carbon-13 (δ13C)-n-3 PUFA for four weeks, followed by high δ13C-n-3 PUFA for eight weeks (n=4 per diet, time point, sex). Following the diet switch, blood and tissues were collected at multiple time points, and fatty acid levels and δ13C were determined and fit to one-phase exponential decay modeling. Hepatic DHA synthesis rates were not different (P>.05) between sexes. However, n-3 docosapentaenoic acid (DPAn-3) synthesis from dietary EPA was 66% higher (P<.05) in males compared to females, suggesting higher synthesis downstream of DPAn-3 in females. Estimates of percent conversion of dietary ALA to serum DHA was 0.2%, in line with previous rodent and human estimates, but severely underestimates percent dietary ALA conversion to whole body DHA of 9.5%. Taken together, our data indicates that reports of low human DHA synthesis rates may be inaccurate, with synthesis being much higher than previously believed. Future animal studies and translation of this model to humans are needed for greater understanding of n-3 PUFA synthesis and metabolism, and whether the higher-than-expected ALA-derived DHA can offset dietary DHA recommendations set by health agencies.
Collapse
Affiliation(s)
- Ruxandra D Rotarescu
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Mahima Mathur
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Ashley M Bejoy
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - G Harvey Anderson
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Adam H Metherel
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
van de Lavoir M, da Silva KM, Iturrospe E, Robeyns R, van Nuijs ALN, Covaci A. Untargeted hair lipidomics: comprehensive evaluation of the hair-specific lipid signature and considerations for retrospective analysis. Anal Bioanal Chem 2023; 415:5589-5604. [PMID: 37468753 DOI: 10.1007/s00216-023-04851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Lipidomics investigates the composition and function of lipids, typically employing blood or tissue samples as the primary study matrices. Hair has recently emerged as a potential complementary sample type to identify biomarkers in early disease stages and retrospectively document an individual's metabolic status due to its long detection window of up to several months prior to the time of sampling. However, the limited coverage of lipid profiling presented in previous studies has hindered its exploitation. This study aimed to evaluate the lipid coverage of hair using an untargeted liquid chromatography-high-resolution mass spectrometry lipidomics platform. Two distinct three-step exhaustive extraction experiments were performed using a hair metabolomics one-phase extraction technique that has been recently optimized, and the two-phase Folch extraction method which is recognized as the gold standard for lipid extraction in biological matrices. The applied lipidomics workflow improved hair lipid coverage, as only 99 species could be annotated using the one-phase extraction method, while 297 lipid species across six categories were annotated with the Folch method. Several lipids in hair were reported for the first time, including N-acyl amino acids, diradylglycerols, and coenzyme Q10. The study suggests that hair lipids are not solely derived from de novo synthesis in hair, but are also incorporated from sebum and blood, making hair a valuable matrix for clinical, forensic, and dermatological research. The improved understanding of the lipid composition and analytical considerations for retrospective analysis offers valuable insights to contextualize untargeted hair lipidomic analysis and facilitate the use of hair in translational studies.
Collapse
Affiliation(s)
- Maria van de Lavoir
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Katyeny Manuela da Silva
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Elias Iturrospe
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Rani Robeyns
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Alexander L N van Nuijs
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
4
|
Burdge GC. α-linolenic acid interconversion is sufficient as a source of longer chain ω-3 polyunsaturated fatty acids in humans: An opinion. Lipids 2022; 57:267-287. [PMID: 35908848 DOI: 10.1002/lipd.12355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/20/2023]
Abstract
α-linolenic acid (αLNA) conversion into the functionally important ω-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), has been regarded as inadequate for meeting nutritional requirements for these PUFA. This view is based on findings of small αLNA supplementation trials and stable isotope tracer studies that have been interpreted as indicating human capacity for EPA and, in particular, DHA synthesis is limited. The purpose of this review is to re-evaluate this interpretation. Markedly differing study designs, inconsistent findings and lack of trial replication preclude robust consensus regarding the nutritional adequacy of αLNA as a source of EPC and DHA. The conclusion that αLNA conversion in humans is constrained is inaccurate because it presupposes the existence of an unspecified, higher level of metabolic activity. Since capacity for EPA and DHA synthesis is the product of evolution it may be argued that the levels of EPA and DHA it maintains are nutritionally appropriate. Dietary and supra-dietary EPA plus DHA intakes confer health benefits. Paradoxically, such health benefits are also found amongst vegetarians who do not consume EPA and DHA, and for whom αLNA conversion is the primary source of ω-3 PUFA. Since there are no reported adverse effects on health or cognitive development of diets that exclude EPA and DHA, their synthesis from αLNA appears to be nutritionally adequate. This is consistent with the dietary essentiality of αLNA and has implications for developing sustainable nutritional recommendations for ω-3 PUFA.
Collapse
Affiliation(s)
- Graham C Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
5
|
Hansen TWR, Wong RJ, Stevenson DK. Molecular Physiology and Pathophysiology of Bilirubin Handling by the Blood, Liver, Intestine, and Brain in the Newborn. Physiol Rev 2020; 100:1291-1346. [PMID: 32401177 DOI: 10.1152/physrev.00004.2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bilirubin is the end product of heme catabolism formed during a process that involves oxidation-reduction reactions and conserves iron body stores. Unconjugated hyperbilirubinemia is common in newborn infants, but rare later in life. The basic physiology of bilirubin metabolism, such as production, transport, and excretion, has been well described. However, in the neonate, numerous variables related to nutrition, ethnicity, and genetic variants at several metabolic steps may be superimposed on the normal physiological hyperbilirubinemia that occurs in the first week of life and results in bilirubin levels that may be toxic to the brain. Bilirubin exists in several isomeric forms that differ in their polarities and is considered a physiologically important antioxidant. Here we review the chemistry of the bilirubin molecule and its metabolism in the body with a particular focus on the processes that impact the newborn infant, and how differences relative to older children and adults contribute to the risk of developing both acute and long-term neurological sequelae in the newborn infant. The final section deals with the interplay between the brain and bilirubin and its entry, clearance, and accumulation. We conclude with a discussion of the current state of knowledge regarding the mechanism(s) of bilirubin neurotoxicity.
Collapse
Affiliation(s)
- Thor W R Hansen
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Ronald J Wong
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - David K Stevenson
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
6
|
Nemeth M, Pschernig E, Wallner B, Millesi E. Non-invasive cortisol measurements as indicators of physiological stress responses in guinea pigs. PeerJ 2016; 4:e1590. [PMID: 26839750 PMCID: PMC4734438 DOI: 10.7717/peerj.1590] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/21/2015] [Indexed: 12/19/2022] Open
Abstract
Non-invasive measurements of glucocorticoid (GC) concentrations, including cortisol and corticosterone, serve as reliable indicators of adrenocortical activities and physiological stress loads in a variety of species. As an alternative to invasive analyses based on plasma, GC concentrations in saliva still represent single-point-of-time measurements, suitable for studying short-term or acute stress responses, whereas fecal GC metabolites (FGMs) reflect overall stress loads and stress responses after a species-specific time frame in the long-term. In our study species, the domestic guinea pig, GC measurements are commonly used to indicate stress responses to different environmental conditions, but the biological relevance of non-invasive measurements is widely unknown. We therefore established an experimental protocol based on the animals' natural stress responses to different environmental conditions and compared GC levels in plasma, saliva, and fecal samples during non-stressful social isolations and stressful two-hour social confrontations with unfamiliar individuals. Plasma and saliva cortisol concentrations were significantly increased directly after the social confrontations, and plasma and saliva cortisol levels were strongly correlated. This demonstrates a high biological relevance of GC measurements in saliva. FGM levels measured 20 h afterwards, representing the reported mean gut passage time based on physiological validations, revealed that the overall stress load was not affected by the confrontations, but also no relations to plasma cortisol levels were detected. We therefore measured FGMs in two-hour intervals for 24 h after another social confrontation and detected significantly increased levels after four to twelve hours, reaching peak concentrations already after six hours. Our findings confirm that non-invasive GC measurements in guinea pigs are highly biologically relevant in indicating physiological stress responses compared to circulating levels in plasma in the short- and long-term. Our approach also underlines the importance of detailed investigations on how to use and interpret non-invasive measurements, including the determination of appropriate time points for sample collections.
Collapse
Affiliation(s)
- Matthias Nemeth
- Department of Behavioural Biology, University of Vienna , Vienna , Austria
| | | | - Bernard Wallner
- Department of Behavioural Biology, University of Vienna, Vienna, Austria; Department of Anthropology, University of Vienna, Vienna, Austria
| | - Eva Millesi
- Department of Behavioural Biology, University of Vienna , Vienna , Austria
| |
Collapse
|
7
|
Picklo MJ, Murphy EJ. A High-Fat, High-Oleic Diet, But Not a High-Fat, Saturated Diet, Reduces Hepatic α-Linolenic Acid and Eicosapentaenoic Acid Content in Mice. Lipids 2015; 51:537-47. [DOI: 10.1007/s11745-015-4106-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
|
8
|
Salem NM, Lin YH, Moriguchi T, Lim SY, Salem N, Hibbeln JR. Distribution of omega-6 and omega-3 polyunsaturated fatty acids in the whole rat body and 25 compartments. Prostaglandins Leukot Essent Fatty Acids 2015; 100:13-20. [PMID: 26120061 PMCID: PMC4555191 DOI: 10.1016/j.plefa.2015.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/29/2015] [Accepted: 06/04/2015] [Indexed: 10/23/2022]
Abstract
The steady state compositions of omega-6 and omega-3 polyunsaturated fatty acids (PUFA) throughout the various viscera and tissues within the whole body of rats have not previously been described in a comprehensive manner. Dams consumed diets containing 10wt% fat (15% linoleate and 3% α-linolenate). Male offspring (n=9) at 7-week of age were euthanized and dissected into 25 compartments. Total lipid fatty acids for each compartment were quantified by GC/FID and summed for the rat whole body; total n-6 PUFA was 12wt% and total n-3 PUFA was 2.1% of total fatty acids. 18:2n-6 accounted for 84% of the total n-6 PUFA, 20:4n-6 was 12%, 18:3n-3 was 59% of the total n-3 PUFA, 20:5n-3 was 2.1%, and 22:6n-3 was 32%. The white adipose tissue contained the greatest amounts of 18:2n-6 (1.5g) and 18:3n-3 (0.2g). 20:4n-6 was highest in muscle (60mg) and liver (57mg), while 22:6n-3 was greatest in muscle (46mg), followed by liver (27mg) and carcass (20mg). In terms of fatty acid composition expressed as a percentage, 18:2n-6 was the highest in the heart (13wt%), while 18:3n-3 was about 1.3wt% for skin, white adipose tissue and fur. 20:4n-6 was highest (21-25wt%) in the circulation, kidney, and spleen, while 22:6n-3 was highest in the brain (12wt%), followed by the heart (7.9wt%), liver (5.9wt%), and spinal cord (5.1wt%). Selectivity was greatest when comparing 22:6n-3 in brain (12%) to white adipose (0.08%) (68-fold) and 22:5n-6 in testes (15.6%) compared to white adipose (0.02%), 780-fold.
Collapse
Affiliation(s)
- N M Salem
- Section of Nutritional Neuroscience Laboratory of Membrane Biochemistry & Biophysics, NIAAA, NIH, Bethesda, MD, United States
| | - Y H Lin
- Section of Nutritional Neuroscience Laboratory of Membrane Biochemistry & Biophysics, NIAAA, NIH, Bethesda, MD, United States.
| | - T Moriguchi
- Department of Food and Life Science, Azabu University, Kanagawa, Japan
| | - S Y Lim
- Division of Marine Environment & Bioscience, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - N Salem
- Nutritional Lipids, DSM Nutritional Products Inc., Columbia, MD, United States
| | - J R Hibbeln
- Section of Nutritional Neuroscience Laboratory of Membrane Biochemistry & Biophysics, NIAAA, NIH, Bethesda, MD, United States
| |
Collapse
|
9
|
Healthy effect of different proportions of marine ω-3 PUFAs EPA and DHA supplementation in Wistar rats: Lipidomic biomarkers of oxidative stress and inflammation. J Nutr Biochem 2015; 26:1385-92. [PMID: 26320676 DOI: 10.1016/j.jnutbio.2015.07.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/09/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022]
Abstract
Dietary intervention with ω-3 marine fatty acids may potentially modulate inflammation and oxidative stress markers related with CVD, metabolic syndrome and cancer. The aim of this study was to evaluate whether different proportions of ω-3 EPA and DHA intake provoke a modulation of the production of lipid mediators and then, an influence on different indexes of inflammation and oxidative stress in a controlled dietary animal experiment using Wistar rats. For such scope, a lipidomic SPE-LC-ESI-MS/MS approach previously developed was applied to determine lipid mediators profile in plasma samples. The effect of ω-3 fatty acids associated to different ratios EPA:DHA was compared with the effect exerted by ω-3 ALA supplementation from linseed oil and ω-6 LA from soybean oil. CRP showed a tendency to greater inflammatory status in all ω-3-fed animals. Interestingly, ratios 1:1 and 2:1 EPA:DHA evidenced a noteworthy healthy effect generating a less oxidative environment and modulating LOX and COX activities toward a decrease in the production of proinflammatory ARA eicosanoids and oxidative stress biomarkers from EPA and DHA. In addition, the ability of 1:1 and 2:1 fish oil diets to reduce lipid mediator levels was in concurrence with the protective effect exerted by decreasing inflammatory markers as ω-6/ω-3 ratio in plasma and membranes. It was also highlighted the effect of a higher DHA amount in the diet reducing the healthy benefits described in terms of inflammation and oxidative stress. Results support the antiinflammatory and antioxidative role of fish oils and, particularly, the effect of adequate proportions EPA:DHA.
Collapse
|
10
|
Distribution of glycolipid and unsaturated fatty acids in human hair. Lipids 2014; 49:905-17. [PMID: 25103523 DOI: 10.1007/s11745-014-3937-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
It has been recognized that human hair lipids play crucial roles in the integrity of cells and matrices, while the details of distribution and structure of the minor lipids are hardly known. Here we investigated the lipids at the hair surface, at the interface between cuticle and cortex and in the interior of hair (cortex, medulla and melanin granules). Hair lipids and fatty acids and their metabolites were detected and characterized by using infrared spectroscopy and several mass spectrometry techniques (FTIR, ToF-SIMS, GCMS, and ESI-MS). As a result, it was found that unsaturated fatty acids were present more in the cortex of hair than at the hair surface. At the interface between cuticle and cortex, it is suggested that steryl glycoside-like lipids containing N-acetylglucosamine were present, and contributing to the adhesion between the cuticle and cortex of hair. Oxidative metabolites derived from integral fatty acids such as linoleic and alpha-linolenic acids were found in the hair bulb and melanin granules. Especially the oxidative metabolites of alpha-linolenic acid were integrated into the lipids non-covalently and tightly bound to melanin granules (namely, melanin lipids) and suggested as being involved in the biosynthetic processes of melanosome.
Collapse
|
11
|
Effects of extract from cole pollen on lipid metabolism in experimental hyperlipidemic rats. ScientificWorldJournal 2014; 2014:982498. [PMID: 25152932 PMCID: PMC4134780 DOI: 10.1155/2014/982498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 11/18/2022] Open
Abstract
In order to evaluate the effects of extract by SCE (supercritical carbon dioxide extraction) from cole pollen on lipid metabolism in hyperlipidemic rats, the experimental hyperlipidemic rats were established by providing with high fat diets, and randomized into six groups. After four weeks of perfusion diets into stomach, the rats were executed, and lipid levels of serum and hepatic tissue were detected. The serum levels of TC and TG were significantly lower in the pollen extract groups and MC group than in HFC group. Hepatic TC levels were decreased in rats fed pollen extract and lovastatin compared with HFC group. A higher concentration of HDL-C and apoAI in hepatic tissue was measured after intake of the pollen extract compared to the HFC group (P < 0.05). LCAT activity in serum of pollen extract groups was significantly higher than that in HFC group, and also HMG-CoA reductase showed decreasing tendency in pollen extract groups. The contents of DHA in pollen extract groups were found higher than those in HFC group. Cole pollen extract enriched in alpha-linolenic acid is likely to be a novel source of ALA which is probably responsible for favorable lipid changes through promoting transportation, excretion, and metabolism of cholesterol in hepatic tissue and serum.
Collapse
|
12
|
Whole-body retention of α-linolenic acid and its apparent conversion to other n-3 PUFA in growing pigs are reduced with the duration of feeding α-linolenic acid. Br J Nutr 2014; 111:1382-93. [DOI: 10.1017/s0007114513003991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the present study, fifteen growing pigs were used to determine the whole-body oxidation, retention efficiency (RE) and apparent conversion (AC) of α-linolenic acid (18 : 3n-3) to n-3 highly unsaturated fatty acids (HUFA), including EPA (20 : 5n-3) and DHA (22 : 6n-3). The pigs were fed a diet containing 10 % flaxseed for 30 d. Whole-body fatty acid composition was determined at initial (27·7 (se 1·9) kg), intermediate (day 15; 39·2 (se 1·4) kg) and final (45·7 (se 2·2) kg) body weight. On day 12, four pigs were fed 10 mg/kg of uniformly labelled 13C-18 : 3n-3 (single-bolus dose) to determine the oxidation of 18 : 3n-3. Expired $$CO_{2} $$ samples were collected for 24 h thereafter. The whole-body content of n-3 PUFA increased linearly (P< 0·0001) with time; however, the content of 22 : 6n-3 exhibited a quadratic response (P< 0·01) with a peak occurring at 15 h. As a proportion of intake, the RE of 18 : 3n-3 tended to reduce with time (P= 0·098). The AC of ingested 18 : 3n-3 to the sum of n-3 HUFA was reduced with time (P< 0·05; 12·2 v. 7·53 % for days 0–15 and days 15–30, respectively). The AC of 18 : 3n-3 to 20 : 5n-3 or 22 : 6n-3 was lower than that to 20 : 3n-3, both for days 0–15 (P< 0·05; 1·14 or 1·07 v. 7·06 %) and for days 15–30 (P< 0·05; 1·51 or 0·33 v. 4·29 %). The direct oxidation of 18 : 3n-3 was 7·91 (se 0·98) % and was similar to the calculated disappearance of 18 : 3n-3 between days 0 and 30 (8·81 (se 5·24) %). The oxidation of 18 : 3n-3 was much lower than that reported in other species. The AC of 18 : 3n-3 to n-3 HUFA was reduced over time and that to 20 : 3n-3 in the present study was much higher than that reported in other species and should be explored further.
Collapse
|
13
|
Effect of a supplementation of Euphorbia heterophylla on nutritional meat quality of Guinea pig (Cavia porcellus L.). Meat Sci 2013; 93:821-6. [DOI: 10.1016/j.meatsci.2012.11.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 11/10/2012] [Accepted: 11/19/2012] [Indexed: 11/17/2022]
|
14
|
Turchini GM, Nichols PD, Barrow C, Sinclair AJ. Jumping on the omega-3 bandwagon: distinguishing the role of long-chain and short-chain omega-3 fatty acids. Crit Rev Food Sci Nutr 2012; 52:795-803. [PMID: 22698270 DOI: 10.1080/10408398.2010.509553] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) are almost unanimously recognized for their health benefits, while only limited evidence of any health benefit is currently available specifically for the main precursor of these fatty acids, namely α-linolenic acid (ALA, 18:3n-3). However, both the n-3 LC-PUFA and the short-chain C₁₈ PUFA (i.e., ALA) are commonly referred to as "omega-3" fatty acids, and it is difficult for consumers to recognize this difference. A current gap of many food labelling legislations worldwide allow products containing only ALA and without n-3 LC-PUFA to be marketed as "omega-3 source" and this misleading information can negatively impact the ability of consumers to choose more healthy diets. Within the context of the documented nutritional and health promoting roles of omega-3 fatty acids, we briefly review the different metabolic fates of dietary ALA and n-3 LC-PUFA. We also review food sources rich in n-3 LC-PUFA, some characteristics of LC-PUFA and current industry and regulatory trends. A further objective is to present a case for regulatory bodies to clearly distinguish food products containing only ALA from foods containing n-3 LC-PUFA. Such information, when available, would then avoid misleading information and empower consumers to make a more informed choice in their food purchasing behavior.
Collapse
Affiliation(s)
- Giovanni M Turchini
- School of Life and Environmental Sciences, Deakin University, Warrnambool, VIC, Australia.
| | | | | | | |
Collapse
|
15
|
Abstract
Previous studies have revealed that C20 PUFA are significantly less oxidised to CO₂ in whole-body studies compared with SFA, MUFA and C18 PUFA. The present study determined the extent to which three long-chain PUFA, namely 20:5n-3 EPA, 22:5n-3 docosapentaenoic acid (DPA) and 22:6n-3 DHA, were catabolised to CO₂ or, conversely, incorporated into tissue lipids. Rats were administered a single oral dose of 2·5 μCi [1-¹⁴C]DPA, [1-¹⁴C]EPA, [1-¹⁴C]DHA or [1-¹⁴C]oleic acid (18:1n-9; OA), and were placed in a metabolism chamber for 6 h where exhaled ¹⁴CO₂ was trapped and counted for radioactivity. Rats were euthanised after 24 h and tissues were removed for analysis of radioactivity in tissue lipids. The results showed that DPA and DHA were catabolised to CO₂ significantly less compared with EPA and OA (P<0·05). The phospholipid (PL) fraction was the most labelled for all three n-3 PUFA compared with OA in all tissues, and there was no difference between C20 and C22 n-3 PUFA in the proportion of label in the PL fraction. The DHA and DPA groups showed significantly more label than the EPA group in both skeletal muscle and heart. In the brain and heart tissue, there was significantly less label in the cholesterol fraction from the C22 n-3 PUFA group compared with the C20 n-3 PUFA group. The higher incorporation of DHA and DPA into the heart and skeletal muscle, compared with EPA, suggests that these C22 n-3 PUFA might play an important role in these tissues.
Collapse
|
16
|
Pilkington SM, Watson REB, Nicolaou A, Rhodes LE. Omega-3 polyunsaturated fatty acids: photoprotective macronutrients. Exp Dermatol 2011; 20:537-43. [PMID: 21569104 DOI: 10.1111/j.1600-0625.2011.01294.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ultraviolet radiation (UVR) in sunlight has deleterious effects on skin, while behavioural changes have resulted in people gaining more sun exposure. The clinical impact includes a year-on-year increase in skin cancer incidence, and topical sunscreens alone provide an inadequate measure to combat overexposure to UVR. Novel methods of photoprotection are being targeted as additional measures, with growing interest in the potential for systemic photoprotection through naturally sourced nutrients. Omega-3 polyunsaturated fatty acids (n-3 PUFA) are promising candidates, showing potential to protect the skin from UVR injury through a range of mechanisms. In this review, we discuss the biological actions of n-3 PUFA in the context of skin protection from acute and chronic UVR overexposure and describe how emerging new technologies such as nutrigenomics and lipidomics assist our understanding of the contribution of such nutrients to skin health.
Collapse
Affiliation(s)
- Suzanne M Pilkington
- Dermatological Sciences, Inflammation Sciences Research Group, School of Translational Medicine, University of Manchester, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Hospital, Manchester, UK
| | | | | | | |
Collapse
|
17
|
Kaur G, Cameron-Smith D, Garg M, Sinclair AJ. Docosapentaenoic acid (22:5n-3): A review of its biological effects. Prog Lipid Res 2011; 50:28-34. [DOI: 10.1016/j.plipres.2010.07.004] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/03/2010] [Accepted: 07/06/2010] [Indexed: 11/25/2022]
|
18
|
Anderson BM, Ma DWL. Are all n-3 polyunsaturated fatty acids created equal? Lipids Health Dis 2009; 8:33. [PMID: 19664246 PMCID: PMC3224740 DOI: 10.1186/1476-511x-8-33] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 08/10/2009] [Indexed: 12/14/2022] Open
Abstract
N-3 Polyunsaturated fatty acids have been shown to have potential beneficial effects for chronic diseases including cancer, insulin resistance and cardiovascular disease. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in particular have been studied extensively, whereas substantive evidence for a biological role for the precursor, alpha-linolenic acid (ALA), is lacking. It is not enough to assume that ALA exerts effects through conversion to EPA and DHA, as the process is highly inefficient in humans. Thus, clarification of ALA's involvement in health and disease is essential, as it is the principle n-3 polyunsaturated fatty acid consumed in the North American diet and intakes of EPA and DHA are typically very low. There is evidence suggesting that ALA, EPA and DHA have specific and potentially independent effects on chronic disease. Therefore, this review will assess our current understanding of the differential effects of ALA, EPA and DHA on cancer, insulin resistance, and cardiovascular disease. Potential mechanisms of action will also be reviewed. Overall, a better understanding of the individual role for ALA, EPA and DHA is needed in order to make appropriate dietary recommendations regarding n-3 polyunsaturated fatty acid consumption.
Collapse
Affiliation(s)
- Breanne M Anderson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G2W1 Canada.
| | | |
Collapse
|
19
|
Lin YH, Salem N. Whole body distribution of deuterated linoleic and α-linolenic acids and their metabolites in the rat. J Lipid Res 2007; 48:2709-24. [PMID: 17876057 DOI: 10.1194/jlr.m700369-jlr200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the uptake or metabolism of essential fatty acids (EFAs) in various mammalian organs. Thus, the distribution of deuterated alpha-linolenic acid (18:3n-3) and linoleic acid (18:2n-6) and their metabolites was studied using a stable isotope tracer technique. Rats were orally administered a single dose of a mixture (20 mg each) of ethyl D5-18:3n-3 and D5-18:2n-6, and 25 tissues per animal were analyzed for D5-labeled PUFAs at 4, 8, 24, 96, 168, 240, 360, and 600 h after dosing. Plasma, stomach, and spleen contained the highest concentrations of labeled precursors at the earliest time points, whereas other internal organs and red blood cells reached their maximal concentrations at 8 h. The time-course data were consistent with liver metabolism of EFAs, but local metabolism in other tissues could not be ruled out. Brain, spinal cord, heart, testis, and eye accumulated docosahexaenoic acid with time, whereas skin accumulated mainly 20:4n-6. On average, approximately 16-18% of the D5-18:3n-3 and D5-18:2n-6 initial dosage was eventually accumulated in tissues, principally in adipose, skin, and muscle. Approximately 6.0% of D5-18:3n-3 and 2.6% of D5-18:2n-6 were elongated/desaturated and stored, mainly in muscle, adipose, and the carcass. The remaining 78% of both precursors was apparently catabolized or excreted.
Collapse
Affiliation(s)
- Yu Hong Lin
- Section of Nutritional Neuroscience, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9410, USA
| | | |
Collapse
|
20
|
Järvenpää S, Tahvonen RL, Ouwehand AC, Sandell M, Järvenpää E, Salminen S. A Probiotic, Lactobacillus fermentum ME-3, Has Antioxidative Capacity in Soft Cheese Spreads with Different Fats. J Dairy Sci 2007; 90:3171-7. [PMID: 17582099 DOI: 10.3168/jds.2006-810] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our aim was to develop a prototype of a functional spread cheese containing both a specific probiotic and n-3 fatty acids and to analyze the viability of the probiotic and stability of n-3 fatty acids during 4 wk of shelf life. Lactobacillus fermentum ME-3 (Lf ME-3) isolated from a healthy Estonian child has been shown to have probiotic and antioxidative properties in several recent studies. In the current study this promising bacterial strain was combined with vegetable oils rich in nutritionally important alpha-linolenic acid and with unflavored cheese to obtain soft cheese spreads with different fat contents. Lactobacillus fermentum ME-3 survived well in all cheeses although the viable count did not increase during 4 wk of storage. The fatty acid composition of cheese triacylglycerols remained stable, whereas the profile of volatile compounds changed: hexanal and pentanal disappeared and the proportion of some alcohols increased. The changes in the profile of volatile compounds show the reductive power of Lf ME-3. A functional spread cheese containing n-3 fatty acids can be prepared with the probiotic Lactobacillus fermentum ME-3 strain leading to a reduced need for chemical anti-oxidants.
Collapse
Affiliation(s)
- S Järvenpää
- Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | | | | | | | | | |
Collapse
|
21
|
Bowen RAR, Clandinin MT. Maternal dietary 22 : 6n-3 is more effective than 18 : 3n-3 in increasing the 22 : 6n-3 content in phospholipids of glial cells from neonatal rat brain. Br J Nutr 2005; 93:601-11. [PMID: 15975158 DOI: 10.1079/bjn20041390] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
One of the debates in infant nutrition concerns whether dietary 18 : 3n-3 (linolenic acid) can provide for the accretion of 22 : 6n-3 (docosahexaenoic acid, DHA) in neonatal tissues. The objective of the present study was to determine whether low or high 18 : 3n-3 v. preformed 22 : 6n-3 in the maternal diet enabled a similar 22 : 6n-3 content in the phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylserine (PS) of glial cells from whole brain (cerebrum and cerebellum) of 2-week-old rat pups. At parturition, the dams were fed semi-purified diets containing either increasing amounts of 18 : 3n-3 (18 : 2n-6 to 18 : 3n-3 fatty acid ratio of 7.8 : 1, 4.4 : 1 or 1 : 1), preformed DHA, or preformed 20 : 4n-6 (arachidonic acid)+DHA. During the first 2 weeks of life, the rat pups from the respective dams received only their dam's milk. The fatty acid composition of the pups' stomach contents (dam's milk) and phospholipids from glial cells were quantified. The 20 : 4n-6 and 22 : 6n-3 content in the stomach from rat pups at 2 weeks of age reflected the fatty acid composition of the dam's diet. The 20 : 4n-6 content of PE and PS in the glial cells was unaffected by maternal diet treatments. Preformed 22 : 6n-3 in the maternal diet increased the 22 : 6n-3 content of glial cell PE and PS compared with maternal diets providing an 18 : 2n-6 to 18 : 3 n-3 fatty acid ratio of 7.8 : 1, 4.4 : 1 or 1 : 1 (P<0.0001). There was no significant difference in the 20 : 4n-6 and 22 : 6n-3 content of glial cell PC and PI among maternal diet treatments. It was concluded that maternal dietary 22 : 6n-3 is more effective than low or high levels of maternal dietary 18 : 3n-3 at increasing the 22 : 6n-3 content in PE and PS of glial cells from the whole brain of rat pups at 2 weeks of age. The findings from the present study have important implications for human infants fed infant formulas that are devoid of 22 : 6n-3.
Collapse
Affiliation(s)
- Raffick A R Bowen
- Nutrition and Metabolism Research Group, Department of Agricultural, Food and Nutritional Science, Uniersity of Alberta, Edmonton, Canada
| | | |
Collapse
|
22
|
Fokkema MR, van Rieke HM, Bauermann OJ, Smit EN, Muskiet FAJ. Short-Term Carnitine Supplementation Does Not Augment LCPω3 Status of Vegans and Lacto-Ovo-Vegetarians. J Am Coll Nutr 2005; 24:58-64. [PMID: 15670986 DOI: 10.1080/07315724.2005.10719444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Long-chain polyunsaturated omega-3 fatty acids (LCPomega3) synthesis, notably that of docosahexaenoic acid (DHA), from the precursor alpha-linolenic acid (ALA) proceeds with difficulty. We investigated whether carnitine supplementation augments the LCPomega3 status of apparently healthy vegans and lacto-ovo-vegetarians, who are expected to have low carnitine status. METHODS Group A (n = 11) took 990 mg/day l-carnitine from weeks 1-4, and 990 mg/day l-carnitine + 4 mL/day linseed oil from weeks 5-8. Group B (n = 9) took 4 mL/day linseed oil from weeks 1-4, and 4 mL/day linseed oil + 990 mg/day l-carnitine from weeks 5-8. Fatty acid compositions of red blood cells, platelets, plasma cholesterol esters and plasma triglycerides were measured in the fasting state at baseline, and after 4 and 8 weeks. RESULTS Carnitine supplementation increased plasma free and total carnitine concentrations with 30 and 25%, respectively, but did not affect eicosapentaenoic acid (EPA) and DHA contents of any of the investigated compartments. EPA and DHA changes were negatively related to initial carnitine status. CONCLUSIONS Our results suggest that carnitine is not an important limiting factor, if any, for LCPomega3 synthesis in vegans and lacto-ovo-vegetarians. This conclusion is also likely to apply to omnivores. The most efficient means to augment EPA and particularly DHA status remains consumption of LCPomega3 from e.g. fish or supplements.
Collapse
Affiliation(s)
- M Rebecca Fokkema
- Department of Pathology and Laboratory Medicine, University Hospital Groningen, CMC-V, room Y1.165, PO Box 30.001, NL-9700 RB Groningen, THE NETHERLANDS.
| | | | | | | | | |
Collapse
|
23
|
Sommer Hartvigsen M, Mu H, Høy CE. Influence of maternal dietary n-3 fatty acids on breast milk and liver lipids of rat dams and offspring–a preliminary study. Nutr Res 2003. [DOI: 10.1016/s0271-5317(03)00030-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Cunnane SC, Ryan MA, Nadeau CR, Bazinet RP, Musa-Veloso K, McCloy U. Why is carbon from some polyunsaturates extensively recycled into lipid synthesis? Lipids 2003; 38:477-84. [PMID: 12848297 DOI: 10.1007/s11745-003-1087-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We summarize here the evidence indicating that carbon from alpha-linolenate and linoleate is readily recycled into newly synthesized lipids. This pathway consumes the majority of these fatty acids that is not beta-oxidized as a fuel. Docosahexaenoate undergoes less beta-oxidation and carbon recycling than do alpha-linolenate or linoleate, but is it still actively metabolized by this pathway? Among polyunsaturates, arachidonate appears to undergo the least beta-oxidation and carbon recycling, an observation that may help account for the resistance of brain membranes to loss of arachidonate during dietary deficiency of n-6 polyunsaturates. Preliminary evidence suggests that de novo lipid synthesis consumes carbon from alpha-linolenate and linoleate in preference to palmitate, but this merits systematic study. Active beta-oxidation and carbon recycling of 18-carbon polyunsaturates does not diminish the importance of being able to convert alpha-linolenate and linoleate to long-chain polyunsaturates but suggests that a broad perspective is required in studying the metabolism of polyunsaturates in general and alpha-linolenate and linoleate in particular.
Collapse
Affiliation(s)
- Stephen C Cunnane
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada M5S 3E2.
| | | | | | | | | | | |
Collapse
|
25
|
Pawlosky RJ, Hibbeln JR, Lin Y, Goodson S, Riggs P, Sebring N, Brown GL, Salem N. Effects of beef- and fish-based diets on the kinetics of n-3 fatty acid metabolism in human subjects. Am J Clin Nutr 2003; 77:565-72. [PMID: 12600844 DOI: 10.1093/ajcn/77.3.565] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The quantity and type of dietary polyunsaturated fatty acids (PUFAs) can alter essential fatty acid metabolism in humans. Diets rich in 20- and 22-carbon PUFAs may inhibit desaturase expression or activity and decrease the synthesis of long-chain unsaturated fatty acids. OBJECTIVE It was theorized that the fat content of a fish-based diet would inhibit the kinetics of the in vivo metabolism of n-3 fatty acids compared with a beef-based diet. DESIGN A compartmental model was used to determine the coefficients of the kinetic rate constants from the plasma concentration time curves of pentadeuterated (d(5)) 18:3n-3, 20:5n-3, 22:5n-3, and 22:6n-3 of 10 subjects who subsisted on 3 diets with different long-chain PUFA contents. For 3 wk, subjects reported their food intake from their usual diets and then consumed a beef-based diet for 3 wk and then a fish-based diet for an additional 3 wk. Subjects consumed 1 g d(5)-18:3n-3 ethyl ester at weeks 3, 6, and 9. Blood was drawn over 168 h and the plasma analyzed for fatty acids. The coefficients of the kinetic constants of n-3 fatty acid metabolism and the percentage utilization of the substrates were determined. RESULTS Across all diets, < 1% of plasma 18:3n-3 was utilized for long-chain PUFA synthesis. There was a 70% reduction in the value of the rate constant coefficient that regulated transfer of the isotope from the 22:5n-3 compartment to 22:6n-3 when the fish-based diet was compared with the beef-based diet. The turnover rate of plasma d(5)-22:6n-3 also decreased. CONCLUSIONS The primary effect of a fish-based diet on the kinetics of n-3 metabolism involves processes that inhibit the synthesis of 22:6n-3 from 22:5n-3. These processes may involve a system of feedback control mechanisms responsive to the plasma concentration of 22:6n-3.
Collapse
Affiliation(s)
- Robert J Pawlosky
- Food Composition Laboratory, Beltsville Human Nutrition Research Center, US Department of Agriculture, Beltsville, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
This review examines the data pertaining to an important and often underrated EFA, alpha-linolenic acid (ALA). It examines its sources, metabolism, and biological effects in various population studies, in vitro, animal, and human intervention studies. The main role of ALA was assumed to be as a precursor to the longer-chain n-3 PUFA, EPA and DHA, and particularly for supplying DHA for neural tissue. This paper reveals that the major metabolic route of ALA metabolism is beta-oxidation. Furthermore, ALA accumulates in specific sites in the body of mammals (carcass, adipose, and skin), and only a small proportion of the fed ALA is converted to DHA. There is some evidence that ALA may be involved with skin and fur function. There is continuing debate regarding whether ALA has actions of its own in relation to the cardiovascular system and neural function. Cardiovascular disease and cancer are two of the major burdens of disease in the 21st century, and emerging evidence suggests that diets containing ALA are associated with reductions in total deaths and sudden cardiac death. There may be aspects of the action and, more importantly, the metabolism of ALA that need to be elucidated, and these will help us understand the biological effects of this compound better. Additionally, we must not forget that ALA is part of the whole diet and should be seen in this context, not in isolation.
Collapse
Affiliation(s)
- Andrew J Sinclair
- Department of Food Science, RMIT University, Melbourne, Victoria, 3001, Australia.
| | | | | |
Collapse
|
27
|
Abstract
Alpha-linolenic acid (18:3n-3) is the major n-3 (omega 3) fatty acid in the human diet. It is derived mainly from terrestrial plant consumption and it has long been thought that its major biochemical role is as the principal precursor for long chain polyunsaturated fatty acids, of which eicosapentaenoic (20:5n-3) and docosahexaenoic acid (22:6n-3) are the most prevalent. For infants, n-3 long chain polyunsaturated fatty acids are required for rapid growth of neural tissue in the perinatal period and a nutritional supply is particularly important for development of premature infants. For adults, n-3 long chain polyunsaturated fatty acid supplementation is implicated in improving a wide range of clinical pathologies involving cardiac, kidney, and neural tissues. Studies generally agree that whole body conversion of 18:3n-3 to 22:6n-3 is below 5% in humans, and depends on the concentration of n-6 fatty acids and long chain polyunsaturated fatty acids in the diet. Complete oxidation of dietary 18:3n-3 to CO2 accounts for about 25% of 18:3n-3 in the first 24 h, reaching 60% by 7 days. Much of the remaining 18:3n-3 serves as a source of acetate for synthesis of saturates and monounsaturates, with very little stored as 18:3n-3. In term and preterm infants, studies show wide variability in the plasma kinetics of 13C n-3 long chain polyunsaturated fatty acids after 13C-18:3n-3 dosing, suggesting wide variability among human infants in the development of biosynthetic capability to convert 18:3n-3 to 22:6n3. Tracer studies show that humans of all ages can perform the conversion of 18:3n-3 to 22:6n3. Further studies are required to establish quantitatively the partitioning of dietary 18:3n-3 among metabolic pathways and the influence of other dietary components and of physiological states on these processes.
Collapse
Affiliation(s)
- J Thomas Brenna
- Division of Nutritional Sciences, Savage Hall, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
28
|
Watchko JF, Daood MJ, Mahmood B, Vats K, Hart C, Ahdab-Barmada M. P-glycoprotein and bilirubin disposition. J Perinatol 2001; 21 Suppl 1:S43-7; discussion S59-62. [PMID: 11803416 DOI: 10.1038/sj.jp.7210633] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
P-glycoprotein (Pgp), an ATP-dependent plasma membrane efflux pump, is expressed in abundance on the luminal aspect of brain capillary endothelial cells and astrocytes of the blood-brain barrier where it limits the passage of a variety of lipophilic substrates into the central nervous system. This review summarizes current evidence characterizing (1) unconjugated bilirubin as a potential substrate for Pgp and (2) the ontogeny of Pgp expression at the blood-brain barrier and apical brush border epithelium of the gastrointestinal tract, findings that may provide insights regarding the disposition of bilirubin in immature subjects.
Collapse
Affiliation(s)
- J F Watchko
- Division of Neonatology and Developmental Biology, Department of Pediatrics, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, 300 Halket Street, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Bryan DL, Hart P, Forsyth K, Gibson R. Incorporation of alpha-linolenic acid and linoleic acid into human respiratory epithelial cell lines. Lipids 2001; 36:713-7. [PMID: 11521969 DOI: 10.1007/s11745-001-0776-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Animal and human studies designed to examine the effects of alpha-linolenic acid (ALA) and linoleic acid (LA) supplementation on the fatty acid composition of plasma and tissues have demonstrated a marked difference in incorporation into phospholipids of these 18-carbon precursors of the long-chain polyunsaturates. Whereas tissue phospholipid levels are linearly related to dietary ALA and LA, the levels of tissue LA can be 10-fold higher than tissue ALA even when dietary levels are equivalent. There is some dispute whether this disparity is due to ALA being more rapidly metabolized to its products or substantially oxidized by the liver, or whether LA but not ALA is readily incorporated into cellular phospholipids. We examined the level of incorporation of polyunsaturated fatty acids into human respiratory epithelial cell lines (A549, 16HBE) by determining the dose-dependent incorporation of ALA and LA as free fatty acid (5-150 microg FFA/mL). Cell membrane phospholipid ALA and LA were both increased up to approximately 20-30% total fatty acids, with a concomitant decrease predominantly in monounsaturated membrane fatty acids, before significant toxicity was observed (50 microg/mL). Our data support the concept that rather than any inherent inability by human cells to incorporate ALA into membrane phospholipids, the lack of ALA content in human and animal tissues in vivo is due to the rapid metabolism or oxidation of this fatty acid in the liver.
Collapse
Affiliation(s)
- D L Bryan
- Department of Pediatrics, Flinders University, South Australia, Australia
| | | | | | | |
Collapse
|
31
|
Fu Z, Attar-Bashi NM, Sinclair AJ. 1-14C-linoleic acid distribution in various tissue lipids of guinea pigs following an oral dose. Lipids 2001; 36:255-60. [PMID: 11337980 DOI: 10.1007/s11745-001-0715-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A recent study on the metabolism of 1-14C-alpha-linolenic acid in the guinea pig revealed that the fur had the highest specific activity of all tissues examined, 48 h after dosing. The present study investigated the pattern of tissue lipid labeling following an oral dose of 1-14C-linoleic acid after the animals had been dosed for the same time as above. Guinea pigs were fed one of two diets with a constant linoleic acid content (18% total fatty acids) and a different content of alpha-linolenic acid (0.3 or 17.3%) from weaning for 3 wk and 1-14C-linoleic acid was given orally to each animal for 48 h prior to sacrifice. The most highly labeled tissues (dpm/mg of linoleic acid) were liver, followed by brain, lung and spleen, heart, kidney and adrenal and intestines, in both diet groups. The liver had almost a three-fold higher specific activity than skin and fur which was more extensively labeled than the adipose and carcass. Approximately two-thirds of the label in skin plus fur was found in the fur which, because of a low lipid mass, would indicate that the fur was highly labeled. All tissues derived from animals on the diet with the low alpha-linolenic acid level were significantly more labeled than the tissues from the animals on the high alpha-linolenic acid diet, by a factor of 1.5 to 3. The phospholipid fraction was the most highly labeled fraction in the liver, free fatty acids were the most labeled fraction in skin & fur, while triacyglycerols were the most labeled in the carcass and adipose tissue. In these tissues, more than 90% of the radioactivity was found in fatty acids with 2-double bonds in the tissue lipids. These data indicate that the majority of label found in guinea pig tissues 48 h after dosing was still associated with a fatty acid fraction with 2-double bonds, which suggests there was little metabolism of linoleic acid to more highly unsaturated fatty acids in this time frame. In this study, the labeling of guinea pig tissues with linoleic acid, 48 h after dosing, was quite different from the labeling with alpha-linolenic acid reported previously. The retention of the administered radioactivity from 14C-linoleic acid in the whole body lipids was 1.6 times higher in the group fed the low alpha-linolenic acid diet (diet contained a total of 1.8 g PUFA/100 g diet) compared with the group fed the high alpha-linolenic acid diet (diet contained 3.6 g PUFA/100 g diet). The lack of retention of 14C-labeled lipids in the whole body would be consistent with an increased rate of beta-oxidation of the labeled fatty acid on the diet rich in PUFA, a result supported by other studies using direct measurement of labeled carbon dioxide.
Collapse
Affiliation(s)
- Z Fu
- Department of Food Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | | | | |
Collapse
|
32
|
Moriguchi T, Loewke J, Garrison M, Catalan JN, Salem N. Reversal of docosahexaenoic acid deficiency in the rat brain, retina, liver, and serum. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31666-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
LIEN EL, STEINER K, WALLINGFORD JC. The Proper Balance of Essential Fatty Acids for Life. J Oleo Sci 2001. [DOI: 10.5650/jos.50.399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Eric L. LIEN
- Wyeth Nutritionals International (P.O. Box 42528 Philadelphia., PA 19101, USA)
| | - Kurt STEINER
- Wyeth Nutritionals International (P.O. Box 42528 Philadelphia., PA 19101, USA)
| | - John C. WALLINGFORD
- Wyeth Nutritionals International (P.O. Box 42528 Philadelphia., PA 19101, USA)
| |
Collapse
|
34
|
Fu Z, Sinclair AJ. Increased alpha-linolenic acid intake increases tissue alpha-linolenic acid content and apparent oxidation with little effect on tissue docosahexaenoic acid in the guinea pig. Lipids 2000; 35:395-400. [PMID: 10858024 DOI: 10.1007/s11745-000-537-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The essential fatty acids do not have identical roles in nutrition. Linoleic acid (LA) accumulates throughout the body of most mammals, whereas alpha-linolenic acid (ALA) is rarely found in tissue lipids to the same extent as LA. It has been argued that this is the result of metabolism of ALA to docosahexaenoic acid (DHA) or that ALA is rapidly beta-oxidized to acetyl CoA and CO2. In this study, we consider the effect of high and low ALA levels on the tissue distribution of ALA and other n-3 polyunsaturated fatty acids (PUFA) in all tissues. Guinea pigs were fed one of two defined diets for 3 wk from weaning with both diets containing 1.8% (by weight) of LA and either 1.7% ALA or 0.03% ALA. The high ALA diet was associated with significantly increased ALA levels in all tissues except the brain and significantly increased levels of long-chain n-3 PUFA in all tissues except intestines, brain, carcass, and skin. The long-chain n-3 PUFA content of the whole body was less than 5% of that of the ALA content in both diet groups, and the major long-chain n-3 PUFA (>66% of total) in the body was 22:5n-3. The brain was the only tissue where the DHA content exceeded that of 22:5n-3. On the low ALA diet, there appeared to be conservation of ALA based on a comparison of the ratio of LA to ALA in the tissues compared with that in the diet. On the high ALA diet there was a loss of ALA relative to LA in the tissues compared with the diet. These studies suggest that the low levels of tissue ALA in the guinea pig are likely the result of beta-oxidation or excretion via the skin and fur rather than metabolism to DHA.
Collapse
Affiliation(s)
- Z Fu
- Department of Food Science, RMIT University, Melbourne, Victoria, Australia
| | | |
Collapse
|