1
|
Wang S, Li J, Liu WH, Li N, Liang H, Hung W, Jiang Q, Cheng R, Shen X, He F. Lacticaseibacillus paracasei K56 inhibits lipid accumulation in adipocytes by promoting lipolysis. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:3511-3521. [DOI: 10.26599/fshw.2023.9250034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Calo J, Blanco AM, Soengas JL. Dietary lipid sensing through fatty acid oxidation and chylomicron formation in the gastrointestinal tract of rainbow trout. Comp Biochem Physiol A Mol Integr Physiol 2024; 294:111638. [PMID: 38657943 DOI: 10.1016/j.cbpa.2024.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
In mammals, physiological processes related to lipid metabolism, such as chylomicron synthesis or fatty acid oxidation (FAO), modulate eating, highlighting the importance of energostatic mechanisms in feeding control. This study, using rainbow trout (Oncorhynchus mykiss) as model, aimed to characterize the role of FAO and chylomicron formation as peripheral lipid sensors potentially able to modulate feeding in fish. Fish fed with either a normal- (24%) or high- (32%) fat diet were intraperitoneally injected with water alone or containing etomoxir (inhibitor of FAO rate-limiting enzyme carnitine palmitoyl-transferase 1). First, feed intake levels were recorded. We observed an etomoxir-derived decrease in feeding at short times, but a significant increase at 48 h after treatment in fish fed normal-fat diet. Then, we evaluated putative etomoxir effects on the mRNA abundance of genes related to lipid metabolism, chylomicron synthesis and appetite-regulating peptides. Etomoxir treatment upregulated mRNA levels of genes related to chylomicron assembly in proximal intestine, while opposite effects occurred in distal intestine, indicating a clear regionalization in response. Etomoxir also modulated gastrointestinal hormone mRNAs in proximal intestine, upregulating ghrl in fish fed normal-fat diet and pyy and gcg in fish fed high-fat diet. These results provide evidence for an energostatic control of feeding related to FAO and chylomicron formation at the peripheral level in fish.
Collapse
Affiliation(s)
- Jessica Calo
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain
| | - Ayelén M Blanco
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain.
| | - José L Soengas
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
3
|
Tang J, Wei Y, Pi C, Zheng W, Zuo Y, Shi P, Chen J, Xiong L, Chen T, Liu H, Zhao Q, Yin S, Ren W, Cao P, Zeng N, Zhao L. The therapeutic value of bifidobacteria in cardiovascular disease. NPJ Biofilms Microbiomes 2023; 9:82. [PMID: 37903770 PMCID: PMC10616273 DOI: 10.1038/s41522-023-00448-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023] Open
Abstract
There has been an increase in cardiovascular morbidity and mortality over the past few decades, making cardiovascular disease (CVD) the leading cause of death worldwide. However, the pathogenesis of CVD is multi-factorial, complex, and not fully understood. The gut microbiome has long been recognized to play a critical role in maintaining the physiological and metabolic health of the host. Recent scientific advances have provided evidence that alterations in the gut microbiome and its metabolites have a profound influence on the development and progression of CVD. Among the trillions of microorganisms in the gut, bifidobacteria, which, interestingly, were found through the literature to play a key role not only in regulating gut microbiota function and metabolism, but also in reducing classical risk factors for CVD (e.g., obesity, hyperlipidemia, diabetes) by suppressing oxidative stress, improving immunomodulation, and correcting lipid, glucose, and cholesterol metabolism. This review explores the direct and indirect effects of bifidobacteria on the development of CVD and highlights its potential therapeutic value in hypertension, atherosclerosis, myocardial infarction, and heart failure. By describing the key role of Bifidobacterium in the link between gut microbiology and CVD, we aim to provide a theoretical basis for improving the subsequent clinical applications of Bifidobacterium and for the development of Bifidobacterium nutritional products.
Collapse
Affiliation(s)
- Jia Tang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Wenwu Zheng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Ying Zuo
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Peng Shi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Jinglin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Linjin Xiong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Huiyang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Qianjiao Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Suyu Yin
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Peng Cao
- The Affiliated Hospital of Traditional Chinese and Western Medicine Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, P.R. China.
| | - Nan Zeng
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China.
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
| |
Collapse
|
4
|
Hossain M, Park DS, Rahman MS, Ki SJ, Lee YR, Imran KM, Yoon D, Heo J, Lee TJ, Kim YS. Bifidobacterium longum DS0956 and Lactobacillus rhamnosus DS0508 culture-supernatant ameliorate obesity by inducing thermogenesis in obese-mice. Benef Microbes 2020; 11:361-373. [PMID: 32755263 DOI: 10.3920/bm2019.0179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Excessive body fat and the related dysmetabolic diseases affect both developed and developing countries. The aim of this study was to investigate the beneficial role of a bacterial culture supernatant (hereafter: BS) of Lactobacillus and Bifidobacterium and their potential mechanisms of action on white-fat browning and lipolysis. For selection of four candidates among 55 Lactic acid producing bacteria (LAB) from human infant faeces, we evaluated by Oil Red O staining and Ucp1 mRNA quantitation in 3T3-L1 preadipocytes. The expression of browning and lipolysis markers was examined along with in vitro assays. The possible mechanism was revealed by molecular and biological experiments including inhibitor and small interfering RNA (siRNA) assays. In a mouse model, physiological, histological, and biochemical parameters and expression of some thermogenesis-related genes were compared among six experimental groups fed a high-fat diet and one normal-diet control group. The results allow us to speculate that BS treatment promotes browning and lipolysis both in vitro and in vivo. Moreover, the BS may activate thermogenic programs via a mechanism involving PKA-CREB signaling in 3T3-L1 cells. According to our data, we can propose that two LAB strains, Bifidobacterium longum DS0956 and Lactobacillus rhamnosus DS0508, may be good candidates for a dietary supplement against obesity and metabolic diseases; however, further research is required for the development as dietary supplements or drugs.
Collapse
Affiliation(s)
- M Hossain
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan Chung-nam 31151, Republic of Korea.,Department of Microbiology, College of Medicine, Soonchunhyang University, Soonchunhyang 6 gil 31, Dongnam-Gu, Cheonan Chung-nam 31151, Republic of Korea
| | - D-S Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do 580-185, Republic of Korea
| | - M S Rahman
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan Chung-nam 31151, Republic of Korea.,Department of Microbiology, College of Medicine, Soonchunhyang University, Soonchunhyang 6 gil 31, Dongnam-Gu, Cheonan Chung-nam 31151, Republic of Korea
| | - S-J Ki
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do 580-185, Republic of Korea
| | - Y R Lee
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do 580-185, Republic of Korea
| | - K M Imran
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan Chung-nam 31151, Republic of Korea.,Department of Microbiology, College of Medicine, Soonchunhyang University, Soonchunhyang 6 gil 31, Dongnam-Gu, Cheonan Chung-nam 31151, Republic of Korea
| | - D Yoon
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan Chung-nam 31151, Republic of Korea.,Department of Microbiology, College of Medicine, Soonchunhyang University, Soonchunhyang 6 gil 31, Dongnam-Gu, Cheonan Chung-nam 31151, Republic of Korea
| | - J Heo
- International Agricultural Development and Cooperation Center, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - T-J Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Y-S Kim
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan Chung-nam 31151, Republic of Korea.,Department of Microbiology, College of Medicine, Soonchunhyang University, Soonchunhyang 6 gil 31, Dongnam-Gu, Cheonan Chung-nam 31151, Republic of Korea
| |
Collapse
|
5
|
Li S, Xu Y, Guo W, Chen F, Zhang C, Tan HY, Wang N, Feng Y. The Impacts of Herbal Medicines and Natural Products on Regulating the Hepatic Lipid Metabolism. Front Pharmacol 2020; 11:351. [PMID: 32265720 PMCID: PMC7105674 DOI: 10.3389/fphar.2020.00351] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
The dysregulation of hepatic lipid metabolism is one of the hallmarks in many liver diseases including alcoholic liver diseases (ALD) and non-alcoholic fatty liver diseases (NAFLD). Hepatic inflammation, lipoperoxidative stress as well as the imbalance between lipid availability and lipid disposal, are direct causes of liver steatosis. The application of herbal medicines with anti-oxidative stress and lipid-balancing properties has been extensively attempted as pharmaceutical intervention for liver disorders in experimental and clinical studies. Although the molecular mechanisms underlying their hepatoprotective effects warrant further exploration, increasing evidence demonstrated that many herbal medicines are involved in regulating lipid accumulation processes including hepatic lipolytic and lipogenic pathways, such as mitochondrial and peroxisomal β-oxidation, the secretion of very low density lipoprotein (VLDL), the non-esterified fatty acid (NEFA) uptake, and some vital hepatic lipogenic enzymes. Therefore, in this review, the pathways or crucial mediators participated in the dysregulation of hepatic lipid metabolism are systematically summarized, followed by the current evidences and advances in the positive impacts of herbal medicines and natural products on the lipid metabolism pathways are detailed. Furthermore, several herbal formulas, herbs or herbal derivatives, such as Erchen Dection, Danshen, resveratrol, and berberine, which have been extensively studied for their promising potential in mediating lipid metabolism, are particularly highlighted in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
6
|
Salazar N, Neyrinck AM, Bindels LB, Druart C, Ruas-Madiedo P, Cani PD, de Los Reyes-Gavilán CG, Delzenne NM. Functional Effects of EPS-Producing Bifidobacterium Administration on Energy Metabolic Alterations of Diet-Induced Obese Mice. Front Microbiol 2019; 10:1809. [PMID: 31440225 PMCID: PMC6693475 DOI: 10.3389/fmicb.2019.01809] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/23/2019] [Indexed: 01/14/2023] Open
Abstract
Obesity has been recognized by the World Health Organization as a global epidemic. The gut microbiota is considered as a factor involved in the regulation of numerous metabolic pathways by impacting several functions of the host. It has been suggested that probiotics can modulate host gene expression and metabolism, and thereby positively influence host adipose tissue development and obesity related-metabolic disorders. The aim of the present work was to evaluate the effect of an exopolysaccharide (EPS)-producing Bifidobacterium strain on host glucose and lipid metabolism and the gut microbial composition in a short-term diet-induced obesity (DIO) in mice. C57BL/6J male mice were randomly divided into three groups: a control group that received control standard diet, a group fed a high-fat diet (HF), and a group fed HF supplemented with Bifidobacterium animalis IPLA R1. Fasting serum insulin as well as triglycerides accumulation in the liver were significantly reduced in the group receiving B. animalis IPLA R1. The treatment with the EPS-producing B. animalis IPLA R1 tended to down-regulate the expression of host genes involved in the hepatic synthesis of fatty acids which was concomitant with an upregulation in the expression of genes related with fatty acid oxidation. B. animalis IPLA R1 not only promoted the increase of Bifidobacterium but also the levels of Bacteroides-Prevotella. Our data indicate that the EPS-producing Bifidobacterium IPLA R1 strain may have beneficial effects in metabolic disorders associated with obesity, by modulating the gut microbiota composition and promoting changes in lipids metabolism and glucose homeostasis.
Collapse
Affiliation(s)
- Nuria Salazar
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium.,Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Asturias, Spain.,Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Céline Druart
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Asturias, Spain
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Asturias, Spain.,Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
7
|
Shim K, Jacobi S, Odle J, Lin X. Pharmacologic activation of peroxisome proliferator-activating receptor-α accelerates hepatic fatty acid oxidation in neonatal pigs. Oncotarget 2018; 9:23900-23914. [PMID: 29844861 PMCID: PMC5963623 DOI: 10.18632/oncotarget.25199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 04/02/2018] [Indexed: 01/22/2023] Open
Abstract
Up-regulation of peroxisome proliferator-activating receptor-α (PPARα) and increasing fatty acid oxidation are important for reducing pre-weaning mortality of pigs. We examined the time-dependent regulatory effects of PPARα activation via oral postnatal clofibrate administration (75 mg/(kg-BW·d) for up to 7 days) on mitochondrial and peroxisomal fatty acid oxidation in pigs, a species with limited hepatic fatty acid oxidative capacity due to low ketogenesis. Hepatic oxidation was increased by 44-147% (depending on fatty acid chain-length) and was attained after only 4 days of clofibrate treatment. Acyl-CoA oxidase (ACO) and carnitine palmitoyltransferase I (CPTI) activities accelerated in parallel. The increase in CPTI activity was accompanied by a rapid reduction in the sensitivity of CPTI to malonyl-CoA inhibition. The mRNA abundance of CPTI and ACO, as well as peroxisomal keto-acyl-CoA thiolase (KetoACoA) and mitochondrial malonyl-CoA decarboxylase (MCD), also were augmented greatly. However, the increase in ACO activity and MCD expression were different from CPTI, and significant interactions were observed between postnatal age and clofibrate administration. Furthermore, the expression of acetyl-CoA carboxylase β (ACCβ) decreased with postnatal age and clofibrate had no effect on its expression. Collectively these results demonstrate that the expression of PPARα target genes and the increase in fatty acid oxidation induced by clofibrate are time- and age-dependent in the liver of neonatal pigs. Although the induction patterns of CPTI, MCD, ACO, KetoACoA, and ACCβ are different during the early postnatal period, 4 days of exposure to clofibrate were sufficient to robustly accelerate fatty acid oxidation.
Collapse
Affiliation(s)
- Kwanseob Shim
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA.,Current/Present address: Department of Animal Biotechnology, Chonbuk National University, Jeonju, 561-756 Republic of Korea
| | - Sheila Jacobi
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA.,Current/Present address: Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Jack Odle
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Xi Lin
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Dihingia A, Ozah D, Ghosh S, Sarkar A, Baruah PK, Kalita J, Sil PC, Manna P. Vitamin K1 inversely correlates with glycemia and insulin resistance in patients with type 2 diabetes (T2D) and positively regulates SIRT1/AMPK pathway of glucose metabolism in liver of T2D mice and hepatocytes cultured in high glucose. J Nutr Biochem 2018; 52:103-114. [PMID: 29175667 DOI: 10.1016/j.jnutbio.2017.09.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/18/2017] [Accepted: 09/28/2017] [Indexed: 01/09/2023]
Abstract
There is no previous study in the literature that has examined the relationship between circulating vitamin K1 (VK1) with glycemic status in type 2 diabetes (T2D). Moreover, scientific explanation for the beneficial role of VK1 supplementation in lowering glycemia in diabetes is yet to be determined. This study for the first time demonstrated that circulating VK1 was significantly lower in T2D patients compared to age-matched control subjects, and VK1 levels in T2D were significantly and inversely associated with fasting glucose and insulin resistance [homeostatic model assessment of insulin resistance (HOMA-IR)], which suggest that boosting plasma VK1 may reduce the fasting glucose and insulin resistance in T2D patients. Using high-fat-diet-fed T2D animal model, this study further investigated the positive effect of VK1 supplementation on glucose metabolism and examined the underlying molecular mechanism. Results showed that VK1 supplementation [1, 3, 5 μg/kg body weight (BW), 8 weeks] dose dependently improved the glucose tolerance; decreased BW gain, fasting glucose and insulin, glycated hemoglobin, HOMA-IR and cytokine secretion (monocyte chemoattractant protein-1 and interleukin-6); and regulated the signaling pathway of hepatic glucose metabolism [sirtuin 1 (SIRT1)/AMP-activated protein kinase (AMPK)/phosphoinositide 3-kinase/phosphatase and tensin homolog/glucose transporter 2/glucokinase/glucose 6 phosphatase], lipid oxidation (peroxisome proliferator-activated receptor alpha/carnitine palmitoyltransferase 1A) and inflammation (nuclear factor kappa B) in T2D mice. Comparative signal silencing studies also depicted the role of SIRT1/AMPK in mediating the effect of VK1 on glucose metabolism, lipid oxidation and inflammation in high-glucose-treated cultured hepatocytes. In conclusion, this study demonstrates that circulating VK1 has a positive effect on lowering fasting glucose and insulin resistance in T2D via regulating SIRT1/AMPK signaling pathway.
Collapse
Affiliation(s)
- Anjum Dihingia
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, Chennai, India
| | - Dibyajyoti Ozah
- Clinical Centre, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Shatadal Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Abhijit Sarkar
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Pranab Kumar Baruah
- Clinical Centre, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Jatin Kalita
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, Chennai, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Prasenjit Manna
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, Chennai, India.
| |
Collapse
|
9
|
Yang J, Zhang S, Henning SM, Lee R, Hsu M, Grojean E, Pisegna R, Ly A, Heber D, Li Z. Cholesterol-lowering effects of dietary pomegranate extract and inulin in mice fed an obesogenic diet. J Nutr Biochem 2018; 52:62-69. [DOI: 10.1016/j.jnutbio.2017.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/22/2017] [Accepted: 10/14/2017] [Indexed: 12/14/2022]
|
10
|
Jiang X, Greenwald E, Jack-Roberts C. Effects of Choline on DNA Methylation and Macronutrient Metabolic Gene Expression in In Vitro Models of Hyperglycemia. Nutr Metab Insights 2016; 9:11-7. [PMID: 27081315 PMCID: PMC4825771 DOI: 10.4137/nmi.s29465] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/28/2016] [Accepted: 03/04/2016] [Indexed: 12/20/2022] Open
Abstract
Choline is an essential nutrient that plays an important role in lipid metabolism and DNA methylation. Studies in rodents suggest that choline may adversely affect glycemic control, yet studies in humans are lacking. Using the human hepatic and placental cells, HepG2 and BeWo, respectively, we examined the interaction between choline and glucose treatments. In HepG2 cells, choline supplementation (1 mM) increased global DNA methylation and DNA methyltransferase expression in both low-glucose (5 mM) and high-glucose (35 mM) conditions. Choline supplementation increased the expression of peroxisomal acyl-coenzyme A oxidase 1 (ACOX1), which mediates fatty acid β-oxidation, especially in the high-glucose condition. High-glucose exposure increased the transcription of the gluconeogenic gene phosphoenolpyruvate carboxykinase (PEPCK), while choline supplementation mitigated such increase. Compared to HepG2 cells, the placenta-derived BeWo cells were relatively unresponsive to either high-glucose or -choline treatment. In conclusion, choline and glucose interacted to affect macronutrient metabolic genes, yet there was no indication that choline may worsen glycemic control in these in vitro human cell culture models.
Collapse
Affiliation(s)
- Xinyin Jiang
- Department of Health and Nutrition Sciences, Brooklyn College, Brooklyn, NY, USA
| | - Esther Greenwald
- Department of Health and Nutrition Sciences, Brooklyn College, Brooklyn, NY, USA
| | | |
Collapse
|
11
|
Fernández-Caggiano M, Prysyazhna O, Barallobre-Barreiro J, CalviñoSantos R, Aldama López G, Generosa Crespo-Leiro M, Eaton P, Doménech N. Analysis of Mitochondrial Proteins in the Surviving Myocardium after Ischemia Identifies Mitochondrial Pyruvate Carrier Expression as Possible Mediator of Tissue Viability. Mol Cell Proteomics 2015; 15:246-55. [PMID: 26582072 DOI: 10.1074/mcp.m115.051862] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 01/08/2023] Open
Abstract
The endogenous mechanisms contributing to tissue survival following myocardial infarction are not fully understood. We investigated the alterations in the mitochondrial proteome after ischemia-reperfusion (I/R) and its possible implications on cell survival. Mitochondrial proteomic analysis of cardiac tissue from an in vivo porcine I/R model found that surviving tissue in the peri-infarct border zone showed increased expression of several proteins. Notably, these included subunits of the mitochondrial pyruvate carrier (MPC), namely MPC1 and MPC2. Western blot, immunohistochemistry, and mRNA analysis corroborated the elevated expression of MPC in the surviving tissue. Furthermore, MPC1 and MPC2 protein levels were found to be markedly elevated in the myocardium of ischemic cardiomyopathy patients. These findings led to the hypothesis that increased MPC expression is cardioprotective due to enhancement of mitochondrial pyruvate uptake in the energy-starved heart following I/R. To test this, isolated mouse hearts perfused with a modified Krebs buffer (containing glucose, pyruvate, and octanoate as metabolic substrates) were subjected to I/R with or without the MPC transport inhibitor UK5099. UK5099 increased myocardial infarction and attenuated post-ischemic recovery of left ventricular end-diastolic pressure. However, aerobically perfused control hearts that were exposed to UK5099 did not modulate contractile function, although pyruvate uptake was blocked as evidenced by increased cytosolic lactate and pyruvate levels. Our findings indicate that increased expression of MPC leads to enhanced uptake and utilization of pyruvate during I/R. We propose this as a putative endogenous mechanism that promotes myocardial survival to limit infarct size.
Collapse
Affiliation(s)
- Mariana Fernández-Caggiano
- From the ‡Cardiovascular Division, King's College London, The Rayne Institute, and St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Oleksandra Prysyazhna
- From the ‡Cardiovascular Division, King's College London, The Rayne Institute, and St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | | | | | | | | | - Philip Eaton
- From the ‡Cardiovascular Division, King's College London, The Rayne Institute, and St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Nieves Doménech
- **Cardiac Biomarkers Group, Instituto de Investigación Biomédica de A Coruña, Complexo Hospitalario Universitario de A Coruña, As Xubias 84, 15006 A Coruña, Spain
| |
Collapse
|
12
|
Integrated physiology and systems biology of PPARα. Mol Metab 2014; 3:354-71. [PMID: 24944896 PMCID: PMC4060217 DOI: 10.1016/j.molmet.2014.02.002] [Citation(s) in RCA: 444] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 12/23/2022] Open
Abstract
The Peroxisome Proliferator Activated Receptor alpha (PPARα) is a transcription factor that plays a major role in metabolic regulation. This review addresses the functional role of PPARα in intermediary metabolism and provides a detailed overview of metabolic genes targeted by PPARα, with a focus on liver. A distinction is made between the impact of PPARα on metabolism upon physiological, pharmacological, and nutritional activation. Low and high throughput gene expression analyses have allowed the creation of a comprehensive map illustrating the role of PPARα as master regulator of lipid metabolism via regulation of numerous genes. The map puts PPARα at the center of a regulatory hub impacting fatty acid uptake, fatty acid activation, intracellular fatty acid binding, mitochondrial and peroxisomal fatty acid oxidation, ketogenesis, triglyceride turnover, lipid droplet biology, gluconeogenesis, and bile synthesis/secretion. In addition, PPARα governs the expression of several secreted proteins that exert local and endocrine functions.
Collapse
|
13
|
Arunkumar E, Karthik D, Anuradha CV. Genistein sensitizes hepatic insulin signaling and modulates lipid regulatory genes through p70 ribosomal S6 kinase-1 inhibition in high-fat-high-fructose diet-fed mice. PHARMACEUTICAL BIOLOGY 2013; 51:815-824. [PMID: 23627466 DOI: 10.3109/13880209.2013.766896] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Genistein reduces high-calorie diet-induced insulin resistance and fat accumulation in animals, but the mechanism is unresolved. OBJECTIVE This study explores whether action of genistein is associated with p70 ribosomal S6 kinase-1 (S6K1) inhibition. MATERIALS AND METHODS Adult male mice were fed either normal diet or high-fat-high-fructose diet (HFFD) for 15 days, after which animals in each dietary group were divided into two groups and administered either genistein (1 mg kg(-1) day(-1), p.o.) in 0.5 ml of 30% dimethylsulfoxide (DMSO) or 30% DMSO (0.5 ml) for the next 45 days. At the end of the study, their liver was analyzed for lipid content. Semi-quantitative RT-PCR and western blotting methods were used to analyze lipid regulatory genes and insulin signaling proteins, respectively. RESULTS Genistein significantly (p < 0.05) lowered HFFD-induced body and liver weight gain and plasma and hepatic lipid levels. Histology showed a 2.5-fold increase of lipid in HFFD compared to control. Genistein treatment to HFFD-fed animals significantly decreased lipid accumulation (by 40%) compared to HFFD. Insulin-stimulated tyrosine phosphorylation of insulin receptor-β and insulin receptor substrates-1 (IRS-1), IRS-1 associated phospatidylinositol-3kinase (PI3K) and Akt Ser(473) phosphorylation were improved while IRS-1 serine phosphorylation was significantly (p < 0.05) decreased by genistein in HFFD. Significant (p < 0.05) increase in adenosine monophosphate-activated protein kinase (AMPK) Thr(172) phosphorylation and decrease in S6K1 Thr(389) phosphorylation were observed in HFFD-plus genistein compared to HFFD. Genistein downregulated lipogenic genes and upregulated fatty acid oxidative genes in HFFD-fed mice. CONCLUSION Genistein improves insulin signaling and attenuates fat accumulation in liver through S6K1 inhibition.
Collapse
Affiliation(s)
- Elumalai Arunkumar
- Department of Biochemistry and Biotechnology, Annamalai University, Tamil Nadu, India
| | | | | |
Collapse
|
14
|
Sánchez-Gurmaches J, Cruz-Garcia L, Gutiérrez J, Navarro I. Endocrine control of oleic acid and glucose metabolism in rainbow trout (Oncorhynchus mykiss) muscle cells in culture. Am J Physiol Regul Integr Comp Physiol 2010; 299:R562-72. [PMID: 20484701 DOI: 10.1152/ajpregu.00696.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of insulin and IGF-I on fatty acid (FA) and glucose metabolism were examined using oleic acid or glucose as tracers in differentiated rainbow trout (Oncorhynchus mykiss) myotubes. Insulin and IGF-I significantly reduced the production of CO(2) from oleic acid with respect to the control values. IGF-I also significantly reduced the production of acid-soluble products (ASP) and the concentration of FA in the medium, while cellular triacylglycerols (TAG) tended to increase. Only insulin produced a significant accumulation of glycogen inside the cells in glucose distribution experiments. Incubation with catecholamines did not affect oleic acid metabolism. Cells treated with rapamycin [a target of rapamycin (TOR) inhibitor] significantly increased the oxidation of oleic acid to CO(2) and ASP, while the accumulation of TAG diminished. Rosiglitazone (a peroxisome proliferator-activated receptor gamma agonist) and etomoxir (a CPT-1 inhibitor) produced a severe and significant reduction in the production of CO(2) and ASP. Rosiglitazone and etomoxir also produced a significant accumulation of FA outside and inside the cells, respectively. No significant effects of these drugs on glucose distribution were observed. These data indicate that insulin and IGF-I act as anabolic hormones in trout myotubes in both oleic acid and glucose metabolism, although glucose oxidation appears to be less sensitive than FA oxidation to insulin and IGF-I. The use of rapamycin, etomoxir, and rosiglitazone may help us to understand the mechanisms of regulation of lipid metabolism in fish.
Collapse
|
15
|
Chronic, in vivo, PPARalpha activation prevents lipid overload in rat liver induced by high fat feeding. Adv Med Sci 2009; 54:59-65. [PMID: 19403437 DOI: 10.2478/v10039-009-0010-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Peroxisome proliferator-activated receptors (PPAR's) are lipid sensors and when activated they modify gene expression of proteins regulating fatty acid (FA) metabolism in liver cells. The aim of the present study was to examine the in vivo effects of PPAR alpha and gamma activation combined with high fat diet (HFD) feeding on the lipid content and FA profile in the liver. MATERIAL/METHODS We assessed whether in vivo activation of PPARs (alpha or gamma) affects lipid accumulation in the liver induced by HFD feeding. Furthermore, as PPAR activity may be a key factor regulating long chain fatty acids (LCFA) flux and subsequent LCFA utilization in the liver, we prompted to investigate also the FA profile in different lipid fractions in this tissue. RESULTS PPARalpha agonist (WY 14,643) treatment reduced the accumulation of liver lipids free fatty acids (FFA:-30%, diacylglycerols DAG: -27% and triacylglycerols TAG: -60%, p<0.05) evoked by HFD feeding. Interestingly, with PPARgamma stimulation liver lipid content was further elevated comparing to the effects of HFD (phospholipids PL: +48%, DAG: +231%, TAG: +346%, p<0.05). CONCLUSIONS These findings suggest that in vivo PPARalpha and PPARgamma activation combined with HFD feeding exert different effects on lipid content in rat's liver and in vivo PPARalpha activation may prevent lipid overload in the liver cells provoked by HFD feeding.
Collapse
|
16
|
Down-regulation in muscle and liver lipogenic genes: EPA ethyl ester treatment in lean and overweight (high-fat-fed) rats. J Nutr Biochem 2008; 20:705-14. [PMID: 18829285 DOI: 10.1016/j.jnutbio.2008.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 04/12/2008] [Accepted: 06/16/2008] [Indexed: 11/21/2022]
Abstract
The precise mechanisms by which omega-3 fatty acids improve fat metabolism are not completely understood. This study was designed to determine the effects of eicosapentaenoic acid (EPA) ethyl ester administration on the expression levels of several muscle, liver and adipose tissue genes involved in lipogenesis and fatty acid oxidation pathways. Male Wistar rats fed a standard diet (control animals) or a high-fat diet were treated daily by oral gavage with EPA ethyl ester (1g/kg) for 5 weeks. The high-fat diet caused a very significant increase in plasma cholesterol (P<.01) levels, which was reverted by EPA (P<.001). A significant decrease in circulating triglyceride levels (P<.05) was also observed in EPA-treated groups. EPA administration induced a significant down-regulation in some lipogenic genes such as muscle acetyl CoA carboxylase beta (ACC beta) (P<.05) and liver fatty acid synthase (FAS) (P<.05). Furthermore, a decrease in glucokinase (GK) gene expression was observed in EPA-treated animals fed a control diet (P<.01), whereas a significant increase in GK mRNA levels was found in groups fed a high-fat diet. On the other hand, no alterations in genes involved in beta-oxidation, such acetyl CoA synthase 4 (ACS4), acetyl CoA synthase 5 (ACS5) or acetyl CoA oxidase (ACO), were found in EPA-treated groups. Surprisingly and opposite to the expectations, a very significant decrease in the expression levels of liver PPARalpha (P<.01) was observed after EPA treatment. These findings show the ability of EPA ethyl ester treatment to down-regulate some genes involved in fatty acid synthesis without affecting the transcriptional activation of beta-oxidation-related genes.
Collapse
|
17
|
Baranowski M, Blachnio-Zabielska A, Zabielski P, Gorski J. Pioglitazone induces lipid accumulation in the rat heart despite concomitant reduction in plasma free fatty acid availability. Arch Biochem Biophys 2008; 477:86-91. [PMID: 18541139 DOI: 10.1016/j.abb.2008.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/19/2008] [Accepted: 05/21/2008] [Indexed: 10/22/2022]
Abstract
Thiazolidinediones are insulin-sensitizing drugs which have been proved to be effective in the treatment of type 2 diabetes. However, the action of thiazolidinediones on myocardial metabolism is only poorly recognized. Therefore, the aim of our study was to investigate the effects of two-week pioglitazone treatment (3 mg/kg/d) on lipid and carbohydrate metabolism in the heart of rats fed on a standard chow or on a high-fat diet (HFD) for three weeks. High-fat feeding increased myocardial protein expression of all peroxisome proliferator-activated receptor (PPAR) isoforms. The greatest response was, however, noted in the case of PPARgamma. Surprisingly, administration of pioglitazone induced accumulation of free fatty acids (FFA) and diacylglycerol in the heart in both groups, despite concomitant reduction in plasma FFA concentration. The content of triacylglycerol was increased only in the HFD group. Pioglitazone treatment also shifted myocardial substrate utilization towards greater contribution of glucose in both groups, as evidenced by decreased rate of palmitate oxidation and higher 2-deoxyglucose uptake and elevated glycogen content. This could induce a mismatch between the rate of myocardial fatty acid uptake and oxidation leading to increased intracellular availability of fatty acids for non-oxidative metabolic pathways like synthesis of acylglycerols. Our data suggests that thiazolidinediones improve cardiac insulin sensitivity by mechanisms other than reduction in intramyocardial lipid content.
Collapse
Affiliation(s)
- Marcin Baranowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c, 15-230 Bialystok, Poland.
| | | | | | | |
Collapse
|
18
|
Noland RC, Woodlief TL, Whitfield BR, Manning SM, Evans JR, Dudek RW, Lust RM, Cortright RN. Peroxisomal-mitochondrial oxidation in a rodent model of obesity-associated insulin resistance. Am J Physiol Endocrinol Metab 2007; 293:E986-E1001. [PMID: 17638705 DOI: 10.1152/ajpendo.00399.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisomal oxidation yields metabolites that are more efficiently utilized by mitochondria. This is of potential clinical importance because reduced fatty acid oxidation is suspected to promote excess lipid accumulation in obesity-associated insulin resistance. Our purpose was to assess peroxisomal contributions to mitochondrial oxidation in mixed gastrocnemius (MG), liver, and left ventricle (LV) homogenates from lean and fatty (fa/fa) Zucker rats. Results indicate that complete mitochondrial oxidation (CO(2) production) using various lipid substrates was increased approximately twofold in MG, unaltered in LV, and diminished approximately 50% in liver of fa/fa rats. In isolated mitochondria, malonyl-CoA inhibited CO(2) production from palmitate 78%, whereas adding isolated peroxisomes reduced inhibition to 21%. These data demonstrate that peroxisomal products may enter mitochondria independently of CPT I, thus providing a route to maintain lipid disposal under conditions where malonyl-CoA levels are elevated, such as in insulin-resistant tissues. Peroxisomal metabolism of lignoceric acid in fa/fa rats was elevated in both liver and MG (LV unaltered), but peroxisomal product distribution varied. A threefold elevation in incomplete oxidation was solely responsible for increased hepatic peroxisomal oxidation (CO(2) unaltered). Alternatively, only CO(2) was detected in MG, indicating that peroxisomal products were exclusively partitioned to mitochondria for complete lipid disposal. These data suggest tissue-specific destinations for peroxisome-derived products and emphasize a potential role for peroxisomes in skeletal muscle lipid metabolism in the obese, insulin-resistant state.
Collapse
Affiliation(s)
- Robert C Noland
- Department of Physiology, East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Morais S, Knoll-Gellida A, André M, Barthe C, Babin PJ. Conserved expression of alternative splicing variants of peroxisomal acyl-CoA oxidase 1 in vertebrates and developmental and nutritional regulation in fish. Physiol Genomics 2006; 28:239-52. [PMID: 17090698 DOI: 10.1152/physiolgenomics.00136.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The acyl-coenzyme A oxidase 1 (ACOX1) catalyzes the first, rate-limiting step in peroxisomal beta-oxidation of medium to very long straight-chain fatty acids. Zebrafish (Danio rerio) acox1 was characterized and compared with homologs from other sequenced genomes, revealing a remarkable conservation of structure in the vertebrate lineage. Strictly conserved regions of the deduced proteins included acyl-CoA oxidase and FAD binding domains, as well as a COOH-terminal peroxisomal targeting signal. Whole mount in situ hybridization showed that zebrafish acox1 transcripts were diffusely distributed in early-stage embryonic cells, then discreetly expressed in the brain and widely present in the liver and intestine at later stages. An evolutionarily conserved alternative splicing of the corresponding acox1 primary transcript was identified in teleosts and tetrapods including mammals, giving rise, after exon skipping, to two splice variants, ACOX1-3I and ACOX1-3II. Real-time quantitative RT-PCR on zebrafish adult tissues indicated high levels of both variants in the liver, anterior intestine, and to a lesser extent, in the brain. However, the ACOX1-3II transcript variant was expressed seven times more in zebrafish brain than the ACOX1-3I variant. These data suggest a tissue-specific modulation of ACOX1 activity by exchanging exon 3 duplicated isoforms containing amino acid sequences that are potentially implicated in fatty acyl chain specificity. In addition, a significant pretranslational up-regulation of zebrafish and rainbow trout (Oncorhynchus mykiss) acox1 expression was observed in the anterior intestine after feeding. Taken together, these data indicate that ACOX1 alternative splicing isoforms play a key conserved role in the vertebrate fatty acid metabolism.
Collapse
Affiliation(s)
- Sofia Morais
- Génomique et Physiologie des Poissons, Université Bordeaux 1, UMR NuAGe, 33405 Talence cedex, France
| | | | | | | | | |
Collapse
|
20
|
Panadero M, Herrera E, Bocos C. Different sensitivity of PPARalpha gene expression to nutritional changes in liver of suckling and adult rats. Life Sci 2005; 76:1061-72. [PMID: 15607334 DOI: 10.1016/j.lfs.2004.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 10/14/2004] [Indexed: 10/26/2022]
Abstract
The amount of peroxisome proliferator-activated receptor-alpha (PPARalpha) protein was markedly augmented in the liver of suckling rats compared to adult rats. This different PPARalpha abundance was used to study the sensitivity to nutritional changes in the expression and activity of this receptor. Thus, 10-day-old and adult rats were orally given either glucose, Intralipid or a combination of both diets, and liver mRNA levels of PPARalpha and the PPAR related genes, acyl-CoA oxidase (ACO) and phosphoenolpyruvate carboxykinase (PEPCK), and plasma metabolites were measured. In neonates, the expression of PPARalpha and ACO was seen to increase when the level of FFA in plasma was also high, unless an elevated level of insulin was also present. However, this fatty acid-induced effect was not detected in adult rats. On the contrary, the hepatic expression of PEPCK was modulated by the nutritional changes similarly in both neonates and adult rats. Thus, it may be concluded that the expression of the PPARalpha gene in adult rats seems to be less sensitive to nutritional changes than in neonates.
Collapse
Affiliation(s)
- Maribel Panadero
- Facultad de Ciencias Experimentales y de la Salud, Universidad San Pablo-CEU, Montepríncipe, Ctra. Boadilla del Monte Km. 5,300, 28668 Boadilla del Monte, Madrid, Spain
| | | | | |
Collapse
|
21
|
Benani A, Vol C, Heurtaux T, Asensio C, Dauça M, Lapicque F, Netter P, Minn A. Up-regulation of fatty acid metabolizing-enzymes mRNA in rat spinal cord during persistent peripheral local inflammation. Eur J Neurosci 2003; 18:1904-14. [PMID: 14622223 DOI: 10.1046/j.1460-9568.2003.02930.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Persistent peripheral inflammation is associated with repetitive painful inputs into the spinal cord, leading to a chronic pain state. Related dramatic changes occur in the central nervous system (CNS) including central sensitization, which results in hyperalgesia. This neural plasticity involves in part fatty acids as functional and structural compounds. We hypothesized that central modification of fatty acids metabolism might occur after prolonged peripheral noxious stimulation. In the present study, the regulation of genes involved in fatty acids metabolism in the rat CNS was investigated during a chronic pain state. Using semiquantitative RT-PCR, we explored in the neuraxis the mRNA expression of brain acyl-CoA synthetases (ACS) and acyl-CoA oxidase (ACO), which are major fatty acid-metabolizing enzymes, following complete Freund's adjuvant (CFA) injection into a hind paw. Similar spinal up-regulation of the isoforms ACS2, ACS3, ACS4, and of ACO was detected early after 30 min, reaching a maximal after 6 h post-injection. Other peaks were also observed after 4 and 21 days post-inoculation, corresponding to the acute and chronic inflammation, respectively. Induction occurred only in the lumbar spinal cord ipsilaterally to the inflamed paw and was completely inhibited by a local anaesthesia of the sciatic nerve, suggesting a neural transmission of the inducing signal. Moreover, intrathecal injection of MK801, a noncompetitive NMDA antagonist, partially prevented these inductions, highlighting the involvement of the neurotransmitter glutamate in the central ACS and ACO up-regulation. These findings suggest that the fatty metabolism is stimulated in the CNS during a chronic pain state.
Collapse
Affiliation(s)
- A Benani
- Laboratoire de Pharmacologie, Unité Mixte de Recherche 7561 CNRS-Université Henri Poincaré Nancy I, Faculté de Médecine, 54505 Vandoeuvre-les-Nancy, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ouali F, Djouadi F, Bastin J. Effects of fatty acids on mitochondrial beta-oxidation enzyme gene expression in renal cell lines. Am J Physiol Renal Physiol 2002; 283:F328-34. [PMID: 12110517 DOI: 10.1152/ajprenal.00324.2001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Regulatory effects of fatty acids on gene expression of medium-chain acyl-CoA dehydrogenase (MCAD), a mitochondrial beta-oxidation enzyme, were investigated in rabbit kidney cell lines derived from proximal tubule (RC.SV1), thick ascending limb of Henle's loop (RC.SV2), or collecting duct (RC.SV3). Exposure to long-chain fatty acids led to significant increases (2-fold) in MCAD mRNA abundance in RC.SV1 and RC.SV2 cells; kinetics and dose-response studies established that maximal MCAD gene stimulation was reached 4 h after addition of 50 microM oleate (C18:1) in the culture medium. These effects of fatty acids were totally abolished in the presence of 1 microg/ml actinomycin D, a transcription inhibitor. Staining of cellular lipids revealed that fatty acid-induced gene stimulation could occur in the absence of cellular fatty acid accumulation. Altogether, these data indicate that small changes in cellular fatty acid flux can have direct short-term effects on fatty acid oxidation enzyme gene expression in renal cells, and this might take part in the regulation of cellular fatty acid homeostasis in response to changes in tubular fluid composition.
Collapse
Affiliation(s)
- Fetta Ouali
- Institut National de la Santé et de la Recherche Médicale U319, Université Paris VII, 75015 Paris, France
| | | | | |
Collapse
|