1
|
Gupta NP, Batra A, Puri R, Meena V. Novel homozygous missense mutation in ABCA3 protein leading to severe respiratory distress in term infant. BMJ Case Rep 2020; 13:13/10/e235520. [PMID: 33040033 DOI: 10.1136/bcr-2020-235520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The term baby presented with respiratory distress with X-ray pictures consistent as hyaline membrane disease (HMD). Baby was ventilated and treated with surfactant. Because of the persistence of high ventilation needs with X-ray pictures consistent with HMD with a transient response to surfactant every time, the possibility of an inherited disorder of surfactant metabolism was kept. Whole-exome sequencing revealed a novel homozygous missense mutation in the gene for ATP binding cassette transporter protein A3. The baby died after 100 days of ventilation.
Collapse
Affiliation(s)
| | - Anil Batra
- Neonatology, Madhukar Rainbow Children Hospital, Delhi, India
| | - Ratna Puri
- Genetics, Sir Ganga Ram Hospital, Delhi, India
| | - Varun Meena
- Neonatology, Madhukar Rainbow Children Hospital, Delhi, India
| |
Collapse
|
2
|
A newborn screening pilot study using methylation-sensitive high resolution melting on dried blood spots to detect Prader-Willi and Angelman syndromes. Sci Rep 2020; 10:13026. [PMID: 32747801 PMCID: PMC7400512 DOI: 10.1038/s41598-020-69750-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022] Open
Abstract
Prader-Willi (PWS) and Angelman (AS) syndromes are two clinically distinct imprinted disorders characterized by genetic abnormalities at 15q11-q13. Early diagnosis of both syndromes provides improved treatment and accurate genetic counseling. Whole blood (WB) is the most common DNA source of many methodologies to detect PWS and AS, however, the need of WB makes a massive screening difficult in newborns due to economic and technical limitations. The aim of this study was to adapt a Methylation-sensitive High-Resolution Melting (MS-HRM) approach from dried blood spot (DBS) samples, assessing the different DNA isolation techniques and diagnostic performance. Over a 1-year period, we collected 125 DBS cards, of which 45 had already been diagnosed by MS-HRM (20 PWS, 1 AS, and 24 healthy individuals). We tested three different DBS-DNA extraction techniques assessing the DNA concentration and quality, followed by MS-HRM and statistical comparison. Each DBS-DNA extraction method was capable of accuracy in detecting all PWS and AS individuals. However, the efficiency to detect healthy individuals varied according to methodology. In our experience, DNA extracted from DBS analyzed by the MS-HRM methodology provides an accurate approach for genetic screening of imprinting related disorders in newborns, offering several benefits compared to traditional whole blood methods.
Collapse
|
3
|
Reversal of Surfactant Protein B Deficiency in Patient Specific Human Induced Pluripotent Stem Cell Derived Lung Organoids by Gene Therapy. Sci Rep 2019; 9:13450. [PMID: 31530844 PMCID: PMC6748939 DOI: 10.1038/s41598-019-49696-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Surfactant protein B (SFTPB) deficiency is a fatal disease affecting newborn infants. Surfactant is produced by alveolar type II cells which can be differentiated in vitro from patient specific induced pluripotent stem cell (iPSC)-derived lung organoids. Here we show the differentiation of patient specific iPSCs derived from a patient with SFTPB deficiency into lung organoids with mesenchymal and epithelial cell populations from both the proximal and distal portions of the human lung. We alter the deficiency by infecting the SFTPB deficient iPSCs with a lentivirus carrying the wild type SFTPB gene. After differentiating the mutant and corrected cells into lung organoids, we show expression of SFTPB mRNA during endodermal and organoid differentiation but the protein product only after organoid differentiation. We also show the presence of normal lamellar bodies and the secretion of surfactant into the cell culture medium in the organoids of lentiviral infected cells. These findings suggest that a lethal lung disease can be targeted and corrected in a human lung organoid model in vitro.
Collapse
|
4
|
Chen YJ, Wambach JA, DePass K, Wegner DJ, Chen SK, Zhang QY, Heins H, Cole FS, Hamvas A. Population-based frequency of surfactant dysfunction mutations in a native Chinese cohort. World J Pediatr 2016; 12:190-5. [PMID: 26547207 DOI: 10.1007/s12519-015-0047-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/14/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Rare mutations in surfactant-associated genes contribute to neonatal respiratory distress syndrome. The frequency of mutations in these genes in the Chinese population is unknown. METHODS We obtained blood spots from the Guangxi Neonatal Screening Center in Nanning, China that included Han (n=443) and Zhuang (n=313) ethnic groups. We resequenced all exons of the surfactant proteins-B (SFTPB), -C (SFTPC), and the ATP-binding cassette member A3 (ABCA3) genes and compared the frequencies of 5 common and all rare variants. RESULTS We found minor differences in the frequencies of the common variants in the Han and Zhuang cohorts. We did not find any rare mutations in SFTPB or SFTPC, but we found three ABCA3 mutations in the Han [minor allele frequency (MAF)=0.003] and 7 in the Zhuang (MAF=0.011) cohorts (P=0.10). The ABCA3 mutations were unique to each cohort; five were novel. The collapsed carrier rate of rare ABCA3 mutations in the Han and Zhuang populations combined was 1.3%, which is significantly lower than that in the United States (P<0.001). CONCLUSION The population-based frequency of mutations in ABCA3 in south China newborns is significantly lower than that in United States. The contribution of these rare ABCA3 mutations to disease burden in the south China population is still unknown.
Collapse
Affiliation(s)
- Yu-Jun Chen
- Division of Neonatology, Department of Pediatrics, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Jennifer Anne Wambach
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Kelcey DePass
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Daniel James Wegner
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Shao-Ke Chen
- Department of Pediatrics, Guangxi Maternal and Child Health Hospital, Nanning, China
| | - Qun-Yuan Zhang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - Hillary Heins
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Francis Sessions Cole
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Aaron Hamvas
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA. .,Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, 225 E. Chicago Ave, Box No. 45, Chicago, IL, 60611, USA.
| |
Collapse
|
5
|
Poulsen JB, Lescai F, Grove J, Bækvad-Hansen M, Christiansen M, Hagen CM, Maller J, Stevens C, Li S, Li Q, Sun J, Wang J, Nordentoft M, Werge TM, Mortensen PB, Børglum AD, Daly M, Hougaard DM, Bybjerg-Grauholm J, Hollegaard MV. High-Quality Exome Sequencing of Whole-Genome Amplified Neonatal Dried Blood Spot DNA. PLoS One 2016; 11:e0153253. [PMID: 27089011 PMCID: PMC4835089 DOI: 10.1371/journal.pone.0153253] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/26/2016] [Indexed: 12/16/2022] Open
Abstract
Stored neonatal dried blood spot (DBS) samples from neonatal screening programmes are a valuable diagnostic and research resource. Combined with information from national health registries they can be used in population-based studies of genetic diseases. DNA extracted from neonatal DBSs can be amplified to obtain micrograms of an otherwise limited resource, referred to as whole-genome amplified DNA (wgaDNA). Here we investigate the robustness of exome sequencing of wgaDNA of neonatal DBS samples. We conducted three pilot studies of seven, eight and seven subjects, respectively. For each subject we analysed a neonatal DBS sample and corresponding adult whole-blood (WB) reference sample. Different DNA sample types were prepared for each of the subjects. Pilot 1: wgaDNA of 2x3.2mm neonatal DBSs (DBS_2x3.2) and raw DNA extract of the WB reference sample (WB_ref). Pilot 2: DBS_2x3.2, WB_ref and a WB_ref replica sharing DNA extract with the WB_ref sample. Pilot 3: DBS_2x3.2, WB_ref, wgaDNA of 2x1.6 mm neonatal DBSs and wgaDNA of the WB reference sample. Following sequencing and data analysis, we compared pairwise variant calls to obtain a measure of similarity—the concordance rate. Concordance rates were slightly lower when comparing DBS vs WB sample types than for any two WB sample types of the same subject before filtering of the variant calls. The overall concordance rates were dependent on the variant type, with SNPs performing best. Post-filtering, the comparisons of DBS vs WB and WB vs WB sample types yielded similar concordance rates, with values close to 100%. WgaDNA of neonatal DBS samples performs with great accuracy and efficiency in exome sequencing. The wgaDNA performed similarly to matched high-quality reference—whole-blood DNA—based on concordance rates calculated from variant calls. No differences were observed substituting 2x3.2 with 2x1.6 mm discs, allowing for additional reduction of sample material in future projects.
Collapse
Affiliation(s)
- Jesper Buchhave Poulsen
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, Section of Neonatal Genetics, Statens Serum Institut, Copenhagen, Denmark
| | - Francesco Lescai
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- iSEQ - Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- iSEQ - Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Marie Bækvad-Hansen
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, Section of Neonatal Genetics, Statens Serum Institut, Copenhagen, Denmark
| | - Michael Christiansen
- Department for Congenital Disorders, Molecular Medicine, Statens Serum Institut, Copenhagen, Denmark
| | - Christian Munch Hagen
- Department for Congenital Disorders, Molecular Medicine, Statens Serum Institut, Copenhagen, Denmark
| | - Julian Maller
- Broad Institute, Stanley Center, Cambridge, Massachusetts, United States of America
| | - Christine Stevens
- Broad Institute, Stanley Center, Cambridge, Massachusetts, United States of America
| | - Shenting Li
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- iSEQ - Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | | | | | - Jun Wang
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- iSEQ - Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- BGI-Shenzhen, Shenzhen, China
| | - Merete Nordentoft
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- Mental Health Centre Copenhagen, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Mears Werge
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- Mental Health Centre Sct. Hans, Institute for Biological Psychiatry, Capital Region of Denmark, Roskilde, Denmark
| | - Preben Bo Mortensen
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- National Centre for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
| | - Anders Dupont Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- iSEQ - Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - Mark Daly
- Broad Institute, Stanley Center, Cambridge, Massachusetts, United States of America
| | - David Michael Hougaard
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, Section of Neonatal Genetics, Statens Serum Institut, Copenhagen, Denmark
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, The Danish Neonatal Screening Biobank, Statens Serum Institut, Copenhagen, Denmark
| | - Jonas Bybjerg-Grauholm
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, Section of Neonatal Genetics, Statens Serum Institut, Copenhagen, Denmark
- * E-mail:
| | - Mads Vilhelm Hollegaard
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, Section of Neonatal Genetics, Statens Serum Institut, Copenhagen, Denmark
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, The Danish Neonatal Screening Biobank, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
6
|
Kurath-Koller S, Resch B, Kraschl R, Windpassinger C, Eber E. Surfactant Protein B Deficiency Caused by Homozygous C248X Mutation-A Case Report and Review of the Literature. AJP Rep 2015. [PMID: 26199800 PMCID: PMC4502623 DOI: 10.1055/s-0035-1545668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Objective Surfactant protein B (SP-B) deficiency is a rare autosomal recessive disorder that is usually rapidly fatal. The c.397delCinsGAA mutation (121ins2) in exon 4 is found in more than two-thirds of patients. Design We report on a fatal case of SP-B deficiency caused by a homozygous C248X mutation in exon 7 of the SP-B gene. In addition, we provide an update of the current literature. The EMBASE, MEDLINE, and CINAHL databases were systematically searched to identify all papers published in the English and German literature on SP-B deficiency between 1989 and 2013. Results SP-B deficiency is characterized by progressive hypoxemic respiratory failure generally in full-term infants. They present with symptoms of respiratory distress and hypoxemia; chest X-ray resembles hyaline membrane disease. Prenatal diagnosis is possible from amniotic fluid or chorionic villi sampling. Conclusion Thirty-four mutations have been published in the literature. Treatment options are scarce. Gene therapy is hoped to be an option in the future.
Collapse
Affiliation(s)
- Stefan Kurath-Koller
- Division of General Pediatrics, Paediatric Department, Medical University of Graz, Graz, Austria
| | - Bernhard Resch
- Division of Neonatology, Paediatric Department, Research Unit for Neonatal Infectious Diseases and Epidemiology, Medical University of Graz, Graz, Austria
| | - Raimund Kraschl
- Division of Neonatology, Pediatric Department, General Hospital of Klagenfurt, Klagenfurt, Austria
| | | | - Ernst Eber
- Division of Pulmonology, Paediatric Department, Medical University of Graz, Graz, Austria
| |
Collapse
|
7
|
Jo HS. Genetic risk factors associated with respiratory distress syndrome. KOREAN JOURNAL OF PEDIATRICS 2014; 57:157-63. [PMID: 24868212 PMCID: PMC4030116 DOI: 10.3345/kjp.2014.57.4.157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 03/14/2014] [Indexed: 01/06/2023]
Abstract
Respiratory distress syndrome (RDS) among preterm infants is typically due to a quantitative deficiency of pulmonary surfactant. Aside from the degree of prematurity, diverse environmental and genetic factors can affect the development of RDS. The variance of the risk of RDS in various races/ethnicities or monozygotic/dizygotic twins has suggested genetic influences on this disorder. So far, several specific mutations in genes encoding surfactant-associated molecules have confirmed this. Specific genetic variants contributing to the regulation of pulmonary development, its structure and function, or the inflammatory response could be candidate risk factors for the development of RDS. This review summarizes the background that suggests the genetic predisposition of RDS, the identified mutations, and candidate genetic polymorphisms of pulmonary surfactant proteins associated with RDS.
Collapse
Affiliation(s)
- Heui Seung Jo
- Department of Pediatrics, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| |
Collapse
|
8
|
Hamvas A, Deterding R, Balch WE, Schwartz DA, Albertine KH, Whitsett JA, Cardoso WV, Kotton DN, Kourembanas S, Hagood JS. Diffuse lung disease in children: summary of a scientific conference. Pediatr Pulmonol 2014; 49:400-9. [PMID: 23798474 PMCID: PMC4145861 DOI: 10.1002/ppul.22805] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/24/2013] [Indexed: 12/14/2022]
Abstract
A multi-disciplinary scientific conference focused on diffuse and interstitial lung diseases in children was held in La Jolla, CA in June 2012. The conference brought together clinicians (including Pediatric and Adult Pulmonologists, Neonatologists, Pathologists, and Radiologists), clinical researchers, basic scientists, government agency representatives, patient advocates, as well as children affected by diffuse lung disease (DLD) and their families, to review recent scientific developments and emerging concepts in the pathophysiology of childhood DLD. Invited speakers discussed translational approaches, including genetics and proteomics, epigenetics and epigenomics, models of DLD, including animal models and induced pluripotent stem cells, and regenerative medicine approaches. The presentations of the invited speakers are summarized here.
Collapse
Affiliation(s)
- Aaron Hamvas
- Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kurland G, Deterding RR, Hagood JS, Young LR, Brody AS, Castile RG, Dell S, Fan LL, Hamvas A, Hilman BC, Langston C, Nogee LM, Redding GJ. An official American Thoracic Society clinical practice guideline: classification, evaluation, and management of childhood interstitial lung disease in infancy. Am J Respir Crit Care Med 2013; 188:376-94. [PMID: 23905526 DOI: 10.1164/rccm.201305-0923st] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND There is growing recognition and understanding of the entities that cause interstitial lung disease (ILD) in infants. These entities are distinct from those that cause ILD in older children and adults. METHODS A multidisciplinary panel was convened to develop evidence-based guidelines on the classification, diagnosis, and management of ILD in children, focusing on neonates and infants under 2 years of age. Recommendations were formulated using a systematic approach. Outcomes considered important included the accuracy of the diagnostic evaluation, complications of delayed or incorrect diagnosis, psychosocial complications affecting the patient's or family's quality of life, and death. RESULTS No controlled clinical trials were identified. Therefore, observational evidence and clinical experience informed judgments. These guidelines: (1) describe the clinical characteristics of neonates and infants (<2 yr of age) with diffuse lung disease (DLD); (2) list the common causes of DLD that should be eliminated during the evaluation of neonates and infants with DLD; (3) recommend methods for further clinical investigation of the remaining infants, who are regarded as having "childhood ILD syndrome"; (4) describe a new pathologic classification scheme of DLD in infants; (5) outline supportive and continuing care; and (6) suggest areas for future research. CONCLUSIONS After common causes of DLD are excluded, neonates and infants with childhood ILD syndrome should be evaluated by a knowledgeable subspecialist. The evaluation may include echocardiography, controlled ventilation high-resolution computed tomography, infant pulmonary function testing, bronchoscopy with bronchoalveolar lavage, genetic testing, and/or lung biopsy. Preventive care, family education, and support are essential.
Collapse
|
10
|
St. Julien KR, Jelliffe-Pawlowski LL, Shaw GM, Stevenson DK, O’Brodovich HM, Krasnow MA. High quality genome-wide genotyping from archived dried blood spots without DNA amplification. PLoS One 2013; 8:e64710. [PMID: 23737996 PMCID: PMC3667813 DOI: 10.1371/journal.pone.0064710] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/17/2013] [Indexed: 11/19/2022] Open
Abstract
Spots of blood are routinely collected from newborn babies onto filter paper called Guthrie cards and used to screen for metabolic and genetic disorders. The archived dried blood spots are an important and precious resource for genomic research. Whole genome amplification of dried blood spot DNA has been used to provide DNA for genome-wide SNP genotyping. Here we describe a 96 well format procedure to extract DNA from a portion of a dried blood spot that provides sufficient unamplified genomic DNA for genome-wide single nucleotide polymorphism (SNP) genotyping. We show that SNP genotyping of the unamplified DNA is more robust than genotyping amplified dried blood spot DNA, is comparable in cost, and can be done with thousands of samples. This procedure can be used for genome-wide association studies and other large-scale genomic analyses that require robust, high-accuracy genotyping of dried blood spot DNA.
Collapse
Affiliation(s)
- Krystal R. St. Julien
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Laura L. Jelliffe-Pawlowski
- California Genetic Disease Screening Program of the California Department of Public Health, Richmond, California, United States of America
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - David K. Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Hugh M. O’Brodovich
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mark A. Krasnow
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| | | |
Collapse
|
11
|
Carlsson PI, Karltorp E, Carlsson-Hansén E, Åhlman H, Möller C, Vondöbeln U. GJB2 (Connexin 26) gene mutations among hearing-impaired persons in a Swedish cohort. Acta Otolaryngol 2012; 132:1301-5. [PMID: 23039283 DOI: 10.3109/00016489.2012.701018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION The most common mutation in the Swedish population was Connexin 26 (C×26) 35delG, which indicates that the percentage of Swedish persons with C×26 mutations and polymorphisms in the GJB2 gene among non-syndromic hearing-impaired (HI) persons is comparable to the rest of Europe. The results strongly support a Swedish policy to offer all children with diagnosed hearing impairment genetic tests for the C×26 35delG mutation. OBJECTIVES The aim of the present study was to search for mutations in the GBJ2 gene among Swedish persons with non-syndromic hearing impairment to further clarify how common these mutations are in Sweden, one of the northernmost countries in Europe. METHODS Seventy-nine patients with non-syndromic hearing impairment participated in the study. For 87% of the participants, a pure tone audiogram showed a severe or profound hearing impairment. Dried blood spots on filter paper, taken at 3-5 days of age in the Swedish nationwide neonatal screening programme for congenital disorders and saved in a biobank, were used for the molecular genetic analyses. RESULTS The total number of subjects with one or two pathologic mutations or a mutation of unknown consequence found in the GJB2 gene was 28 of 79 (35%). Nineteen (19) persons (24%) were homozygotes for the 35delG mutation.
Collapse
Affiliation(s)
- Per-Inge Carlsson
- Department of Otorhinolaryngology, Central Hospital, Karlstad, Sweden.
| | | | | | | | | | | |
Collapse
|
12
|
Wambach JA, Wegner DJ, DePass K, Heins H, Druley TE, Mitra RD, An P, Zhang Q, Nogee LM, Cole FS, Hamvas A. Single ABCA3 mutations increase risk for neonatal respiratory distress syndrome. Pediatrics 2012; 130:e1575-82. [PMID: 23166334 PMCID: PMC3507255 DOI: 10.1542/peds.2012-0918] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Neonatal respiratory distress syndrome (RDS) due to pulmonary surfactant deficiency is heritable, but common variants do not fully explain disease heritability. METHODS Using next-generation, pooled sequencing of race-stratified DNA samples from infants ≥34 weeks' gestation with and without RDS (n = 513) and from a Missouri population-based cohort (n = 1066), we scanned all exons of 5 surfactant-associated genes and used in silico algorithms to identify functional mutations. We validated each mutation with an independent genotyping platform and compared race-stratified, collapsed frequencies of rare mutations by gene to investigate disease associations and estimate attributable risk. RESULTS Single ABCA3 mutations were overrepresented among European-descent RDS infants (14.3% of RDS vs 3.7% of non-RDS; P = .002) but were not statistically overrepresented among African-descent RDS infants (4.5% of RDS vs 1.5% of non-RDS; P = .23). In the Missouri population-based cohort, 3.6% of European-descent and 1.5% of African-descent infants carried a single ABCA3 mutation. We found no mutations among the RDS infants and no evidence of contribution to population-based disease burden for SFTPC, CHPT1, LPCAT1, or PCYT1B. CONCLUSIONS In contrast to lethal neonatal RDS resulting from homozygous or compound heterozygous ABCA3 mutations, single ABCA3 mutations are overrepresented among European-descent infants ≥34 weeks' gestation with RDS and account for ~10.9% of the attributable risk among term and late preterm infants. Although ABCA3 mutations are individually rare, they are collectively common among European- and African-descent individuals in the general population.
Collapse
Affiliation(s)
| | | | | | | | - Todd E. Druley
- Division of Hematology and Oncology, the Edward Mallinckrodt Department of Pediatrics,,Center for Genome Sciences and Systems Biology, Department of Genetics
| | - Robi D. Mitra
- Center for Genome Sciences and Systems Biology, Department of Genetics
| | - Ping An
- Division of Statistical Genomics, Washington University School of Medicine, St Louis, Missouri; and
| | - Qunyuan Zhang
- Division of Statistical Genomics, Washington University School of Medicine, St Louis, Missouri; and
| | - Lawrence M. Nogee
- Division of Neonatal–Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|
13
|
Karltorp E, Hellström S, Lewensohn-Fuchs I, Carlsson-Hansén E, Carlsson PI, Engman ML. Congenital cytomegalovirus infection - a common cause of hearing loss of unknown aetiology. Acta Paediatr 2012; 101:e357-62. [PMID: 22519989 DOI: 10.1111/j.1651-2227.2012.02711.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM The aim of this study was to investigate the role of congenital cytomegalovirus (CMV) infection as a cause of various types of sensorineural hearing loss (SNHL) in a group of nonsyndromic children with otherwise unknown aetiology of hearing loss. Furthermore, the occurrence of combined congenital CMV infection and connexin 26 (Cx26) mutations was investigated. METHODS The dried blood spot (DBS) cards of 45 children with various degrees of hearing deficits and 46 children with severe/profound hearing loss were tested for CMV DNA with polymerase chain reaction (PCR) technique. The DBS cards of the 46 children with severe/profound hearing loss were also analysed for Cx26 mutations. RESULTS Of the 45 children with various degrees of hearing loss, nine were positive for CMV DNA (20%). The nine children represented severe/profound, mild and unilateral hearing loss. From the 46 children with severe/profound hearing loss, nine of 46 (20%) were positive for CMV DNA. In addition, three of the CMV DNA-positive children were carriers of mutations of Cx26. CONCLUSION Congenital CMV infection is a high risk factor in hearing impairment among children.
Collapse
Affiliation(s)
- Eva Karltorp
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
INTRODUCTION Member A3 of the ATP-binding cassette family of transporters (ABCA3) is essential for surfactant metabolism. Nonsense, missense, frameshift, and splice-site mutations in the ABCA3 gene (ABCA3) have been reported as causes of neonatal respiratory failure (NRF) and interstitial lung disease. We tested the hypothesis that mutations in noncoding regions of ABCA3 may cause lung disease. METHODS ABCA3-specific cDNA was generated and sequenced from frozen lung tissue from a child with fatal lung disease with only one identified ABCA3 mutation. ABCA3 was sequenced from genomic DNA prepared from blood samples obtained from the proband, parents, and other children with NRF. RESULTS ABCA3 cDNA from the proband contained sequences derived from intron 25 that would be predicted to alter the structure and function of the ABCA3 protein. Genomic DNA sequencing revealed a heterozygous C>T transition in intron 25 trans to the known mutation, creating a new donor splice site. Seven additional infants with an ABCA3-deficient phenotype and inconclusive genetic findings had this same variant, which was not found in 2,132 control chromosomes. DISCUSSION These findings support that this variant is a disease-causing mutation that may account for additional cases of ABCA3 deficiency with negative genetic studies.
Collapse
|
15
|
Nagy ZT. A hands-on overview of tissue preservation methods for molecular genetic analyses. ORG DIVERS EVOL 2010. [DOI: 10.1007/s13127-010-0012-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Bækvad-Hansen M, Dahl M, Tybjærg-Hansen A, Nordestgaard BG. Surfactant Protein-B 121ins2 Heterozygosity, Reduced Pulmonary Function, and Chronic Obstructive Pulmonary Disease in Smokers. Am J Respir Crit Care Med 2010; 181:17-20. [DOI: 10.1164/rccm.200906-0963oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
17
|
Yip L, Zaloumis S, Irwin D, Severi G, Hopper J, Giles G, Harrap S, Sinclair R, Ellis J. Gene-wide association study between the aromatase gene (CYP19A1) and female pattern hair loss. Br J Dermatol 2009; 161:289-94. [DOI: 10.1111/j.1365-2133.2009.09186.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Hederstierna C, Möller C, Åhlman H, Lundberg R, Von Döbeln U. The Prevalence of Connexin 26 Mutations in the Swedish Population. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/16513860500222404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Hollegaard MV, Grove J, Thorsen P, Nørgaard-Pedersen B, Hougaard DM. High-Throughput Genotyping on Archived Dried Blood Spot Samples. Genet Test Mol Biomarkers 2009; 13:173-9. [DOI: 10.1089/gtmb.2008.0073] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Mads V. Hollegaard
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
- NANEA, Department of Epidemiology, Institute of Public Health, University of Aarhus, Aarhus, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jakob Grove
- NANEA, Department of Epidemiology, Institute of Public Health, University of Aarhus, Aarhus, Denmark
| | - Poul Thorsen
- NANEA, Department of Epidemiology, Institute of Public Health, University of Aarhus, Aarhus, Denmark
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Bent Nørgaard-Pedersen
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - David M. Hougaard
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
20
|
Quantification of rare allelic variants from pooled genomic DNA. Nat Methods 2009; 6:263-5. [PMID: 19252504 PMCID: PMC2776647 DOI: 10.1038/nmeth.1307] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 02/02/2009] [Indexed: 12/02/2022]
Abstract
Rare germline variants are difficult to identify using traditional sequencing due to relatively high cost and low throughput. Using second-generation sequencing, we report a targeted, cost-effective method to quantify rare SNPs from pooled genomic DNA. We pooled DNA from 1,111 individuals and targeted four genes. Our novel base-calling algorithm, SNPSeeker, derived from Large Deviation theory, can detect SNPs present at frequencies below the raw error rate of the sequencing platform
Collapse
|
21
|
Abstract
Mutations in the genes encoding the surfactant proteins B and C (SP-B and SP-C) and the phospholipid transporter, ABCA3, are associated with respiratory distress and interstitial lung disease in the pediatric population. Expression of these proteins is regulated developmentally, increasing with gestational age, and is critical for pulmonary surfactant function at birth. Pulmonary surfactant is a unique mixture of lipids and proteins that reduces surface tension at the air-liquid interface, preventing collapse of the lung at the end of expiration. SP-B and ABCA3 are required for the normal organization and packaging of surfactant phospholipids into specialized secretory organelles, known as lamellar bodies, while both SP-B and SP-C are important for adsorption of secreted surfactant phospholipids to the alveolar surface. In general, mutations in the SP-B gene SFTPB are associated with fatal respiratory distress in the neonatal period, and mutations in the SP-C gene SFTPC are more commonly associated with interstitial lung disease in older infants, children, and adults. Mutations in the ABCA3 gene are associated with both phenotypes. Despite this general classification, there is considerable overlap in the clinical and histologic characteristics of these genetic disorders. In this review, similarities and differences in the presentation of these disorders with an emphasis on their histochemical and ultrastructural features will be described, along with a brief discussion of surfactant metabolism. Mechanisms involved in the pathogenesis of lung disease caused by mutations in these genes will also be discussed.
Collapse
Affiliation(s)
- Susan E. Wert
- Perinatal Institute, Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Jeffrey A. Whitsett
- Perinatal Institute, Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Lawrence M. Nogee
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
22
|
Garmany TH, Wambach JA, Heins HB, Watkins-Torry JM, Wegner DJ, Bennet K, An P, Land G, Saugstad OD, Henderson H, Nogee LM, Cole FS, Hamvas A. Population and disease-based prevalence of the common mutations associated with surfactant deficiency. Pediatr Res 2008; 63:645-9. [PMID: 18317237 PMCID: PMC2765719 DOI: 10.1203/pdr.0b013e31816fdbeb] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The prevalence of the common mutations in the surfactant protein-B (121ins2), surfactant protein-C (I73T), and ATP-binding cassette member A3 (E292V) genes in population-based or case-control cohorts of newborn respiratory distress syndrome (RDS) is unknown. We determined the frequencies of these mutations in ethnically diverse population and disease-based cohorts using restriction enzyme analysis (121ins2 and E292V) and a 5' nuclease assay (I73T) in DNA samples from population-based cohorts in Missouri, Norway, South Korea, and South Africa, and from a case-control cohort of newborns with and without RDS (n = 420). We resequenced the ATP-binding cassette member A3 gene (ABCA3) in E292V carriers and computationally inferred ABCA3 haplotypes. The population-based frequencies of 121ins2, E292V, and I73T were rare (<0.4%). E292V was present in 3.8% of newborns with RDS, a 10-fold greater prevalence than in the Missouri cohort (p < 0.001). We did not identify other loss of function mutations in ABCA3 among patients with E292V that would account for their RDS. E292V occurred on a unique haplotype that was derived from a recombination of two common ABCA3 haplotypes. E292V was over-represented in newborns with RDS suggesting that E292V or its unique haplotype impart increased genetic risk for RDS.
Collapse
Affiliation(s)
- Tami H. Garmany
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children’s Hospital, St. Louis, Missouri 63110 USA
| | - Jennifer A. Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children’s Hospital, St. Louis, Missouri 63110 USA
| | - Hillary B. Heins
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children’s Hospital, St. Louis, Missouri 63110 USA
| | - Julie M. Watkins-Torry
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children’s Hospital, St. Louis, Missouri 63110 USA
| | - Daniel J. Wegner
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children’s Hospital, St. Louis, Missouri 63110 USA
| | - Kate Bennet
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children’s Hospital, St. Louis, Missouri 63110 USA
| | - Ping An
- Division of Statistical Genomics and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110 USA
| | - Garland Land
- Missouri Department of Health and Senior Services, Jefferson City, Missouri 65102 USA
| | - O. D. Saugstad
- Department of Pediatric Research, Rikshospitalet Medical Center, University of Oslo, Oslo, 0027 Norway
| | - Howard Henderson
- Department of Chemical Pathology, University of Cape Town and NHLS, Cape Town, 7925 South Africa
| | - Lawrence M. Nogee
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland 21287 USA
| | - F. Sessions Cole
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children’s Hospital, St. Louis, Missouri 63110 USA
| | - Aaron Hamvas
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children’s Hospital, St. Louis, Missouri 63110 USA
| |
Collapse
|
23
|
McBee AD, Wegner DJ, Carlson CS, Wambach JA, Yang P, Heins HB, Saugstad OD, Trusgnich MA, Watkins-Torry J, Nogee LM, Henderson H, Cole FS, Hamvas A. Recombination as a mechanism for sporadic mutation in the surfactant protein-C gene. Pediatr Pulmonol 2008; 43:443-50. [PMID: 18383112 PMCID: PMC2765708 DOI: 10.1002/ppul.20782] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To determine haplotype background of common mutations in the genes encoding surfactant proteins B and C (SFTPB and SFTPC) and to assess recombination in SFTPC. STUDY DESIGN Using comprehensive resequencing of SFTPC and SFTPB, we assessed linkage disequilibrium (LD) (D'), and computationally inferred haplotypes. We computed average recombination rates and Bayes factors (BFs) within SFTPC in a population cohort and near SFTPC (+/-50 kb) in HapMap cohorts. We then biochemically confirmed haplotypes in families with sporadic SFTPC mutations (n = 11) and in individuals with the common SFTPB mutation (121ins2, n = 30). RESULTS We detected strong evidence (weak LD and BFs > 1,400) for an intragenic recombination hot spot in both genes. The 121ins2 SFTPB mutation occurred predominantly (89%) on 2 common haplotypes. In contrast, no consistent haplotypes were associated with mutated SFTPC alleles. Sporadic SFTPC mutations arose on the paternal allele in four of five families; the remaining child had evidence for somatic recombination on the mutated allele. CONCLUSIONS In contrast to SFTPB, disease alleles at SFTPC do not share a common haplotype background. Most sporadic mutations in SFTPC occurred on the paternal allele, but somatic recombination may be an important mechanism of mutation in SFTPC.
Collapse
Affiliation(s)
- Amy D McBee
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Genetic Abnormalities of Surfactant Metabolism. MOLECULAR PATHOLOGY LIBRARY 2008. [PMCID: PMC7147445 DOI: 10.1007/978-0-387-72430-0_54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pulmonary surfactant is the complex mixture of lipids and proteins needed to reduce alveolar surface tension at the air-liquid interface and prevent alveolar collapse at the end of expiration. It has been recognized for almost 50 years that a deficiency in surfactant production due to pulmonary immaturity is the principal cause of the respiratory distress syndrome (RDS) observed in prematurely born infants.1 Secondary surfactant deficiency due to injury to the cells involved in its production and functional inactivation of surfactant is also important in the pathophysiology of acute respiratory distress syndrome (ARDS) observed in older children and adults.2,3 In the past 15 years, it has been recognized that surfactant deficiency may result from genetic mechanisms involving mutations in genes encoding critical components of the surfactant system or proteins involved in surfactant metabolism.4,5 Although rare, these single gene disorders provide important insights into normal surfactant metabolism and into the genes in which frequently occurring allelic variants may be important in more common pulmonary diseases.
Collapse
|
25
|
Hamvas A, Wegner DJ, Carlson CS, Bergmann KR, Trusgnich MA, Fulton L, Kasai Y, An P, Mardis ER, Wilson RK, Cole FS. Comprehensive genetic variant discovery in the surfactant protein B gene. Pediatr Res 2007; 62:170-5. [PMID: 17597650 PMCID: PMC2765713 DOI: 10.1203/pdr.0b013e3180a03232] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Completely penetrant mutations in the surfactant protein B gene (SFTPB) and >75% reduction of SFTPB expression disrupt pulmonary surfactant function and cause neonatal respiratory distress syndrome. To inform studies of genetic regulation of SFTPB expression, we created a catalogue of SFTPB variants by comprehensive resequencing from an unselected, population-based cohort (n = 1,116). We found an excess of low-frequency variation [81 SNPs and five small insertion/deletions (in/dels)]. Despite its small genomic size (9.7 kb), SFTPB was characterized by weak linkage disequilibrium (LD) and high haplotype diversity. Using the HapMap Yoruban and European populations, we identified a recombination hot spot that spans SFTPB, was not detectable in our focused resequencing data, and accounts for weak LD. Using homology-based software tools, we discovered no definitively damaging exonic variants. We conclude that excess low-frequency variation, intragenic recombination and lack of common disruptive exonic variants favor complete resequencing as the optimal approach for genetic association studies to identify regulatory SFTPB variants that cause neonatal respiratory distress syndrome in genetically diverse populations.
Collapse
Affiliation(s)
- Aaron Hamvas
- Division of Newborn Medicine, the Edward Mallinckrodt Department of Pediatrics, the Genome Sequencing Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA, 63110
| | - Daniel J. Wegner
- Division of Newborn Medicine, the Edward Mallinckrodt Department of Pediatrics, the Genome Sequencing Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA, 63110
| | - Christopher S. Carlson
- Division of Public Health Sciences, the Fred Hutchinson Cancer Research Center, Seattle, Washington, USA, 98109
| | - Kelly R. Bergmann
- Division of Newborn Medicine, the Edward Mallinckrodt Department of Pediatrics, the Genome Sequencing Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA, 63110
| | - Michelle A. Trusgnich
- Division of Newborn Medicine, the Edward Mallinckrodt Department of Pediatrics, the Genome Sequencing Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA, 63110
| | - Lucinda Fulton
- Division of Newborn Medicine, the Edward Mallinckrodt Department of Pediatrics, the Genome Sequencing Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA, 63110
| | - Yumi Kasai
- Division of Newborn Medicine, the Edward Mallinckrodt Department of Pediatrics, the Genome Sequencing Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA, 63110
| | - Ping An
- Division of Newborn Medicine, the Edward Mallinckrodt Department of Pediatrics, the Genome Sequencing Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA, 63110
| | - Elaine R. Mardis
- Division of Newborn Medicine, the Edward Mallinckrodt Department of Pediatrics, the Genome Sequencing Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA, 63110
| | - Richard K. Wilson
- Division of Newborn Medicine, the Edward Mallinckrodt Department of Pediatrics, the Genome Sequencing Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA, 63110
| | - F. Sessions Cole
- Division of Newborn Medicine, the Edward Mallinckrodt Department of Pediatrics, the Genome Sequencing Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA, 63110
- Corresponding author: F. Sessions Cole, M.D. St. Louis Children's Hospital One Children's Place St. Louis, Missouri 63110 Office – 314-454-6148 Facsimile – 314-454-4633
| |
Collapse
|
26
|
Sørensen KM, Jespersgaard C, Vuust J, Hougaard D, Nørgaard-Pedersen B, Andersen PS. Whole Genome Amplification on DNA from Filter Paper Blood Spot Samples: An Evaluation of Selected Systems. ACTA ACUST UNITED AC 2007; 11:65-71. [PMID: 17394394 DOI: 10.1089/gte.2006.0503] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
As the number of single-nucleotide polymorphism (SNP) screening and other mutation scanning studies have increased explosively, following the development of high-throughput instrumentation, it becomes even more important to have sufficient template DNA. The source of DNA is often limited, especially in epidemiological studies, which require many samples as well as enough DNA to perform numerous SNP screenings or mutation scannings. Therefore, the aim is to solve the problem of stock DNA limitation. This need has been an important reason for the development of whole genome amplification (WGA) methods. Several systems are based on Phi29 polymerase multiple displacement amplification (MDA) or on DNA fragmentation (OmniPlex). Using TaqMan SNP genotyping assays, we have tested four WGA systems -- AmpliQ Genomic Amplifier Kit, GenomiPhi, Repli-g, and GenomePlex -- on DNA extracted from Guthrie cards to evaluate the amplification bias, concordance- and call rates, cost efficiency, and flexibility. All systems successfully amplified picograms of DNA from Guthrie cards to micrograms of product without loss of heterozygosity and with minimal allelic bias. A modified AmpliQ set up was chosen for further evaluation. In all, 2,000 SNP genotyping results from amplified and nonamplified samples were compared and the concordance rates between the samples were 99.7%. The call rate using the TaqMan system was 99.8%. DNA extracted from Guthrie cards and amplified with one of the four evaluated WGA systems is applicable in epidemiological genetic screenings. System choice should be based on requirements for system flexibility, product yield, and use in subsequent analysis.
Collapse
|
27
|
Saugstad OD, Hansen TWR, Rønnestad A, Nakstad B, Tølløfsrud PA, Reinholt F, Hamvas A, Coles FS, Dean M, Wert SE, Whitsett JA, Nogee LM. Novel mutations in the gene encoding ATP binding cassette protein member A3 (ABCA3) resulting in fatal neonatal lung disease. Acta Paediatr 2007; 96:185-90. [PMID: 17429902 DOI: 10.1111/j.1651-2227.2007.00016.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To investigate whether intractable respiratory distress syndrome in three Norwegian term infants was due to mutations in the ABCA3 gene. METHODS The genes encoding SP-B (SFTPB), SP-C (SFTPC), and ABCA3 (ABCA3) were sequenced from the parents of one infant and two unrelated infants with fatal neonatal lung disease. Lung tissue was examined by histology, immunohistochemistry and electron microscopy. RESULTS Novel ABCA3 mutations were identified in each family. One patient had a phenotype differing from previous descriptions of this disease with an initial uneventful period. The diagnosis was established 19 years after death by analysing DNA material from the parents, with an ABCA3 mutation identified on one allele in each parent. The other two infants had more typical clinical courses with the onset of respiratory symptoms immediately after birth. ABCA3 mutations were identified on both alleles from these two infants, and electron microscopy of alveolar type 2 cells demonstrated abnormal lamellar body formation characteristic of this disorder. CONCLUSION ABCA3 mutations were the basis for lung disease in all three patients. Children with lung disease due to ABCA3 deficiency may not have symptoms at birth. The finding of five novel mutations indicates allelic heterogeneity for ABCA3 mutations within the Norwegian population.
Collapse
Affiliation(s)
- Ola D Saugstad
- Department of Pediatric Research, Rikshospitalet-Radiumhospitalet Health Trust, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Inherited disorders of pulmonary surfactant-associated proteins are rare but provide important insights into unique mechanisms of surfactant dysfunction. Recessive loss-of-function mutations in the surfactant protein-B and the ATP-binding cassette family member A3 (ABCA3) genes present as lethal surfactant deficiency in the newborn, whereas other recessive mutations in ABCA3 and dominant mutations in the surfactant protein-C gene result in interstitial lung disease in older infants and children. The molecular basis and the genetic and tissue-based approaches to the evaluation of children suspected of having one of these disorders are discussed.
Collapse
Affiliation(s)
- Aaron Hamvas
- Edward Mallinckrodt Department of Pediatrics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
29
|
Hamvas A. Inherited surfactant protein-B deficiency and surfactant protein-C associated disease: clinical features and evaluation. Semin Perinatol 2006; 30:316-26. [PMID: 17142157 DOI: 10.1053/j.semperi.2005.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The pulmonary surfactant is a mixture of phospholipids and proteins synthesized, packaged, and secreted by alveolar type II cells that lowers surface tension and prevents atelectasis at end-expiration. A tightly regulated, complex metabolic cycle involves all components of the pulmonary surfactant. Disorders of surfactant metabolism that have a genetic basis are rare, but causes of respiratory dysfunction in infants and children emerge. Recessive loss of function mutations in surfactant protein-B (SP-B) gene lead to respiratory failure that is lethal in the newborn period while single allelic mutations in the surfactant protein-C (SP-C) gene cause interstitial lung disease of varying severity and age of onset. The genetic basis, mechanisms, clinical presentation and outcome, diagnostic approach and limited therapeutic options for disease due to mutations the SP-B and SP-C genes will be described in detail in this article. These disorders provide insights into some of the distinct mechanisms that disrupt the surfactant metabolic cycle and cause respiratory disease in infants and children.
Collapse
Affiliation(s)
- Aaron Hamvas
- Edward Mallinckrodt Department of Pediatrics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
Abstract
Since the original description of deficiency of the pulmonary surfactant in premature newborn infants by Avery and Mead in 1959, respiratory distress syndrome has most commonly been attributed to developmental immaturity of surfactant production. Studies of different ethnic groups, gender, targeted gene ablation in murine lineages, and recent clinical reports of monogenic causes of neonatal respiratory distress syndrome have demonstrated that genetic defects disrupt pulmonary surfactant metabolism and cause respiratory distress syndrome, especially in term or near-term infants and in older infants, children, and adults. In contrast to developmental causes of respiratory distress, which may improve as infants and children mature, genetic causes result in both acute and chronic (and potentially irreversible) respiratory failure.
Collapse
Affiliation(s)
- F Sessions Cole
- Division of Newborn Medicine in the Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, One Children's Place, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
31
|
Tredano M, Cooper DN, Stuhrmann M, Christodoulou J, Chuzhanova NA, Roudot-Thoraval F, Boëlle PY, Elion J, Jeanpierre M, Feingold J, Couderc R, Bahuau M. Origin of the prevalent SFTPB indel g.1549C > GAA (121ins2) mutation causing surfactant protein B (SP-B) deficiency. Am J Med Genet A 2006; 140:62-9. [PMID: 16333843 DOI: 10.1002/ajmg.a.31050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The SFTPB gene indel g.1549C > GAA (121ins2) accounts for about 2/3 of the mutant alleles underlying complete surfactant protein B deficiency. It is unclear, however, whether its prevalence is due to recurrent mutation or a founder effect. The underlying mutational mechanism was therefore sought through the analysis of local DNA sequence complexity. A relatively complex two-step process was proposed: the first step involving slipped mispairing mediated by a direct repeat and generating an AGAA micro-insertion, the second step involving hairpin loop resolution resulting in a CA micro-deletion. The possibility of a founder effect was then assessed by typing 8 intragenic SNPs in 17 independent 121ins2 chromosomes from 10 probands, with parental non-121ins2 chromosomes serving as controls. The 121ins2 chromosomes were assigned to three discrete haplotypes, whilst control chromosomes were distributed between 10 of the 11 observed parental haplotypes. The 121ins2 mutation was in strong and significant linkage disequilibrium (LD) with the tightly linked marker g.1580T/C (|D'| = 1; P approximately 0.024), although only moderate LD was found with the rest of the locus (|D'| approximately 0.54; P approximately 0.136). Data on haplotype structure and the locus LD pattern, obtained from 81 independent Western-European chromosomes, were consistent with the three mutation-bearing haplotypes having originated from a common ancestor by recombination. Interestingly, all families harboring the 121ins2 indel had ancestors from a region of Northwestern Europe populated by Frankish/Saxon migration. Taken together, these data are consistent with the view that an indel mutation occurred on a relatively common SFTPB haplotype and now accounts for the majority of (and possibly all) extant 121ins2 chromosomes.
Collapse
Affiliation(s)
- Mohammed Tredano
- Service de Biochimie & Biologie Moléculaire, Hôpital d'Enfants Armand-Trousseau, AP-HP, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bullard JE, Wert SE, Whitsett JA, Dean M, Nogee LM. ABCA3 mutations associated with pediatric interstitial lung disease. Am J Respir Crit Care Med 2005; 172:1026-31. [PMID: 15976379 PMCID: PMC1403838 DOI: 10.1164/rccm.200503-504oc] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 06/19/2005] [Indexed: 11/16/2022] Open
Abstract
RATIONALE ABCA3 is a member of the ATP-binding cassette family of proteins that mediate the translocation of a wide variety of substrates, including lipids, across cellular membranes. Mutations in the gene encoding ABCA3 were recently identified in full-term neonates with fatal surfactant deficiency. OBJECTIVE To test the hypothesis that ABCA3 mutations are not always associated with fatal neonatal lung disease but are a cause of pediatric interstitial lung disease. METHODS DNA samples were obtained from 195 children with chronic lung disease of unknown etiology. The 30 coding exons of the ABCA3 gene were sequenced in four unrelated children with a referring diagnosis of desquamative interstitial pneumonitis and who were older than 10 years at the time of enrollment. RESULTS Three of four patients (ages 16, 23, and 11 years) with desquamative interstitial pneumonitis had ABCA3 mutations identified on both alleles. All three had the same missense mutation (E292V) and a second unique mutation. The E292V mutation was not found on 200 control alleles from adults without lung disease, but seven additional patients of the remaining study patients had the E292V mutation on one allele. Immunohistochemical analysis of surfactant protein expression in three patients revealed a specific staining pattern for surfactant protein-B, which was the same pattern observed in several infants with fatal lung disease due to ABCA3 mutations. CONCLUSION ABCA3 mutations cause some types of interstitial lung disease in pediatric patients.
Collapse
Affiliation(s)
- Janine E Bullard
- Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
33
|
Park JW, Beaty TH, Boyce P, Scott AF, McIntosh I. Comparing whole-genome amplification methods and sources of biological samples for single-nucleotide polymorphism genotyping. Clin Chem 2005; 51:1520-3. [PMID: 16040848 DOI: 10.1373/clinchem.2004.047076] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ji Wan Park
- Department of Epidemiology, Bloomberg School of Public Health, McKusick-Nathans Institute of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
34
|
Cameron HS, Somaschini M, Carrera P, Hamvas A, Whitsett JA, Wert SE, Deutsch G, Nogee LM. A common mutation in the surfactant protein C gene associated with lung disease. J Pediatr 2005; 146:370-5. [PMID: 15756222 DOI: 10.1016/j.jpeds.2004.10.028] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To determine the contribution of the surfactant protein C (SP-C) I73T mutation to lung disease. STUDY DESIGN Genomic DNA was obtained from 116 children with interstitial lung disease (ILD) or chronic lung disease of unclear cause and from 166 control subjects and was screened for the I73T mutation using an allele-specific polymerase chain reaction assay. RESULTS The I73T mutation was found on 7 of 232 SP-C alleles from 7 unrelated children with ILD but was not found on 332 control SP-C alleles ( P < .01, Fisher exact test). The I73T mutation segregated with lung disease in one kindred with familial ILD. The I73T mutation was found in an asymptomatic parent from two different families with affected children consistent with variable penetrance, but it was not found in either asymptomatic parent of two other unrelated affected children consistent with a de novo mutation. Analysis of single nucleotide polymorphisms indicated diverse genetic backgrounds of the I73T alleles. Immunohistochemical analysis of lung tissue from an infant with the I73T mutation demonstrated normal staining patterns for proSP-B, SP-B, and proSP-C. CONCLUSIONS These findings support the hypothesis that the I73T mutation predisposes to or causes lung disease.
Collapse
Affiliation(s)
- H Scott Cameron
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The hydrophobic surfactant proteins, SP-B and SP-C, have important roles in surfactant function. The importance of these proteins in normal lung function is highlighted by the lung diseases associated with abnormalities in their expression. Mutations in the gene encoding SP-B result in severe, fatal neonatal lung disease, and mutations in the gene encoding SP-C are associated with chronic interstitial lung diseases in newborns, older children, and adults. This work reviews the current state of knowledge concerning the lung diseases associated with mutations in the SP-B and SP-C genes, and the potential roles of abnormal SP-B and SP-C expression and genetic variation in these genes in other lung diseases.
Collapse
Affiliation(s)
- Lawrence M Nogee
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-3200, USA.
| |
Collapse
|
36
|
Cook MA, Jobson SE, Atkinson DC, Lowe DP, Farmer SL, Alvi-Ali WJ, Smith NA, Briggs DC. Used leucodepletion filters as a source of large quantities of DNA suitable for the study of genetic variations in human populations. Transfus Med 2003; 13:77-81. [PMID: 12694552 DOI: 10.1046/j.1365-3148.2003.00423.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UNLABELLED A simple technique for developing large control panels with large quantities of DNA suitable for studies in population genetics was established. BACKGROUND AND OBJECTIVES Both a lack of suitable controls and insufficient quantities of DNA for repeated analysis of the same control group often hamper the investigation of genetic markers for disease. MATERIALS AND METHODS Using a waste product from routine blood donation, we describe a simple method that allows the investigator to extract large amounts of DNA. RESULTS A mean of 1520 microg of DNA per sample was obtained. The DNA obtained remains suitable for polymerase chain reaction and sequencing techniques after 2 years of storage at both 4 degrees C and -40 degrees C. CONCLUSION This technique allows the development of a large panel of controls with sufficient quantities of genomic DNA for thousands of tests.
Collapse
Affiliation(s)
- M A Cook
- H&I, National Blood Service and Cancer Research UK Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham, UK.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Current awareness. Prenat Diagn 2002; 22:168-74. [PMID: 11857634 DOI: 10.1002/pd.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|