1
|
Effect of supplementation with select human milk oligosaccharides on artificially reared newborn rats. Br J Nutr 2022; 128:1906-1916. [PMID: 34963503 DOI: 10.1017/s0007114521005146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Early life nutrition fundamentally influences neonatal development and health. Human milk oligosaccharides (HMO) are key components of breast milk but not standard infant formula that support the establishment of the newborn gut microbiota. Using an artificial rearing system, our objective was to test the effect of two HMO on the whole body and organ growth, adiposity, glucose tolerance and faecal microbiota in young rat pups. From postnatal days 4 to 21, Sprague-Dawley rats were randomised to receive one of: (1) CTR (rat milk substitute); (2) 2'FL (CTR + 1·2 g/l 2'-fucosyllactose); (3) 3'SL (CTR + 1·2 g/l 3'-sialyllactose) and (4) 2'FL + 3'SL (CTR + 0·6 g/l 2'-FL + 0·6 g/l 3'-SL). Body weight (BW), bowel movements and food intake were monitored daily, faecal samples collected each week and oral glucose tolerance, body composition and organ weight measured at weaning. No significant differences were observed between groups in growth performance, body composition, organ weight and abundance of dominant faecal microbes. A decreased relative abundance of genus Proteus in week 1 faecal samples and Terrisporobacter in week 3 faecal samples (P < 0·05) was suggestive of a potential pathogen inhibitory effect of 3'SL. Longitudinal changes in the faecal microbiota of artificially reared suckling rats were primarily governed by age (P = 0·001) and not affected by the presence of 2'-FL and/or 3'-SL in rat milk substitutes (P = 0·479). Considering the known protective effects of HMO, further investigation of supplementation with these and other HMO in models of premature birth, extremely low BW or malnutrition may show more pronounced outcomes.
Collapse
|
2
|
Rodent models of metabolic disorders: considerations for use in studies of neonatal programming. Br J Nutr 2022; 128:802-827. [PMID: 34551828 DOI: 10.1017/s0007114521003834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epidemiologically, metabolic disorders have garnered much attention, perhaps due to the predominance of obesity. The early postnatal life represents a critical period for programming multifactorial metabolic disorders of adult life. Though altricial rodents are prime subjects for investigating neonatal programming, there is still no sufficiently generalised literature on their usage and methodology. This review focuses on establishing five approach-based models of neonatal rodents adopted for studying metabolic phenotypes. Here, some modelled interventions that currently exist to avoid or prevent metabolic disorders are also highlighted. We also bring forth recommendations, guidelines and considerations to aid research on neonatal programming. It is hoped that this provides a background to researchers focused on the aetiology, mechanisms, prevention and treatment of metabolic disorders.
Collapse
|
3
|
Melchior M, Kuhn P, Poisbeau P. The burden of early life stress on the nociceptive system development and pain responses. Eur J Neurosci 2021; 55:2216-2241. [PMID: 33615576 DOI: 10.1111/ejn.15153] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/27/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
For a long time, the capacity of the newborn infant to feel pain was denied. Today it is clear that the nociceptive system, even if still immature, is functional enough in the newborn infant to elicit pain responses. Unfortunately, pain is often present in the neonatal period, in particular in the case of premature infants which are subjected to a high number of painful procedures during care. These are accompanied by a variety of environmental stressors, which could impact the maturation of the nociceptive system. Therefore, the question of the long-term consequences of early life stress is a critical question. Early stressful experience, both painful and non-painful, can imprint the nociceptive system and induce long-term alteration in brain function and nociceptive behavior, often leading to an increase sensitivity and higher susceptibility to chronic pain. Different animal models have been developed to understand the mechanisms underlying the long-term effects of different early life stressful procedures, including pain and maternal separation. This review will focus on the clinical and preclinical data about early life stress and its consequence on the nociceptive system.
Collapse
Affiliation(s)
- Meggane Melchior
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Pierre Kuhn
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.,Service de Médecine et Réanimation du Nouveau-né, Hôpital de Hautepierre, Centre Hospitalier Universitaire de Strasbourg, Strasbourg, France
| | - Pierrick Poisbeau
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| |
Collapse
|
4
|
Almeida L, Andreu-Fernández V, Navarro-Tapia E, Aras-López R, Serra-Delgado M, Martínez L, García-Algar O, Gómez-Roig MD. Murine Models for the Study of Fetal Alcohol Spectrum Disorders: An Overview. Front Pediatr 2020; 8:359. [PMID: 32760684 PMCID: PMC7373736 DOI: 10.3389/fped.2020.00359] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Prenatal alcohol exposure is associated to different physical, behavioral, cognitive, and neurological impairments collectively known as fetal alcohol spectrum disorder. The underlying mechanisms of ethanol toxicity are not completely understood. Experimental studies during human pregnancy to identify new diagnostic biomarkers are difficult to carry out beyond genetic or epigenetic analyses in biological matrices. Therefore, animal models are a useful tool to study the teratogenic effects of alcohol on the central nervous system and analyze the benefits of promising therapies. Animal models of alcohol spectrum disorder allow the analysis of key variables such as amount, timing and frequency of ethanol consumption to describe the harmful effects of prenatal alcohol exposure. In this review, we aim to synthetize neurodevelopmental disabilities in rodent fetal alcohol spectrum disorder phenotypes, considering facial dysmorphology and fetal growth restriction. We examine the different neurodevelopmental stages based on the most consistently implicated epigenetic mechanisms, cell types and molecular pathways, and assess the advantages and disadvantages of murine models in the study of fetal alcohol spectrum disorder, the different routes of alcohol administration, and alcohol consumption patterns applied to rodents. Finally, we analyze a wide range of phenotypic features to identify fetal alcohol spectrum disorder phenotypes in murine models, exploring facial dysmorphology, neurodevelopmental deficits, and growth restriction, as well as the methodologies used to evaluate behavioral and anatomical alterations produced by prenatal alcohol exposure in rodents.
Collapse
Affiliation(s)
- Laura Almeida
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Fundació Sant Joan de Déu, Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| | - Vicente Andreu-Fernández
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Nutrition and Health Deparment, Valencian International University (VIU), Valencia, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elisabet Navarro-Tapia
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rosa Aras-López
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain
| | - Mariona Serra-Delgado
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| | - Leopoldo Martínez
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
| | - Oscar García-Algar
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, Barcelona, Spain
| | - María Dolores Gómez-Roig
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Fundació Sant Joan de Déu, Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| |
Collapse
|
5
|
Marousez L, Lesage J, Eberlé D. Epigenetics: Linking Early Postnatal Nutrition to Obesity Programming? Nutrients 2019; 11:E2966. [PMID: 31817318 PMCID: PMC6950532 DOI: 10.3390/nu11122966] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/16/2019] [Indexed: 12/22/2022] Open
Abstract
Despite constant research and public policy efforts, the obesity epidemic continues to be a major public health threat, and new approaches are urgently needed. It has been shown that nutrient imbalance in early life, from conception to infancy, influences later obesity risk, suggesting that obesity could result from "developmental programming". In this review, we evaluate the possibility that early postnatal nutrition programs obesity risk via epigenetic mechanisms, especially DNA methylation, focusing on four main topics: (1) the dynamics of epigenetic processes in key metabolic organs during the early postnatal period; (2) the epigenetic effects of alterations in early postnatal nutrition in animal models or breastfeeding in humans; (3) current limitations and remaining outstanding questions in the field of epigenetic programming; (4) candidate pathways by which early postnatal nutrition could epigenetically program adult body weight set point. A particular focus will be given to the potential roles of breast milk fatty acids, neonatal metabolic and hormonal milieu, and gut microbiota. Understanding the mechanisms by which early postnatal nutrition can promote lifelong metabolic modifications is essential to design adequate recommendations and interventions to "de-program" the obesity epidemic.
Collapse
Affiliation(s)
| | | | - Delphine Eberlé
- University Lille, EA4489 Environnement Périnatal et Santé, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France
| |
Collapse
|
6
|
Long-lived weight-reduced αMUPA mice show higher and longer maternal-dependent postnatal leptin surge. PLoS One 2017; 12:e0188658. [PMID: 29190757 PMCID: PMC5708666 DOI: 10.1371/journal.pone.0188658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/10/2017] [Indexed: 12/20/2022] Open
Abstract
We investigated whether long-lived weight-reduced αMUPA mice differ from their wild types in postnatal body composition and leptin level, and whether these differences are affected by maternal-borne factors. Newborn αMUPA and wild type mice had similar body weight and composition up to the third postnatal week, after which αMUPA mice maintained lower body weight due to lower fat-free mass. Both strains showed a surge in leptin levels at the second postnatal week, initiating earlier in αMUPA mice, rising higher and lasting longer than in the wild types, mainly in females. Leptin level in dams' serum and breast milk, and in their pup's stomach content were also higher in αMUPA than in the WT during the surge peak. Leptin surge preceded the strain divergence in body weight, and was associated with an age-dependent decrease in the leptin:fat mass ratio-suggesting that postnatal sex and strain differences in leptin ontogeny are strongly influenced by processes independent of fat mass, such as production and secretion, and possibly outside fat tissues. Dam removal elevated corticosterone level in female pups from both strains similarly, yet mitigated the leptin surge only in αMUPA-eliminating the strain differences in leptin levels. Overall, our results indicate that αMUPA's postnatal leptin surge is more pronounced than in the wild type, more sensitive to maternal deprivation, less related to pup's total adiposity, and is associated with a lower post-weaning fat-free mass. These strain-related postnatal differences may be related to αMUPA's higher milk-borne leptin levels. Thus, our results support the use of αMUPA mice in future studies aimed to explore the relationship between maternal (i.e. milk-borne) factors, postnatal leptin levels, and post-weaning body composition and energy homeostasis.
Collapse
|
7
|
Lambertz IU, Luo L, Berton TR, Schwartz SL, Hursting SD, Conti CJ, Fuchs-Young R. Early Exposure to a High Fat/High Sugar Diet Increases the Mammary Stem Cell Compartment and Mammary Tumor Risk in Female Mice. Cancer Prev Res (Phila) 2017; 10:553-562. [DOI: 10.1158/1940-6207.capr-17-0131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/21/2017] [Accepted: 08/30/2017] [Indexed: 11/16/2022]
|
8
|
Yasuda H, Harauma A, Kato M, Ootomo Y, Hatanaka E, Moriguchi T. Artificially reared mice exhibit anxiety-like behavior in adulthood. Exp Anim 2016; 65:267-74. [PMID: 26948536 PMCID: PMC4976240 DOI: 10.1538/expanim.15-0115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is important to establish experimental animal techniques that are applicable to the
newborn and infant phases for nutrition and pharmacological studies. Breeding technology
using the artificial suckling method without breast milk is very effective for the study
of newborn nutrition. Using this method, we separated newborn mice from dams within 48 h
of birth and provided them with artificial milk. We evaluated mouse anxiety levels after
early postnatal maternal separation. Artificially reared mice were subjected to elevated
plus-maze tests to assess emotional behavior at 9 weeks of age. Artificially reared mice
showed a significantly lower frequency of entries and dipping into the open arms of the
maze compared with dam-reared mice. This result indicates that the anxiety level of
artificially reared mice was higher than that of dam-reared mice. Moreover, the
concentration of monoamines in the brain was determined after the behavioral experiment.
The hippocampal norepinephrine, serotonin, and 5-hydroxyindoleacetic acid levels in the
artificially reared mice were significantly higher than those of the dam-reared mice.
These results suggest that maternal-offspring interactions are extremely important for the
emotional development of newborn infants during the lactation period. In future studies,
it is necessary to consider the environmental factors and conditions that minimize the
influence of artificial rearing on emotional behavior.
Collapse
Affiliation(s)
- Hidemi Yasuda
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Zeng B, Yuan J, Li W, Tang H, Wei H. The effect of artificial rearing on gut microbiota in a mouse pup-in-a-cup model. Exp Anim 2012; 61:453-60. [PMID: 22850645 DOI: 10.1538/expanim.61.453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In this paper, the mouse pup-in-a-cup model was improved for younger mouse pups, and the effect of artificial rearing on gut microbiota development was evaluated. Intragastric cannulas were placed through the esophagus into 3-day-old C57BL/6J mice (n=48), and the mice were artificially reared (AR) with mouse milk substitute (MMS). Littermate pups (n=20) were maternally reared (MR) as controls. The feces of 3-day-old pups were analyzed by combining the PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting technique and sequencing of 16s rRNA gene fragments. After 11 days of artificial rearing, 37 of 48 pups were still alive. There were no significant changes in the number of DGGE bands or the Shannon index between the two groups. However, several bands in the AR group were obviously different from those in the MR group in the DGGE profile. These results demonstrate that it is possible to implant intragastric cannulas into 3-day-old C57BL/6J mice pups. However, the variation in the gut microbiota composition is non-negligible, even though the AR pups grow well.
Collapse
Affiliation(s)
- Benhua Zeng
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Chongqing 400038, China
| | | | | | | | | |
Collapse
|
10
|
Flamm EG. Neonatal animal testing paradigms and their suitability for testing infant formula. Toxicol Mech Methods 2012; 23:57-67. [DOI: 10.3109/15376516.2012.725108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
The suckling rat as a model for immunonutrition studies in early life. Clin Dev Immunol 2012; 2012:537310. [PMID: 22899949 PMCID: PMC3415261 DOI: 10.1155/2012/537310] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 12/17/2022]
Abstract
Diet plays a crucial role in maintaining optimal immune function. Research demonstrates the immunomodulatory properties and mechanisms of particular nutrients; however, these aspects are studied less in early life, when diet may exert an important role in the immune development of the neonate. Besides the limited data from epidemiological and human interventional trials in early life, animal models hold the key to increase the current knowledge about this interaction in this particular period. This paper reports the potential of the suckling rat as a model for immunonutrition studies in early life. In particular, it describes the main changes in the systemic and mucosal immune system development during rat suckling and allows some of these elements to be established as target biomarkers for studying the influence of particular nutrients. Different approaches to evaluate these immune effects, including the manipulation of the maternal diet during gestation and/or lactation or feeding the nutrient directly to the pups, are also described in detail. In summary, this paper provides investigators with useful tools for better designing experimental approaches focused on nutrition in early life for programming and immune development by using the suckling rat as a model.
Collapse
|
12
|
Zhang C, Sherman MP, Prince LS, Bader D, Weitkamp JH, Slaughter JC, McElroy SJ. Paneth cell ablation in the presence of Klebsiella pneumoniae induces necrotizing enterocolitis (NEC)-like injury in the small intestine of immature mice. Dis Model Mech 2012; 5:522-32. [PMID: 22328592 PMCID: PMC3380715 DOI: 10.1242/dmm.009001] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a leading cause of morbidity and mortality in premature infants. During NEC pathogenesis, bacteria are able to penetrate innate immune defenses and invade the intestinal epithelial layer, causing subsequent inflammation and tissue necrosis. Normally, Paneth cells appear in the intestinal crypts during the first trimester of human pregnancy. Paneth cells constitute a major component of the innate immune system by producing multiple antimicrobial peptides and proinflammatory mediators. To better understand the possible role of Paneth cell disruption in NEC, we quantified the number of Paneth cells present in infants with NEC and found that they were significantly decreased compared with age-matched controls. We were able to model this loss in the intestine of postnatal day (P)14-P16 (immature) mice by treating them with the zinc chelator dithizone. Intestines from dithizone-treated animals retained approximately half the number of Paneth cells compared with controls. Furthermore, by combining dithizone treatment with exposure to Klebsiella pneumoniae, we were able to induce intestinal injury and inflammatory induction that resembles human NEC. Additionally, this novel Paneth cell ablation model produces NEC-like pathology that is consistent with other currently used animal models, but this technique is simpler to use, can be used in older animals that have been dam fed, and represents a novel line of investigation to study NEC pathogenesis and treatment.
Collapse
Affiliation(s)
- Chunxian Zhang
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Morgado E, Juárez C, Melo AI, Domínguez B, Lehman MN, Escobar C, Meza E, Caba M. Artificial feeding synchronizes behavioral, hormonal, metabolic and neural parameters in mother-deprived neonatal rabbit pups. Eur J Neurosci 2011; 34:1807-16. [PMID: 22098455 DOI: 10.1111/j.1460-9568.2011.07898.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nursing in the rabbit is under circadian control, and pups have a daily anticipatory behavioral arousal synchronized to this unique event, but it is not known which signal is the main entraining cue. In the present study, we hypothesized that food is the main entraining signal. Using mother-deprived pups, we tested the effects of artificial feeding on the synchronization of locomotor behavior, plasma glucose, corticosterone, c-Fos (FOS) and PERIOD1 (PER1) rhythms in suprachiasmatic, supraoptic, paraventricular and tuberomammillary nuclei. At postnatal day 1, an intragastric tube was placed by gastrostomy. The next day and for the rest of the experiment, pups were fed with a milk formula through the cannula at either 02:00 h or 10:00 h [feeding time = zeitgeber time (ZT)0]. At postnatal days 5-7, pups exhibited behavioral arousal, with a significant increase in locomotor behavior 60 min before feeding. Glucose levels increased after feeding, peaking at ZT4-ZT12 and then declining. Corticosterone levels were highest around the time of feeding, and then decreased to trough concentrations at ZT12-ZT16, increasing again in anticipation of the next feeding bout. In the brain, the suprachiasmatic nucleus had a rhythm of FOS and PER1 that was not significantly affected by the feeding schedule. Conversely, the supraoptic, paraventricular and tuberomammillary nuclei had rhythms of both FOS and PER1 induced by the time of scheduled feeding. We conclude that the nursing rabbit pup is a natural model of food entrainment, as food, in this case milk formula, is a strong synchronizing signal for behavioral, hormonal, metabolic and neural parameters.
Collapse
Affiliation(s)
- Elvira Morgado
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Ver., México CIRA, CINVESTAV-UAT, Tlaxcala, Tlax., México
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kolb AF, Huber RC, Lillico SG, Carlisle A, Robinson CJ, Neil C, Petrie L, Sorensen DB, Olsson IAS, Whitelaw CBA. Milk lacking α-casein leads to permanent reduction in body size in mice. PLoS One 2011; 6:e21775. [PMID: 21789179 PMCID: PMC3138747 DOI: 10.1371/journal.pone.0021775] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 06/11/2011] [Indexed: 01/01/2023] Open
Abstract
The major physiological function of milk is the transport of amino acids, carbohydrates, lipids and minerals to mammalian offspring. Caseins, the major milk proteins, are secreted in the form of a micelle consisting of protein and calcium-phosphate. We have analysed the role of the milk protein α-casein by inactivating the corresponding gene in mice. Absence of α-casein protein significantly curtails secretion of other milk proteins and calcium-phosphate, suggesting a role for α-casein in the establishment of casein micelles. In contrast, secretion of albumin, which is not synthesized in the mammary epithelium, into milk is not reduced. The absence of α-casein also significantly inhibits transcription of the other casein genes. α-Casein deficiency severely delays pup growth during lactation and results in a life-long body size reduction compared to control animals, but has only transient effects on physical and behavioural development of the pups. The data support a critical role for α-casein in casein micelle assembly. The results also confirm lactation as a critical window of metabolic programming and suggest milk protein concentration as a decisive factor in determining adult body weight.
Collapse
Affiliation(s)
- Andreas F Kolb
- Molecular Recognition Group, Hannah Research Institute, Ayr, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The impact of neonatal nutrition on the health status of the newborn and incidence of disease in later life is a topic of intense interest. Animal models are an invaluable tool to identify mechanisms that mediate the effect of nutrition on neonatal development and metabolic function. This review highlights recently developed animal models that are being used to study neonatal human nutrition. RECENT FINDINGS In recent years, mice, rats, and pigs have become the most frequently used animal models to study human neonatal nutrition. Techniques for rearing newborn mice, preterm rats, and preterm pigs have been developed. Neonatal mice have great potential for mechanistic and genomic research in postnatal nutrition and related diseases. The neonatal pig model is valuable to study acute and chronic effects of parenteral and enteral nutrition on whole-body metabolism as well as specific tissues. To date, a wealth of information from studies with neonatal pigs has been applied to humans. SUMMARY Further development of neonatal animal models related to nutrition is required for the advancement of research in early postnatal nutrition. Improvement of nutritional support during this critical period of development will enhance immediate clinical outcomes and possibly prevent diseases later in life.
Collapse
Affiliation(s)
- Patrycja Puiman
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
16
|
Effective treatments of prolonged status epilepticus in developing rats. Epilepsy Behav 2008; 13:62-9. [PMID: 18337179 PMCID: PMC2517630 DOI: 10.1016/j.yebeh.2008.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 02/05/2008] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
Abstract
We determined the efficacy of diazepam (DZP) and pentobarbital (PTB) in controlling prolonged status epilepticus (SE) in developing rats. One-hour-long SE was induced with kainic acid (KA) or lithium pilocarpine (Li-Pilo) in Postnatal Day 9 (P9), 15 (P15) and 21 (P21) rats, which were then treated with varying doses of DZP (20-60 mg/kg) or PTB (20-60 mg/kg). At P9, neither drug stopped SE, and higher doses could not be used because of high mortality. At P15 and P21, DZP and PTB stopped both behavioral and electrographic SE in a dose-dependent fashion, with similar efficacy in the two seizure models. DZP stopped SE significantly faster than PTB. Administration of a low dose of PTB (20mg/kg) following an initially ineffective treatment with DZP 20mg/kg stopped SE in all rats. The data suggest that high doses of DZP and PTB are needed to stop prolonged SE in developing rats, but their effectiveness is age dependent.
Collapse
|
17
|
Vuguin PM. Animal models for small for gestational age and fetal programming of adult disease. HORMONE RESEARCH 2007; 68:113-23. [PMID: 17351325 PMCID: PMC4287248 DOI: 10.1159/000100545] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 01/19/2007] [Indexed: 12/14/2022]
Abstract
Fetal growth retardation is a fetal adaptation in response to inadequate supply of oxygen and/or nutrients. Animal models of intrauterine growth retardation are an invaluable tool to question the genetic, molecular and cellular events that determine fetal growth and development. Rodent and non-litter bearing animals are mammalian system with similar embryology,anatomy and physiology to humans. Utilization of these systems has led to a greater understanding of the pathophysiology and consequences of intrauterine growth retardation. These observations are comparable to that observed in humans born small for gestational age, and are of interest because of the known association between poor fetal growth and development of adult disease. All the experimental manipulations described here have altered a number of metabolic and physiological variables, but the pattern of alterations seems to vary with the procedure and species employed. This review describes animal models for intrauterine growth retardation and assesses their potentials and limitations at aiming to improve strategies for the prevention of adult disease.
Collapse
Affiliation(s)
- Patricia M Vuguin
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
18
|
Yajima M, Kanno T, Yajima T. A chemically derived milk substitute that is compatible with mouse milk for artificial rearing of mouse pups. Exp Anim 2006; 55:391-7. [PMID: 16880687 DOI: 10.1538/expanim.55.391] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The object of this study was to prepare a chemically derived milk substitute that is compatible with mouse-milk. Milk was independently collected from ICR, BALB/c, and FVB/N mice, and analyzed for the protein, fat, and mineral contents to formulate a milk substitute. Thereafter, ICR mouse pups were artificially reared on the milk substitute to evaluate the rate of increase of their body weights. A gastric cannula tube was placed through the esophageal way into 8-day-old ICR pups, and the mice were fed with the milk substitute by computer-regulated infusion pumping by the pup-in-a-cup method. The analytical mean values of total protein and total fat in milk from ICR, BALB/c, and FVB/N mice were 10.23 +/- 0.49% and 21.34 +/- 1.31%, respectively. The milk substitute was constituted from purified bovine casein and whey proteins, five edible oils, including MCT oil, minerals, and vitamins. After 8 days of artificial rearing with the new milk substitute, 36 of the 42 pups had survived, and the growth rate of these mice was not significantly different from that of maternally reared littermate pups. In conclusion, we have succeeded in the preparation of a chemically derived milk substitute for mice pups which is available for clarifying the roles of dietary components such as milk-bone substance during the suckling period in mice pups including those of knockout and transgenic mice.
Collapse
Affiliation(s)
- Masako Yajima
- Food Function and Nutrition Science Institute, Division of Research and Development, Meiji Dairies Corporation, 540 Naruda, Odawara, Kanagawa 250-0862, Japan
| | | | | |
Collapse
|