1
|
Chen DY, Di X, Biswal B. Cerebrovascular reactivity increases across development in multiple networks as revealed by a breath-holding task: A longitudinal fMRI study. Hum Brain Mapp 2024; 45:e26515. [PMID: 38183372 PMCID: PMC10789211 DOI: 10.1002/hbm.26515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 01/08/2024] Open
Abstract
Functional magnetic resonance imaging (fMRI) has been widely used to understand the neurodevelopmental changes that occur in cognition and behavior across childhood. The blood-oxygen-level-dependent (BOLD) signal obtained from fMRI is understood to be comprised of both neuronal and vascular information. However, it is unclear whether the vascular response is altered across age in studies investigating development in children. Since the breath-hold (BH) task is commonly used to understand cerebrovascular reactivity (CVR) in fMRI studies, it can be used to account for developmental differences in vascular response. This study examines how the cerebrovascular response changes over age in a longitudinal children's BH data set from the Nathan Kline Institute (NKI) Rockland Sample (aged 6-18 years old at enrollment). A general linear model approach was applied to derive CVR from BH data. To model both the longitudinal and cross-sectional effects of age on BH response, we used mixed-effects modeling with the following terms: linear, quadratic, logarithmic, and quadratic-logarithmic, to find the best-fitting model. We observed increased BH BOLD signals in multiple networks across age, in which linear and logarithmic mixed-effects models provided the best fit with the lowest Akaike information criterion scores. This shows that the cerebrovascular response increases across development in a brain network-specific manner. Therefore, fMRI studies investigating the developmental period should account for cerebrovascular changes that occur with age.
Collapse
Affiliation(s)
- Donna Y. Chen
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
- Rutgers Biomedical and Health SciencesRutgers School of Graduate StudiesNewarkNew JerseyUSA
| | - Xin Di
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| | - Bharat Biswal
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| |
Collapse
|
2
|
Chen DY, Di X, Biswal B. Cerebrovascular reactivity increases across development in multiple networks as revealed by a breath-holding task: a longitudinal fMRI study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522905. [PMID: 36712029 PMCID: PMC9881997 DOI: 10.1101/2023.01.05.522905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Functional magnetic resonance imaging (fMRI) has been widely used to understand the neurodevelopmental changes that occur in cognition and behavior across childhood. The blood-oxygen-level-dependent (BOLD) signal obtained from fMRI is understood to be comprised of both neuronal and vascular information. However, it is unclear whether the vascular response is altered across age in studies investigating development in children. Since the breath-hold task is commonly used to understand cerebrovascular reactivity in fMRI studies, it can be used to account for developmental differences in vascular response. This study examines how the cerebrovascular response changes over age in a longitudinal children's breath-hold dataset from the Nathan Kline Institute (NKI) Rockland Sample (ages 6 to 18 years old at enrollment). A general linear model (GLM) approach was applied to derive cerebrovascular reactivity from breath-hold data. To model both the longitudinal and cross-sectional effects of age on breath-hold response, we used mixed effects modeling with the following terms: linear, quadratic, logarithmic, and quadratic-logarithmic, to find the best-fitting model. We observed increased breath-hold BOLD signal in multiple networks across age, in which linear and logarithmic mixed effects models provided the best fit with the lowest Akaike Information Criterion (AIC) scores. This shows that the cerebrovascular response increases across development in a brain network-specific manner. Therefore, fMRI studies investigating the developmental period should account for cerebrovascular changes which occur with age.
Collapse
Affiliation(s)
- Donna Y. Chen
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, US
- Rutgers Biomedical and Health Sciences, Rutgers School of Graduate Studies, Newark, NJ, US
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, US
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, US
| |
Collapse
|
3
|
Moffat R, Başkent D, Luke R, McAlpine D, Van Yper L. Cortical haemodynamic responses predict individual ability to recognise vocal emotions with uninformative pitch cues but do not distinguish different emotions. Hum Brain Mapp 2023; 44:3684-3705. [PMID: 37162212 PMCID: PMC10203806 DOI: 10.1002/hbm.26305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 02/23/2023] [Accepted: 03/30/2023] [Indexed: 05/11/2023] Open
Abstract
We investigated the cortical representation of emotional prosody in normal-hearing listeners using functional near-infrared spectroscopy (fNIRS) and behavioural assessments. Consistent with previous reports, listeners relied most heavily on F0 cues when recognizing emotion cues; performance was relatively poor-and highly variable between listeners-when only intensity and speech-rate cues were available. Using fNIRS to image cortical activity to speech utterances containing natural and reduced prosodic cues, we found right superior temporal gyrus (STG) to be most sensitive to emotional prosody, but no emotion-specific cortical activations, suggesting that while fNIRS might be suited to investigating cortical mechanisms supporting speech processing it is less suited to investigating cortical haemodynamic responses to individual vocal emotions. Manipulating emotional speech to render F0 cues less informative, we found the amplitude of the haemodynamic response in right STG to be significantly correlated with listeners' abilities to recognise vocal emotions with uninformative F0 cues. Specifically, listeners more able to assign emotions to speech with degraded F0 cues showed lower haemodynamic responses to these degraded signals. This suggests a potential objective measure of behavioural sensitivity to vocal emotions that might benefit neurodiverse populations less sensitive to emotional prosody or hearing-impaired listeners, many of whom rely on listening technologies such as hearing aids and cochlear implants-neither of which restore, and often further degrade, the F0 cues essential to parsing emotional prosody conveyed in speech.
Collapse
Affiliation(s)
- Ryssa Moffat
- School of Psychological SciencesMacquarie UniversitySydneyNew South WalesAustralia
- International Doctorate of Experimental Approaches to Language and Brain (IDEALAB)Universities of Potsdam, Germany; Groningen, Netherlands; Newcastle University, UK; and Macquarie UniversityAustralia
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Deniz Başkent
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Research School of Behavioral and Cognitive Neuroscience, Graduate School of Medical SciencesUniversity of GroningenGroningenThe Netherlands
| | - Robert Luke
- Macquarie University Hearing, and Department of LinguisticsMacquarie UniversitySydneyNew South WalesAustralia
- Bionics InstituteEast MelbourneVictoriaAustralia
| | - David McAlpine
- Macquarie University Hearing, and Department of LinguisticsMacquarie UniversitySydneyNew South WalesAustralia
| | - Lindsey Van Yper
- Macquarie University Hearing, and Department of LinguisticsMacquarie UniversitySydneyNew South WalesAustralia
- Institute of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
4
|
Guerin JB, Greiner HM, Mangano FT, Leach JL. Functional MRI in Children: Current Clinical Applications. Semin Pediatr Neurol 2020; 33:100800. [PMID: 32331615 DOI: 10.1016/j.spen.2020.100800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Functional magnetic resonance imaging has become a critical research tool for evaluating brain function during active tasks and resting states. This has improved our understanding of developmental trajectories in children as well as the plasticity of neural networks in disease states. In the clinical setting, functional maps of eloquent cortex in patients with brain lesions and/or epilepsy provides crucial information for presurgical planning. Although children are inherently challenging to scan in this setting, preparing them appropriately and providing adequate resources can help achieve useful clinical data. This article will review the basic underlying physiologic aspects of functional magnetic resonance imaging, review clinically relevant research applications, describe known validation data compared to gold standard techniques and detail future directions of this technology.
Collapse
Affiliation(s)
- Julie B Guerin
- Department of Pediatric Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Radiology, Mayo Clinic, Rochester, MN
| | - Hansel M Greiner
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, University of Cincinnati College of Medicine Department of Neurosurgery, Cincinnati, OH
| | - James L Leach
- Department of Pediatric Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Radiology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
5
|
Gemma M, Scola E, Baldoli C, Mucchetti M, Pontesilli S, De Vitis A, Falini A, Beretta L. Auditory functional magnetic resonance in awake (nonsedated) and propofol-sedated children. Paediatr Anaesth 2016; 26:521-30. [PMID: 26956994 DOI: 10.1111/pan.12884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Functional Magnetic Resonance Imaging (fMRI) is often used in preoperative assessment before epilepsy surgery, tumor or cavernous malformation resection, or cochlear implantation. As it requires complete immobility, sedation is needed for uncooperative patients. OBJECTIVE The aim of this study was to compare the fMRI cortical activation pattern after auditory stimuli in propofol-sedated 5- to 8-year-old children with that of similarly aged nonsedated children. METHODS When possible, children underwent MRI without sedation, otherwise it was induced with i.v. propofol 2 mg·kg(-1) and maintained with i.v. propofol 4-5 mg·kg(-1) ·h(-1) . Following diagnostic MRI, fMRi was carried out, randomly alternating two passive listening tasks (a fairy-tale and nonsense syllables). RESULTS We studied 14 awake and 15 sedated children. During the fairy-tale task, the nonsedated children's blood-oxygen-level-dependent (BOLD) signal was bilaterally present in the posterior superior temporal gyrus (STG), Wernicke's area, and Broca's area. Sedated children showed similar activation, with lesser extension to Wernicke's area, and no activation in Broca's area. During the syllable task, the nonsedated children's BOLD signal was bilaterally observed in the STG and Wernicke's area, in Broca's area with leftward asymmetry, and in the premotor area. In sedated children, cortical activation was present in the STG, but not in the frontal lobes. BOLD signal change areas in sedated children were less extended than in nonsedated children during both the fairy-tale and syllable tasks. Modeling the temporal derivative during both the fairy-tale and syllable tasks, nonsedated children showed no response while sedated children did. CONCLUSIONS After auditory stimuli, propofol-sedated 5- to 8-year-old children exhibit an fMRI cortical activation pattern which is different from that in similarly aged nonsedated children.
Collapse
Affiliation(s)
- Marco Gemma
- Department of Head & Neck Anesthesia, San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Scola
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Cristina Baldoli
- Department of Neuroradiology, San Raffaele Scientific Institute, Milan, Italy
| | - Marta Mucchetti
- Department of Anesthesia and Intensive Care, San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Pontesilli
- Department of Neuroradiology, San Raffaele Scientific Institute, Milan, Italy
| | - Assunta De Vitis
- Department of Head & Neck Anesthesia, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Falini
- Department of Neuroradiology, San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Beretta
- Department of Head & Neck Anesthesia, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
6
|
Cerebral Oxygenation and Pain of Heel Blood Sampling Using Manual and Automatic Lancets in Premature Infants. J Perinat Neonatal Nurs 2015; 29:356-62. [PMID: 26505850 DOI: 10.1097/jpn.0000000000000138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Heel blood sampling is a common but painful procedure for neonates. Automatic lancets have been shown to be more effective, with reduced pain and tissue damage, than manual lancets, but the effects of lancet type on cortical activation have not yet been compared. The study aimed to compare the effects of manual and automatic lancets on cerebral oxygenation and pain of heel blood sampling in 24 premature infants with respiratory distress syndrome. Effectiveness was measured by assessing numbers of pricks and squeezes and duration of heel blood sampling. Pain responses were measured using the premature infant pain profile score, heart rate, and oxygen saturation (SpO2). Regional cerebral oxygen saturation (rScO2) was measured using near-infrared spectroscopy, and cerebral fractional tissue oxygen extraction was calculated from SpO2 and rScO. Measures of effectiveness were significantly better with automatic than with manual lancing, including fewer heel punctures (P = .009) and squeezes (P < .001) and shorter duration of heel blood sampling (P = .002). rScO2 was significantly higher (P = .013) and cerebral fractional tissue oxygen extraction after puncture significantly lower (P = .040) with automatic lancing. Premature infant pain profile scores during (P = .004) and after (P = .048) puncture were significantly lower in the automatic than in the manual lancet group. Automatic lancets for heel blood sampling in neonates with respiratory distress syndrome significantly reduced pain and enhanced cerebral oxygenation, suggesting that heel blood should be sampled routinely using an automatic lancet.
Collapse
|
7
|
Pediatric applications of functional magnetic resonance imaging. Pediatr Radiol 2015; 45 Suppl 3:S382-96. [PMID: 26346144 DOI: 10.1007/s00247-015-3365-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/31/2014] [Accepted: 02/23/2015] [Indexed: 01/05/2023]
Abstract
Pediatric functional MRI has been used for the last 2 decades but is now gaining wide acceptance in the preoperative workup of children with brain tumors and medically refractory epilepsy. This review covers pediatrics-specific difficulties such as sedation and task paradigm selection according to the child's age and cognitive level. We also illustrate the increasing uses of functional MRI in the depiction of cognitive function, neuropsychiatric disorders and response to pharmacological agents. Finally, we review the uses of resting-state fMRI in the evaluation of children and in the detection of epileptogenic regions.
Collapse
|
8
|
Hertz-Pannier L, Noulhiane M, Rodrigo S, Chiron C. Pretherapeutic functional magnetic resonance imaging in children. Neuroimaging Clin N Am 2014; 24:639-53. [PMID: 25441505 DOI: 10.1016/j.nic.2014.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this article, some specificities of functional magnetic resonance imaging (fMRI) in children (eg, blood-oxygen-level-dependent response and brain maturation, paradigm design, technical issues, feasibility, data analysis) are reviewed, the main knowledge on presurgical cortical mapping in children (motor, language, reading, memory) is summarized, and the emergence of resting state fMRI in presurgical cortical mapping is discussed.
Collapse
Affiliation(s)
- Lucie Hertz-Pannier
- UMR 1129, INSERM, Paris Descartes University, CEA-Saclay, Gif sur Yvette, France; UNIACT/Neurospin, I2BM, DSV, CEA-Saclay, Gif sur Yvette, France.
| | - Marion Noulhiane
- UMR 1129, INSERM, Paris Descartes University, CEA-Saclay, Gif sur Yvette, France; UNIACT/Neurospin, I2BM, DSV, CEA-Saclay, Gif sur Yvette, France
| | - Sebastian Rodrigo
- UMR 1129, INSERM, Paris Descartes University, CEA-Saclay, Gif sur Yvette, France; UNIACT/Neurospin, I2BM, DSV, CEA-Saclay, Gif sur Yvette, France
| | - Catherine Chiron
- UMR 1129, INSERM, Paris Descartes University, CEA-Saclay, Gif sur Yvette, France; UNIACT/Neurospin, I2BM, DSV, CEA-Saclay, Gif sur Yvette, France
| |
Collapse
|
9
|
Cerebral near-infrared spectroscopy as a measure of nociceptive evoked activity in critically ill infants. Pain Res Manag 2011; 16:331-6. [PMID: 22059205 DOI: 10.1155/2011/891548] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Signs of pain may be subtle or absent in a critically ill infant. The complex nature of pain may further obscure its identification and measurement. Because the use of monitoring and neuroimaging techniques has become more common in pain research, an understanding of these specialized technologies is important. Near-infrared spectroscopy (NIRS) is a noninvasive technique for monitoring tissue hemodynamics and oxygenation. There are indications that NIRS is capable of detecting the cerebral hemodynamic changes associated with sensory stimuli, including pain, in infants. These developments suggest that NIRS may play an important role in research focusing on pain perception in critically ill infants. The present review briefly describes the cortical responses to noxious stimuli, which parallel cerebral hemodynamic responses to various stimuli. This is followed by an overview of NIRS technology including a summary of the literature on functional studies that have used NIRS in infants. Current NIRS techniques have well-recognized limitations that must be considered carefully during the measurement and interpretation of the signals. Nonetheless, until more advanced NIRS techniques emerge, the current devices have strengths that should be exploited.
Collapse
|
10
|
Lloyd-Fox S, Blasi A, Mercure E, Elwell CE, Johnson MH. The emergence of cerebral specialization for the human voice over the first months of life. Soc Neurosci 2011; 7:317-30. [PMID: 21950945 DOI: 10.1080/17470919.2011.614696] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
How specialized is the infant brain for processing voice within our environment? Research in adults suggests that portions of the temporal lobe play an important role in differentiating vocalizations from other environmental sounds; however, very little is known about this process in infancy. Recent research in infants has revealed discrepancies in the cortical location of voice-selective activation, as well as the age of onset of this response. The current study used functional near-infrared spectroscopy (fNIRS) to further investigate voice processing in awake 4-7-month-old infants. In listening to voice and non-voice sounds, there was robust and widespread activation in bilateral temporal cortex. Further, voice-selective regions of the bilateral anterior temporal cortex evidenced a steady increase in voice selective activation (voice > non-voice activation) over 4-7 months of age. These findings support a growing body of evidence that the emergence of cerebral specialization for human voice sounds evolves over the first 6 months of age.
Collapse
Affiliation(s)
- S Lloyd-Fox
- a Centre for Brain and Cognitive Development, Birkbeck, University of London , London , UK
| | | | | | | | | |
Collapse
|
11
|
Lawrence JM, Kornelsen J, Stroman PW. Noninvasive observation of cervical spinal cord activity in children by functional MRI during cold thermal stimulation. Magn Reson Imaging 2011; 29:813-8. [DOI: 10.1016/j.mri.2011.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 01/07/2011] [Accepted: 02/20/2011] [Indexed: 11/24/2022]
|
12
|
Remijn GB, Kikuchi M, Yoshimura Y, Shitamichi K, Ueno S, Nagao K, Munesue T, Kojima H, Minabe Y. Hemodynamic responses to visual stimuli in cortex of adults and 3- to 4-year-old children. Brain Res 2011; 1383:242-51. [DOI: 10.1016/j.brainres.2011.01.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 01/08/2011] [Accepted: 01/26/2011] [Indexed: 01/30/2023]
|
13
|
Braddick O, Atkinson J. Development of human visual function. Vision Res 2011; 51:1588-609. [PMID: 21356229 DOI: 10.1016/j.visres.2011.02.018] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 11/19/2022]
Abstract
By 1985 newly devised behavioral and electrophysiological techniques had been used to track development of infants' acuity, contrast sensitivity and binocularity, and for clinical evaluation of developing visual function. This review focus on advances in the development and assessment of infant vision in the following 25 years. Infants' visual cortical function has been studied through selectivity for orientation, directional motion and binocular disparity, and the control of subcortical oculomotor mechanisms in fixation shifts and optokinetic nystagmus, leading to a model of increasing cortical dominance over subcortical pathways. Neonatal face processing remains a challenge for this model. Recent research has focused on development of integrative processing (hyperacuity, texture segmentation, and sensitivity to global form and motion coherence) in extra-striate visual areas, including signatures of dorsal and ventral stream processing. Asynchronies in development of these two streams may be related to their differential vulnerability in both acquired and genetic disorders. New methods and approaches to clinical disorders are reviewed, in particular the increasing focus on paediatric neurology as well as ophthalmology. Visual measures in early infancy in high-risk children are allowing measures not only of existing deficits in infancy but prediction of later visual and cognitive outcome. Work with early cataract and later recovery from blinding disorders has thrown new light on the plasticity of the visual system and its limitations. The review concludes with a forward look to future opportunities provided by studies of development post infancy, new imaging and eye tracking methods, and sampling infants' visual ecology.
Collapse
Affiliation(s)
- Oliver Braddick
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom.
| | | |
Collapse
|
14
|
Obrig H, Rossi S, Telkemeyer S, Wartenburger I. From acoustic segmentation to language processing: evidence from optical imaging. FRONTIERS IN NEUROENERGETICS 2010; 2. [PMID: 20725516 PMCID: PMC2912026 DOI: 10.3389/fnene.2010.00013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 05/27/2010] [Indexed: 11/25/2022]
Abstract
During language acquisition in infancy and when learning a foreign language, the segmentation of the auditory stream into words and phrases is a complex process. Intuitively, learners use “anchors” to segment the acoustic speech stream into meaningful units like words and phrases. Regularities on a segmental (e.g., phonological) or suprasegmental (e.g., prosodic) level can provide such anchors. Regarding the neuronal processing of these two kinds of linguistic cues a left-hemispheric dominance for segmental and a right-hemispheric bias for suprasegmental information has been reported in adults. Though lateralization is common in a number of higher cognitive functions, its prominence in language may also be a key to understanding the rapid emergence of the language network in infants and the ease at which we master our language in adulthood. One question here is whether the hemispheric lateralization is driven by linguistic input per se or whether non-linguistic, especially acoustic factors, “guide” the lateralization process. Methodologically, functional magnetic resonance imaging provides unsurpassed anatomical detail for such an enquiry. However, instrumental noise, experimental constraints and interference with EEG assessment limit its applicability, pointedly in infants and also when investigating the link between auditory and linguistic processing. Optical methods have the potential to fill this gap. Here we review a number of recent studies using optical imaging to investigate hemispheric differences during segmentation and basic auditory feature analysis in language development.
Collapse
Affiliation(s)
- Hellmuth Obrig
- Max-Planck-Institute for Cognitive and Brain Sciences Leipzig, Germany
| | | | | | | |
Collapse
|
15
|
Lloyd-Fox S, Blasi A, Elwell C. Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy. Neurosci Biobehav Rev 2010; 34:269-84. [DOI: 10.1016/j.neubiorev.2009.07.008] [Citation(s) in RCA: 586] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/15/2009] [Accepted: 07/16/2009] [Indexed: 11/24/2022]
|
16
|
Oechslin MS, Meyer M, Jäncke L. Absolute pitch--functional evidence of speech-relevant auditory acuity. Cereb Cortex 2009; 20:447-55. [PMID: 19592570 PMCID: PMC2803739 DOI: 10.1093/cercor/bhp113] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Absolute pitch (AP) has been shown to be associated with morphological changes and neurophysiological adaptations in the planum temporale, a cortical area involved in higher-order auditory and speech perception processes. The direct link between speech processing and AP has hitherto not been addressed. We provide first evidence that AP compared with relative pitch (RP) ability is associated with significantly different hemodynamic responses to complex speech sounds. By systematically varying the lexical and/or prosodic information of speech stimuli, we demonstrated consistent activation differences in AP musicians compared with RP musicians and nonmusicians. These differences relate to stronger activations in the posterior part of the middle temporal gyrus and weaker activations in the anterior mid-part of the superior temporal gyrus. Furthermore, this pattern is considerably modulated by the auditory acuity of AP. Our results suggest that the neural underpinnings of pitch processing expertise exercise a strong influence on propositional speech perception (sentence meaning).
Collapse
Affiliation(s)
- Mathias S Oechslin
- Department of Neuropsychology, University of Zurich, CH-8050 Zurich, Switzerland
| | | | | |
Collapse
|
17
|
Sava S, Lebel AA, Leslie DS, Drosos A, Berde C, Becerra L, Borsook D. Challenges of functional imaging research of pain in children. Mol Pain 2009; 5:30. [PMID: 19531255 PMCID: PMC2702328 DOI: 10.1186/1744-8069-5-30] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 06/16/2009] [Indexed: 11/10/2022] Open
Abstract
Functional imaging has revolutionized the neurosciences. In the pain field it has dramatically altered our understanding of how the brain undergoes significant functional, anatomical and chemical changes in patients with chronic pain. However, most studies have been performed in adults. Because functional imaging is non-invasive and can be performed in awake individuals, applications in children have become more prevalent, but only recently in the pain field. Measures of changes in the brains of children have important implications in understanding neural plasticity in response to acute and chronic pain in the developing brain. Such findings may have implications for treatments in children affected by chronic pain and provide novel insights into chronic pain syndromes in adults. In this review we summarize this potential and discuss specific concerns related to the imaging of pain in children.
Collapse
Affiliation(s)
- Simona Sava
- P.A.I.N. Group, Department of Radiology, Children's Hospital Boston, Massachuesetts, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Moeller F, Siebner HR, Wolff S, Muhle H, Granert O, Jansen O, Stephani U, Siniatchkin M. Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy. Epilepsia 2008; 49:1510-9. [PMID: 18435752 DOI: 10.1111/j.1528-1167.2008.01626.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE In patients with idiopathic generalized epilepsy (IGE), blood oxygen level dependent (BOLD) EEG during functional MRI (EEG-fMRI) has been successfully used to link changes in regional neuronal activity to the occurrence of generalized spike-and-wave (GSW) discharges. Most EEG-fMRI studies have been performed on adult patients with long-standing epilepsy who were on antiepileptic medication. Here, we applied EEG-fMRI to investigate BOLD signal changes during absence seizures in children with newly diagnosed childhood absence epilepsy (CAE). METHODS Ten drug-naive children with newly diagnosed CAE underwent simultaneous EEG-fMRI. BOLD signal changes associated with ictal EEG activity (i.e., periods of three per second GSW) were analyzed in predefined regions-of-interests (ROIs), including the thalamus, the precuneus, and caudate nucleus. RESULTS In 6 out of 10 children, EEG recordings showed periods of three per second GSW during fMRI. Three per second GSW were associated with regional BOLD signal decreases in parietal areas, precuneus, and caudate nucleus along with a bilateral increase in the BOLD signal in the medial thalamus. Taking into account the normal delay in the hemodynamic response, temporal analysis showed that the onset of BOLD signal changes coincided with the onset of GSW. DISCUSSION In drug-naive individuals with CAE, ictal three per second GSW are associated with BOLD signal changes in the same striato-thalamo-cortical network that changes its regional activity during primary and secondary generalized paroxysms in treated adults. No BOLD signal changes in the striato-thalamo-cortical network preceded the onset of three per second GSW in unmediated children with CAE.
Collapse
Affiliation(s)
- Friederike Moeller
- Department of Neuropediatrics, Christian-Albrechts-University, Kiel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Developmental neuroimaging of the human ventral visual cortex. Trends Cogn Sci 2008; 12:152-62. [PMID: 18359267 DOI: 10.1016/j.tics.2008.01.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 01/16/2008] [Accepted: 01/21/2008] [Indexed: 10/22/2022]
Abstract
Here, we review recent results that investigate the development of the human ventral stream from childhood, through adolescence and into adulthood. Converging evidence suggests a differential developmental trajectory across ventral stream regions, in which face-selective regions show a particularly long developmental time course, taking more than a decade to become adult-like. We discuss the implications of these recent findings, how they relate to age-dependent improvements in recognition memory performance and propose possible neural mechanisms that might underlie this development. These results have important implications regarding the role of experience in shaping the ventral stream and the nature of the underlying representations.
Collapse
|
20
|
Variability of the hemodynamic response as a function of age and frequency of epileptic discharge in children with epilepsy. Neuroimage 2007; 40:601-614. [PMID: 18221891 DOI: 10.1016/j.neuroimage.2007.11.056] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 10/30/2007] [Accepted: 11/28/2007] [Indexed: 11/20/2022] Open
Abstract
EEG-fMRI is a non-invasive tool to investigate epileptogenic networks in patients with epilepsy. Different patterns of BOLD responses have been observed in children as compared to adults. A high intra- and intersubject variability of the hemodynamic response function (HRF) to epileptic discharges has been observed in adults. The actual HRF to epileptic discharges in children and its dependence on age are unknown. We analyzed 64 EEG-fMRI event types in 37 children (3 months to 18 years), 92% showing a significant BOLD response. HRFs were calculated for each BOLD cluster using a Fourier basis set. After excluding HRFs with a low signal-to-noise ratio, 126 positive and 98 negative HRFs were analyzed. We evaluated age-dependent changes as well as the effect of increasing numbers of spikes. Peak time, amplitude and signal-to-noise ratio of the HRF and the t-statistic score of the cluster were used as dependent variables. We observed significantly longer peak times of the HRF in the youngest children (0 to 2 years), suggesting that the use of multiple HRFs might be important in this group. A different coupling between neuronal activity and metabolism or blood flow in young children may cause this phenomenon. Even if the t-value increased with frequent spikes, the amplitude of the HRF decreased significantly with spike frequency. This reflects a violation of the assumptions of the General Linear Model and therefore the use of alternative analysis techniques may be more appropriate with high spiking rates, a common situation in children.
Collapse
|
21
|
Redcay E, Kennedy DP, Courchesne E. fMRI during natural sleep as a method to study brain function during early childhood. Neuroimage 2007; 38:696-707. [PMID: 17904385 DOI: 10.1016/j.neuroimage.2007.08.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 07/30/2007] [Accepted: 08/02/2007] [Indexed: 01/21/2023] Open
Abstract
Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.
Collapse
Affiliation(s)
- Elizabeth Redcay
- Department of Psychology, University of California, San Diego, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
22
|
Abstract
In order to provide accurate prognosis and developmental intervention to newborns, new methods of assessing cerebral functions are needed. The non-invasive technique of functional magnetic resonance imaging (fMRI) can be considered as the leading technique for functional exploration of the infant's brain. Several studies have previously applied fMRI in both healthy and diseased newborns with different sensory and cognitive tasks. In this chapter, the methodological issues that are proper to the use of fMRI in the newborn are detailed. In addition, an overview of the major findings of previous fMRI studies is provided, with a focus on notable differences from those in adult subjects. More specifically, the functional responses and the localization of cortical activations in healthy and diseased newborns are discussed. We expect a rapid expansion of this field and the establishment of fMRI as a valid clinical diagnostic tool in the newborn.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Wellcome Department of Imaging Neuroscience, Institute of Neurology, UCL, 12 Queen Square, London WC1N 3BG, UK.
| | | | | |
Collapse
|
23
|
Kourtzi Z, Augath M, Logothetis NK, Movshon JA, Kiorpes L. Development of visually evoked cortical activity in infant macaque monkeys studied longitudinally with fMRI. Magn Reson Imaging 2006; 24:359-66. [PMID: 16677941 DOI: 10.1016/j.mri.2005.12.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 12/02/2005] [Indexed: 11/28/2022]
Abstract
We studied the development of visual activation longitudinally in two infant monkeys aged 103-561 days using the BOLD fMRI technique under opiate anesthesia and compared the results with those obtained in three adult animals studied under identical conditions. Visual activation in primary visual cortex, V1, was strong and reliable in monkeys of the youngest and oldest ages, showing that functional imaging techniques give qualitatively similar results in infants and adults. Visual activation in extrastriate areas involved in processing motion (MT/V5) and form (V4) was not evident in the younger animals, but became more adult-like in the older animals. This delayed onset of measurable BOLD responses in extrastriate visual cortex may reflect delayed development of visual responses in these areas, although at this stage it is not possible to rule out either effects of anesthesia or of changes in cerebral vascular response mechanisms as the cause. The demonstration of visually evoked BOLD responses in young monkeys shows that the BOLD fMRI technique can usefully be employed to address functional questions of brain development.
Collapse
Affiliation(s)
- Zoe Kourtzi
- Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany
| | | | | | | | | |
Collapse
|