1
|
Nair J, Marciante AB, Lurk C, Kelly MN, Maclain C, Mitchell GS. Daily acute intermittent hypoxia elicits age & sex-dependent changes in molecules regulating phrenic motor plasticity. Exp Neurol 2025; 389:115240. [PMID: 40204197 DOI: 10.1016/j.expneurol.2025.115240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Acute intermittent hypoxia (AIH) elicits a form of respiratory motor plasticity known as phrenic long-term facilitation (pLTF). Exposure to repetitive daily AIH (dAIH) enhances pLTF, a form of metaplasticity. Little is known concerning cellular mechanisms giving rise to dAIH-induced metaplasticity and the age-dependent sexual dimorphism of AIH associated pro-plasticity mRNA expression. To test if age, sex, and dAIH effects are associated with differential expression of molecules that regulate the Q- and S-pathways and their cross-talk interactions to phrenic motor facilitation, we analyzed key regulatory molecules in ventral spinal (C3-C5) homogenates from young (3-month) and middle-aged (12-month) male and female Sprague-Dawley rats. Since CNS estrogen levels impact molecules known to regulate the Q- and S-pathways, mRNA was correlated with serum estradiol. Rats (n = 8/group) were exposed to sham (21 % O2) or dAIH (15, 1 min episodes of 10.5 % inspired O2) per day for 14 days and sacrificed 24 h later. mRNAs for pLTF regulating molecules were assessed via RT-PCR, including: brain-derived neurotrophic factor (Bdnf); serotonin 2 A (Htr2a), 2B (Htr2b), and 7 (Htr7) receptors; adenosine 2a (Adora2a) receptors; exchange protein activated by cAMP (Epac1); p38 MAP kinase [Mapk14 (α) & Mapk11 (β)]; PKA regulatory (Prkar1a) and; catalytic subunits (Prkaa1); fractalkine (Cx3cl1), which underlies motor neuron/microglia communication; phosphodiesterase type 4b (Pde4b); NAPDH- gp91 (Cybb) and p47 (ncf1); and the PKC isoform, PKCδ (Prkcd). Here we report that age, sex, dAIH preconditioning, and estradiol influence molecules that initiate and/or regulate the Q- and S-pathways to phrenic motor facilitation.
Collapse
Affiliation(s)
- Jayakrishnan Nair
- Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, FL, USA; Department of Physical Therapy, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Alexandria B Marciante
- Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
| | - Carter Lurk
- Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
| | - Mia N Kelly
- Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
| | - Capron Maclain
- Department of Physical Therapy, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Lee J, Yeo JH, Kim SS, Lee JM, Yeo SG. Production and Role of Free Radicals and Reactive Oxygen Species After Facial Nerve Injury. Antioxidants (Basel) 2025; 14:436. [PMID: 40298798 PMCID: PMC12024044 DOI: 10.3390/antiox14040436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Facial nerve injury (FNI) induces complex molecular and cellular responses, with reactive oxygen species (ROS) and free radicals (FRs) playing pivotal roles in nerve degeneration and regeneration. However, to date, no systematic review has specifically investigated the involvement of ROS and FRs in FNI. To address this unmet need, we reviewed the literature on the subject, comprehensively searching SCOPUS, PubMed, Cochrane Library, EMBASE, and Google Scholar to identify studies that assessed the roles of FRs and ROS in FNI and summarize their findings. A total of 15 studies that satisfied search criteria were identified. Key findings showed that excessive ROS and FR lead to mitochondrial dysfunction, lipid peroxidation, and ferroptosis, exacerbating nerve degeneration after facial nerve injury. These effects are modulated by antioxidants, including alpha-lipoic acid, edaravone, N(ω)-nitro-L-arginine methyl ester (L-NAME), glutathione peroxidase 4, glutathione, methylprednisolone sodium succinate, Si-based agents, superoxide dismutase, and tirilazad mesylate. The insights gained from this review suggest that levels of FRs and ROS are strongly associated with the pathophysiology of facial nerve injury and underscore the therapeutic potential of targeting ROS and FR pathways in facial nerve injuries.
Collapse
Affiliation(s)
- Jeongmin Lee
- Department of Medicine, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Joon Hyung Yeo
- Public Health Center, Danyang-gun 27010, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Jae Min Lee
- Department of Otorhinolaryngology Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Convergence Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Bartman CM, Awari DW, Pabelick CM, Prakash YS. Intermittent Hypoxia-Hyperoxia and Oxidative Stress in Developing Human Airway Smooth Muscle. Antioxidants (Basel) 2021; 10:antiox10091400. [PMID: 34573032 PMCID: PMC8467919 DOI: 10.3390/antiox10091400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/24/2023] Open
Abstract
Premature infants are frequently and intermittently administered supplemental oxygen during hypoxic episodes, resulting in cycles of intermittent hypoxia and hyperoxia. The relatively hypoxic in utero environment is important for lung development while hyperoxia during the neonatal period is recognized as detrimental towards the development of diseases such as bronchopulmonary dysplasia and bronchial asthma. Understanding early mechanisms that link hypoxic, hyperoxic, and intermittent hypoxic-hyperoxic exposures to altered airway structure and function are key to developing advanced therapeutic approaches in the clinic. Changes in oxygen availability can be detrimental to cellular function and contribute to oxidative damage. Here, we sought to determine the effect of oxygen on mitochondria in human fetal airway smooth muscle cells exposed to either 5% O2, 21% O2, 40% O2, or cycles of 5% and 40% O2 (intermittent hypoxia-hyperoxia). Reactive oxygen species production, altered mitochondrial morphology, and changes in mitochondrial respiration were assessed in the context of the antioxidant N-acetylcysteine. Our findings show developing airway smooth muscle is differentially responsive to hypoxic, hyperoxic, or intermittent hypoxic-hyperoxic exposure in terms of mitochondrial structure and function. Cycling O2 decreased mitochondrial branching and branch length similar to hypoxia and hyperoxia in the presence of antioxidants. Additionally, hypoxia decreased overall mitochondrial respiration while the addition of antioxidants increased respiration in normoxic and O2-cycling conditions. These studies show the necessity of balancing oxidative damage and antioxidant defense systems in the developing airway.
Collapse
Affiliation(s)
- Colleen M. Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.W.A.); (C.M.P.)
- Correspondence: (C.M.B.); (Y.S.P.)
| | - Daniel Wasim Awari
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.W.A.); (C.M.P.)
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.W.A.); (C.M.P.)
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.W.A.); (C.M.P.)
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (C.M.B.); (Y.S.P.)
| |
Collapse
|
4
|
Wright CJ. Acetaminophen and the Developing Lung: Could There Be Lifelong Consequences? J Pediatr 2021; 235:264-276.e1. [PMID: 33617854 PMCID: PMC9810455 DOI: 10.1016/j.jpeds.2021.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/05/2023]
Affiliation(s)
- Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO.
| |
Collapse
|
5
|
Effect of Xenon Treatment on Gene Expression in Brain Tissue after Traumatic Brain Injury in Rats. Brain Sci 2021; 11:brainsci11070889. [PMID: 34356124 PMCID: PMC8301933 DOI: 10.3390/brainsci11070889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 01/21/2023] Open
Abstract
The overactivation of inflammatory pathways and/or a deficiency of neuroplasticity may result in the delayed recovery of neural function in traumatic brain injury (TBI). A promising approach to protecting the brain tissue in TBI is xenon (Xe) treatment. However, xenon's mechanisms of action remain poorly clarified. In this study, the early-onset expression of 91 target genes was investigated in the damaged and in the contralateral brain areas (sensorimotor cortex region) 6 and 24 h after injury in a TBI rat model. The expression of genes involved in inflammation, oxidation, antioxidation, neurogenesis and neuroplasticity, apoptosis, DNA repair, autophagy, and mitophagy was assessed. The animals inhaled a gas mixture containing xenon and oxygen (ϕXe = 70%; ϕO2 25-30% 60 min) 15-30 min after TBI. The data showed that, in the contralateral area, xenon treatment induced the expression of stress genes (Irf1, Hmox1, S100A8, and S100A9). In the damaged area, a trend towards lower expression of the inflammatory gene Irf1 was observed. Thus, our results suggest that xenon exerts a mild stressor effect in healthy brain tissue and has a tendency to decrease the inflammation following damage, which might contribute to reducing the damage and activating the early compensatory processes in the brain post-TBI.
Collapse
|
6
|
Issah Y, Naik A, Tang SY, Forrest K, Brooks TG, Lahens N, Theken KN, Mermigos M, Sehgal A, Worthen GS, FitzGerald GA, Sengupta S. Loss of circadian protection against influenza infection in adult mice exposed to hyperoxia as neonates. eLife 2021; 10:e61241. [PMID: 33650487 PMCID: PMC7924938 DOI: 10.7554/elife.61241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Adverse early-life exposures have a lasting negative impact on health. Neonatal hyperoxia that is a risk factor for bronchopulmonary dysplasia confers susceptibility to influenza A virus (IAV) infection later in life. Given our previous findings that the circadian clock protects against IAV, we asked if the long-term impact of neonatal hyperoxia vis-à-vis IAV infection includes circadian disruption. Here, we show that neonatal hyperoxia abolishes the clock-mediated time of day protection from IAV in mice, independent of viral burden through host tolerance pathways. We discovered that the lung intrinsic clock (and not the central or immune clocks) mediated this dysregulation. Loss of circadian protein, Bmal1, in alveolar type 2 (AT2) cells recapitulates the increased mortality, loss of temporal gating, and other key features of hyperoxia-exposed animals. Our data suggest a novel role for the circadian clock in AT2 cells in mediating long-term effects of early-life exposures to the lungs.
Collapse
Affiliation(s)
- Yasmine Issah
- The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Amruta Naik
- The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Soon Y Tang
- Institute of Translational Medicine and Therapeutics (ITMAT), University of PennsylvaniaPhiladelphiaUnited States
| | - Kaitlyn Forrest
- The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Thomas G Brooks
- Institute of Translational Medicine and Therapeutics (ITMAT), University of PennsylvaniaPhiladelphiaUnited States
| | - Nicholas Lahens
- Institute of Translational Medicine and Therapeutics (ITMAT), University of PennsylvaniaPhiladelphiaUnited States
| | - Katherine N Theken
- Institute of Translational Medicine and Therapeutics (ITMAT), University of PennsylvaniaPhiladelphiaUnited States
- Systems Pharmacology University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Mara Mermigos
- The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Amita Sehgal
- Chronobiology and Sleep Institute, University of PennsylvaniaPhiladelphiaUnited States
- Department of Neuroscience, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - George S Worthen
- The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pediatrics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Garret A FitzGerald
- Institute of Translational Medicine and Therapeutics (ITMAT), University of PennsylvaniaPhiladelphiaUnited States
- Systems Pharmacology University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
- Chronobiology and Sleep Institute, University of PennsylvaniaPhiladelphiaUnited States
| | - Shaon Sengupta
- The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Institute of Translational Medicine and Therapeutics (ITMAT), University of PennsylvaniaPhiladelphiaUnited States
- Chronobiology and Sleep Institute, University of PennsylvaniaPhiladelphiaUnited States
- Department of Pediatrics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| |
Collapse
|
7
|
Nakane M. Biological effects of the oxygen molecule in critically ill patients. J Intensive Care 2020; 8:95. [PMID: 33317639 PMCID: PMC7734465 DOI: 10.1186/s40560-020-00505-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
The medical use of oxygen has been widely and frequently proposed for patients, especially those under critical care; however, its benefit and drawbacks remain controversial for certain conditions. The induction of oxygen therapy is commonly considered for either treating or preventing hypoxia. Therefore, the concept of different types of hypoxia should be understood, particularly in terms of their mechanism, as the effect of oxygen therapy principally varies by the physiological characteristics of hypoxia. Oxygen molecules must be constantly delivered to all cells throughout the human body and utilized effectively in the process of mitochondrial oxidative phosphorylation, which is necessary for generating energy through the formation of adenosine triphosphate. If the oxygen availability at the cellular level is inadequate for sustaining the metabolism, the condition of hypoxia which is characterized as heterogeneity in tissue oxygen tension may develop, which is called dysoxia, a more physiological concept that is related to hypoxia. In such hypoxic patients, repetitive measurements of the lactate level in blood are generally recommended in order to select the adequate therapeutic strategy targeting a reduction in lactate production. Excessive oxygen, however, may actually induce a hyperoxic condition which thus can lead to harmful oxidative stress by increasing the production of reactive oxygen species, possibly resulting in cellular dysfunction or death. In contrast, the human body has several oxygen-sensing mechanisms for preventing both hypoxia and hyperoxia that are employed to ensure a proper balance between the oxygen supply and demand and prevent organs and cells from suffering hyperoxia-induced oxidative stress. Thus, while the concept of hyperoxia is known to have possible adverse effects on the lung, the heart, the brain, or other organs in various pathological conditions of critically ill patients, and no obvious evidence has yet been proposed to totally support liberal oxygen supplementation in any subset of critically ill patients, relatively conservative oxygen therapy with cautious monitoring appears to be safe and may improve the outcome by preventing harmful oxidative stress resulting from excessive oxygen administration. Given the biological effects of oxygen molecules, although the optimal target levels remain controversial, unnecessary oxygen administration should be avoided, and exposure to hyperoxemia should be minimized in critically ill patients.
Collapse
Affiliation(s)
- Masaki Nakane
- Department of Emergency and Critical Care Medicine, Yamagata University Hospital, 2-2-2 Iida-nishi, Yamagata, 990-9585, Japan.
| |
Collapse
|
8
|
Kumar VHS, Wang H, Nielsen L. Short-term perinatal oxygen exposure may impair lung development in adult mice. Biol Res 2020; 53:51. [PMID: 33168088 PMCID: PMC7654066 DOI: 10.1186/s40659-020-00318-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/29/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Hyperoxia at resuscitation increases oxidative stress, and even brief exposure to high oxygen concentrations during stabilization may trigger organ injury with adverse long-term outcomes in premature infants. We studied the long-term effects of short-term perinatal oxygen exposure on cell cycle gene expression and lung growth in adult mice. METHODS We randomized mice litters at birth to 21, 40, or 100%O2 for 30 min and recovered in room air for 4 or 12 weeks. Cell cycle gene expression, protein analysis, and lung morphometry were assessed at 4 and 12 weeks. RESULTS The principal component analysis demonstrated a high degree of correlation for cell cycle gene expression among the three oxygen groups. Lung elastin was significantly lower in the 100%O2 groups at 4 weeks. On lung morphometry, radial alveolar count, alveolar number, and septal count were similar. However, the mean linear intercept (MLI) and septal length significantly correlated among the oxygen groups. The MLI was markedly higher in the 100%O2 groups at 4 and 12 weeks of age, and the septal length was significantly lower in the 100%O2 groups at 12 weeks. CONCLUSION Short-term exposure to high oxygen concentrations lead to subtle changes in lung development that may affect alveolarization. The changes are related explicitly to secondary crest formation that may result in alteration in lung elastin. Resuscitation with high oxygen concentrations may have a significant impact on lung development and long-term outcomes such as BPD in premature infants.
Collapse
Affiliation(s)
- Vasantha H S Kumar
- Division of Neonatology, Department of Pediatrics, University At Buffalo, 1001 fifth Floor Main Street Buffalo, Buffalo, NY, 14203, USA.
| | - Huamei Wang
- Division of Neonatology, Department of Pediatrics, University At Buffalo, 1001 fifth Floor Main Street Buffalo, Buffalo, NY, 14203, USA
| | - Lori Nielsen
- Division of Neonatology, Department of Pediatrics, University At Buffalo, 1001 fifth Floor Main Street Buffalo, Buffalo, NY, 14203, USA
| |
Collapse
|
9
|
Tretter V, Zach ML, Böhme S, Ullrich R, Markstaller K, Klein KU. Investigating Disturbances of Oxygen Homeostasis: From Cellular Mechanisms to the Clinical Practice. Front Physiol 2020; 11:947. [PMID: 32848874 PMCID: PMC7417655 DOI: 10.3389/fphys.2020.00947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Soon after its discovery in the 18th century, oxygen was applied as a therapeutic agent to treat severely ill patients. Lack of oxygen, commonly termed as hypoxia, is frequently encountered in different disease states and is detrimental to human life. However, at the end of the 19th century, Paul Bert and James Lorrain Smith identified what is known as oxygen toxicity. The molecular basis of this phenomenon is oxygen's readiness to accept electrons and to form different variants of aggressive radicals that interfere with normal cell functions. The human body has evolved to maintain oxygen homeostasis by different molecular systems that are either activated in the case of oxygen under-supply, or to scavenge and to transform oxygen radicals when excess amounts are encountered. Research has provided insights into cellular mechanisms of oxygen homeostasis and is still called upon in order to better understand related diseases. Oxygen therapy is one of the prime clinical interventions, as it is life saving, readily available, easy to apply and economically affordable. However, the current state of research also implicates a reconsidering of the liberal application of oxygen causing hyperoxia. Increasing evidence from preclinical and clinical studies suggest detrimental outcomes as a consequence of liberal oxygen therapy. In this review, we summarize concepts of cellular mechanisms regarding different forms of disturbed cellular oxygen homeostasis that may help to better define safe clinical application of oxygen therapy.
Collapse
Affiliation(s)
- Verena Tretter
- Department of Anaesthesia, General Intensive Care and Pain Therapy, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Significance: Redox homeostasis is finely tuned and governed by distinct intracellular mechanisms. The dysregulation of this either by external or internal events is a fundamental pathophysiologic base for many pulmonary diseases. Recent Advances: Based on recent discoveries, it is increasingly clear that cellular redox state and oxidation of signaling molecules are critical modulators of lung disease and represent a final common pathway that leads to poor respiratory outcomes. Critical Issues: Based on the wide variety of stimuli that alter specific redox signaling pathways, improved understanding of the disease and patient-specific alterations are needed for the development of therapeutic targets. Further Directions: For the full comprehension of redox signaling in pulmonary disease, it is essential to recognize the role of reactive oxygen intermediates in modulating biological responses. This review summarizes current knowledge of redox signaling in pulmonary development and pulmonary vascular disease.
Collapse
Affiliation(s)
- Gaston Ofman
- Redox Biology Laboratory, Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Trent E Tipple
- Redox Biology Laboratory, Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
11
|
Panina SB, Gutsenko OI, Milyutina NP, Kornienko IV, Ananyan AA, Gvaldin DY, Plotnikov AA, Vnukov VV. SkQ1 Controls CASP3 Gene Expression and Caspase-3-Like Activity in the Brain of Rats under Oxidative Stress. BIOCHEMISTRY (MOSCOW) 2018; 83:1245-1254. [PMID: 30472961 DOI: 10.1134/s0006297918100097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here, we studied the effect of the mitochondria-targeted antioxidant SkQ1 (plastoquinone cationic derivative) on the CASP3 gene expression and caspase-3 activity in rat cerebral cortex and brain mitochondria under normal conditions and in oxidative stress induced by hyperbaric oxygenation (HBO). Under physiological conditions, SkQ1 administration (50 nmol/kg, 5 days) did not affect the CASP3 gene expression and caspase-3-like activity in the cortical cells, as well as caspase-3-like activity in brain mitochondria, but caused a moderate decrease in the content of primary products of lipid peroxidation (LPO) and an increase in the reduced glutathione (GSH) level. HBO-induced oxidative stress (0.5 MPa, 90 min) was accompanied by significant upregulation of CASP3 mRNA and caspase-3-like activity in the cerebral cortex, activation of the mitochondrial enzyme with simultaneous decrease in the GSH content, increase in the glutathione reductase activity, and stimulation of LPO. Administration of SkQ1 before the HBO session maintained the basal levels of the CASP3 gene expression and enzyme activity in the cerebral cortex cells and led to the normalization of caspase-3-like activity and redox parameters in brain mitochondria. We hypothesize that SkQ1 protects brain cells from the HBO-induced oxidative stress due to its antioxidant activity and stimulation of antiapoptotic mechanisms.
Collapse
Affiliation(s)
- S B Panina
- Southern Federal University, Academy of Biology and Biotechnology, Department of Biochemistry and Microbiology, Rostov-on-Don, 344090, Russia
| | - O I Gutsenko
- Southern Federal University, Academy of Biology and Biotechnology, Department of Biochemistry and Microbiology, Rostov-on-Don, 344090, Russia
| | - N P Milyutina
- Southern Federal University, Academy of Biology and Biotechnology, Department of Biochemistry and Microbiology, Rostov-on-Don, 344090, Russia.
| | - I V Kornienko
- Southern Federal University, Academy of Biology and Biotechnology, Department of Biochemistry and Microbiology, Rostov-on-Don, 344090, Russia
| | - A A Ananyan
- Southern Federal University, Academy of Biology and Biotechnology, Department of Biochemistry and Microbiology, Rostov-on-Don, 344090, Russia
| | - D Yu Gvaldin
- Southern Federal University, Academy of Biology and Biotechnology, Department of Biochemistry and Microbiology, Rostov-on-Don, 344090, Russia
| | - A A Plotnikov
- Southern Federal University, Academy of Biology and Biotechnology, Department of Biochemistry and Microbiology, Rostov-on-Don, 344090, Russia
| | - V V Vnukov
- Southern Federal University, Academy of Biology and Biotechnology, Department of Biochemistry and Microbiology, Rostov-on-Don, 344090, Russia
| |
Collapse
|
12
|
Chen CM, Hwang J, Chou HC, Shiah HS. Tn (N-acetyl-d-galactosamine-O-serine/threonine) immunization protects against hyperoxia-induced lung injury in adult mice through inhibition of the nuclear factor kappa B activity. Int Immunopharmacol 2018; 59:261-268. [DOI: 10.1016/j.intimp.2018.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/29/2018] [Accepted: 04/11/2018] [Indexed: 11/27/2022]
|
13
|
Dietz RM, Wright CJ. Oxidative stress diseases unique to the perinatal period: A window into the developing innate immune response. Am J Reprod Immunol 2017; 79:e12787. [PMID: 29194835 DOI: 10.1111/aji.12787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/31/2017] [Indexed: 12/15/2022] Open
Abstract
The innate immune system has evolved to play an integral role in the normally developing lung and brain. However, in response to oxidative stress, innate immunity, mediated by specific cellular and molecular programs and signaling, contributes to pathology in these same organ systems. Despite opposing drivers of oxidative stress, namely hyperoxia in neonatal lung injury and hypoxia/ischemia in neonatal brain injury, similar pathways-including toll-like receptors, NFκB and MAPK cascades-have been implicated in tissue damage. In this review, we consider recent insights into the innate immune response to oxidative stress in both neonatal and adult models to better understand hyperoxic lung injury and hypoxic-ischemic brain injury across development and aging. These insights support the development of targeted immunotherapeutic strategies to address the challenge of harnessing the innate immune system in oxidative stress diseases of the neonate.
Collapse
Affiliation(s)
- Robert M Dietz
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
14
|
Kalikstad B, Kultima HG, Andersstuen TK, Klungland A, Isaksson A. Gene expression profiles in preterm infants on continuous long‑term oxygen therapy suggest reduced oxidative stress‑dependent signaling during hypoxia. Mol Med Rep 2017; 15:1513-1526. [PMID: 28259955 PMCID: PMC5364962 DOI: 10.3892/mmr.2017.6185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/01/2016] [Indexed: 01/24/2023] Open
Abstract
Preterm infants are susceptible to neonatal inflammatory/infective diseases requiring drug therapy. The present study hypothesized that mRNA expression in the blood may be modulated by signaling pathways during treatment. The current study aimed to explore changes in global gene expression in the blood from preterm infants with the objective of identifying patterns or pathways of potential relevance to drug therapy. The infants involved were selected based on maternal criteria indicating increased risk for therapeutic intervention. Global mRNA expression was measured in 107 longitudinal whole blood samples using Affymetrix Human-Genome-U133 Plus 2.0-arrays; samples were obtained from 20 preterm infants. Unsupervised clustering revealed a distinct homogeneous gene expression pattern in 13 samples derived from seven infants undergoing continuous oxygen therapy. At these sampling times, all but one of the seven infants exhibited severe drops in peripheral capillary saturation levels below 60%. The infants were reoxygenated with 100% inspired oxygen concentration. The other samples (n=94) represented the infants from the cohort at time points when they did not undergo continuous oxygen therapy. Comparing these two sets of samples identified a distinct gene expression pattern of 5,986 significantly differentially expressed genes, of which 5,167 genes exhibited reduced expression levels during transient hypoxia. This expression pattern was reversed when the infants became stable, i.e., when they were not continuously oxygenated and had no events of hypoxia. To identify signaling pathways involved in gene regulation, the Database for Annotation, Visualization and Integrated Discovery online tool was used. Mitogen-activated protein kinases, which are normally induced by oxidative stress, exhibited reduced gene expression during hypoxia. In addition, nuclear factor erythroid 2-related factor 2-antioxidant response element target genes involved in oxidative stress protection were also expressed at lower levels, suggesting reduced transcription of this pathway. The findings of the present study suggest that oxidative stress-dependent signaling is reduced during hypoxia. Understanding the molecular response in preterm infants during continuous oxygenation may aid in refining therapeutic strategies for oxygen therapy.
Collapse
Affiliation(s)
- Betty Kalikstad
- University of Oslo, Institute of Clinical Medicine, Women and Children's Clinic, Rikshospitalet, 0372 Oslo, Norway
| | - Hanna Göransson Kultima
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | | | - Arne Klungland
- Department of Molecular Biology, Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Anders Isaksson
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|
15
|
Neuroprotection and neurotoxicity in the developing brain: an update on the effects of dexmedetomidine and xenon. Neurotoxicol Teratol 2017; 60:102-116. [PMID: 28065636 DOI: 10.1016/j.ntt.2017.01.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Abstract
Growing and consistent preclinical evidence, combined with early clinical epidemiological observations, suggest potentially neurotoxic effects of commonly used anesthetic agents in the developing brain. This has prompted the FDA to issue a safety warning for all sedatives and anesthetics approved for use in children under three years of age. Recent studies have identified dexmedetomidine, the potent α2-adrenoceptor agonist, and xenon, the noble gas, as effective anesthetic adjuvants that are both less neurotoxic to the developing brain, and also possess neuroprotective properties in neonatal and other settings of acute ongoing neurologic injury. Dexmedetomidine and xenon are effective anesthetic adjuvants that appear to be less neurotoxic than other existing agents and have the potential to be neuroprotective in the neonatal and pediatric settings. Although results from recent clinical trials and case reports have indicated the neuroprotective potential of xenon and dexmedetomidine, additional randomized clinical trials corroborating these studies are necessary. By reviewing both the existing preclinical and clinical evidence on the neuroprotective effects of dexmedetomidine and xenon, we hope to provide insight into the potential clinical efficacy of these agents in the management of pediatric surgical patients.
Collapse
|
16
|
Poff AM, Kernagis D, D'Agostino DP. Hyperbaric Environment: Oxygen and Cellular Damage versus Protection. Compr Physiol 2016; 7:213-234. [PMID: 28135004 DOI: 10.1002/cphy.c150032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The elevation of tissue pO2 induced by hyperbaric oxygen (HBO) is a physiological stimulus that elicits a variety of cellular responses. These effects are largely mediated by, or in response to, an increase in the production of reactive oxygen and nitrogen species (RONS). The major consequences of elevated RONS include increased oxidative stress and enhanced antioxidant capacity, and modulation of redox-sensitive cell signaling pathways. Interestingly, these phenomena underlie both the therapeutic and potentially toxic effects of HBO. Emerging evidence indicates that supporting mitochondrial health is a potential method of enhancing the therapeutic efficacy of, and preventing oxygen toxicity during, HBO. This review will focus on the cellular consequences of HBO, and explore how these processes mediate a delicate balance of cellular protection versus damage. © 2017 American Physiological Society. Compr Physiol 7:213-234, 2017.
Collapse
Affiliation(s)
- Angela M Poff
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Dawn Kernagis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.,Institute for Human and Machine Cognition, Pensacola, Florida, USA
| |
Collapse
|
17
|
Elremaly W, Mohamed I, Rouleau T, Lavoie JC. Adding glutathione to parenteral nutrition prevents alveolar loss in newborn Guinea pig. Free Radic Biol Med 2015; 87:274-81. [PMID: 26164632 DOI: 10.1016/j.freeradbiomed.2015.06.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 03/08/2015] [Accepted: 06/28/2015] [Indexed: 10/23/2022]
Abstract
UNLABELLED Bronchopulmonary dysplasia, a main complication of prematurity, is characterized by an alveolar hypoplasia. Oxidative stress is suspected to be a trigger event in this population who has a low level of glutathione, a main endogenous antioxidant, and who receives high oxidative load, particularly ascorbylperoxide from their parenteral nutrition. HYPOTHESIS the addition of glutathione (GSSG) in parenteral nutrition improves detoxification of ascorbylperoxide by glutathione peroxidase and therefore prevents exaggerated apoptosis and loss of alveoli. METHODS Ascorbylperoxide is assessed as substrate for glutathione peroxidase in Michaelis-Menten kinetics. Three-days old guinea pig pups were divided in 6 groups to receive, through a catheter in jugular vein, the following solutions: 1) Sham (no infusion); 2) PN(-L): parenteral nutrition protected against light (low ascorbylperoxide); 3) PN(+L): PN without photo-protection (high ascorbylperoxide); 4) 180 μM ascorbylperoxide; 5) PN(+L)+10 μM GSSG; 6) ascorbylperoxyde+10 μM GSSG. After 4 days, lungs were sampled and prepared for histology and biochemical determinations. Data were analysed by ANOVA, p < 0.05 RESULTS: The Km of ascorbylperoxide for glutathione peroxidase was 126 ± 6 μM and Vmax was 38.4 ± 2.5 nmol/min/ U. The presence of GSSG in intravenous solution has prevented the high GSSG, oxidized redox potential of glutathione, activation of caspase-3 (apoptosis marker) and loss of alveoli induced by PN(+L) or ascorbylperoxide. CONCLUSION A correction of the low glutathione levels observed in newborn animal on parenteral nutrition, protects lungs from toxic effect of ascorbylperoxide. Premature infants having a low level of glutathione, this finding is of high importance because it provides hope in a possible prevention of bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Wesam Elremaly
- Department of Nutrition, CHU Sainte-Justine, University of Montréal, Montréal, Qc, Canada H3T 1C5
| | - Ibrahim Mohamed
- Department of Pediatrics, CHU Sainte-Justine, University of Montréal, Montréal, Qc, Canada H3T 1C5
| | - Thérèse Rouleau
- Department of Nutrition, CHU Sainte-Justine, University of Montréal, Montréal, Qc, Canada H3T 1C5; Department of Pediatrics, CHU Sainte-Justine, University of Montréal, Montréal, Qc, Canada H3T 1C5
| | - Jean-Claude Lavoie
- Department of Nutrition, CHU Sainte-Justine, University of Montréal, Montréal, Qc, Canada H3T 1C5; Department of Pediatrics, CHU Sainte-Justine, University of Montréal, Montréal, Qc, Canada H3T 1C5.
| |
Collapse
|
18
|
Gamm UA, Huang BK, Syed M, Zhang X, Bhandari V, Choma MA. Quantifying hyperoxia-mediated damage to mammalian respiratory cilia-driven fluid flow using particle tracking velocimetry optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:80505. [PMID: 26308164 PMCID: PMC4874052 DOI: 10.1117/1.jbo.20.8.080505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/27/2015] [Indexed: 02/05/2023]
Abstract
Oxygen supplementation [hyperoxia, increased fraction of inspired oxygen (FiO 2 )] is an indispensable treatment in the intensive care unit for patients in respiratory failure. Like other treatments or drugs, hyperoxia has a risk-benefit profile that guides its clinical use. While hyperoxia is known to damage respiratory epithelium, it is unknown if damage can result in impaired capacity to generate cilia-driven fluid flow. Here, we demonstrate that quantifying cilia-driven fluid flow velocities in the sub-100 μm/s regime (sub-0.25 in./min regime) reveals hyperoxia-mediated damage to the capacity of ciliated respiratory mucosa to generate directional flow. Flow quantification was performed using particle tracking velocimetry optical coherence tomography (PTV-OCT) in ex vivo mouse trachea. The ability of PTV-OCT to detect biomedically relevant flow perturbations in the sub-100 μm/s regime was validated by quantifying temperature- and drug-mediated modulation of flow performance in ex vivo mouse trachea. Overall, PTV-OCT imaging of cilia-driven fluid flow in ex vivo mouse trachea is a powerful and straightforward approach for studying factors that modulate and damage mammalian respiratory ciliary physiology.
Collapse
Affiliation(s)
- Ute A. Gamm
- Yale University, Department of Diagnostic Radiology, P.O. Box 208043, New Haven, Connecticut 06520, United States
| | - Brendan K. Huang
- Yale University, Department of Biomedical Engineering, 55 Prospect Street, New Haven, Connecticut 06520, United States
| | - Mansoor Syed
- Yale University, Department of Pediatrics, P.O. Box 208064, New Haven, Connecticut 06520, United States
| | - Xuchen Zhang
- Yale University, Department of Pathology, PO Box 208023, New Haven, Connecticut 06520, United States
| | - Vineet Bhandari
- Yale University, Department of Pediatrics, P.O. Box 208064, New Haven, Connecticut 06520, United States
| | - Michael A. Choma
- Yale University, Department of Diagnostic Radiology, P.O. Box 208043, New Haven, Connecticut 06520, United States
- Yale University, Department of Biomedical Engineering, 55 Prospect Street, New Haven, Connecticut 06520, United States
- Yale University, Department of Pediatrics, P.O. Box 208064, New Haven, Connecticut 06520, United States
- Yale University, Department of Applied Physics, P.O. Box 208267, New Haven, Connecticut 06520, United States
| |
Collapse
|
19
|
Neuroprotective effect of dexmedetomidine on hyperoxia-induced toxicity in the neonatal rat brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:530371. [PMID: 25653737 PMCID: PMC4310240 DOI: 10.1155/2015/530371] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/10/2014] [Indexed: 11/19/2022]
Abstract
Dexmedetomidine is a highly selective agonist of α2-receptors with sedative, anxiolytic, analgesic, and anesthetic properties. Neuroprotective effects of dexmedetomidine have been reported in various brain injury models. In the present study, we investigated the effects of dexmedetomidine on neurodegeneration, oxidative stress markers, and inflammation following the induction of hyperoxia in neonatal rats. Six-day-old Wistar rats received different concentrations of dexmedetomidine (1, 5, or 10 µg/kg bodyweight) and were exposed to 80% oxygen for 24 h. Sex-matched littermates kept in room air and injected with normal saline or dexmedetomidine served as controls. Dexmedetomidine pretreatment significantly reduced hyperoxia-induced neurodegeneration in different brain regions of the neonatal rat. In addition, dexmedetomidine restored the reduced/oxidized glutathione ratio and attenuated the levels of malondialdehyde, a marker of lipid peroxidation, after exposure to high oxygen concentration. Moreover, administration of dexmedetomidine induced downregulation of IL-1β on mRNA and protein level in the developing rat brain. Dexmedetomidine provides protections against toxic oxygen induced neonatal brain injury which is likely associated with oxidative stress signaling and inflammatory cytokines. Our results suggest that dexmedetomidine may have a therapeutic potential since oxygen administration to neonates is sometimes inevitable.
Collapse
|
20
|
Silfa-Mazara F, Mujahid S, Thomas C, Vong T, Larsson I, Nielsen HC, Volpe MV. Oxygen differentially affects the hox proteins Hoxb5 and Hoxa5 altering airway branching and lung vascular formation. J Cell Commun Signal 2014; 8:231-44. [PMID: 25073509 PMCID: PMC4165823 DOI: 10.1007/s12079-014-0237-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/25/2014] [Indexed: 11/26/2022] Open
Abstract
Hoxb5 and Hoxa5 transcription factor proteins uniquely impact lung morphogenesis at the developmental time point when extremely preterm infants are born. The effect of O2 exposure (0.4 FiO2) used in preterm infant care on these Hox proteins is unknown. We used ex vivo fetal mouse lung organ cultures to explore the effects of 0.4 FiO2 on lung airway and vascular formation in the context of Hoxb5 and Hoxa5 expression and regulation. Compared to room air, 48 h (h) 0.4 FiO2 adversely attenuated airway and microvasculature formation while reducing lung growth and epithelial cell volume, and increasing mesenchymal volume. 0.4 FiO2 decreased pro-angiogenic Hoxb5 and VEGFR2 while not altering protein levels of angiostatic Hoxa5. Lungs returned to RA after 24 h 0.4FiO2 had partial structural recovery but remained smaller and less developed. Mesenchymal cell apoptosis increased and proliferation decreased with time in O2 while epithelial cell proliferation significantly increased. Hoxb5 overexpression led to prominent peri-airway VEGFR2 expression and promoted lung vascular and airway patterning. Hoxa5 overexpression had the opposite effects. We conclude that 0.4 FiO2 exposure causes a profound loss of airway and lung microvascular development that occurs partially via reduction in pro-angiogenic Hoxb5 while angiostatic Hoxa5 expression is maintained.
Collapse
Affiliation(s)
- Francheyska Silfa-Mazara
- />Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, MA USA
| | - Sana Mujahid
- />Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA USA
| | - Courtney Thomas
- />Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, MA USA
| | - Thxuan Vong
- />Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, MA USA
| | | | - Heber C. Nielsen
- />Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, MA USA
- />Tufts University School of Medicine, Boston, MA USA
- />Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA USA
| | - MaryAnn V. Volpe
- />Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, MA USA
- />Tufts University School of Medicine, Boston, MA USA
| |
Collapse
|
21
|
Biswas C, Shah N, Muthu M, La P, Fernando AP, Sengupta S, Yang G, Dennery PA. Nuclear heme oxygenase-1 (HO-1) modulates subcellular distribution and activation of Nrf2, impacting metabolic and anti-oxidant defenses. J Biol Chem 2014; 289:26882-26894. [PMID: 25107906 DOI: 10.1074/jbc.m114.567685] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With oxidative injury as well as in some solid tumors and myeloid leukemia cells, heme oxygenase-1 (HO-1), the anti-oxidant, anti-inflammatory, and anti-apoptotic microsomal stress protein, migrates to the nucleus in a truncated and enzymatically inactive form. However, the function of HO-1 in the nucleus is not completely clear. Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor and master regulator of numerous antioxidants and anti-apoptotic proteins, including HO-1, also accumulates in the nucleus with oxidative injury and in various types of cancer. Here we demonstrate that in oxidative stress, nuclear HO-1 interacts with Nrf2 and stabilizes it from glycogen synthase kinase 3β (GSK3β)-mediated phosphorylation coupled with ubiquitin-proteasomal degradation, thereby prolonging its accumulation in the nucleus. This regulation of Nrf2 post-induction by nuclear HO-1 is important for the preferential transcription of phase II detoxification enzymes such as NQO1 as well as glucose-6-phosphate dehydrogenase (G6PDH), a regulator of the pentose phosphate pathway. Using Nrf2 knock-out cells, we further demonstrate that nuclear HO-1-associated cytoprotection against oxidative stress depends on an HO-1/Nrf2 interaction. Although it is well known that Nrf2 induces HO-1 leading to mitigation of oxidant stress, we propose a novel mechanism by which HO-1, by modulating the activation of Nrf2, sets an adaptive reprogramming that enhances antioxidant defenses.
Collapse
Affiliation(s)
- Chhanda Biswas
- Department of Pediatrics, University of Pennsylvania Philadelphia, Pennsylvania 19104 and; Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Nidhi Shah
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Manasa Muthu
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Ping La
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Amal P Fernando
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Shaon Sengupta
- Department of Pediatrics, University of Pennsylvania Philadelphia, Pennsylvania 19104 and; Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Guang Yang
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Phyllis A Dennery
- Department of Pediatrics, University of Pennsylvania Philadelphia, Pennsylvania 19104 and; Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
22
|
Abstract
Oxygen is one of the most widely available and used therapeutic agents in the world. However, it is all too easy forget that oxygen is a prescribable drug with specific biochemical and physiologic actions, a distinct range of effective doses and well-defined adverse effects at high doses. The human body is affected in different ways depending on the type of exposure. Short exposures to high partial pressures at greater than atmospheric pressure lead to central nervous system toxicity, most commonly seen in divers or in hyperbaric oxygen therapy. Pulmonary and ocular toxicity results from longer exposure to elevated oxygen levels at normal atmospheric pressure.
Collapse
|
23
|
Cao C, Zhao G, Yu W, Xie X, Wang W, Yang R, Lv X, Liu D. Activation of STAT3 stimulates AHSP expression in K562 cells. SCIENCE CHINA-LIFE SCIENCES 2014; 57:488-94. [DOI: 10.1007/s11427-014-4652-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/05/2014] [Indexed: 02/04/2023]
|
24
|
Majzunova M, Dovinova I, Barancik M, Chan JYH. Redox signaling in pathophysiology of hypertension. J Biomed Sci 2013; 20:69. [PMID: 24047403 PMCID: PMC3815233 DOI: 10.1186/1423-0127-20-69] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/14/2013] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are products of normal cellular metabolism and derive from various sources in different cellular compartments. Oxidative stress resultant from imbalance between ROS generation and antioxidant defense mechanisms is important in pathogenesis of cardiovascular diseases, such as hypertension, heart failure, atherosclerosis, diabetes, and cardiac hypertrophy. In this review we focus on hypertension and address sources of cellular ROS generation, mechanisms involved in regulation of radical homeostasis, superoxide dismutase isoforms in pathophysiology of hypertension; as well as radical intracellular signaling and phosphorylation processes in proteins of the affected cardiovascular tissues. Finally, we discuss the transcriptional factors involved in redox-sensitive gene transcription and antioxidant response, as well as their roles in hypertension.
Collapse
Affiliation(s)
- Miroslava Majzunova
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia.
| | | | | | | |
Collapse
|
25
|
Abstract
Supplemental oxygen is often used as a life-saving therapy in the treatment of preterm infants. However, its protracted use can lead to the development of bronchopulmonary dysplasia (BPD), and more recently, has been associated with adversely affecting the general health of children and adolescents who were born preterm. Efforts to understand how exposure to excess oxygen can disrupt lung development have historically focused on the interplay between oxidative stress and antioxidant defense mechanisms. However, there has been a growing appreciation for how changes in gene-environment interactions occurring during critically important periods of organ development can profoundly affect human health and disease later in life. Here, we review the concept that oxygen is an environmental stressor that may play an important role at birth to control normal lung development via its interactions with genes and cells. Understanding how changes in the oxygen environment have the potential to alter the developmental programing of the lung, such that it now proceeds along a different developmental trajectory, could lead to novel therapies in the prevention and treatment of respiratory diseases, such as BPD.
Collapse
Affiliation(s)
- Bradley W. Buczynski
- Department of Environmental Medicine, School of Medicine and Dentistry, The University of Rochester, Rochester NY 14642,Address Correspondence to: Bradley W. Buczynski, M.S., Department of Environmental Medicine, Box EHSC, The University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, Tel: (585) 273-4831, . Michael A. O’Reilly, Ph.D., Department of Pediatrics, Box 850, The University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, Tel: (585) 275-5948, Fax: (585) 756-7780,
| | - Echezona T. Maduekwe
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester NY 14642
| | - Michael A. O’Reilly
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester NY 14642,Address Correspondence to: Bradley W. Buczynski, M.S., Department of Environmental Medicine, Box EHSC, The University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, Tel: (585) 273-4831, . Michael A. O’Reilly, Ph.D., Department of Pediatrics, Box 850, The University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, Tel: (585) 275-5948, Fax: (585) 756-7780,
| |
Collapse
|
26
|
Szalowska E, Stoopen G, Rijk JCW, Wang S, Hendriksen PJM, Groot MJ, Ossenkoppele J, Peijnenburg AACM. Effect of oxygen concentration and selected protocol factors on viability and gene expression of mouse liver slices. Toxicol In Vitro 2013; 27:1513-24. [PMID: 23531554 DOI: 10.1016/j.tiv.2013.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 03/10/2013] [Accepted: 03/15/2013] [Indexed: 01/14/2023]
Abstract
Precision cut liver slices (PCLSs) are widely used as a model to study hepatotoxicity. For culturing of PCLS diverse protocols are used which could affect slices viability and results. We aimed to identify the most optimal culture protocol for mouse PCLS. Slices were cultured for 24h under different concentrations of serum, glucose, insulin, and oxygen. Thereafter, slices viability was assessed by biochemical methods. Transcriptome analysis was performed to identify changes introduced by culture at different oxygen concentrations (20%, 40%, 60%, and 80% of oxygen). Medium composition did not affect the slices viability. Although metabolic competence was unaffected by oxygen concentrations, culturing at 80% of oxygen yielded slices with the best biochemical characteristics. The comparison of uncultured vs. cultured slices revealed 2524 genes to be differentially expressed. Genes involved in drug metabolism, peroxisomal and mitochondrial functions were down-regulated while several adaptive/stress response processes were up-regulated. Moreover, 80% of oxygen was the most favorable condition with respect to maintenance of expression of genes involved in drug and energy metabolism. The outcome of this study indicates that mouse PCLS are a valuable tool in research on hepatic functions and toxicity, particularly if they are cultured under a controlled oxygen concentration of 80%.
Collapse
Affiliation(s)
- Ewa Szalowska
- RIKILT - Institute of Food Safety, Wageningen UR, PO Box 230, 6700 AE Wageningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sifringer M, Bendix I, von Haefen C, Endesfelder S, Kalb A, Bührer C, Felderhoff-Mueser U, Spies CD. Oxygen toxicity is reduced by acetylcholinesterase inhibition in the developing rat brain. Dev Neurosci 2013; 35:255-64. [PMID: 23445753 DOI: 10.1159/000346723] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 12/27/2012] [Indexed: 11/19/2022] Open
Abstract
The cholinergic anti-inflammatory pathway is a neural mechanism that suppresses the innate inflammatory response and controls inflammation employing acetylcholine as the key endogenous mediator. In this study, we investigated the effects of the cholinergic agonists, physostigmine and donepezil, on neurodegeneration, inflammation and oxidative stress during oxygen toxicity in the developing rat brain. The aim of this study was to investigate the level of neurodegeneration, expression of proinflammatory cytokines, glutathione and lipid peroxidation after hyperoxia and treatment with the acetylcholinesterase (AChE) inhibitors, physostigmine and donepezil in the brain of neonatal rats. Six-day-old Wistar rats were exposed to 80% oxygen for 12-24 h and received 100 μg/kg physostigmine or 200 μg/kg donepezil intraperitoneally. Sex-matched littermates kept in room air and injected with normal saline, physostigmine or donepezil served as controls. Treatment with both inhibitors significantly reduced hyperoxia-triggered activity of AChE, neural cell death and the upregulation of the proinflammatory cytokines IL-1β and TNF-α in the immature rat brain on the mRNA and protein level. In parallel, hyperoxia-induced oxidative stress was reduced by concomitant physostigmine and donepezil administration, as shown by an increased reduced/oxidized glutathione ratio and attenuated malondialdehyde levels, as a sign of lipid peroxidation. Our results suggest that a single treatment with AChE inhibitors at the beginning of hyperoxia attenuated the detrimental effects of oxygen toxicity in the developing brain and may pave the way for AChE inhibitors, which are currently used for the treatment of Alzheimer's disease, as potential candidates for adjunctive neuroprotective therapies to the immature brain.
Collapse
Affiliation(s)
- Marco Sifringer
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
It took more than 30 years from the first observations that oxygen may be toxic during resuscitation till international guidelines changed to recommend that term and near term newborn infants should be resuscitated with air instead of 100% oxygen. There are still a number of unanswered questions related to oxygen therapy of the newborn infant. The newborn brain, lungs and other organs are susceptible to oxygen injury, and newborns still develop injury caused by hyperoxia.
Collapse
Affiliation(s)
- Ola Didrik Saugstad
- Department of Pediatric Research, Clinic of Women and Child Health, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway.
| |
Collapse
|
29
|
Solberg R, Perrone S, Saugstad OD, Buonocore G. Risks and benefits of oxygen in the delivery room. J Matern Fetal Neonatal Med 2012; 25 Suppl 1:41-4. [PMID: 22356586 DOI: 10.3109/14767058.2012.665236] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oxygen is an essential element of aerobic life, and oxidative metabolism represents a principal source of energy. Nevertheless, oxygen may also be toxic and mutagenic with the potential to cause damage through the production of reactive oxygen species (ROS). ROS generation can be considered a double-edged sword. Beneficial effects of ROS occur at moderate concentrations and involve physiological roles in cellular responses to noxia, as in defense against infectious agents, in the function of a number of cellular signaling pathways and the induction of a mitogenic response. The overproduction of ROS and the insufficiency of an antioxidant mechanism results in oxidative stress (OS), a deleterious process and important mediator of damage to cell structures and tissues. Newborns, especially if preterm, are particularly susceptible to OS and damage due to increased generation of ROS, the lack of adequate antioxidant protection, and the inability to induce antioxidant defenses during the hyperoxic challenge at birth. Hence the "Oxygen Paradox": higher eukaryotic aerobic organisms cannot exist without oxygen and without OS, yet oxygen and ROS are dangerous to their existence. Originally, the oxygen paradox described that the injury was aggravated by giving oxygen after hypoxia. Today, we know this is caused by production of oxygen radicals. Therefore, it is mandatory in the handling of newborns to use oxygen as a medication when clinical surveillance indicates a need.
Collapse
Affiliation(s)
- Rønnaug Solberg
- Department of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena, Siena, Italy
| | | | | | | |
Collapse
|
30
|
Abstract
Sepsis is one of the leading causes of death in critically ill patients in the intensive care unit. Sepsis accounts for significant morbidity and mortality in critically ill children as well. The pathophysiology of sepsis is characterized by a complex systemic inflammatory response, endothelial dysfunction, and alterations in the coagulation system, which lead to perturbations in the delivery of oxygen and metabolic substrates to the tissues, end-organ dysfunction, and ultimately death. Oxidative stress plays a crucial role as both a promoter and mediator of the systemic inflammatory response, suggesting potential targets for the treatment of critically ill children with the sepsis syndrome. Herein, we will provide a brief review of the role of oxidative and nitrosative stress in the pathophysiology of sepsis.
Collapse
Affiliation(s)
- Derek S Wheeler
- Clinical Director, Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center. The Kindervelt Laboratory for Critical Care Medicine Research, Cincinnati Children's Research Foundation. Associate Professor of Clinical Pediatrics, University of Cincinnati College of Medicine
| |
Collapse
|
31
|
Corcoran TB, Barden AE, Mas E, Grape S, Koren V, Phillips M, Roberts LJ, Mori TA. Hemoglobin attenuates the effects of inspired oxygen on plasma isofurans in humans during upper-limb surgery. Free Radic Biol Med 2011; 51:1235-9. [PMID: 21763419 PMCID: PMC3157081 DOI: 10.1016/j.freeradbiomed.2011.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/14/2011] [Accepted: 06/21/2011] [Indexed: 11/20/2022]
Abstract
Reperfusion injury is characterized by significant oxidative stress. F(2)-isoprostanes (F(2)-IsoP's) and isofurans (IsoF's), the latter preferentially produced during increased oxygen tension, are recognized markers of in vivo oxidative stress. We aimed to determine whether increasing oxygen tension during reperfusion modified levels of plasma total IsoF's and F(2)-IsoP's. Forty-five patients undergoing upper-limb surgery were randomized to receive inspired oxygen concentrations of 30, 50, or 80% during the last 15 min of surgery. Venous blood samples were taken before the change in inspired oxygen, after 10 min (before reperfusion), and after 15 min (5 min after reperfusion). IsoF's and F(2)-IsoP's were measured by gas chromatography-mass spectrometry. Venous oxygen tension and hemoglobin concentrations were also measured. Plasma IsoF and F(2)-IsoP levels in the 50 and 80% O(2) groups were not significantly different from those of the 30% O(2) group. In secondary analyses, using data combining all groups, levels of IsoF's, but not F(2)-IsoP's, associated with higher venous oxygen tension (P=0.038). Hemoglobin negatively modified the influence of oxygen tension on levels of IsoF's (P=0.014). This study has shown, for the first time, that plasma IsoF levels associate with higher oxygen tension in a human model of reperfusion, and this effect is significantly attenuated by hemoglobin.
Collapse
Affiliation(s)
- Tomas B Corcoran
- Department of Anaesthesia & Pain Medicine, Royal Perth Hospital, University of Western Australia, Perth
| | - Anne E Barden
- School of Medicine and Pharmacology, University of Western Australia and the Cardiovascular Research Centre, University of Western Australia, Perth
| | - Emilie Mas
- School of Medicine and Pharmacology, University of Western Australia and the Cardiovascular Research Centre, University of Western Australia, Perth
| | - Sina Grape
- Department of Anaesthesia & Pain Medicine, Royal Perth Hospital, University of Western Australia, Perth
| | - Viktoria Koren
- Department of Anaesthesia & Pain Medicine, Royal Perth Hospital, University of Western Australia, Perth
| | - Michael Phillips
- Western Australian Institute for Medical Research, University of Western Australia, Perth
| | | | - Trevor A Mori
- School of Medicine and Pharmacology, University of Western Australia and the Cardiovascular Research Centre, University of Western Australia, Perth
| |
Collapse
|
32
|
Abstract
Regulating gene expression is part of a cell's response to hypoxia. A-to-I RNA editing is an epigenetic phenomenon that can contribute to RNA and protein levels and to isoform diversity. In this study, we identified alterations in the levels of RNA editing following hypoxic stress in three genes: MED13, STAT3, and F11R. Changes in editing levels were associated with changes in RNA levels. These results suggest that A-to-I RNA editing may be one of the mechanisms used by cells to regulate changes in gene expression after hypoxia. These findings could lead to a novel therapeutic approach and better health care for children with hypoxemia.
Collapse
|
33
|
Londhe VA, Sundar IK, Lopez B, Maisonet TM, Yu Y, Aghai ZH, Rahman I. Hyperoxia impairs alveolar formation and induces senescence through decreased histone deacetylase activity and up-regulation of p21 in neonatal mouse lung. Pediatr Res 2011; 69:371-7. [PMID: 21270677 PMCID: PMC3092484 DOI: 10.1203/pdr.0b013e318211c917] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alveolar development comprises the transition of lung architecture from saccules to gas-exchange units during late gestation and early postnatal development. Exposure to hyperoxia disrupts developmental signaling pathways and causes alveolar hypoplasia as seen in bronchopulmonary dysplasia affecting preterm human newborns. Expanding literature suggests that epigenetic changes caused by environmental triggers during development may lead to heritable changes in gene expression. Given recent data on altered histone deacetylase (HDAC) activity in lungs of humans and animal models with airspace enlargement/emphysema, we hypothesized that alveolar hypoplasia from hyperoxia exposure in neonatal mice is a consequence of cell cycle arrest and reduced HDAC activity and up-regulation of the cyclin-dependent kinase inhibitor, p21. We exposed newborn mice to hyperoxia and compared lung morphologic and epigenetic changes to room air controls. Furthermore, we pretreated a subgroup of animals with the macrolide antibiotic azithromycin (AZM), known to possess antiinflammatory properties. Our results showed that hyperoxia exposure resulted in alveolar hypoplasia and was associated with decreased HDAC1 and HDAC2 and increased p53 and p21 expression. Furthermore, AZM did not confer protection against hyperoxia-induced alveolar changes. These findings suggest that alveolar hypoplasia caused by hyperoxia is mediated by epigenetic changes affecting cell cycle regulation/senescence during lung development.
Collapse
Affiliation(s)
- Vedang A Londhe
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
AIMS to summarize present knowledge regarding the relation between oxidative stress and development of bronchopulmonary dysplasia (BPD). METHODS relevant literature searched at Pubmed and other sources. RESULTS Oxidative stress is generated in a number of conditions and by a number of causes such as inflammation and hyperoxia. Ontogenic aspects are discussed. Oxidative stress as physiological regulators, its relation to transcription factors and inflammation is summarized. The role of oxygen and antioxidant therapy and newborn resuscitation for development and prevention of BPD as well as new therapeutic modes especially the use of growth factors, gene therapy and stem cells, are briefly discussed. CONCLUSION oxidative stress and BPD are associated. A better understanding of this association is necessary in order to reduce the severity and the incidence of the condition.
Collapse
Affiliation(s)
- Ola Didrik Saugstad
- Department of Pediatric Research, Oslo University Hospital, Rikshospitalet, University of Oslo, Norway.
| |
Collapse
|
35
|
Jobe AH, Kallapur SG. Long term consequences of oxygen therapy in the neonatal period. Semin Fetal Neonatal Med 2010; 15:230-5. [PMID: 20452844 PMCID: PMC2910185 DOI: 10.1016/j.siny.2010.03.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Preterm and term infants are frequently exposed to high concentrations of oxygen for prolonged periods. In experimental models, high and prolonged oxygen exposures cause delayed alveolar septation and a bronchopulmonary dysplasia phenotype. Often, however, the oxygen exposure is tolerated in that the infants recover without severe lung or systemic injury. Multiple exposures change oxygen sensitivity in adult and newborn animals. Examples are antenatal corticosteroids, inflammatory mediators or preconditioning with oxygen, which will increase tolerance to oxygen injury. Intrauterine growth restriction or postnatal nutritional deficits will increase oxygen injury. Different infants probably have quite variable sensitivities to oxygen injury, but there are no biomarkers available to predict the risk of oxygen injury.
Collapse
Affiliation(s)
- Alan H. Jobe
- Corresponding author. Address: Cincinnati Children's Hospital, Division of Pulmonary Biology, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA. Tel.: +1 (513) 636-8563; fax: +1 (513) 636-8691. (A.H. Jobe)
| | | |
Collapse
|