1
|
Niu Y, Zhang R, Yang C, He J, Wang T. Dietary supplementation with dihydroartemisinin improves intestinal barrier function in weaned piglets with intrauterine growth retardation by modulating the gut microbiota. J Anim Sci 2024; 102:skae140. [PMID: 38813622 PMCID: PMC11222986 DOI: 10.1093/jas/skae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/29/2024] [Indexed: 05/31/2024] Open
Abstract
The aim of this study was to investigate whether dietary dihydroartemisinin (DHA) supplementation could improve intestinal barrier function and microbiota composition in intrauterine growth restriction (IUGR) weaned piglets. Twelve normal birth weight (NBW) piglets and 24 IUGR piglets at 21 d of age were divided into three groups, which were fed a basal diet (NBW-CON and IUCR-CON groups) and an 80 mg/kg DHA diet (IUGR-DHA group). At 49 d of age, eight piglets of each group with similar body weights within groups were slaughtered, and serum and small intestine samples were collected. The results showed that IUGR piglets reduced growth performance, impaired the markers of intestinal permeability, induced intestinal inflammation, decreased intestinal immunity, and disturbed the intestinal microflora. Dietary DHA supplementation increased average daily gain, average daily feed intake, and body weight at 49 d of age in IUGR-weaned piglets (P < 0.05). DHA treatment decreased serum diamine oxidase activity and increased the numbers of intestinal goblet cells and intraepithelial lymphocytes, concentrations of jejunal mucin-2 and ileal trefoil factor 3, and intestinal secretory immunoglobin A and immunoglobin G (IgG) concentrations of IUGR piglets (P < 0.05). Diet supplemented with DHA also upregulated mRNA abundances of jejunal IgG, the cluster of differentiation 8 (CD8), major histocompatibility complex-I (MHC-I), and interleukin 6 (IL-6) and ileal IgG, Fc receptor for IgG (FcRn), cluster of differentiation 8 (CD4), CD8, MHC-I, IL-6 and tumor necrosis factor α (TNF-α), and enhanced mRNA abundance and protein expression of intestinal occludin and ileal claudin-1 in IUGR piglets (P < 0.05). In addition, DHA supplementation in the diet improved the microbial diversity of the small intestine of IUGR piglets and significantly increased the relative abundance of Actinobacteriota, Streptococcus, Blautia and Streptococcus in the jejunum, and Clostridium sensu_ stricto_in the ileum (P < 0.05). The intestinal microbiota was correlated with the mRNA abundance of tight junction proteins and inflammatory response-related genes. These data suggested that DHA could improve the markers of intestinal barrier function in IUGR-weaned piglets by modulating gut microbiota. DHA may be a novel nutritional candidate for preventing intestinal dysfunction in IUGR pigs.
Collapse
Affiliation(s)
- Yu Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A and F University, Hangzhou, 311300, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A and F University, Hangzhou, 311300, China
| | - Caimei Yang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A and F University, Hangzhou, 311300, China
| | - Jintian He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
2
|
Lodge-Tulloch NA, Toews AJ, Atallah A, Cotechini T, Girard S, Graham CH. Cross-Generational Impact of Innate Immune Memory Following Pregnancy Complications. Cells 2022; 11:3935. [PMID: 36497193 PMCID: PMC9741472 DOI: 10.3390/cells11233935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Pregnancy complications can have long-term negative effects on the health of the affected mothers and their children. In this review, we highlight the underlying inflammatory etiologies of common pregnancy complications and discuss how aberrant inflammation may lead to the acquisition of innate immune memory. The latter can be described as a functional epigenetic reprogramming of innate immune cells following an initial exposure to an inflammatory stimulus, ultimately resulting in an altered response following re-exposure to a similar inflammatory stimulus. We propose that aberrant maternal inflammation associated with complications of pregnancy increases the cross-generational risk of developing noncommunicable diseases (i.e., pregnancy complications, cardiovascular disease, and metabolic disease) through a process mediated by innate immune memory. Elucidating a role for innate immune memory in the cross-generational health consequences of pregnancy complications may lead to the development of novel strategies aimed at reducing the long-term risk of disease.
Collapse
Affiliation(s)
| | - Alexa J. Toews
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Aline Atallah
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Tiziana Cotechini
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Sylvie Girard
- Department of Obstetrics and Gynecology, Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Charles H. Graham
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
3
|
Liu YC, Ma C, Zi Y, He S, Yang H, Zhang M, Gao F. Effects of intrauterine growth restriction during late pregnancy on the cell growth, proliferation, and differentiation in ovine fetal thymuses. Anim Biosci 2022; 35:989-998. [PMID: 35073662 PMCID: PMC9271382 DOI: 10.5713/ab.21.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/12/2022] [Indexed: 11/27/2022] Open
Abstract
Objective This study investigated the effects of intrauterine growth restriction (IUGR) during late pregnancy on the cell growth, proliferation, and differentiation in ovine fetal thymuses. Methods Eighteen time-mated Mongolian ewes with singleton fetuses were allocated to three groups at d 90 of pregnancy: restricted group 1 (RG1, 0.18 MJ ME/body weight [BW]0.75/d, n = 6), restricted group 2 (RG2, 0.33 MJ ME/BW0.75/d, n = 6) and control group (CG, ad libitum, 0.67 MJ ME/BW0.75/d, n = 6). Fetuses were recovered at slaughter on d 140. Results The G0/G1 phase cell number in fetal thymus of the RG1 group was increased but the proliferation index and the expression of proliferating cell nuclear antigen (PCNA) were reduced compared with the CG group (p<0.05). Fetuses in the RG1 group exhibited decreased growth hormone receptor (GHR), insulin-like growth factor 2 receptor (IGF-2R), and their mRNA expressions (p<0.05). For the RG2 fetuses, there were no differences in the proliferation index and PCNA expression (p>0.05), but growth hormone (GH) and the mRNA expression of GHR were lower than those of the CG group (p<0.05). The thymic mRNA expressions of cyclin-dependent protein kinases (CDKs including CDK1, CDK2, and CDK4), CCNE, E2-factors (E2F1, E2F2, and E2F5) were reduced in the RG1 and RG2 groups (p<0.05), and decreased mRNA expressions of E2F4, CCNA, CCNB, and CCND were occurred in the RG1 fetuses (p<0.05). The decreased E-cadherin (E-cad) as a marker for epithelial-mesenchymal transition (EMT) was found in the RG1 and RG2 groups (p< 0.05), but the OB-cadherin which is a marker for activated fibroblasts was increased in fetal thymus of the RG1 group (p<0.05). Conclusion These results indicate that weakened GH/IGF signaling system repressed the cell cycle progression in G0/G1 phase in IUGR fetal thymus, but the switch from reduced E-cad to increased OB-cadherin suggests that transdifferentiation process of EMT associated with fibrogenesis was strengthened. The impaired cell growth, retarded proliferation and modified differentiation were responsible for impaired maturation of IUGR fetal thymus.
Collapse
|
4
|
Zarate MA, De Dios RK, Balasubramaniyan D, Zheng L, Sherlock LG, Rozance PJ, Wright CJ. The Acute Hepatic NF-κB-Mediated Proinflammatory Response to Endotoxemia Is Attenuated in Intrauterine Growth-Restricted Newborn Mice. Front Immunol 2021; 12:706774. [PMID: 34539638 PMCID: PMC8440955 DOI: 10.3389/fimmu.2021.706774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a relevant predictor for higher rates of neonatal sepsis worldwide and is associated with an impaired neonatal immunity and lower immune cell counts. During the perinatal period, the liver is a key immunological organ responsible for the nuclear factor kappa B (NF-κB)-mediated innate immune response to inflammatory stimuli, but whether this role is affected by IUGR is unknown. Herein, we hypothesized that the newborn liver adapts to calorie-restriction IUGR by inducing changes in the NF-κB signaling transcriptome, leading to an attenuated acute proinflammatory response to intraperitoneal lipopolysaccharide (LPS). We first assessed the hepatic gene expression of key NF-κB factors in the IUGR and normally grown (NG) newborn mice. Real-time quantitative PCR (RT-qPCR) analysis revealed an upregulation of both IκB proteins genes (Nfkbia and Nfkbib) and the NF-κB subunit Nfkb1 in IUGR vs. NG. We next measured the LPS-induced hepatic expression of acute proinflammatory genes (Ccl3, Cxcl1, Il1b, Il6, and Tnf) and observed that the IUGR liver produced an attenuated acute proinflammatory cytokine gene response (Il1b and Tnf) to LPS in IUGR vs. unexposed (CTR). Consistent with these results, LPS-exposed hepatic tumor necrosis factor alpha (TNF-α) protein concentrations were lower in IUGR vs. LPS-exposed NG and did not differ from IUGR CTR. Sex differences at the transcriptome level were observed in the IUGR male vs. female. Our results demonstrate that IUGR induces key modifications in the NF-κB transcriptomic machinery in the newborn that compromised the acute proinflammatory cytokine gene and protein response to LPS. Our results bring novel insights in understanding how the IUGR newborn is immunocompromised due to fundamental changes in NF-κB key factors.
Collapse
Affiliation(s)
- Miguel A Zarate
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Robyn K De Dios
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Durganili Balasubramaniyan
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Laura G Sherlock
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Paul J Rozance
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
5
|
Dahl GE, Tao S, Laporta J. Heat Stress Impacts Immune Status in Cows Across the Life Cycle. Front Vet Sci 2020; 7:116. [PMID: 32211430 PMCID: PMC7067922 DOI: 10.3389/fvets.2020.00116] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/17/2020] [Indexed: 12/26/2022] Open
Abstract
Heat stress has a myriad of effects on dairy cattle across the life cycle. Whereas, the most commonly recognized impacts are associated with production responses, emerging evidence indicates that heat stress profoundly alters the immune response of calves and cows, from the prenatal stage through lactation. For example, in utero heat stress reduces passive immune transfer regardless of colostrum source, relative to normothermic conditions in late gestation. Dry cows exposed to heat stress have lower immunoglobulin responses to ovalbumin vaccination, but this effect dissipates with cooling following parturition. Conversely, cows under heat stress when dry exhibit carryover effects on the innate arm of the immune system in early lactation. In this paper we review the effects of heat stress throughout the life cycle of the dairy cow, with particular emphasis on the impact of heat stress during late gestation on the cow and the developing fetus, both before and after parturition. In addition, the impact of altered immune status under heat stress on other physiological systems, especially those supporting milk production, are considered. Finally, management interventions to prevent and reverse the effect of heat stress are presented.
Collapse
Affiliation(s)
- Geoffrey E. Dahl
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Sha Tao
- Department of Animal and Dairy Science, University of Georgia, Tifton, GA, United States
| | - Jimena Laporta
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Zhang H, Zhao F, Nie H, Ma T, Wang Z, Wang F, Loor JJ. Dietary N-carbamylglutamate and rumen-protected L-arginine supplementation during intrauterine growth restriction in undernourished ewes improve fetal thymus development and immune function. Reprod Fertil Dev 2019; 30:1522-1531. [PMID: 31039948 DOI: 10.1071/rd18047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
The aims of the present study were to determine whether dietary supplementation with N-carbamylglutamate (NCG) and rumen-protected l-arginine (RP-Arg) to underfed Hu sheep would improve fetal thymus development and immune function. From Day 35 to Day 110 of gestation, 32 Hu ewes carrying twin fetuses were randomly allocated to one of four groups (n=8 per group): 100% National Research Council (NRC)-recommended nutrient requirements (CON), 50% NRC recommendations (RES), 50% NRC recommendations supplemented with 20gday-1 RP-Arg (RES+ARG), and 50% NRC recommendations supplemented with 5gday-1 NCG (RES+NCG). Medullary thickness was increased (P<0.05) in RES compared with CON ewes, but was reduced (P<0.05) in both RES+ARG and RES+NCG ewes compared with RES ewes. There were no differences in superoxide dismutase and glutathione peroxidase activity or malondialdehyde levels in the RES+ARG and RES+NCG groups compared with the CON group (P>0.05). Concentrations of IgA, interleukin (IL)-1β and IL-10 in fetal umbilical cord blood were reduced (P<0.05) in RES compared with CON ewes, but were increased (P<0.05) in both RES+ARG and RES+NCG ewes. Expression of Bax, Fas and p53 mRNA was increased (P<0.05) in RES compared with CON ewes, but were reduced (P>0.05) in both RES+ARG and RES+NCG ewes. These results indicate that dietary supplementation with NCG and RP-Arg could help alleviate the negative effects of intrauterine growth restriction on fetal thymus development and immune function.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, #48, Weihui Road,Yangzhou 225009, P.R. China
| | - Fangfang Zhao
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, #48, Weihui Road,Yangzhou 225009, P.R. China
| | - Haitao Nie
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, #1, Tongwei Road, Nanjing 210095, P.R. China
| | - Tiewei Ma
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, #1, Tongwei Road, Nanjing 210095, P.R. China
| | - Ziyu Wang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, #1, Tongwei Road, Nanjing 210095, P.R. China
| | - Feng Wang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, #1, Tongwei Road, Nanjing 210095, P.R. China
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
7
|
Colella M, Frérot A, Novais ARB, Baud O. Neonatal and Long-Term Consequences of Fetal Growth Restriction. Curr Pediatr Rev 2018; 14:212-218. [PMID: 29998808 PMCID: PMC6416241 DOI: 10.2174/1573396314666180712114531] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Fetal Growth Restriction (FGR) is one of the most common noxious antenatal conditions in humans, inducing a substantial proportion of preterm delivery and leading to a significant increase in perinatal mortality, neurological handicaps and chronic diseases in adulthood. This review summarizes the current knowledge about the postnatal consequences of FGR, with a particular emphasis on the long-term consequences on respiratory, cardiovascular and neurological structures and functions. RESULT AND CONCLUSION FGR represents a global health challenge, and efforts are urgently needed to improve our understanding of the critical factors leading to FGR and subsequent insults to the developing organs.
Collapse
Affiliation(s)
- Marina Colella
- University Paris Diderot, Sorbone Paris-Cité, Inserm U1141, Neonatal intensive care unit, Assistance Publique-Hôpitaux de Paris, Robert Debré Children’s hospital, Paris, France
| | - Alice Frérot
- University Paris Diderot, Sorbone Paris-Cité, Inserm U1141, Neonatal intensive care unit, Assistance Publique-Hôpitaux de Paris, Robert Debré Children’s hospital, Paris, France
| | - Aline Rideau Batista Novais
- University Paris Diderot, Sorbone Paris-Cité, Inserm U1141, Neonatal intensive care unit, Assistance Publique-Hôpitaux de Paris, Robert Debré Children’s hospital, Paris, France
| | - Olivier Baud
- University Paris Diderot, Sorbone Paris-Cité, Inserm U1141, Neonatal intensive care unit, Assistance Publique-Hôpitaux de Paris, Robert Debré Children’s hospital, Paris, France
| |
Collapse
|
8
|
Qu W, Ma LP, Yan HY, Liu S, Liu HX, Chen T, Hou LF, Ping J. Enhanced thymocyte apoptosis induced by maternal undernutrition in late gestation results in declined mature T cells in rat fetal thymus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:50-55. [PMID: 28886425 DOI: 10.1016/j.etap.2017.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
This study was designed to observe the effects of maternal food restriction (MFR) on the development of fetal thymus in different gestation periods. Timed pregnant rats were randomized into 3 groups: CN (free access to standard chow throughout gestation), MFR0-21 (50% MFR throughout gestation), MFR0-14 (50% MFR from gestational day (GD) 0 to GD14, early-mid gestation). Results showed that MFR during early-mid period had few impact on the fetal thymus and T cell subpopulations. However, MFR throughout gestation resulted in thymic atrophy, deceased frequency of both CD4+ and CD8+ single positive (SP) T cells and enhanced thymocyte apoptosis in fetus. Our results suggest the fetal thymus is more vulnerable to the adverse intrauterine environments in the late gestation period, and the decreased number of SP T cells could result from the enhanced thymocyte apoptosis.
Collapse
Affiliation(s)
- Wen Qu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China.
| | - Liang-Peng Ma
- Department of Pharmacy, Wuhan First Hospital, Wuhan 430022, China.
| | - Hui-Yi Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Sha Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Han-Xiao Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Ting Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Li-Fang Hou
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| |
Collapse
|
9
|
Matsue K, Minakawa S, Kashiwagi T, Toda K, Sato T, Shioda S, Seki T. Dentate granule progenitor cell properties are rapidly altered soon after birth. Brain Struct Funct 2017; 223:357-369. [PMID: 28836044 DOI: 10.1007/s00429-017-1499-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022]
Abstract
Neurogenesis occurs during the embryonic period and ceases soon after birth in the neocortex, but continues to occur in the hippocampus even in the adult. The embryonic neocortex has radial glia or progenitor cells expressing brain lipid-binding protein (BLBP), whereas the adult hippocampus has radial granule progenitor cells expressing BLBP and glial fibrillary acidic protein (GFAP) in the subgranular zone. We previously found that embryonic hippocampal granule progenitor cells express GFAP, but not BLBP, indicating that these cells are different from both embryonic neocortical and adult granule progenitor cells. In the present study, as the first step towards understanding the mechanism of persistent hippocampal neurogenesis, we aimed to determine the stage at which embryonic-type granule progenitors become adult-type progenitors using mouse Gfap-GFP transgenic mice. During the embryonic stages, Gfap-GFP-positive (Gfap-GFP+) cells were distributed in the entire developing dentate gyrus (DG), whereas BLBP-positive (BLBP+) cells were mainly present in the fimbria and subpial region, and to some extent in the DG. Up to postnatal day 0 (P0), double-positive cells were scarcely detected. However, at P1, one-third of the Gfap-GFP+ cells in the DG suddenly began to weakly express BLBP. Thereafter, Gfap-GFP+/BLBP+ cells rapidly increased in number, and extended their radial processes in the inner granular cell layer. At P14 and in the adult, two-thirds of the Gfap-GFP+ cells in the subgranular zone showed BLBP immunoreactivity. These results suggest that the properties of hippocampal granule progenitor cells are rapidly altered from an embryonic to adult type soon after birth.
Collapse
Affiliation(s)
- Kenta Matsue
- Department of Histology and Neuroanatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Shiori Minakawa
- Department of Histology and Neuroanatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Taichi Kashiwagi
- Department of Histology and Neuroanatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Keiko Toda
- Department of Histology and Neuroanatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Toru Sato
- Department of Histology and Neuroanatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Seiji Shioda
- Institute for Advanced Bioscience Research, Hoshi University, Tokyo, Japan
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
10
|
Abstract
Infants born with low birth weights (<2500 g, LBW), accounting for about 15 % of newborns, have a high risk for postnatal growth failure and developing the metabolic syndromes such as type 2 diabetes, CVD and obesity later in life. Improper nutrition provision during critical stages, such as undernutrition during the fetal period or overnutrition during the neonatal period, has been an important mediator of these metabolic diseases. Considering the specific physiological status of LBW infants, nutritional intervention and optimisation during early life merit further attention. In this review, the physiological and metabolic defects of LBW infants were summarised from a nutritional perspective. Available strategies for nutritional interventions and optimisation of LBW infants, including patterns of nutrition supply, macronutrient proportion, supplementation of amino acids and their derivatives, fatty acids, nucleotides, vitamins, minerals as well as hormone and microbiota manipulators, were reviewed with an aim to provide new insights into the advancements of formulas and human-milk fortifiers.
Collapse
|
11
|
Increased Fetal Thymocytes Apoptosis Contributes to Prenatal Nicotine Exposure-induced Th1/Th2 Imbalance in Male Offspring Mice. Sci Rep 2016; 6:39013. [PMID: 27976742 PMCID: PMC5157046 DOI: 10.1038/srep39013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/16/2016] [Indexed: 12/22/2022] Open
Abstract
Nicotine, a definite risk factor during pregnancy, is an immunomodulator. This study was designed to investigate the effects of prenatal nicotine exposure (PNE) on the balance of Th1/Th2 in offspring, and further explore the developmental origin mechanisms from the perspective of fetal thymocytes apoptosis. Pregnant Balb/c mice were administered 1.5 mg/kg nicotine subcutaneously twice per day from gestational day (GD) 9 to GD18. Results showed that PNE could cause a Th2 shift in male offspring, manifested as increased ratio of IgG1/IgG2a, IL-4 production in serum, and IL-4/IFN-γ expression ratio in spleen. Increased apoptosis of total thymocytes and CD4SP and reduced cell proportion of CD4SP were found in PNE male offspring on postnatal day (PND) 14 and PND 49. In the fetuses, decreased body weight and organ index of fetal thymus, histological changes in fetal thymus, reduced CD4SP proportion and increased fetal thymocyte apoptosis were observed in nicotine group. The increased mRNA expression of genes involved in Fas-mediated apoptotic pathway and protein expression of Fas were also detected. In conclusion, PNE could cause a Th2 shift in male offspring mediated by reduced CD4+ T cells output, which may result from the increasing apoptosis of total thymocytes and CD4SP.
Collapse
|
12
|
Effects of intrauterine growth retardation and Bacillus subtilis PB6 supplementation on growth performance, intestinal development and immune function of piglets during the suckling period. Eur J Nutr 2016; 56:1753-1765. [DOI: 10.1007/s00394-016-1223-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 05/05/2016] [Indexed: 12/27/2022]
|
13
|
Prims S, Tambuyzer B, Vergauwen H, Huygelen V, Cruchten SV, Ginneken CV, Casteleyn C. Intestinal immune cell quantification and gram type classification of the adherent microbiota in conventionally and artificially reared, normal and low birth weight piglets. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Postnatal nutritional restriction affects growth and immune function of piglets with intra-uterine growth restriction. Br J Nutr 2015; 114:53-62. [DOI: 10.1017/s0007114515001579] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Postnatal rapid growth by excess intake of nutrients has been associated with an increased susceptibility to diseases in neonates with intra-uterine growth restricted (IUGR). The aim of the present study was to determine whether postnatal nutritional restriction could improve intestinal development and immune function of neonates with IUGR using piglets as model. A total of twelve pairs of normal-birth weight (NBW) and IUGR piglets (7 d old) were randomly assigned to receive adequate nutrient intake or restricted nutrient intake (RNI) by artificially liquid feeding for a period of 21 d. Blood samples and intestinal tissues were collected at necropsy and were analysed for morphology, digestive enzyme activities, immune cells and expression of innate immunity-related genes. The results indicated that both IUGR and postnatal nutritional restriction delayed the growth rate during the sucking period. Irrespective of nutrient intake, piglets with IUGR had a significantly lower villous height and crypt depth in the ileum than the NBW piglets. Moreover, IUGR decreased alkaline phosphatase activity while enhanced lactase activity in the jejunum and mRNA expressions of Toll-like receptor 9 (TLR-9) and DNA methyltransferase 1 (DNMT1) in the ileum of piglets. Irrespective of body weight, RNI significantly decreased the number and/or percentage of peripheral leucocytes, lymphocytes and monocytes of piglets, whereas the percentage of neutrophils and the ratio of CD4+ to CD8+ were increased. Furthermore, RNI markedly enhanced the mRNA expression of TLR-9 and DNMT1, but decreased the expression of NOD2 and TRAF-6 in the ileum of piglets. In summary, postnatal nutritional restriction led to abnormal cellular and innate immune response, as well as delayed the growth and intestinal development of IUGR piglets.
Collapse
|
15
|
Dong L, Zhong X, Zhang L, Kong L, Kong Y, Kou T, Wang T. Impaired intestinal mucosal immunity is associated with the imbalance of T lymphocyte sub-populations in intrauterine growth-restricted neonatal piglets. Immunobiology 2015; 220:775-81. [DOI: 10.1016/j.imbio.2014.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/11/2014] [Accepted: 12/23/2014] [Indexed: 01/21/2023]
|
16
|
Ebner F, Rausch S, Scharek-Tedin L, Pieper R, Burwinkel M, Zentek J, Hartmann S. A novel lineage transcription factor based analysis reveals differences in T helper cell subpopulation development in infected and intrauterine growth restricted (IUGR) piglets. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:333-340. [PMID: 24858028 DOI: 10.1016/j.dci.2014.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 06/03/2023]
Abstract
Research in mouse and human clearly identified subsets of T helper (Th) cells based on nuclear expression of specific lineage transcription factors. In swine, however, transcription factor based detection of functional subpopulations of porcine Th cells by flow cytometry is so far limited to regulatory T cells via Foxp3. T-bet and GATA-3 are the transcription factors that regulate commitment to Th1 or Th2 cells, respectively. In this study we prove GATA-3 and T-bet expression in porcine CD4(+) cells polarized in vitro. Importantly, GATA-3 and T-bet expressing cells were detectable in pigs infected with pathogens associated with Th2 and Th1 immune responses. Increased frequencies of GATA-3 positive CD4(+) cells are found in vivo in pigs experimentally infected with the nematode Trichuris suis, whereas porcine reproductive and respiratory syndrome virus (PRRSV) infection elicited T-bet positive CD4(+) T cells. Analysing the immune status of pre-weaning piglets with intrauterine growth restriction (IUGR) we found an increased expression of Foxp3, T-bet and GATA-3 in CD4(+) and CD4(+)CD8(+) double-positive T cells in systemic and intestinal compartments of IUGR piglets. Hence, we established the detection of porcine Th1 and Th2 cells via T-bet and GATA-3 and show that the porcine lineage transcription factors are differentially regulated very early in life depending on the developmental status.
Collapse
Affiliation(s)
- F Ebner
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - S Rausch
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - L Scharek-Tedin
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Straße 49, 14195 Berlin, Germany
| | - R Pieper
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Straße 49, 14195 Berlin, Germany
| | - M Burwinkel
- Institute of Virology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - J Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Straße 49, 14195 Berlin, Germany
| | - S Hartmann
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany.
| |
Collapse
|
17
|
Dong L, Zhong X, Ahmad H, Li W, Wang Y, Zhang L, Wang T. Intrauterine Growth Restriction Impairs Small Intestinal Mucosal Immunity in Neonatal Piglets. J Histochem Cytochem 2014; 62:510-8. [PMID: 24710659 DOI: 10.1369/0022155414532655] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/30/2014] [Indexed: 12/28/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a very common problem in both piglet and human neonate populations. We hypothesized that IUGR neonates have impaired intestinal mucosal immunity from birth. Using neonatal piglets as IUGR models, immune organ weights, the weight and length of the small intestine (SI), intestinal morphology, intraepithelial immune cell numbers, levels of cytokines and immunoglobulins, and the relative gene expression of cytokines in the SI were investigated. IUGR neonatal piglets were observed to have lower absolute immune organ weight and SI length, decreased relative weights of the thymus, spleen, mesenteric lymph node, and thinner but longer SIs. Damaged and jagged villi, shorter microvilli, presence of autophagosomes, swelled mitochondria, and decreased villus surface areas were also found in the SIs of IUGR neonatal piglets. We also found a smaller number of epithelial goblet cells and lymphocytes in the SIs of IUGR neonates. In addition, we detected reduced levels of the cytokines TNF-α and IFN-γ and decreased gene expression of cytokines in IUGR neonates. In conclusion, IUGR was shown to impair the mucosal immunity of the SI in neonatal piglets, and the ileum was the major site of impairment.
Collapse
Affiliation(s)
- Li Dong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China (LD,XZ,HA,WL,YW,LZ,TW)
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China (LD,XZ,HA,WL,YW,LZ,TW)
| | - Hussain Ahmad
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China (LD,XZ,HA,WL,YW,LZ,TW)
| | - Wei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China (LD,XZ,HA,WL,YW,LZ,TW)
| | - Yuanxiao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China (LD,XZ,HA,WL,YW,LZ,TW)
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China (LD,XZ,HA,WL,YW,LZ,TW)
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China (LD,XZ,HA,WL,YW,LZ,TW)
| |
Collapse
|
18
|
Wooldridge AL, Bischof RJ, Meeusen EN, Liu H, Heinemann GK, Hunter DS, Giles LC, Kind KL, Owens JA, Clifton VL, Gatford KL. Placental restriction of fetal growth reduces cutaneous responses to antigen after sensitization in sheep. Am J Physiol Regul Integr Comp Physiol 2014; 306:R441-6. [PMID: 24500430 DOI: 10.1152/ajpregu.00432.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prenatal and early childhood exposures are implicated as causes of allergy, but the effects of intrauterine growth restriction on immune function and allergy are poorly defined. We therefore evaluated effects of experimental restriction of fetal growth on immune function and allergic sensitization in adolescent sheep. Immune function (circulating total red and white blood cells, neutrophils, lymphocytes, monocytes, eosinophils, and basophils, and the antibody response to Clostridial vaccination) and responses to house dust mite (HDM) allergen and ovalbumin (OVA) antigen sensitization (specific total Ig, IgG1, and IgE antibodies, and cutaneous hypersensitivity) were investigated in adolescent sheep from placentally restricted (PR, n = 23) and control (n = 40) pregnancies. Increases in circulating HDM-specific IgE (P = 0.007) and OVA-specific IgE (P = 0.038) were greater in PR than control progeny. PR did not alter total Ig, IgG1, or IgM responses to either antigen. PR increased OVA-specific but not HDM-specific IgA responses in females only (P = 0.023). Multiple birth increased Ig responses to OVA in a sex-specific manner. PR decreased the proportion of positive cutaneous hypersensitivity responders to OVA at 24 h (P = 0.030) but had no effect on cutaneous responses to HDM. Acute wheal responses to intradermal histamine correlated positively with birth weight in singletons (P = 0.023). Intrauterine growth restriction may suppress inflammatory responses in skin downstream of IgE induction, without impairment in antibody responses to a nonpolysaccharide vaccine. Discord between cutaneous and IgE responses following sensitization suggests new mechanisms for prenatal allergy programming.
Collapse
|
19
|
Effects of high nutrient intake on the growth performance, intestinal morphology and immune function of neonatal intra-uterine growth-retarded pigs. Br J Nutr 2013; 110:1819-27. [PMID: 23596997 DOI: 10.1017/s0007114513001232] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intra-uterine growth-retarded (IUGR) neonates have shown an impairment of postnatal intestinal development and function. We hypothesised that the immune function of IUGR neonates might be affected by increased nutrient intake (NI) during the suckling period. Therefore, we investigated the effects of high NI (HNI) on the growth performance, intestinal morphology and immunological response of IUGR and normal-birth weight (NBW) piglets. A total of twelve pairs of IUGR and NBW piglets (7 d old) were randomly assigned to two different nutrient-level formula milk groups. After 21 d of rearing, growth performance, the composition of peripheral leucocytes, serum cytokines and intestinal innate immune-related genes involved in the Toll-like receptor (TLR)-4–myeloid differentiation factor 88–NF-κB pathway were determined. The results indicated that IUGR decreased the average daily DM intake (ADMI) and the average daily growth (ADG). However, the ADMI and ADG were increased by HNI, irrespective of body weight. Likewise, serum cytokines (TNF-α and IL-1β) and ileal gene expressions (TLR-4, TLR-9, TRAF-6 and IL-1β) were lower in IUGR piglets, whereas HNI significantly increased blood lymphocyte percentage and serum IL-10 concentrations, but decreased neutrophil percentage, serum IL-1β concentrations and ileal gene expressions (NF-kB and IL-1β). Furthermore, IUGR piglets with HNI exhibited lower serum concentrations of TNF-α and IL-1β than NBW piglets, and these alterations in the immune traits of IUGR piglets receiving HNI were accompanied by decreasing ileal gene expressions of TLR-4, TLR-9, NF-κB and IL-1β that are related to innate immunity. In conclusion, the present findings suggest that increased NI during the suckling period impaired the immune function of neonatal piglets with IUGR.
Collapse
|
20
|
Zhong X, Li W, Huang X, Zhang L, Yimamu M, Raiput N, Zhou Y, Wang T. Impairment of cellular immunity is associated with overexpression of heat shock protein 70 in neonatal pigs with intrauterine growth retardation. Cell Stress Chaperones 2012; 17:495-505. [PMID: 22270614 PMCID: PMC3368032 DOI: 10.1007/s12192-012-0326-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 01/21/2023] Open
Abstract
Neonates with intrauterine growth retardation (IUGR) are susceptible to decreases in cellular immunity. In recent years, a growing body of evidence indicates that Hsp70 may serve as a danger signal to the innate immune system and promote receptor-mediated apoptosis. Using neonatal pigs with IUGR, we investigated immune function of pigs and expression of heat shock protein 70 (Hsp70), nuclear factor-kappa B (NF-κB), and forkhead box O 3a (FoxO3a) in the intestinal tract. Samples from the blood, duodenum, jejunum, and ileum of normal body weight (NBW) piglets and IUGR piglets were collected at day 7 after birth. Furthermore, to test whether Hsp70 is associated with regulation of NF-κB and FoxO3a, Hsp70 was silenced using small RNA interference (siRNA) in IEC-6 cells. Body and intestinal weights were lower in IUGR piglets than in NBW piglets (p < 0.05). Proliferation of peripheral blood lymphocytes was decreased (p < 0.05) in IUGR piglets. Cytokine concentrations (IFN-γ, IL-4, IL-10, IL-1, and IL-8) were lower in serum of IUGR piglets. The levels of IFN-γ and IL-10 were decreased (p < 0.05) in the ileum of IUGR piglets, but IL-4 was increased (p < 0.05). The expressions of Hsp70 and FoxO3a were increased, and NF-κB activity was downregulated in IUGR piglets (p < 0.05). Furthermore, siRNA-mediated Hsp70 downregulation increased NF-κB activity, inhibited expression of FoxO3a, and decreased cell apoptosis. In contrast, overexpression of Hsp70 inhibited NF-κB activation. In conclusion, IUGR impairs immune functions in neonatal pigs. An inefficient immunity in IUGR piglets is associated with overexpression of Hsp70, which impairs NF-κB signaling and upregulates FoxO3a expression.
Collapse
Affiliation(s)
- Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xuexin Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Mireguli Yimamu
- College of Animal Science and Technology, Xinjiang Agricultural University, Wulumuqi, 830052 China
| | - Nasir Raiput
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
21
|
Zhong X, Li W, Huang X, Wang Y, Zhang L, Zhou Y, Hussain A, Wang T. Effects of glutamine supplementation on the immune status in weaning piglets with intrauterine growth retardation. Arch Anim Nutr 2012; 66:347-56. [PMID: 22962945 DOI: 10.1080/1745039x.2012.683325] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neonates with intrauterine growth retardation (IUGR) often suffer from impaired cellular immunity, and weaning may further aggravate adverse effects of IUGR on development and function of the immune system. In this study, we investigated effects of glutamine supplementation on immune status in the intestines of weaning pigs with IUGR, focusing on molecular mechanisms underlying altered immune response. Piglets with IUGR were weaned at 21 days of age and received orally 1.22 g alanine or 1 g glutamine per kg body weight every 12 h. Weight gain and intestinal weight of weaning piglets were increased by glutamine supplementation. Levels of serum IgG in piglets supplemented with glutamine were increased compared with Control piglets. The production of IL-1 and IL-8 in the serum and jejunum was decreased by glutamine supplementation, whereas the levels of IL-4 in the serum and the concentrations of IL-4 and IL-10 in the jejunum were increased. The expression of heat shock protein 70 (Hsp70) in the jejunum was increased by glutamine supplementation, but the degradation of inhibitor κB and the activity of nuclear factor-κB (NF-κB) were decreased. In conclusion, glutamine supplementation enhanced immune response in weaning piglets with IUGR. The effects of glutamine in IUGR are associated with increased Hsp70 expression and suppression of NF-κB activation.
Collapse
Affiliation(s)
- Xiang Zhong
- College of Animal Science and Technology , Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|