1
|
Martinez Q, Amson E, Ruf I, Smith TD, Pirot N, Broyon M, Lebrun R, Captier G, Gascó Martín C, Ferreira G, Fabre PH. Turbinal bones are still one of the last frontiers of the tetrapod skull: hypotheses, challenges and perspectives. Biol Rev Camb Philos Soc 2024; 99:2304-2337. [PMID: 39092480 DOI: 10.1111/brv.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Turbinals are bony or cartilaginous structures that are present in the nasal cavity of most tetrapods. They are involved in key functions such as olfaction, heat, and moisture conservation, as well as protection of the respiratory tract. Despite recent studies that challenged long-standing hypotheses about their physiological and genomic correlation, turbinals remain largely unexplored, particularly for non-mammalian species. Herein, we review and synthesise the current knowledge of turbinals using an integrative approach that includes comparative anatomy, physiology, histology and genomics. In addition, we provide synonyms and correspondences of tetrapod turbinals from about 80 publications. This work represents a first step towards drawing hypotheses of homology for the whole clade, and provides a strong basis to develop new research avenues.
Collapse
Affiliation(s)
- Quentin Martinez
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon-CC 064 - 34095, Montpellier Cedex 5, France
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, DE-70191, Germany
| | - Eli Amson
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, DE-70191, Germany
| | - Irina Ruf
- Abteilung Messelforschung und Mammalogie, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, 60325, Germany
- Institut für Geowissenschaften, Goethe-Universität Frankfurt am Main, Frankfurt am Main, 60438, Germany
- Research Center of Paleontology and Stratigraphy, Jilin University, Changchun, 130026, China
| | - Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, PA, 16057, USA
| | - Nelly Pirot
- BioCampus Montpellier (BCM), Université de Montpellier, CNRS, INSERM, Montpellier, 34090, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut du Cancer de Montpellier (ICM), INSERM, Montpellier, 34298, France
| | - Morgane Broyon
- BioCampus Montpellier (BCM), Université de Montpellier, CNRS, INSERM, Montpellier, 34090, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut du Cancer de Montpellier (ICM), INSERM, Montpellier, 34298, France
| | - Renaud Lebrun
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon-CC 064 - 34095, Montpellier Cedex 5, France
| | - Guillaume Captier
- Laboratoire d'anatomie, UFR médecine, Université Montpellier, Montpellier, 34060, France
- Département chirurgie pédiatrique, CHU Montpellier, université Montpellier, Montpellier, 34295, France
| | | | - Gabriel Ferreira
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the Eberhard Karls University of Tübingen, Tübingen, 727074, Germany
- Department of Geosciences, Faculty of Sciences, Eberhard Karls University of Tübingen, Tübingen, 727074, Germany
| | - Pierre-Henri Fabre
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon-CC 064 - 34095, Montpellier Cedex 5, France
- Mammal Section, Department of Life Sciences, The Natural History Museum, London, SW7 5DB, UK
- Institut Universitaire de France (IUF), Paris, 75231, France
- Division of Vertebrate Zoology (Mammalogy), American Museum of Natural History, Central Park West, 79th St, New York, NY, 10024-5192, USA
| |
Collapse
|
2
|
Wright M, Martinez Q, Ferreira-Cardoso S, Lebrun R, Dubourguier B, Delsuc F, Fabre PH, Hautier L. Sniffing out morphological convergence in the turbinal complex of myrmecophagous placentals. Anat Rec (Hoboken) 2024. [PMID: 39568220 DOI: 10.1002/ar.25603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 11/22/2024]
Abstract
The length of the snout in mammals has important evolutionary consequences for the functional systems housed within the rostrum. However, whether increased snout lengths lead to expanded olfactory performance has rarely been examined. Here, we investigate inner rostral function among 10 species of myrmecophagous (ant- and/or termite-eating) placental mammals and 10 closely related species. We use nondestructive computed tomography scanning methods to characterize inner rostral function based on the underlying morphology of the turbinal bones in the nasal cavity. Three approaches were chosen to address this question, including the quantification of functional turbinal surface area, the quantification of functional turbinal three-dimensional complexity, and geometric morphometrics. By including non-model species from several different mammalian orders, we were able to extend the discussion surrounding turbinal homologies to comparisons across mammals. Our results show no increased olfactory function in all myrmecophagous species relative to their sister taxa, which suggests that there is no trade-off for increased olfactory capabilities in myrmecophagous species with elongated snouts. We found no evidence of convergence in turbinal morphology among all five myrmecophagous lineages. However, we found evidence of morphological convergence in the turbinals between the giant armadillo and the aardvark, suggesting a more complex interplay between the evolution of turbinal morphology and ecological correlates. While myrmecophagy alone may not be a strong enough ecological signal to overcome phylogenetic and developmental constraints, we suggest that this might be the case at the intersection of this dietary specialization with a primarily underground lifestyle where odorants may be difficult to detect.
Collapse
Affiliation(s)
- Mark Wright
- Institut des Sciences de l'Evolution de Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Quentin Martinez
- Institut des Sciences de l'Evolution de Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Sérgio Ferreira-Cardoso
- Institut des Sciences de l'Evolution de Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Renaud Lebrun
- Institut des Sciences de l'Evolution de Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Benjamin Dubourguier
- Institut des Sciences de l'Evolution de Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Frédéric Delsuc
- Institut des Sciences de l'Evolution de Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Pierre-Henri Fabre
- Institut des Sciences de l'Evolution de Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France
- Mammal Section, Life Sciences, Vertebrate Division, The Natural History Museum, London, UK
| | - Lionel Hautier
- Institut des Sciences de l'Evolution de Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France
- Mammal Section, Life Sciences, Vertebrate Division, The Natural History Museum, London, UK
| |
Collapse
|
3
|
Martinez Q, Wright M, Dubourguier B, Ito K, van de Kamp T, Hamann E, Zuber M, Ferreira G, Blanc R, Fabre PH, Hautier L, Amson E. Disparity of turbinal bones in placental mammals. Anat Rec (Hoboken) 2024. [PMID: 39099296 DOI: 10.1002/ar.25552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Turbinals are key bony elements of the mammalian nasal cavity, involved in heat and moisture conservation as well as olfaction. While turbinals are well known in some groups, their diversity is poorly understood at the scale of placental mammals, which span 21 orders. Here, we investigated the turbinal bones and associated lamellae for one representative of each extant order of placental mammals. We segmented and isolated each independent turbinal and lamella and found an important diversity of variation in the number of turbinals, as well as their size, and shape. We found that the turbinal count varies widely, from zero in the La Plata dolphin, (Pontoporia blainvillei) to about 110 in the African bush elephant (Loxodonta africana). Multiple turbinal losses and additional gains took place along the phylogeny of placental mammals. Some changes are clearly attributed to ecological adaptation, while others are probably related to phylogenetic inertia. In addition, this work highlights the problem of turbinal nomenclature in some placental orders with numerous and highly complex turbinals, for which homologies are extremely difficult to resolve. Therefore, this work underscores the importance of developmental studies to better clarify turbinal homology and nomenclature and provides a standardized comparative framework for further research.
Collapse
Affiliation(s)
- Quentin Martinez
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Montpellier Cedex 5, France
| | - Mark Wright
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Montpellier Cedex 5, France
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Benjamin Dubourguier
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Montpellier Cedex 5, France
| | - Kai Ito
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Department of Anatomy, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Thomas van de Kamp
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Elias Hamann
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Marcus Zuber
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Gabriel Ferreira
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Geosciences, Faculty of Sciences, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Rémi Blanc
- Thermo Fisher Scientific, Bordeaux, France
| | - Pierre-Henri Fabre
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Montpellier Cedex 5, France
- Mammal Section, Department of Life Sciences, The Natural History Museum, London, UK
- Institut Universitaire de France (IUF), Paris, France
- Division of Vertebrate Zoology (Mammalogy), American Museum of Natural History, New York, New York, USA
| | - Lionel Hautier
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Montpellier Cedex 5, France
- Mammal Section, Department of Life Sciences, The Natural History Museum, London, UK
| | - Eli Amson
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| |
Collapse
|
4
|
Fonseca PHM, Martinelli AG, Gill PG, Rayfield EJ, Schultz CL, Kerber L, Ribeiro AM, Francischini H, Soares MB. New evidence from high-resolution computed microtomography of Triassic stem-mammal skulls from South America enhances discussions on turbinates before the origin of Mammaliaformes. Sci Rep 2024; 14:13817. [PMID: 38879680 PMCID: PMC11180108 DOI: 10.1038/s41598-024-64434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
The nasal cavity of living mammals is a unique structural complex among tetrapods, acquired along a series of major morphological transformations that occurred mainly during the Mesozoic Era, within the Synapsida clade. Particularly, non-mammaliaform cynodonts document several morphological changes in the skull, during the Triassic Period, that represent the first steps of the mammalian bauplan. We here explore the nasal cavity of five cynodont taxa, namely Thrinaxodon, Chiniquodon, Prozostrodon, Riograndia, and Brasilodon, in order to discuss the main changes within this skull region. We did not identify ossified turbinals in the nasal cavity of these taxa and if present, as non-ossified structures, they would not necessarily be associated with temperature control or the development of endothermy. We do, however, notice a complexification of the cartilage anchoring structures that divide the nasal cavity and separate it from the brain region in these forerunners of mammals.
Collapse
Affiliation(s)
- Pedro H M Fonseca
- Programa de Pós-Graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil.
| | - Agustín G Martinelli
- CONICET-Sección Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, CABA, Argentina.
- Núcleo Milenio EVOTEM-Evolutionary Transitions of Early Mammals-ANID, Santiago, Chile.
| | - Pamela G Gill
- Palaeobiology Research Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Bristol, BS8 1TQ, UK.
- Science Department, Natural History Museum, Cromwell Road, London, SW7 5HD, UK.
| | - Emily J Rayfield
- Palaeobiology Research Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Bristol, BS8 1TQ, UK.
| | - Cesar L Schultz
- Programa de Pós-Graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - Leonardo Kerber
- Centro de Apoio à Pesquisa Paleontológica, Universidade Federal de Santa Maria, São João do Polêsine, Brazil
| | - Ana Maria Ribeiro
- Programa de Pós-Graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
- Museu de Ciências Naturais/SEMA, Porto Algre, RS, Brazil
| | - Heitor Francischini
- Programa de Pós-Graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - Marina B Soares
- Departamento de Geologia e Paleontologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/n, São Cristovão, Rio de Janeiro, RJ, 20940-040, Brazil.
| |
Collapse
|
5
|
Courcelle M, Fabre PH, Douzery EJP. Phylogeny, Ecology, and Gene Families Covariation Shaped the Olfactory Subgenome of Rodents. Genome Biol Evol 2023; 15:evad197. [PMID: 37972291 PMCID: PMC10653590 DOI: 10.1093/gbe/evad197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/19/2023] Open
Abstract
Olfactory receptor (OR) genes represent the largest multigenic family in mammalian genomes and encode proteins that bind environmental odorant molecules. The OR repertoire is extremely variable among species and is subject to many gene duplications and losses, which have been linked to ecological adaptations in mammals. Although they have been studied on a broad taxonomic scale (i.e., placental), finer sampling has rarely been explored in order to better capture the mechanisms that drove the evolution of the OR repertoire. Among placental mammals, rodents are well-suited for this task, as they exhibit diverse life history traits, and genomic data are available for most major families and a diverse array of lifestyles. In this study, 53 rodent published genomes were mined for their OR subgenomes. We retrieved more than 85,000 functional and pseudogene OR sequences that were subsequently classified into phylogenetic clusters. Copy number variation among rodents is similar to that of other mammals. Using our OR counts along with comparative phylogenetic approaches, we demonstrated that ecological niches such as diet, period of activity, and a fossorial lifestyle strongly impacted the proportion of OR pseudogenes. Within the OR subgenome, phylogenetic inertia was the main factor explaining the relative variations of the 13 OR gene families. However, a striking exception was a convergent 10-fold expansion of the OR family 14 among the phylogenetically divergent subterranean mole-rat lineages belonging to Bathyergidae and Spalacidae families. This study illustrates how the diversity of the OR repertoire has evolved among rodents, both shaped by selective forces stemming from species life history traits and neutral evolution along the rodent phylogeny.
Collapse
Affiliation(s)
- Maxime Courcelle
- Institutdes Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Pierre-Henri Fabre
- Institutdes Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
- Mammal Section, Life Sciences, Vertebrate Division, The Natural History Museum, London, United Kingdom
- Institut Universitaire de France (IUF), Section Biologie-Médecine-Santé, Paris, France
| | - Emmanuel J P Douzery
- Institutdes Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| |
Collapse
|
6
|
Laaß M, Kaestner A. Nasal turbinates of the dicynodont Kawingasaurus fossilis and the possible impact of the fossorial habitat on the evolution of endothermy. J Morphol 2023; 284:e21621. [PMID: 37585231 DOI: 10.1002/jmor.21621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
Abstract
The nasal region of the fossorial anomodont Kawingasaurus fossilis was virtually reconstructed from neutron-computed tomographic data and compared with the terrestrial species Pristerodon mackayi and other nonmammalian synapsids. The tomography of the Kawingasaurus skull reveals a pattern of maxillo-, naso-, fronto- and ethmoturbinal ridges that strongly resemble the mammalian condition. On both sides of the nasal cavity, remains of scrolled maxilloturbinals were preserved that were still partially articulated with maxilloturbinal ridges. Furthermore, possible remains of the lamina semicircularis as well as fronto- or ethmoturbinals were found. In Kawingasaurus, the maxilloturbinal ridges were longer and stronger than in Pristerodon. Except for the nasoturbinal ridges, no other ridges in the olfactory region and no remains of turbinates were recognized. This supports the hypothesis that naso-, fronto-, ethmo- and maxilloturbinals were a plesiomorphic feature of synapsids, but due to their cartilaginous nature in most taxa were, in almost all cases, not preserved. The well-developed maxilloturbinals in Kawingasaurus were probably an adaptation to hypoxia-induced hyperventilation in the fossorial habitat, maintaining the high oxygen demands of Kawingasaurus' large brain. The surface area of the respiratory turbinates in Kawingasaurus falls into the mammalian range, which suggests that they functioned as a countercurrent exchange system for thermoregulation and conditioning of the respiratory airflow. Our results suggest that the environmental conditions of the fossorial habitat led to specific sensory adaptations, accompanied by a pulse in brain evolution and of endothermy in cistecephalids, ~50 million years before the origin of endothermy in the mammalian stem line. This supports the Nocturnal Bottleneck Theory, in that we found evidence for a similar evolutionary scenario in cistecephalids as proposed for early mammals.
Collapse
Affiliation(s)
- Michael Laaß
- Fakultät für Geowissenschaften, Geotechnik und Bergbau, TU Bergakademie Freiberg, Freiberg, Germany
- FRM II and Physics E21, Technische Universität München, Garching, Germany
| | - Anders Kaestner
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen PSI, Switzerland
| |
Collapse
|
7
|
Yuk J, Akash MMH, Chakraborty A, Basu S, Chamorro LP, Jung S. Morphology of pig nasal structure and modulation of airflow and basic thermal conditioning. Integr Comp Biol 2023; 63:304-314. [PMID: 36731869 DOI: 10.1093/icb/icad005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/19/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Mammals have presumably evolved to adapt to a diverse range of ambient environmental conditions through the optimized heat and mass exchange. One of the crucial biological structures for survivability is the nose, which efficiently transports and thermally preconditions the external air before reaching the internal body. Nasal mucosa and cavity help warm and humidify the inhaled air quickly. Despite its crucial role, the morphological features of mammal noses and their effect in modulating the momentum of the inhaled air, heat transfer dynamics, and particulate trapping remain poorly understood. Tortuosity of the nasal cavity in high-olfactory mammalian species, such as pigs and opossum, facilitates the formation of complex airflow patterns inside the nasal cavity, which leads to the screening of particulates from the inhaled air. We explored basic nasal features in anatomically realistic nasal pathways, including tortuosity, radius of curvature, and gap thickness; they show strong power-law correlations with body weight. Complementary inspection of tortuosity with idealized conduits reveals that this quantity is central in particle capture efficiency. Mechanistic insights into such nuances can serve as a tipping point to transforming nature-based designs into practical applications. In-depth characterization of the fluid-particle interactions in nasal cavities is necessary to uncover nose mechanistic functionalities. It is instrumental in developing new devices and filters in a number of engineering processes.
Collapse
Affiliation(s)
- Jisoo Yuk
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| | | | - Aneek Chakraborty
- Department of Mechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Saikat Basu
- Department of Mechanical Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Leonardo P Chamorro
- Department of Mechanical Science and Engineering, University of illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Sunghwan Jung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
8
|
Macrini TE, Hopwood J, Herbert CA, Weisbecker V. Development of the ethmoid in a wallaby and implications for the homology of turbinal elements in marsupials. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220082. [PMID: 37183901 PMCID: PMC10184242 DOI: 10.1098/rstb.2022.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/04/2022] [Indexed: 05/16/2023] Open
Abstract
The homologies of the turbinals (scroll bones) of the ethmoid are not well understood, including the potential implication for understanding mammalian phylogeny. Here we examine the postnatal development of this anatomical system in a marsupial mammal because previous work has shown that the adult pattern of five endoturbinals (ethmoturbinals) and two ectoturbinals (frontoturbinals) is conserved. Furthermore, marsupial phylogeny is fairly well resolved and provides a solid evolutionary framework for examining turbinal homologies. In this study, we documented the development of the ethmoid of the tammar wallaby, Notamacropus eugenii, using histology and computed tomography imagery of a growth series of pouch young. The pattern of development of the turbinal elements in the wallaby was compared to that in didelphids, as described in previous work. We found that four ethmoturbinals initially develop, followed later in development by an interturbinal; these five elements then develop into the bony endoturbinals found in adults. These data support the idea that endoturbinal III, derived from an interturbinal, has a distinctive development pattern from the other endoturbinals. This is consistent with what is seen in the didelphid marsupials, Caluromys philander and Monodelphis domestica, suggesting this is a common developmental pattern for marsupials. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Thomas E. Macrini
- Department of Biological Sciences, St Mary's University, San Antonio, TX 78228, USA
| | - Jenna Hopwood
- Department of Biological Sciences, St Mary's University, San Antonio, TX 78228, USA
| | - Catherine A. Herbert
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Vera Weisbecker
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
9
|
Martinez Q, Courcelle M, Douzery E, Fabre PH. When morphology does not fit the genomes: the case of rodent olfaction. Biol Lett 2023; 19:20230080. [PMID: 37042683 PMCID: PMC10092080 DOI: 10.1098/rsbl.2023.0080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
Linking genes to phenotypes has been a major question in evolutionary biology for the last decades. In the genomic era, few studies attempted to link olfactory-related genes to different anatomical proxies. However, they found very inconsistent results. This study is the first to investigate a potential relation between olfactory turbinals and olfactory receptor (OR) genes. We demonstrated that despite the use of similar methodology in the acquisition of data, OR genes do not correlate with the relative and the absolute surface area of olfactory turbinals. These results challenged the interpretations of several studies based on different proxies related to olfaction and their potential relation to olfactory capabilities.
Collapse
Affiliation(s)
- Quentin Martinez
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM-EPHE), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France
- Staatliches Museum für Naturkunde Stuttgart DE-70191, Stuttgart, Germany
| | - Maxime Courcelle
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM-EPHE), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France
| | - Emmanuel Douzery
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM-EPHE), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France
| | - Pierre-Henri Fabre
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM-EPHE), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France
- Mammal Section, Department of Life Sciences, The Natural History Museum, London SW7 5DB, UK
- Institut Universitaire de France (IUF), Paris, France
- Division of Vertebrate Zoology (Mammalogy), American Museum of Natural History, Central Park West, 79th St., New York, NY 10024-5192, USA
| |
Collapse
|
10
|
Beck RM, Voss RS, Jansa SA. Craniodental Morphology and Phylogeny of Marsupials. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2022. [DOI: 10.1206/0003-0090.457.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Robin M.D. Beck
- School of Science, Engineering and Environment University of Salford, U.K. School of Biological, Earth & Environmental Sciences University of New South Wales, Australia Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History
| | - Robert S. Voss
- Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History
| | - Sharon A. Jansa
- Bell Museum and Department of Ecology, Evolution, and Behavior University of Minnesota
| |
Collapse
|
11
|
Unique nasal turbinal morphology reveals Homunculus patagonicus functionally converged on modern platyrrhine olfactory sensitivity. J Hum Evol 2022; 167:103184. [DOI: 10.1016/j.jhevol.2022.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 11/19/2022]
|
12
|
Yuk J, Chakraborty A, Cheng S, Chung CI, Jorgensen A, Basu S, Chamorro LP, Jung S. On the design of particle filters inspired by animal noses. J R Soc Interface 2022; 19:20210849. [PMID: 35232280 PMCID: PMC8889202 DOI: 10.1098/rsif.2021.0849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Passive filtering is a common strategy to reduce airborne disease transmission and particulate contaminants across scales spanning orders of magnitude. The engineering of high-performance filters with relatively low flow resistance but high virus- or particle-blocking efficiency is a non-trivial problem of paramount relevance, as evidenced in the variety of industrial filtration systems and face masks. Next-generation industrial filters and masks should retain sufficiently small droplets and aerosols while having low resistance. We introduce a novel 3D-printable particle filter inspired by animals' complex nasal anatomy. Unlike standard random-media-based filters, the proposed concept relies on equally spaced channels with tortuous airflow paths. These two strategies induce distinct effects: a reduced resistance and a high likelihood of particle trapping by altering their trajectories with tortuous paths and induced local flow instability. The structures are tested for pressure drop and particle filtering efficiency over different airflow rates. We have also cross-validated the observed efficiency through numerical simulations. We found that the designed filters exhibit a lower pressure drop, compared to commercial masks and filters, while capturing particles bigger than approximately 10 μm. Our findings could facilitate a novel and scalable filter concept inspired by animal noses.
Collapse
Affiliation(s)
- Jisoo Yuk
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Aneek Chakraborty
- Department of Mechanical Engineering, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Shyuan Cheng
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Chun-I Chung
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Ashley Jorgensen
- Department of Mechanical Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Saikat Basu
- Department of Mechanical Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Leonardo P. Chamorro
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Sunghwan Jung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
13
|
Gaudin TJ, Smith KM, Wible JR. The Narial Anatomy of Extinct and Extant Sloths (Xenarthra, Folivora): Osteological Anomalies in the Extant Two-Toed Sloth Choloepus. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09562-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Wheelhouse J, Vogelnest L, Nicoll RG. Skeletal radiographic anatomy of echidnas: insights into unusual mammals. J Mammal 2021. [DOI: 10.1093/jmammal/gyab138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Long-beaked echidnas (Zaglossus spp.) have received less attention in the literature than Short-beaked echidnas (Tachyglossus aculeatus). Their natural history, anatomy, and physiology are poorly known. To improve our understanding of this unique group, we undertook a radiographic study of the Eastern long-beaked echidna (Zaglossus bartoni), and provide a comparative analysis of its radiographic skeletal anatomy with that of T. aculeatus. We examine conventional radiography and computed tomographic images of Zaglossus and Tachyglossus, describe the anatomical features of Zaglossus, and compare those with Tachyglossus. We provide evidence of epicoracoid overlap in echidnas, a feature not well documented in monotremes. The significance of epicoracoid overlap requires further investigation. Our study is intended as a reference for the radiographic anatomy of Z. bartoni.
Collapse
Affiliation(s)
| | - Larry Vogelnest
- Taronga Conservation Society Australia, Taronga Zoo, Mosman, New South Wales, Australia
| | - Robert G Nicoll
- Veterinary Imaging Associates, St. Leonards, New South Wales, Australia
| |
Collapse
|
15
|
Ito K, Tu VT, Eiting TP, Nojiri T, Koyabu D. On the Embryonic Development of the Nasal Turbinals and Their Homology in Bats. Front Cell Dev Biol 2021; 9:613545. [PMID: 33834019 PMCID: PMC8021794 DOI: 10.3389/fcell.2021.613545] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/08/2021] [Indexed: 01/27/2023] Open
Abstract
Multiple corrugated cartilaginous structures are formed within the mammalian nasal capsule, eventually developing into turbinals. Due to its complex and derived morphology, the homologies of the bat nasal turbinals have been highly disputed and uncertain. Tracing prenatal development has been proven to provide a means to resolve homological problems. To elucidate bat turbinate homology, we conducted the most comprehensive study to date on prenatal development of the nasal capsule. Using diffusible iodine-based contrast-enhanced computed tomography (diceCT), we studied in detail the 3D prenatal development of various bat species and non-bat laurasiatherians. We found that the structure previously identified as “maxilloturbinal” is not the true maxilloturbinal and is only part of the ethmoturbinal I pars anterior. Our results also allowed us to trace the evolutionary history of the nasal turbinals in bats. The turbinate structures are overall comparable between laurasiatherians and pteropodids, suggesting that pteropodids retain the ancestral laurasiatherian condition. The absence of the ethmoturbinal I pars posterior in yangochiropterans and rhinolophoids has possibly occurred independently by convergent evolution.
Collapse
Affiliation(s)
- Kai Ito
- Department of Anatomy, Tissue and Cell Biology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thomas P Eiting
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
| | - Taro Nojiri
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,The University Museum, The University of Tokyo, Tokyo, Japan
| | - Daisuke Koyabu
- Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Japan.,Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
16
|
Wagner F, Ruf I. "Forever young"-Postnatal growth inhibition of the turbinal skeleton in brachycephalic dog breeds (Canis lupus familiaris). Anat Rec (Hoboken) 2020; 304:154-189. [PMID: 32462796 DOI: 10.1002/ar.24422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/21/2020] [Accepted: 03/07/2020] [Indexed: 02/05/2023]
Abstract
In short snouted (brachycephalic) dogs (Canis lupus familiaris), several genetic mutations cause postnatal growth inhibition of the viscerocranium. Thus, for example, the pug keeps a snub nose like that observed in neonate dogs in general. However, little is known how far intranasal structures like the turbinal skeleton are also affected. In the present study, we provide the first detailed morphological and morphometric analyses on the turbinal skeleton of pug, Japanese chin, pekingese, King Charles spaniel, and Cavalier. In order to elucidate how a shortened snout affects turbinal shape, size, and density, our sample covers different degrees of brachycephaly. Macerated skulls of 1 juvenile and 17 adult individuals were investigated by μCT and virtual 3D reconstructions. In addition, histological serial sections of two prenatal and one neonate whippet were taken into account. All investigated postnatal stages show three frontoturbinals and three ethmoturbinals similar to longer snouted breeds, whereas the number of interturbinals is reduced. The shape of the entire turbinal skeleton simplifies with decreasing snout length, that is, within a minimized nasal cavity the turbinals decrease proportionally in surface area and surface density due to a looser arrangement. We interpret these apparent reductions as a result of spatial constraint which affects postnatal appositional bone growth and the position of the turbinals inside the nasal cavity. The turbinal skeleton of brachycephalic dogs arrests at an early ontogenetic stage, corresponding with previous studies on the dermal bones. Hence, we assume an association between the growth of intranasal structures and facial elongation.
Collapse
Affiliation(s)
- Franziska Wagner
- Abteilung Messelforschung und Mammalogie, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, Germany.,Museum für Tierkunde, Senckenberg Naturhistorische Sammlungen Dresden, Dresden, Germany
| | - Irina Ruf
- Abteilung Messelforschung und Mammalogie, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Convergent evolution of olfactory and thermoregulatory capacities in small amphibious mammals. Proc Natl Acad Sci U S A 2020; 117:8958-8965. [PMID: 32253313 DOI: 10.1073/pnas.1917836117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Olfaction and thermoregulation are key functions for mammals. The former is critical to feeding, mating, and predator avoidance behaviors, while the latter is essential for homeothermy. Aquatic and amphibious mammals face olfactory and thermoregulatory challenges not generally encountered by terrestrial species. In mammals, the nasal cavity houses a bony system supporting soft tissues and sensory organs implicated in either olfactory or thermoregulatory functions. It is hypothesized that to cope with aquatic environments, amphibious mammals have expanded their thermoregulatory capacity at the expense of their olfactory system. We investigated the evolutionary history of this potential trade-off using a comparative dataset of three-dimensional (3D) CT scans of 189 skulls, capturing 17 independent transitions from a strictly terrestrial to an amphibious lifestyle across small mammals (Afrosoricida, Eulipotyphla, and Rodentia). We identified rapid and repeated loss of olfactory capacities synchronously associated with gains in thermoregulatory capacity in amphibious taxa sampled from across mammalian phylogenetic diversity. Evolutionary models further reveal that these convergences result from faster rates of turbinal bone evolution and release of selective constraints on the thermoregulatory-olfaction trade-off in amphibious species. Lastly, we demonstrated that traits related to vital functions evolved faster to the optimum compared to traits that are not related to vital functions.
Collapse
|
18
|
A Nearly Complete Juvenile Skull of the Marsupial Sparassocynus derivatus from the Pliocene of Argentina, the Affinities of “Sparassocynids”, and the Diversification of Opossums (Marsupialia; Didelphimorphia; Didelphidae). J MAMM EVOL 2019. [DOI: 10.1007/s10914-019-09471-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Wagner F, Ruf I. Who nose the borzoi? Turbinal skeleton in a dolichocephalic dog breed (Canis lupus familiaris). Mamm Biol 2019. [DOI: 10.1016/j.mambio.2018.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Martinez Q, Lebrun R, Achmadi AS, Esselstyn JA, Evans AR, Heaney LR, Miguez RP, Rowe KC, Fabre PH. Convergent evolution of an extreme dietary specialisation, the olfactory system of worm-eating rodents. Sci Rep 2018; 8:17806. [PMID: 30546026 PMCID: PMC6293001 DOI: 10.1038/s41598-018-35827-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/09/2018] [Indexed: 11/18/2022] Open
Abstract
Turbinal bones are key components of the mammalian rostrum that contribute to three critical functions: (1) homeothermy, (2) water conservation and (3) olfaction. With over 700 extant species, murine rodents (Murinae) are the most species-rich mammalian subfamily, with most of that diversity residing in the Indo-Australian Archipelago. Their evolutionary history includes several cases of putative, but untested ecomorphological convergence, especially with traits related to diet. Among the most spectacular rodent ecomorphs are the vermivores which independently evolved in several island systems. We used 3D CT-scans (N = 87) of murine turbinal bones to quantify olfactory capacities as well as heat or water conservation adaptations. We obtained similar results from an existing 2D complexity method and two new 3D methodologies that quantify bone complexity. Using comparative phylogenetic methods, we identified a significant convergent signal in the rostral morphology within the highly specialised vermivores. Vermivorous species have significantly larger and more complex olfactory turbinals than do carnivores and omnivores. Increased olfactory capacities may be a major adaptive feature facilitating rats' capacity to prey on elusive earthworms. The narrow snout that characterises vermivores exhibits significantly reduced respiratory turbinals, which may reduce their heat and water conservation capacities.
Collapse
Affiliation(s)
- Quentin Martinez
- Institut des Sciences de l'Evolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France.
| | - Renaud Lebrun
- Institut des Sciences de l'Evolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France
| | - Anang S Achmadi
- Museum Zoologicum Bogoriense, Research Center For Biology, Indonesian Institute of Sciences (LIPI), Jl.Raya Jakarta-Bogor Km.46, Cibinong, 16911, Indonesia
| | - Jacob A Esselstyn
- Museum of Natural Science, 119 Foster Hall, Louisiana State University, Baton Rouge, Louisiana, 70803, United States
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, United States
| | - Alistair R Evans
- School of Biological Sciences, 18 Innovation Walk, Monash University, Victoria, 3800, Australia
- Sciences Department, Museums Victoria, Melbourne, Victoria, 3001, Australia
| | - Lawrence R Heaney
- Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, 60605, United States
| | - Roberto Portela Miguez
- Natural History Museum of London, Department of Life Sciences, Mammal Section, London, United Kingdom
| | - Kevin C Rowe
- Sciences Department, Museums Victoria, Melbourne, Victoria, 3001, Australia
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Pierre-Henri Fabre
- Institut des Sciences de l'Evolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France
| |
Collapse
|
21
|
Hüppi E, Sánchez-Villagra MR, Tzika AC, Werneburg I. Ontogeny and phylogeny of the mammalian chondrocranium: the cupula nasi anterior and associated structures of the anterior head region. ZOOLOGICAL LETTERS 2018; 4:29. [PMID: 30505462 PMCID: PMC6260904 DOI: 10.1186/s40851-018-0112-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/26/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND The study of chondrocrania has a long tradition with a focus on single specimens and stages. It revealed great interspecific diversity and a notion of intraspecific variation. As an embryonic structure, the chondrocranium is subject to major changes in ontogeny with resorption and ossification of different cartilaginous structures. The cupula nasi anterior is the anteriormost portion of the cartilaginous nasal capsule and is expected to mirror much of the animal's life history and lifestyle. Its diversity in mammals is reflected in the external nasal anatomy of newborns. Marsupials and placentals show marked differences, likely related to breathing and suckling behavior. RESULTS We examined histological sections of five marsupial and three placentals species and traced the development of the cupula nasi anterior and the anterior nasal capsule. We found ontogenetic variation for nearly 50% of the 43 characters defined herein. By comparing to the literature and considering ontogenetic variation, we performed an analysis of character evolution in 70 mammalian species and reconstructed the nasal anatomy of the therian ancestor. CONCLUSIONS At birth, marsupials have a complete but simple cupula nasi anterior, whereas placentals display a more diverse morphology due to reductions and variations of chondrocranial elements. The more compact nasal capsule in marsupials is related to a long and strong fixation to the mother's teat after birth. Within marsupials and placentals, several derived characters distinguish major taxa, probably related to developmental and functional constraints. The reconstructed ancestral anatomy of the cupula nasi anterior supports the hypothesis that the therian ancestor was placental-like and that the marsupial lifestyle is more derived.
Collapse
Affiliation(s)
- Evelyn Hüppi
- Paläontologisches Institut und Museum der Universität Zürich, Karl-Schmid-Strasse 4, 8006 Zürich, Switzerland
| | - Marcelo R. Sánchez-Villagra
- Paläontologisches Institut und Museum der Universität Zürich, Karl-Schmid-Strasse 4, 8006 Zürich, Switzerland
| | - Athanasia C. Tzika
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Quai E. Ansermet 30, 1205 Genève, Switzerland
| | - Ingmar Werneburg
- Senckenberg Center for Human Evolution and Palaeoenvironment (HEP) at Eberhard Karls Universität, Sigwartstraße 10, 72076 Tübingen, Germany
- Fachbereich Geowissenschaften der Eberhard-Karls-Universität Tübingen, Hölderlinstraße 12, 72074 Tübingen, Germany
- Museum für Naturkunde, Leibniz-Institut für Evolutions- & Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115 Berlin, Germany
| |
Collapse
|
22
|
Physical and geometric constraints shape the labyrinth-like nasal cavity. Proc Natl Acad Sci U S A 2018; 115:2936-2941. [PMID: 29507204 DOI: 10.1073/pnas.1714795115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nasal cavity is a vital component of the respiratory system that heats and humidifies inhaled air in all vertebrates. Despite this common function, the shapes of nasal cavities vary widely across animals. To understand this variability, we here connect nasal geometry to its function by theoretically studying the airflow and the associated scalar exchange that describes heating and humidification. We find that optimal geometries, which have minimal resistance for a given exchange efficiency, have a constant gap width between their side walls, while their overall shape can adhere to the geometric constraints imposed by the head. Our theory explains the geometric variations of natural nasal cavities quantitatively, and we hypothesize that the trade-off between high exchange efficiency and low resistance to airflow is the main driving force shaping the nasal cavity. Our model further explains why humans, whose nasal cavities evolved to be smaller than expected for their size, become obligate oral breathers in aerobically challenging situations.
Collapse
|
23
|
Billet G, Hautier L, de Thoisy B, Delsuc F. The hidden anatomy of paranasal sinuses reveals biogeographically distinct morphotypes in the nine-banded armadillo ( Dasypus novemcinctus). PeerJ 2017; 5:e3593. [PMID: 28828240 PMCID: PMC5562141 DOI: 10.7717/peerj.3593] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/29/2017] [Indexed: 02/02/2023] Open
Abstract
Background With their Pan-American distribution, long-nosed armadillos (genus Dasypus) constitute an understudied model for Neotropical biogeography. This genus currently comprises seven recognized species, the nine-banded armadillo (D. novemcinctus) having the widest distribution ranging from Northern Argentina to the South-Eastern US. With their broad diversity of habitats, nine-banded armadillos provide a useful model to explore the effects of climatic and biogeographic events on morphological diversity at a continental scale. Methods Based on a sample of 136 skulls of Dasypus spp. belonging to six species, including 112 specimens identified as D. novemcinctus, we studied the diversity and pattern of variation of paranasal cavities, which were reconstructed virtually using µCT-scanning or observed through bone transparency. Results Our qualitative analyses of paranasal sinuses and recesses successfully retrieved a taxonomic differentiation between the traditional species D. kappleri, D. pilosus and D. novemcinctus but failed to recover diagnostic features between the disputed and morphologically similar D. septemcinctus and D. hybridus. Most interestingly, the high variation detected in our large sample of D. novemcinctus showed a clear geographical patterning, with the recognition of three well-separated morphotypes: one ranging from North and Central America and parts of northern South America west of the Andes, one distributed across the Amazonian Basin and central South America, and one restricted to the Guiana Shield. Discussion The question as to whether these paranasal morphotypes may represent previously unrecognized species is to be evaluated through a thorough revision of the Dasypus species complex integrating molecular and morphological data. Remarkably, our recognition of a distinct morphotype in the Guiana Shield area is congruent with the recent discovery of a divergent mitogenomic lineage in French Guiana. The inflation of the second medialmost pair of caudal frontal sinuses constitutes an unexpected morphological diagnostic feature for this potentially distinct species. Our results demonstrate the benefits of studying overlooked internal morphological structures in supposedly cryptic species revealed by molecular data. It also illustrates the under-exploited potential of the highly variable paranasal sinuses of armadillos for systematic studies.
Collapse
Affiliation(s)
- Guillaume Billet
- Sorbonne Universités, CR2P, UMR 7207, CNRS, Université Paris 06, Museum national d'Histoire naturelle, Paris, France
| | - Lionel Hautier
- Institut des Sciences de l'Evolution, UMR 5554, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France.,Mammal Section, Life Sciences, Vertebrate Division, The Natural History Museum, London, United Kingdom
| | - Benoit de Thoisy
- Institut Pasteur de la Guyane, Cayenne, French Guiana, France.,Association Kwata, Cayenne, French Guiana, France
| | - Frédéric Delsuc
- Institut des Sciences de l'Evolution, UMR 5554, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| |
Collapse
|
24
|
Sánchez-Villagra MR, Forasiepi AM. On the development of the chondrocranium and the histological anatomy of the head in perinatal stages of marsupial mammals. ZOOLOGICAL LETTERS 2017; 3:1. [PMID: 28203388 PMCID: PMC5303607 DOI: 10.1186/s40851-017-0062-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/07/2017] [Indexed: 05/06/2023]
Abstract
An overview of the literature on the chondrocranium of marsupial mammals reveals a relative conservatism in shape and structures. We document the histological cranial anatomy of individuals representing Monodelphis domestica, Dromiciops gliroides, Perameles sp. and Macropus eugenii. The marsupial chondrocranium is generally characterized by the great breadth of the lamina basalis, absence of pila metoptica and large otic capsules. Its most anterior portion (cupula nasi anterior) is robust, and anterior to it there are well-developed tactile sensory structures, functionally important in the neonate. Investigations of ossification centers at and around the nasal septum are needed to trace the presence of certain bones (e.g., mesethmoid, parasphenoid) across marsupial taxa. In many adult marsupials, the tympanic floor is formed by at least three bones: alisphenoid (alisphenoid tympanic process), ectotympanic and petrosal (rostral and caudal tympanic processes); the squamosal also contributes in some diprotodontians. The presence of an entotympanic in marsupials has not been convincingly demonstrated. The tubal element surrounding the auditory tube in most marsupials is fibrous connective tissue rather than cartilage; the latter is the case in most placentals recorded to date. However, we detected fibrocartilage in a late juvenile of Dromiciops, and a similar tissue has been reported for Tarsipes. Contradictory reports on the presence of the tegmen tympani can be found in the literature. We describe a small tegmen tympani in Macropus. Several heterochronic shifts in the timing of development of the chondocranium and associated structures (e.g., nerves, muscles) and in the ossification sequence have been interpreted as largely being influenced by functional requirements related to the altriciality of the newborn marsupial during early postnatal life. Comparative studies of chondocranial development of mammals can benefit from a solid phylogenetic framework, research on non-classical model organisms, and integration with imaging and sectional data derived from computer-tomography.
Collapse
Affiliation(s)
- Marcelo R. Sánchez-Villagra
- Paläontologisches Institut und Museum der Universität Zürich, Karl Schmid Strasse 4, Zürich, 8006 Switzerland
| | | |
Collapse
|
25
|
Ichishima H. The ethmoid and presphenoid of cetaceans. J Morphol 2016; 277:1661-1674. [DOI: 10.1002/jmor.20615] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/27/2016] [Accepted: 08/30/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Hiroto Ichishima
- Fukui Prefectural Dinosaur Museum; Terao 51-11, Muroko Katsuyama Fukui Japan
| |
Collapse
|
26
|
Rowe TB, Shepherd GM. Role of ortho-retronasal olfaction in mammalian cortical evolution. J Comp Neurol 2016; 524:471-95. [PMID: 25975561 PMCID: PMC4898483 DOI: 10.1002/cne.23802] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/16/2015] [Accepted: 04/29/2015] [Indexed: 02/02/2023]
Abstract
Fossils of mammals and their extinct relatives among cynodonts give evidence of correlated transformations affecting olfaction as well as mastication, head movement, and ventilation, and suggest evolutionary coupling of these seemingly separate anatomical regions into a larger integrated system of ortho-retronasal olfaction. Evidence from paleontology and physiology suggests that ortho-retronasal olfaction played a critical role at three stages of mammalian cortical evolution: early mammalian brain development was driven in part by ortho-retronasal olfaction; the bauplan for neocortex had higher-level association functions derived from olfactory cortex; and human cortical evolution was enhanced by ortho-retronasal smell.
Collapse
Affiliation(s)
- Timothy B. Rowe
- Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, 78712 USA
| | - Gordon M. Shepherd
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, 06510 USA
| |
Collapse
|
27
|
Ruf I, Janßen S, Zeller U. The ethmoidal region of the skull of <i>Ptilocercus lowii</i> (Ptilocercidae, Scandentia, Mammalia) – a contribution to the reconstruction of the cranial morphotype of primates. Primate Biol 2015. [DOI: 10.5194/pb-2-89-2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. The ethmoidal region of the skull houses one of the most important sense organs of mammals, the sense of smell. Investigation of the ontogeny and comparative anatomy of internal nasal structures of the macrosmatic order Scandentia is a significant contribution to the understanding of the morphotype of Scandentia with potential implications for our understanding of the primate nasal morphological pattern. For the first time perinatal and adult stages of Ptilocercus lowii and selected Tupaia species were investigated by serial histological sections and high-resolution computed tomography (μCT), respectively. Scandentia show a very common olfactory turbinal pattern of small mammals in having two frontoturbinals, three ethmoturbinals, and one interturbinal between the first and second ethmoturbinal. This indicates a moderately developed sense of smell (moderately macrosmatic). The observed septoturbinal is probably an apomorphic character of Scandentia. A general growth in length occurs during postnatal ontogeny; thus the adult ethmoidal region is proportionally longer compared to the rest of the skull. Throughout ontogeny Ptilocercus has a proportionally longer nasal cavity than Tupaia. Major differences exist between Ptilocercus and Tupaia in regard to the proportions of the nasal cavity which correlate with the position of the orbits. Compared to Tupaia, Ptilocercus shows more anteriorly oriented orbits and has a proportionally longer nasal capsule than Tupaia and based on anatomy probably a higher level of olfactory discrimination. Furthermore, Ptilocercus has a platybasic skull base that resembles a derived feature of Ptilocercidae. In contrast, Tupaia has a distinct septum interorbitale leading to a tropibasic skull, a pattern that is a plesiomorphic character of Tupaiidae and Scandentia in general. This finding helps us to understand the septum interorbitale pattern in Primates. Our results indicate that differences among the investigated Scandentia species are correlated with adaptations to foraging and behavioural biology.
Collapse
|
28
|
Macrini TE. Development of the ethmoid in Caluromys philander (Didelphidae, Marsupialia) with a discussion on the homology of the turbinal elements in marsupials. Anat Rec (Hoboken) 2015; 297:2007-17. [PMID: 25312361 DOI: 10.1002/ar.23024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 11/07/2022]
Abstract
Homology of turbinals, or scroll bones, of the mammalian ethmoid bone is poorly known and complicated by a varied terminology. Positionally, there are two main types of ossified adult turbinals known as endoturbinals and ectoturbinals, and their cartilaginous precursors are called ethmoturbinals and frontoturbinals, respectively. Endoturbinals are considered to be serially homologous due to similarity in their developmental patterns. Consequently, endoturbinals from mammals with differing numbers of elements cannot be individually homogenized. In this study, the development of the ethmoid of Caluromys philander, the bare-tailed woolly opossum, is described based on serial sections of six pouchlings ranging in age from 20 to 84 days postnatal (PND-84), and computed tomography images of an adult skull. I found that four ethmoturbinals initially develop as seen in PND-20 and PND-30 individuals but by PND-64 an interturbinal (corresponding to endoturbinal III in adults) is present between ethmoturbinals II and III. This developmental pattern is identical to that of Monodelphis domestica, the gray short-tailed opossum, and is probably also present in the marsupials Didelphis marsupialis, and Thylacinus cynocephalus based on work of previous authors. These data suggest that endoturbinal III has a developmental pattern that differs from other endoturbinals, and the name interturbinal should be retained for the adult structure in recognition of this difference. These results may prove useful for homologizing this individual turbinal element across marsupials, the majority of which have five endoturbinals as adults. This might also explain the presumed placental ancestral condition of four endoturbinals if the marsupial interturbinal is lost.
Collapse
Affiliation(s)
- Thomas E Macrini
- Department of Biological Sciences, St. Mary's University, San Antonio, Texas
| |
Collapse
|
29
|
Ruf I, Maier W, Rodrigues PG, Schultz CL. Nasal anatomy of the non-mammaliaform cynodont Brasilitherium riograndensis (Eucynodontia, Therapsida) reveals new insight into mammalian evolution. Anat Rec (Hoboken) 2015; 297:2018-30. [PMID: 25312362 DOI: 10.1002/ar.23022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 11/09/2022]
Abstract
The mammalian nasal cavity is characterized by a unique anatomy with complex internal features. The evolution of turbinals was correlated with endothermic and macrosmatic adaptations in therapsids and in early mammals, which is still apparent in their twofold function (warming and moistening of air, olfaction). Fossil evidence for the transformation from the nonmammalian to the mammalian nasal cavity pattern has been poor and inadequate. Ossification of the cartilaginous nasal capsule and turbinals seems to be a feature that occurred only very late in synapsid evolution but delicate ethmoidal bones are rarely preserved. Here we provide the first µCT investigation of the nasal cavity of the advanced non-mammaliaform cynodont Brasilitherium riograndensis from the Late Triassic of Southern Brazil, a member of the sister-group of mammaliaforms, in order to elucidate a critical anatomical transition in early mammalian evolution. Brasilitherium riograndensis already had at least partially ossified turbinals as remnants of the nasoturbinal and the first ethmoturbinal are preserved. The posterior nasal septum is partly ossified and contributes to a mesethmoid. The nasal cavity is posteriorly expanded and forms a distinctive pars posterior (ethmoidal recess) that is ventrally separated from the nasopharyngeal duct by a distinct lamina terminalis. Thus, our observations clearly demonstrate that principal features of the mammalian nasal cavity were already present in the sister-group of mammaliaforms.
Collapse
Affiliation(s)
- Irina Ruf
- Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 8, 53115, Bonn, Germany; Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Abteilung Paläoanthropologie und Messelforschung, Sektion Mammalogie, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
30
|
Ruf I. Comparative anatomy and systematic implications of the turbinal skeleton in Lagomorpha (Mammalia). Anat Rec (Hoboken) 2015; 297:2031-46. [PMID: 25312363 DOI: 10.1002/ar.23027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 11/09/2022]
Abstract
In order to elucidate the systematic relevance of the turbinal skeleton in Lagomorpha the ethmoidal regions of 6 ochotonid, 21 leporid, and 2 outgroup species (Sciurus vulgaris, Tupaia sp.) species were investigated by high-resolution computed tomography (μCT). Number and shape of turbinals correspond to major clades and to several genera. All Lagomorpha under study have a deeply excavated nasoturbinal that is continuous with the lamina semicircularis; a feature likely to be an autapomorphy of lagomorphs. In particular, the olfactory turbinals (frontoturbinals, ethmoturbinals, and interturbinals) provide new systematic information. The plesiomorphic lagomorph pattern comprises two frontoturbinals, three ethmoturbinals, and one interturbinal between ethmoturbinal I and II. Ochotonidae are derived from the lagomorph goundplan by loss of ethmoturbinal III; an interturbinal between the two frontoturbinals is an autapomorphy of Leporidae. Pronolagus is apomorphic in having a very slender first ethmoturbinal, but shows a puzzling pattern in decreasing the number of turbinals. Pronolagus rupestris and Romerolagus diazi have independently reduced their turbinals to just two fronto- and two ethmoturbinals, which is the lowest number among the sampled lagomorphs. In contrast, the more derived leporid genera under study (Oryctolagus, Caprolagus, Sylvilagus, and Lepus) show a tendency to increase the number of turbinals, either by developing an ethmoturbinal IV (Caprolagus hispidus, Lepus arcticus) or by additional interturbinals. Intraspecific variation was investigated in Ochotona alpina, Oryctolagus cuniculus, and Lepus europaeus and is restricted to additional interturbinals in the frontoturbinal recess of the two leporids.
Collapse
Affiliation(s)
- Irina Ruf
- Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 8, 53115, Bonn, Germany; Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Abteilung Palāoanthropologie und Messelforschung, Sektion Mammalogie, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| |
Collapse
|
31
|
Van Valkenburgh B, Smith TD, Craven BA. Tour of a labyrinth: exploring the vertebrate nose. Anat Rec (Hoboken) 2015; 297:1975-84. [PMID: 25312359 DOI: 10.1002/ar.23021] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 01/18/2023]
Abstract
This special issue of The Anatomical Record is the outcome of a symposium entitled "Inside the Vertebrate Nose: Evolution, Structure and Function." The skeletal framework of the nasal cavity is a complicated structure that often houses sinuses and comprises an internal skeleton of bone or cartilage that can vary greatly in architecture among species. The nose serves multiple functions, including olfaction and respiratory air-conditioning, and its morphology is constrained by evolution, development, and conflicting demands on cranial space, such as enlarged orbits. The nasal cavity of vertebrates has received much more attention in the last decade due to the emergence of nondestructive methods that allow improved visualization of the internal anatomy of the skull, such as high-resolution x-ray computed tomography and magnetic resonance imaging. The 17 articles included here represent a broad range of investigators, from paleontologists to engineers, who approach the nose from different perspectives. Key topics include the evolution and development of the nose, its comparative anatomy and function, and airflow through the nasal cavity of individual species. In addition, this special issue includes review articles on anatomical reduction of the olfactory apparatus in both cetaceans and primates (the vomeronasal system), as well as the molecular biology of olfaction in vertebrates. Together these articles provide an expansive summary of our current understanding of vertebrate nasal anatomy and function. In this introduction, we provide background information and an overview of each of the three primary topics, and place each article within the context of previous research and the major challenges that lie ahead.
Collapse
|
32
|
Deleon VB, Smith TD. Mapping the nasal airways: using histology to enhance CT-based three-dimensional reconstruction in Nycticebus. Anat Rec (Hoboken) 2015; 297:2113-20. [PMID: 25312369 DOI: 10.1002/ar.23028] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 11/10/2022]
Abstract
Three-dimensional reconstructions of imaging data are an increasingly common approach for studying anatomical structure. However, certain aspects of anatomy, including microscopic structure and differentiating tissue types, continue to benefit from traditional histological analyses. We present here a detailed methodology for combining data from microCT and histological imaging to create 3D virtual reconstructions for visualization and further analyses. We used this approach to study the distribution of olfactory mucosa on ethmoturbinal I of an adult pygmy slow loris, Nycticebus pygmaeus. MicroCT imaging of the specimen was followed by processing, embedding, and sectioning for histological analysis. We identified corresponding features in the CT and histological data, and used these to reconstruct the plane of section in the CT volume. The CT volume was then digitally re-sliced, such that orthogonal sections of the CT image corresponded to histological sections. Histological images were annotated for the features of interest (in this case, the contour of soft tissue on ethmoturbinal I and the extent of olfactory mucosa), and annotations were transferred to binary masks in the CT volume. These masks were combined with density-based surface reconstructions of the skull to create an enhanced 3D virtual reconstruction, in which the bony surfaces are coded for mucosal function. We identified a series of issues that may be raised in this approach, for example, deformation related to histological processing, and we make recommendations for addressing these issues. This method provides an evidence-based approach to 3D visualization and analysis of microscopic features in an anatomic context.
Collapse
Affiliation(s)
- Valerie Burke Deleon
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
33
|
Maier W, Ruf I. Morphology of the nasal capsule of primates--with special reference to Daubentonia and Homo. Anat Rec (Hoboken) 2015; 297:1985-2006. [PMID: 25312360 DOI: 10.1002/ar.23023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 11/10/2022]
Abstract
Primitive mammals are considered macrosmatic. They have very large and complicated nasal capsules, nasal cavities with extensive olfactory epithelia, and relatively large olfactory bulbs. The complicated structures of the nasal capsule follow a relatively conservative "bauplan," which is normally easy to see in earlier fetal stages; especially in altricial taxa it differentiates well into postnatal life. As anteriormost part of the chondrocranium, the nasal capsule is at first cartilaginous. Most of it ossifies endochondrally, but "appositional bone" ("Zuwachsknochen") is also common. Many fetal structures become resorbed. Together, all surviving bone structures form the ethmoid bone, but cartilages of the external nose and of the vomeronasal complex can persist throughout life. We describe in detail the anatomy of Daubentonia madagascariensis based on a fetal stage (41 mm HL) and an adult skull was analyzed by µCT. We found that the nasal capsule of this species is by far the most complicated one of all extant Primates. We also describe older fetuses of Homo sapiens (35 and 63 mm HL) as representative of a derived primate. The most significant feature of man--and probably of all anthropoids--is the complete loss of the recessus frontoturbinalis and its associated structures. It can be demonstrated that the evolutionary reductions within the primate nasal capsule mainly affect those structures associated with olfaction, whereas cartilages that are important for the biomechanics of the facial skull of the fetus persist.
Collapse
Affiliation(s)
- Wolfgang Maier
- Institut für Evolution und Oekologie, Fachbereich Biologie der Universität, Auf der Morgenstelle 28, D - 772076, Tübingen, Germany
| | | |
Collapse
|
34
|
Eiting TP, Smith TD, Dumont ER. Olfactory epithelium in the olfactory recess: a case study in new world leaf-nosed bats. Anat Rec (Hoboken) 2015; 297:2105-12. [PMID: 25312368 DOI: 10.1002/ar.23030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 11/09/2022]
Abstract
The olfactory recess (OR) is a restricted space at the back of the nasal fossa in many mammals that is thought to improve olfactory function. Mammals that have an olfactory recess are usually described as keen-scented, while those that do not are typically thought of as less reliant on olfaction. However, the presence of an olfactory recess is not a binary trait. Many mammal families have members that vary substantially in the size and complexity of the olfactory recess. There is also variation in the amount of olfactory epithelium (OE) that is housed in the olfactory recess. Among New World leaf-nosed bats (family Phyllostomidae), species vary by over an order of magnitude in how much of their total OE lies within the OR. Does this variation relate to previously documented neuroanatomical proxies for olfactory reliance? Using data from 12 species of phyllostomid bats, we addressed the hypothesis that the amount of OE within the OR relates to a species' dependence on olfaction, as measured by two commonly used neuroanatomical metrics, the size of the olfactory bulb, and the number of glomeruli in the olfactory bulb, which are the first processing units within the olfactory signal cascade. We found that the percentage of OE within the OR does not relate to either measure of olfactory "ability." This suggests that olfactory reliance is not reflected in the size of the olfactory recess. We explore other roles that the olfactory recess may play.
Collapse
Affiliation(s)
- Thomas P Eiting
- Graduate Program in Organismic and Evolutionary Biology, 221 Morrill Science Center, University of Massachusetts, Amherst, Massachusetts
| | | | | |
Collapse
|
35
|
Billet G, Hautier L, Lebrun R. Morphological diversity of the bony labyrinth (inner ear) in extant Xenarthrans and its relation to phylogeny. J Mammal 2015. [DOI: 10.1093/jmammal/gyv074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Abstract
We present a survey of the morphological diversity of the bony labyrinth of the inner ear in Xenarthra, including the fossil ground sloth Megatherium. Using a combination of traditional and geometric morphometrics, correlation analyses, and qualitative observations, we attempt to extract independent and informative phylogenetic characters of the bony labyrinth for the superorder. Geometric morphometric analyses demonstrate a strong imprint of phylogenetic history on the shape of the bony labyrinth of xenarthrans and a weak influence of allometry. Discrete characters mapped on a consensus cladogram for xenarthrans show support for many traditional nodes within the superorder and may also provide critical information for problematic nodes within Cingulata. A relatively large lateral semicircular canal may, for instance, represent a synapomorphy for the molecular clade allying fairy armadillos (Chlamyphorinae) to the Tolypeutinae. Striking convergences were detected when comparing Megatherium, the giant ground sloth, with extant armadillos and Chlamyphorus, the pink fairy armadillo, with the extant three- and two-toed sloths. These findings have the potential to help understand the phylogenetic relationships of fossil xenarthrans.
Presentamos un estudio de la diversidad morfológica del laberinto óseo del oído interno de los xenartros, incluyendo el perezoso fósil Megatherium. Utilizamos una combinación de morfométrica tradicional y geométrica, análisis de correlación y observaciones cuantitativas para intentar extraer caracteres filogenéticos independientes e informativos del laberinto óseo para el superorden. Los análisis geométricos morfométricos muestran una fuerte impronta de la historia filogenética de la forma del laberinto óseo de los xenartros y una baja influencia de la alometría. Los caracteres discretos mapeados en un cladograma de consenso para xenartros apoyan varios nodos tradicionales dentro del superorden y podrían también brindar información importante para los nodos problemáticos dentro de los Cingulata. Un canal semicircular lateral relativamente largo podría, por ejemplo, representar una sinapomorfía que apoye el clado molecular que une a los pichiciegos con los Tolypeutinae. Se hallaron notables convergencias al comparar Megatherium con los armadillos actuales, y Chlamyphorus con los perezosos actuales. Estos hallazgos tienen el potencial para ayudar a entender las relaciones filogenéticas de los xenartros fósiles.
Collapse
Affiliation(s)
- Guillaume Billet
- CR2P, UMR CNRS 7207, CP 38, Muséum national d’Histoire naturelle, Univ Paris 06, 8 rue Buffon, 75005 Paris, France (GB)
| | - Lionel Hautier
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (CNRS, UM2, IRD, EPHE), c.c. 064, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France (LH, RL)
| | - Renaud Lebrun
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (CNRS, UM2, IRD, EPHE), c.c. 064, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France (LH, RL)
| |
Collapse
|
36
|
Computed tomography and magnetic resonance for the advanced imaging of the normal nasal cavity and paranasal sinuses of the koala (Phascolarctos cinereus). J Zoo Wildl Med 2015; 45:766-74. [PMID: 25632661 DOI: 10.1638/2013-0290.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The objective of this study is to describe computed tomography (CT) and magnetic resonance (MR) for the cross-sectional imaging of the normal anatomy of the nasal cavity and paranasal sinuses of the koala (Phascolarctos cinereus), to provide reference figures for gross anatomy with corresponding CT and MR images and to compare the features of the nasal cavity and paranasal sinuses of the normal koala with that reported in other domestic species. Advanced imaging can be used to aid in diagnosis, to plan surgical intervention, and to monitor therapeutic responses to diseases of the nasal passages in koalas. One clinically normal koala was anesthetized twice for the separate acquisition of dorsal CT scan images and transverse, dorsal, and sagittal MR images of its nasal cavity and paranasal sinuses. Sagittal and transverse CT planes were reformatted. Three fresh koala skulls were also transected in one of each transverse, sagittal, and dorsal planes and photographed. The CT and MR images obtained were matched with corresponding gross anatomic images and the normal bone, tissues and airway passages were identified. All anatomic structures were readily identifiable on CT, magnetic resonance imaging (MRI), and gross images. CT and MRI are both valuable diagnostic tools for imaging the nasal cavities and paranasal sinuses of koalas. Images obtained from this project can be used as baseline references for future comparison with diseased koalas to help with diagnosis, surgical intervention, and response to therapy.
Collapse
|
37
|
Green PA, Van Valkenburgh B, Pang B, Bird D, Rowe T, Curtis A. Respiratory and olfactory turbinal size in canid and arctoid carnivorans. J Anat 2012; 221:609-21. [PMID: 23035637 DOI: 10.1111/j.1469-7580.2012.01570.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2012] [Indexed: 11/29/2022] Open
Abstract
Within the nasal cavity of mammals is a complex scaffold of paper-thin bones that function in respiration and olfaction. Known as turbinals, the bones greatly enlarge the surface area available for conditioning inspired air, reducing water loss, and improving olfaction. Given their functional significance, the relative development of turbinal bones might be expected to differ among species with distinct olfactory, thermoregulatory and/or water conservation requirements. Here we explore the surface area of olfactory and respiratory turbinals relative to latitude and diet in terrestrial Caniformia, a group that includes the canid and arctoid carnivorans (mustelids, ursids, procyonids, mephitids, ailurids). Using high-resolution computed tomography x-ray scans, we estimated respiratory and olfactory turbinal surface area and nasal chamber volume from three-dimensional virtual models of skulls. Across the Caniformia, respiratory surface area scaled isometrically with estimates of body size and there was no significant association with climate, as estimated by latitude. Nevertheless, one-on-one comparisons of sister taxa suggest that arctic species may have expanded respiratory turbinals. Olfactory surface area scaled isometrically among arctoids, but showed positive allometry in canids, reflecting the fact that larger canids, all of which are carnivorous, had relatively greater olfactory surface areas. In addition, among the arctoids, large carnivorous species such as the polar bear (Ursus maritimus) and wolverine (Gulo gulo) also displayed enlarged olfactory turbinals. More omnivorous caniform species that feed on substantial quantities of non-vertebrate foods had less expansive olfactory turbinals. Because large carnivorous species hunt widely dispersed prey, an expanded olfactory turbinal surface area may improve a carnivore's ability to detect prey over great distances using olfactory cues.
Collapse
Affiliation(s)
- Patrick A Green
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA 90095-1606, USA
| | | | | | | | | | | |
Collapse
|