1
|
Myconoside interacts with the plasma membranes and the actin cytoskeleton and provokes cytotoxicity in human lung adenocarcinoma A549 cells. J Bioenerg Biomembr 2022; 54:31-43. [PMID: 34988784 DOI: 10.1007/s10863-021-09928-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
Studies have been carried out on the effects of the phenyl glycoside myconoside, extracted from the relict, Balkan endemic resurrection plant Haberlea rhodopensis on the plasma membrane structural organization and the actin cytoskeleton. Because the plasma membrane is the first target of exogenous bioactive compounds, we focused our attention on the influence of myconoside on the membrane lipid order and actin cytoskeleton in human lung adenocarcinoma A549 cells, using fluorescent spectroscopy and microscopy techniques. We found that low myconoside concentration (5 μg/ml) did not change cell viability but was able to increase plasma membrane lipid order of the treated cells. Higher myconoside concentration (20 μg/ml) inhibited cell viability by decreasing plasma membrane lipid order and impairing actin cytoskeleton. We hypothesize that the observed changes in the plasma membrane structural organization and the actin cytoskeleton are functionally connected to cell viability. Biomimetic membranes were used to demonstrate that myconoside is able to reorganize the membrane lipids by changing the fraction of sphingomyelin-cholesterol enriched domains. Thus, we propose a putative mechanism of action of myconoside on A549 cells plasma membrane lipids as well as on actin filaments in order to explain its cytotoxic effect at high myconoside concentration.
Collapse
|
2
|
Cabbage and Sauerkraut Consumption in Adolescence and Adulthood and Breast Cancer Risk among US-Resident Polish Migrant Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010795. [PMID: 34682540 PMCID: PMC8535652 DOI: 10.3390/ijerph182010795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022]
Abstract
Background: Breast cancer (BC) incidence and mortality are lower in Poland than in the United States (US). However, Polish-born migrant women to US approach the higher BC mortality rates of US women. We evaluated the association between consumption of cabbage/sauerkraut foods and BC risk in Polish-born migrants to US. Methods: We conducted a case–control study of BC among Polish-born migrants in Cook County and the Detroit Metropolitan Area. Cases (n = 131) were 20–79 years old with histological/cytological confirmation of invasive BC. Population-based controls (n = 284) were frequency matched to cases on age and residence. Food frequency questionnaires assessed diet during adulthood and age 12–13 years. Odds ratios (OR) and 95% confidence intervals (95% CI) were estimated with conditional logistic regression. Consumption of total, raw/short-cooked, and long-cooked cabbage/sauerkraut foods was categorized as low, medium, or high (frequency of servings/week). Results: Higher consumption of total and raw/short-cooked cabbage/sauerkraut foods, during both adolescence and adulthood, was associated with a significantly lower BC risk. Consumption of long-cooked cabbage/sauerkraut foods was low and not significantly associated with risk. The multivariate OR for total cabbage/sauerkraut consumption, high vs. low (>4 vs. ≤2 servings/week) during adolescence was 0.36 (95% CI = 0.18–0.71, ptrend < 0.01) and 0.50 (95% CI = 0.23–1.06, ptrend = 0.08) during adulthood. For raw/short-cooked cabbage/sauerkraut (>3 vs. ≤1.5 servings/week), the ORs were 0.35 (95% CI = 0.16–0.72, ptrend < 0.01) during adolescence and 0.37 (95% CI = 0.17–0.78, ptrend < 0.01) during adulthood. For joint adolescent/adult consumption of raw/short-cooked cabbage/sauerkraut foods, (high, high) vs. (low, low), the OR was 0.23 (95% CI = 0.07–0.65). The significant association for high adolescent consumption of raw/short-cooked cabbage/sauerkraut foods and reduced BC risk was consistent across all levels of consumption in adulthood. Conclusion: Greater consumption of total and raw/short-cooked cabbage/sauerkraut foods either during adolescence or adulthood was associated with significantly reduced BC risk among Polish migrant women. These findings contribute to the growing literature suggesting a protective effect of a potentially modifiable factor, cruciferous vegetable intake, on breast cancer risk.
Collapse
|
3
|
Pro-Apoptotic Effect of Grape Seed Extract on MCF-7 Involves Transient Increase of Gap Junction Intercellular Communication and Cx43 Up-Regulation: A Mechanism of Chemoprevention. Int J Mol Sci 2019; 20:ijms20133244. [PMID: 31269652 PMCID: PMC6651466 DOI: 10.3390/ijms20133244] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Growing evidence suggests dietary antioxidants reduce the risk of several cancers. Grape seeds extracts (GSE) are a rich source of polyphenols known to have antioxidant, chemopreventive and anticancer properties. Herein, we investigated the in vitro effects and putative action mechanisms of a grape seed extract (GSE) on human breast cancer cells (MCF-7). The effects of GSE were evaluated on cell proliferation, apoptosis and gap-junction-mediated cell-cell communications (GJIC), as basal mechanism involved in the promotion stage of carcinogenesis. GSE (0.05-100 μg/mL) caused a significant dose- and time-dependent inhibition of MCF-7 viability and induced apoptotic cell death, as detected by Annexin-V/Propidium Iodide. Concurrently, GSE induced transient but significant enhancement of GJIC in non-communicating MCF-7 cells, as demonstrated by the scrape-loading/dye-transfer (SL/DT) assay and an early and dose-dependent re-localization of the connexin-43 (Cx43) proteins on plasma membranes, as assayed by immunocytochemistry. Finally, real-time-PCR has evidenced a significant increase in cx43 mRNA expression. The results support the hypothesis that the proliferation inhibition and pro-apoptotic effect of GSE against this breast cancer cell model are mediated by the GJIC improvement via re-localization of Cx43 proteins and up-regulation of cx43 gene, and provide further insight into the action mechanisms underlying the health-promoting action of dietary components.
Collapse
|
4
|
Lordan R, Tsoupras A, Zabetakis I. The Potential Role of Dietary Platelet-Activating Factor Inhibitors in Cancer Prevention and Treatment. Adv Nutr 2019; 10:148-164. [PMID: 30721934 PMCID: PMC6370273 DOI: 10.1093/advances/nmy090] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/11/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of mortality worldwide. The role of unresolved inflammation in cancer progression and metastasis is well established. Platelet-activating factor (PAF) is a key proinflammatory mediator in the initiation and progression of cancer. Evidence suggests that PAF is integral to suppression of the immune system and promotion of metastasis and tumor growth by altering local angiogenic and cytokine networks. Interactions between PAF and its receptor may have a role in various digestive, skin, and hormone-dependent cancers. Diet plays a critical role in the prevention of cancer and its treatment. Research indicates that the Mediterranean diet may reduce the incidence of several cancers in which dietary PAF inhibitors have a role. Dietary PAF inhibitors such as polar lipids have demonstrated inhibitory effects against the physiological actions of PAF in cancer and other chronic inflammatory conditions in vitro and in vivo. In addition, experimental models of radiotherapy and chemotherapy demonstrate that inhibition of PAF as adjuvant therapy may lead to more favorable outcomes. Although promising, there is limited evidence on the potential benefits of dietary PAF inhibitors on cancer prevention or treatment. Therefore, further extensive research is required to assess the effects of various dietary factors and PAF inhibitors and to elucidate the mechanisms in prevention of cancer progression and metastasis at a molecular level.
Collapse
Affiliation(s)
- Ronan Lordan
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
5
|
Investigating the Antiproliferative and Antioxidant Properties of Pancratium maritimum L. (Amaryllidaceae) Stems, Flowers, Bulbs, and Fruits Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9301247. [PMID: 30364050 PMCID: PMC6186381 DOI: 10.1155/2018/9301247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/22/2018] [Accepted: 09/19/2018] [Indexed: 12/02/2022]
Abstract
Pancratium maritimum stems, flowers, bulbs, and fruits extracts were investigated for their antiproliferative and antioxidant properties. Total phenols and total flavonoids were also determined. The in vitro antiproliferative activity was tested against seven cancer cell lines such as C32, HeLa, MDA-MB-231, PC3, A549, MCF-7, and LNCaP by using SRB assay. Interesting results were obtained with stems ethanol extract (ET1) against C32 cells (IC50 of 27.1 μg/mL) and fruits aqueous extract (AQ) against MCF-7 cell line (IC50 of 36.5 μg/mL). To define the antioxidant activity, four tests such as DPPH, ABTS FRAP, and β-carotene bleaching tests were used. The most promising ABTS scavenging capacity was observed with fruits ethanol extract (ET1) that showed an IC50 value of 6.9 μg/mL. According to the correlation results, the phenols and flavonoids content could provide a fundamental contribution to the antioxidant and antiproliferative activity of P. maritimum extracts.
Collapse
|
6
|
Khan S, Shukla S, Sinha S, Meeran SM. Epigenetic targets in cancer and aging: dietary and therapeutic interventions. Expert Opin Ther Targets 2016; 20:689-703. [PMID: 26667209 DOI: 10.1517/14728222.2016.1132702] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Epigenetic regulation plays a critical role in normal growth and embryonic development by controlling the transcriptional activities of several genes. A growing number of epigenetic changes have been reported in the regulation of key genes involved in cancer and aging. Drugs with epigenetic modulatory activities, mainly histone deacetylase and DNA methyltransferase inhibitors, have received wider attention in aging and cancer research. AREAS COVERED In this review, we summarize the major epigenetic alterations in cancer and aging, with special emphasis on possible therapeutic targets and interventions by dietary as well as bioactive phytochemicals. EXPERT OPINION Some epigenetic-targeting drugs have received FDA approval and many others are undergoing different phases of clinical trials for cancer therapy. In addition to the synthetic compounds, several bioactive phytochemicals and dietary interventions, such as caloric restriction, have been shown to possess epigenetic modulatory activities in multiple cancers. These epigenetic modulators have been shown to delay aging and minimize the risk of cancer both in preclinical as well as clinical models. Therefore, knowledge of bioactive phytochemicals along with dietary interventions can be utilized for cancer prevention and therapy both alone and with existing drugs to achieve optimum efficacy.
Collapse
Affiliation(s)
- Sajid Khan
- a Division of Endocrinology , CSIR-Central Drug Research Institute , Lucknow , India
| | - Samriddhi Shukla
- a Division of Endocrinology , CSIR-Central Drug Research Institute , Lucknow , India
| | - Sonam Sinha
- a Division of Endocrinology , CSIR-Central Drug Research Institute , Lucknow , India
| | - Syed Musthapa Meeran
- a Division of Endocrinology , CSIR-Central Drug Research Institute , Lucknow , India
| |
Collapse
|
7
|
Ziyatdinova GK, Budnikov HC. Natural phenolic antioxidants in bioanalytical chemistry: state of the art and prospects of development. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4436] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Kelsey L, Katoch P, Ray A, Mitra S, Chakraborty S, Lin MF, Mehta PP. Vitamin D3 regulates the formation and degradation of gap junctions in androgen-responsive human prostate cancer cells. PLoS One 2014; 9:e106437. [PMID: 25188420 PMCID: PMC4154685 DOI: 10.1371/journal.pone.0106437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 08/06/2014] [Indexed: 11/19/2022] Open
Abstract
1α-25(OH)2 vitamin D3 (1-25D), an active hormonal form of Vitamin D3, is a well-known chemopreventive and pro-differentiating agent. It has been shown to inhibit the growth of several prostate cancer cell lines. Gap junctions, formed of proteins called connexins (Cx), are ensembles of cell-cell channels, which permit the exchange of small growth regulatory molecules between adjoining cells. Cell-cell communication mediated by gap junctional channels is an important homeostatic control mechanism for regulating cell growth and differentiation. We have investigated the effect of 1-25D on the formation and degradation of gap junctions in an androgen-responsive prostate cancer cell line, LNCaP, which expresses retrovirally-introduced Cx32. Connexin32 is expressed by the luminal and well-differentiated cells of normal prostate and prostate tumors. Our results document that 1-25D enhances the expression of Cx32 and its subsequent assembly into gap junctions. Our results further show that 1-25D prevents androgen-regulated degradation of Cx32, post-translationally, independent of androgen receptor (AR)-mediated signaling. Finally, our findings document that formation of gap junctions sensitizes Cx32-expressing LNCaP cells to the growth inhibitory effects of 1-25D and alters their morphology. These findings suggest that the growth-inhibitory effects of 1-25D in LNCaP cells may be related to its ability to modulate the assembly of Cx32 into gap junctions.
Collapse
Affiliation(s)
- Linda Kelsey
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Parul Katoch
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Anuttoma Ray
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shalini Mitra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Souvik Chakraborty
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Parmender P. Mehta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
9
|
Bagchi D, Swaroop A, Preuss HG, Bagchi M. Free radical scavenging, antioxidant and cancer chemoprevention by grape seed proanthocyanidin: an overview. Mutat Res 2014; 768:69-73. [PMID: 24751946 DOI: 10.1016/j.mrfmmm.2014.04.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 11/18/2022]
Abstract
A large number of investigations have demonstrated a broad spectrum of pharmacological and therapeutic benefits of grape seed proanthocyanidins (GSP) against oxidative stress and degenerative diseases including cardiovascular dysfunctions, acute and chronic stress, gastrointestinal distress, neurological disorders, pancreatitis, various stages of neoplastic processes and carcinogenesis including detoxification of carcinogenic metabolites. GSP exhibited potent free radical scavenging abilities in both in vitro and in vivo models. GSP exerted significant in vivo protection against structurally diverse drug and chemical-induced hepatotoxicity, cardiotoxicity, neurotoxicity, nephrotoxicity and spleentoxicity. GSP also protected against idarubicin and 4-hydroxyperoxy-cyclophosphamide-induced cytotoxicity toward human normal liver cells. GSP exhibited selective cytotoxicity toward selected human cancer cells, while enhancing the growth and viability of normal cells. GSP exhibited potent modulatory effects of pro-apoptotic and apoptotic regulatory bcl-XL, p53, c-myc, c-JUN, JNK-1 and CD36 genes. Long-term exposure to GSP may serve as a novel chemoprotectant against three stages of DMN-induced liver carcinogenesis and tumorigenesis including initiation, promotion and progression. GSP may selectively protect against oxidative stress, genomic integrity and cell death patterns in vivo. These results demonstrate that GSP may serve as a novel therapeutic intervention against carcinogenesis.
Collapse
Affiliation(s)
- Debasis Bagchi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA; Research & Development Division, Cepham Inc., Piscataway, NJ, USA.
| | - Anand Swaroop
- Research & Development Division, Cepham Inc., Piscataway, NJ, USA
| | - Harry G Preuss
- Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Manashi Bagchi
- Research & Development Division, Cepham Inc., Piscataway, NJ, USA
| |
Collapse
|
10
|
Kelsey L, Katoch P, Johnson KE, Batra SK, Mehta PP. Retinoids regulate the formation and degradation of gap junctions in androgen-responsive human prostate cancer cells. PLoS One 2012; 7:e32846. [PMID: 22514600 PMCID: PMC3326013 DOI: 10.1371/journal.pone.0032846] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/31/2012] [Indexed: 12/13/2022] Open
Abstract
The retinoids, the natural or synthetic derivatives of Vitamin A (retinol), are essential for the normal development of prostate and have been shown to modulate prostate cancer progression in vivo as well as to modulate growth of several prostate cancer cell lines. 9-cis-retinoic acid and all-trans-retinoic acid are the two most important metabolites of retinol. Gap junctions, formed of proteins called connexins, are ensembles of intercellular channels that permit the exchange of small growth regulatory molecules between adjoining cells. Gap junctional communication is instrumental in the control of cell growth. We examined the effect of 9-cis-retinoic acid and all-trans retinoic acid on the formation and degradation of gap junctions as well as on junctional communication in an androgen-responsive prostate cancer cell line, LNCaP, which expressed retrovirally introduced connexin32, a connexin expressed by the luminal cells and well-differentiated cells of prostate tumors. Our results showed that 9-cis-retinoic acid and all-trans retinoic acid enhanced the assembly of connexin32 into gap junctions. Our results further showed that 9-cis-retinoic acid and all-trans-retinoic acid prevented androgen-regulated degradation of gap junctions, post-translationally, independent of androgen receptor mediated signaling. Finally, our findings showed that formation of gap junctions sensitized connexin32-expressing LNCaP cells to the growth modifying effects of 9-cis-retinoic acid, all-trans-retinoic acid and androgens. Thus, the effects of retinoids and androgens on growth and the formation and degradation of gap junctions and their function might be related to their ability to modulate prostate growth and cancer.
Collapse
Affiliation(s)
| | | | | | | | - Parmender P. Mehta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
11
|
Abstract
The population-based association between low vitamin D status and increased cancer risk can be inconsistent, but it is now generally accepted. These relationships link low serum 25OHD (25-hydroxyvitamin D) levels to cancer, whereas cell-based studies show that the metabolite 1,25(OH)2D (1,25-dihydroxyvitamin D) is a biologically active metabolite that works through vitamin D receptor to regulate gene transcription. In the present review we discuss the literature relevant to the molecular events that may account for the beneficial impact of vitamin D on cancer prevention or treatment. These data show that although vitamin D-induced growth arrest and apoptosis of tumour cells or their non-neoplastic progenitors are plausible mechanisms, other chemoprotective mechanisms are also worthy of consideration. These alternative mechanisms include enhancing DNA repair, antioxidant protection and immunomodulation. In addition, other cell targets, such as the stromal cells, endothelial cells and cells of the immune system, may be regulated by 1,25(OH)2D and contribute to vitamin D-mediated cancer prevention.
Collapse
|
12
|
Trosko JE. Pre-Natal Epigenetic Influences on Acute and Chronic Diseases Later in Life, such as Cancer: Global Health Crises Resulting from a Collision of Biological and Cultural Evolution. Prev Nutr Food Sci 2011. [DOI: 10.3746/jfn.2011.16.4.394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
13
|
Acrylamide up-regulates cyclooxygenase-2 expression through the MEK/ERK signaling pathway in mouse epidermal cells. Food Chem Toxicol 2011; 49:1249-54. [DOI: 10.1016/j.fct.2011.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/24/2011] [Accepted: 03/02/2011] [Indexed: 11/17/2022]
|
14
|
Kiss I, Tibold A, Halmosi R, Bartha É, Koltai K, Orsós Z, Bujdosó L, Ember I. Enhancement of Organ Regeneration in Animal Models by a Stem Cell-Stimulating Plant Mixture. J Med Food 2010; 13:599-604. [DOI: 10.1089/jmf.2009.0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- István Kiss
- Institute of Preventive Medicine, Pécs University of Sciences, Pécs; Hungary
| | - Antal Tibold
- Institute of Preventive Medicine, Pécs University of Sciences, Pécs; Hungary
| | - Róbert Halmosi
- 1st Department of Internal Medicine, Faculty of Medicine, Pécs University of Sciences, Pécs; Hungary
| | - Éva Bartha
- 1st Department of Internal Medicine, Faculty of Medicine, Pécs University of Sciences, Pécs; Hungary
| | - Katalin Koltai
- 1st Department of Internal Medicine, Faculty of Medicine, Pécs University of Sciences, Pécs; Hungary
| | - Zsuzsanna Orsós
- Institute of Preventive Medicine, Pécs University of Sciences, Pécs; Hungary
| | - László Bujdosó
- Veszprém County Institute, Public Health and Health Officer's National Service, Veszprém, Hungary
| | - István Ember
- Institute of Preventive Medicine, Pécs University of Sciences, Pécs; Hungary
| |
Collapse
|
15
|
Silva-Oliveira EM, Fernandes PA, Moraes-Santos T. Effect of Coffee on Chemical Hepatocarcinogenesis in Rats. Nutr Cancer 2010; 62:336-42. [DOI: 10.1080/01635580903407205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Chemical Carcinogenesis and Mutagenesis. Clin Toxicol (Phila) 2010. [DOI: 10.3109/9781420092264-32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Abstract
AFM (atomic force microscopy) analysis, both of fixed cells, and live cells in physiological environments, is set to offer a step change in the research of cellular function. With the ability to map cell topography and morphology, provide structural details of surface proteins and their expression patterns and to detect pico-Newton force interactions, AFM represents an exciting addition to the arsenal of the cell biologist. With the explosion of new applications, and the advent of combined instrumentation such as AFM-confocal systems, the biological application of AFM has come of age. The use of AFM in the area of biomedical research has been proposed for some time, and is one where a significant impact could be made. Fixed cell analysis provides qualitative and quantitative subcellular and surface data capable of revealing new biomarkers in medical pathologies. Image height and contrast, surface roughness, fractal, volume and force analysis provide a platform for the multiparameter analysis of cell and protein functions. Here, we review the current status of AFM in the field and discuss the important contribution AFM is poised to make in the understanding of biological systems.
Collapse
|
18
|
Bonfili L, Cecarini V, Amici M, Cuccioloni M, Angeletti M, Keller JN, Eleuteri AM. Natural polyphenols as proteasome modulators and their role as anti-cancer compounds. FEBS J 2008; 275:5512-26. [DOI: 10.1111/j.1742-4658.2008.06696.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Tarahovsky YS. Plant polyphenols in cell-cell interaction and communication. PLANT SIGNALING & BEHAVIOR 2008; 3:609-611. [PMID: 19704814 PMCID: PMC2634513 DOI: 10.4161/psb.3.8.6359] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 06/02/2008] [Indexed: 05/28/2023]
Abstract
Plant polyphenols including flavonoids and tannins are important constituent of our everyday diet and medical herbals. It is broadly accepted that polyphenols may protect us from toxins, carcinogens and pollutants though the mechanisms of the polyphenols action is still not clear. Here we discuss the ability of polyphenols and especially gallate rich compounds like tannins and catechin gallates to interact with proteins and lipids, establish binding between adjacent bilayer surfaces and initiate membrane aggregation. This phenomena discovered in model experiments could also influence lateral segregation and compartmentalization of cell surface compounds and assist the cell-cell interaction and signal transduction. The involvement of plant polyphenols in communication between cells could be an important factor responsible for anticarcinogenic, vascular and cardioprotective activity of these compounds and speculated to be implicated in the evolution of human brain and intelligence.
Collapse
Affiliation(s)
- Yury S Tarahovsky
- Institute of Theoretical and Experimental Biophysics; Russian Academy of Sciences; Pushchino, Moscow Region Russian Federation
| |
Collapse
|
20
|
Modulatory effects of polyphenols on apoptosis induction: relevance for cancer prevention. Int J Mol Sci 2008; 9:213-228. [PMID: 19325744 PMCID: PMC2635670 DOI: 10.3390/ijms9030213] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 11/30/2007] [Accepted: 01/23/2008] [Indexed: 12/17/2022] Open
Abstract
Polyphenols, occurring in fruit and vegetables, wine, tea, extra virgin olive oil, chocolate and other cocoa products, have been demonstrated to have clear antioxidant properties in vitro, and many of their biological actions have been attributed to their intrinsic reducing capabilities. However, it has become clear that, in complex biological systems, polyphenols exhibit several additional properties which are yet poorly understood. Apoptosis is a genetically controlled and evolutionarily conserved form of cell death of critical importance for the normal embryonic development and for the maintenance of tissue homeostasis in the adult organism. The malfunction of the death machinery may play a primary role in various pathological processes, since too little or too much apoptosis can lead to proliferative or degenerative diseases, respectively. Cancer cells are characterized by a deregulated proliferation, and/or an inability to undergo programmed cell death. A large body of evidence indicates that polyphenols can exert chemopreventive effects towards different organ specific cancers, affecting the overall process of carcinogenesis by several mechanisms: inhibition of DNA synthesis, modulation of ROS production, regulation of cell cycle arrest, modulation of survival/proliferation pathways. In addition, polyphenols can directly influence different points of the apoptotic process, and/or the expression of regulatory proteins. Although the bulk of data has been obtained in in vitro systems, a number of clinical studies suggesting a preventive and therapeutic effectiveness of polyphenols in vivo is available. However, a deeper knowledge of the underlying mechanisms responsible for the modulation of apoptosis by polyphenols, and their real effectiveness, is necessary in order to propose them as potential chemopreventive and chemotherapeutic candidates for cancer treatment.
Collapse
|
21
|
Abstract
The purpose of this article is to give a general overview of the effects of nutrition on the development of cancer as well as part of a therapeutic approach. There is much evidence that diet and lifestyle can alter the risk of cancer development as is the case for many other chronic diseases. This may be through a direct action on the immune system, either by enhancing or suppressing it, as well as on the development of the tumour itself, by modulating gene expression or by antioxidant activity. Protective effects can be achieved by adequate intakes of vitamins A and C, beta-carotene, selenium and n-3 fatty acids among others, while negative effects are found mainly with high intakes of n-6 and saturated fatty acids. Weight gain, obesity and lack of regular physical activity have also been associated with an increased risk of cancer. The protective effects are best observed when adequate diet and lifestyle are present together. With respect to the therapeutic role of nutrition in cancer, it has been observed that the use of pre- or post-operative enteral or parenteral nutrition may improve patients' survival rates and quality of life; however, more research is needed in this particular area. Breast, colon, rectum, prostate, stomach and lung are the types of cancer most commonly associated with diet or dietary components.
Collapse
|
22
|
Huber WW, Parzefall W. Thiols and the chemoprevention of cancer. Curr Opin Pharmacol 2007; 7:404-9. [PMID: 17644484 DOI: 10.1016/j.coph.2007.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 05/03/2007] [Indexed: 12/13/2022]
Abstract
Thiols such as glutathione interfere with the complex carcinogenic process. Under stress conditions, they scavenge harmful molecules: Glutathione conjugation of electrophilic carcinogens may prevent tumor initiation, and reduced thiols may defend against oxidative stress. Thus, associated chemopreventive strategies involve enhancement of antioxidant or conjugating capacity by increasing the levels of, particularly, glutathione through precursor application or synthesis stimulation and by inducing the corresponding enzymes. The antioxidant potential of thiols is, however, a part of a more general capacity to regulate redox status even in the absence of unequivocal stress conditions. Redox status controls the activities of various cellular signalling proteins through oxidation or reduction of particular sensor structures that are also mostly thiols. The development of feasible chemotherapeutic strategies on the basis of this complex system of redox-sensitive messenger proteins is a goal in ongoing and future research.
Collapse
Affiliation(s)
- Wolfgang W Huber
- Research Unit of Toxicology and Prevention, Division Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, A-1090 Vienna, Austria.
| | | |
Collapse
|
23
|
Jensen GS, Hart AN, Schauss AG. An antiinflammatory immunogen from yeast culture induces activation and alters chemokine receptor expression on human natural killer cells and B lymphocytes in vitro. Nutr Res 2007; 27:327-335. [DOI: 10.1016/j.nutres.2007.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 04/11/2007] [Accepted: 04/13/2007] [Indexed: 01/06/2023]
|
24
|
Krick A, Kehraus S, Gerhäuser C, Klimo K, Nieger M, Maier A, Fiebig HH, Atodiresei I, Raabe G, Fleischhauer J, König GM. Potential cancer chemopreventive in vitro activities of monomeric xanthone derivatives from the marine algicolous fungus Monodictys putredinis. JOURNAL OF NATURAL PRODUCTS 2007; 70:353-60. [PMID: 17291041 DOI: 10.1021/np060505o] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Investigation of the fungal strain Monodictys putredinis isolated from the inner tissue of a marine green alga led to the isolation of four new monomeric xanthones and a benzophenone. All structures were elucidated by extensive spectroscopic measurements. The relative configuration of compound 1 was determined by X-ray crystal structure analysis, while for 2 and 3 configurations were confirmed by NOE experiments. Absolute configurations for compounds 1-3 were deduced by comparing experimental circular dichroism spectroscopic data with those calculated employing quantum-chemical time-dependent density functional theory (TDDFT). The compounds were examined for their cancer chemopreventive potential. Xanthone 2 was shown to inhibit cytochrome P450 1A activity with an IC50 value of 3.0 microM. Compounds 2 and 3 displayed moderate activity as inducers of NAD(P)H:quinone reductase (QR) in cultured mouse Hepa 1c1c7 cells, with CD values (concentration required to double the specific activity of QR) of 12.0 and 12.8 microM, respectively. Compound 3 showed weak inhibition of aromatase activity.
Collapse
Affiliation(s)
- Anja Krick
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|