1
|
Harkos C, Hadjigeorgiou AG, Voutouri C, Kumar AS, Stylianopoulos T, Jain RK. Using mathematical modelling and AI to improve delivery and efficacy of therapies in cancer. Nat Rev Cancer 2025; 25:324-340. [PMID: 39972158 DOI: 10.1038/s41568-025-00796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 02/21/2025]
Abstract
Mathematical modelling has proven to be a valuable tool in predicting the delivery and efficacy of molecular, antibody-based, nano and cellular therapy in solid tumours. Mathematical models based on our understanding of the biological processes at subcellular, cellular and tissue level are known as mechanistic models that, in turn, are divided into continuous and discrete models. Continuous models are further divided into lumped parameter models - for describing the temporal distribution of medicine in tumours and normal organs - and distributed parameter models - for studying the spatiotemporal distribution of therapy in tumours. Discrete models capture interactions at the cellular and subcellular levels. Collectively, these models are useful for optimizing the delivery and efficacy of molecular, nanoscale and cellular therapy in tumours by incorporating the biological characteristics of tumours, the physicochemical properties of drugs, the interactions among drugs, cancer cells and various components of the tumour microenvironment, and for enabling patient-specific predictions when combined with medical imaging. Artificial intelligence-based methods, such as machine learning, have ushered in a new era in oncology. These data-driven approaches complement mechanistic models and have immense potential for improving cancer detection, treatment and drug discovery. Here we review these diverse approaches and suggest ways to combine mechanistic and artificial intelligence-based models to further improve patient treatment outcomes.
Collapse
Affiliation(s)
- Constantinos Harkos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Andreas G Hadjigeorgiou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Ashwin S Kumar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Sokolov V, Peskov K, Helmlinger G. A Framework for Quantitative Systems Pharmacology Model Execution. Handb Exp Pharmacol 2025. [PMID: 40111538 DOI: 10.1007/164_2024_738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A mathematical model can be defined as a theoretical approximation of an observed pattern. The specific form of the model and the associated mathematical methods are typically dictated by the question(s) to be addressed by the model and the underlying data. In the context of research and development of new medicines, these questions often focus on the dose-exposure-response relationship.The general workflow for model development and application can be delineated in three major elements: defining the model, qualifying the model, and performing simulations. These elements may vary significantly depending on modeling objectives. Quantitative systems pharmacology (QSP) models address the formidable challenge of quantitatively and mechanistically characterizing human and animal biology, pathophysiology, and therapeutic intervention.QSP model development, by necessity, relies heavily on preexisting knowledge, requires a comprehensive understanding of current physiological concepts, and often makes use of heterogeneous and aggregated datasets from multiple sources. This reliance on diverse datasets presents an upfront challenge: the determination of an optimal model structure while balancing model complexity and uncertainty. Additionally, QSP model calibration is arduous due to data scarcity (particularly at the human subject level), which necessitates the use of a variety of parameter estimation approaches and sensitivity analyses, earlier in the modeling workflow as compared to, for example, population modeling. Finally, the interpretation of model-based predictions must be thoughtfully aligned with the data and the mathematical methods applied during model development.The purpose of this chapter is to provide readers with a high-level yet comprehensive overview of a QSP modeling workflow, with an emphasis on the various challenges encountered in this process. The workflow is centered around the construction of ordinary differential equation models and may be extended beyond this framework. It includes the fundamentals of systematic literature reviews, the selection of appropriate structural model equations, the analysis of system behavior, model qualification, and the application of various types of model-based simulations. The chapter concludes with details on existing software options suitable for implementing the described methodologies.This workflow may serve as a valuable resource to both newcomers and experienced QSP modelers, offering an introduction to the field as well as operating procedures and references for routine analyses.
Collapse
Affiliation(s)
- Victor Sokolov
- M&S Decisions FZ LLC, Dubai, UAE.
- Marchuk Institute of Numerical Mathematics of Russian Academy of Sciences, Moscow, Russia.
| | - Kirill Peskov
- M&S Decisions FZ LLC, Dubai, UAE
- Marchuk Institute of Numerical Mathematics of Russian Academy of Sciences, Moscow, Russia
- Research Center of Model-Informed Drug Development, Sechenov First Moscow State Medical University, Moscow, Russia
| | | |
Collapse
|
3
|
Wang H, Arulraj T, Ippolito A, Popel AS. Quantitative Systems Pharmacology Modeling in Immuno-Oncology: Hypothesis Testing, Dose Optimization, and Efficacy Prediction. Handb Exp Pharmacol 2024. [PMID: 39707022 DOI: 10.1007/164_2024_735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Despite an increasing number of clinical trials, cancer is one of the leading causes of death worldwide in the past decade. Among all complex diseases, clinical trials in oncology have among the lowest success rates, in part due to the high intra- and inter-tumoral heterogeneity. There are more than a thousand cancer drugs and treatment combinations being investigated in ongoing clinical trials for various cancer subtypes, germline mutations, metastasis, etc. Particularly, treatments relying on the (re)activation of the immune system have become increasingly present in the clinical trial pipeline. However, the complexities of the immune response and cancer-immune interactions pose a challenge to the development of these therapies. Quantitative systems pharmacology (QSP), as a computational approach to predict tumor response to treatments of interest, can be used to conduct in silico clinical trials with virtual patients (and emergent use of digital twins) in place of real patients, thus lowering the time and cost of clinical trials. In line with improved mechanistic understanding of the human immune system and promising results from recent cancer immunotherapy, QSP models can play critical roles in model-informed drug development in immuno-oncology. In this chapter, we discuss how QSP models were designed to serve different study objectives, including hypothesis testing, dose optimization, and efficacy prediction, via case studies in immuno-oncology.
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Theinmozhi Arulraj
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alberto Ippolito
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Hirway SU, Nairon KG, Skardal A, Weinberg SH. A Multicellular Mechanochemical Model to Investigate Tumor Microenvironment Remodeling and Pre-Metastatic Niche Formation. Cell Mol Bioeng 2024; 17:573-596. [PMID: 39926379 PMCID: PMC11799507 DOI: 10.1007/s12195-024-00831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/27/2024] [Indexed: 02/11/2025] Open
Abstract
Introduction Colorectal cancer (CRC) is a major cause of cancer related deaths in the United States, with CRC metastasis to the liver being a common occurrence. The development of an optimal metastatic environment is essential process prior to tumor metastasis. This process, called pre-metastatic niche (PMN) formation, involves activation of key resident liver cells, including fibroblast-like stellate cells and macrophages such as Kupffer cells. Tumor-mediated factors introduced to this environment transform resident cells that secrete additional growth factors and remodel the extracellular matrix (ECM), which is thought to promote tumor colonization and metastasis in the secondary environment. Methods To investigate the underlying mechanisms of these dynamics, we developed a multicellular computational model to characterize the spatiotemporal dynamics of the PMN formation in tissue. This modeling framework integrates intracellular and extracellular signaling, and traction and junctional forces into a Cellular Potts model, and represents multiple cell types with varying levels of cellular activation. We perform numerical experiments to investigate the role of key factors in PMN formation and tumor invasiveness, including growth factor concentration, timing of tumor arrival, relative composition of resident cells, and the size of invading tumor cluster. Results These parameter studies identified growth factor availability and ECM concentration in the environment as two of the key determinants of tumor invasiveness. We further predict that both the ECM concentration potential and growth factor sensitivity of the stellate cells are key drivers of the PMN formation and associated ECM concentration. Conclusions Overall, this modeling framework represents a significant step towards simulating cancer metastasis and investigating the role of key factors on PMN formation. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00831-0.
Collapse
Affiliation(s)
- Shreyas U. Hirway
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH USA
| | - Kylie G. Nairon
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH USA
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH USA
| | - Seth H. Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH USA
| |
Collapse
|
5
|
Sancho-Araiz A, Parra-Guillen ZP, Troconiz IF, Freshwater T. Disentangling Anti-Tumor Response of Immunotherapy Combinations: A Physiologically Based Framework for V937 Oncolytic Virus and Pembrolizumab. Clin Pharmacol Ther 2024; 116:1304-1313. [PMID: 39037559 DOI: 10.1002/cpt.3379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
Immuno-oncology (IO) is a growing strategy in cancer treatment. Oncolytic viruses (OVs) can selectively infect cancer cells and lead to direct and/or immune-dependent tumor lysis. This approach represents an opportunity to potentiate the efficacy of immune checkpoint inhibitors (ICI), such as pembrolizumab. Currently, there is a lack of comprehensive quantitative models for the aforementioned scenarios. In this work, we developed a mechanistic framework describing viral kinetics, viral dynamics, and tumor response after intratumoral (i.t.) or intravenous (i.v.) administration of V937 alone or in combination with pembrolizumab. The model accounts for tumor shrinkage, in both injected and non-injected lesions, induced by: viral-infected tumor cell death and activated CD8 cells. OV-infected tumor cells enhanced the expansion of CD8 cells, whereas pembrolizumab inhibits their exhaustion by competing with PD-L1 in their binding to PD-1. Circulating viral levels and treatment effects on tumor volume were adequately characterized in all the different scenarios. This mechanistic-based model has been developed by combining top-down and bottom-up approaches and provides individual estimates of viral and ICI responses. The robustness of the model is reflected by the description of the tumor size time profiles in a variety of clinical scenarios. Additionally, this platform allows us to investigate not only the contribution of processes related to the viral kinetics and dynamics on tumor response, but also the influence of its interaction with an ICI. Additionally, the model can be used to explore different scenarios aiming to optimize treatment combinations and support clinical development.
Collapse
Affiliation(s)
- Aymara Sancho-Araiz
- Department of Pharmaceutical Science, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Zinnia P Parra-Guillen
- Department of Pharmaceutical Science, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Iñaki F Troconiz
- Department of Pharmaceutical Science, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Institute of Data Science and Artificial Intelligence, DATAI, University of Navarra, Pamplona, Spain
| | - Tomoko Freshwater
- Oncology Early Development, Clinical Research, Merck & Co., Inc., Rahway, New Jersey, USA
| |
Collapse
|
6
|
Zhang S, Deshpande A, Verma BK, Wang H, Mi H, Yuan L, Ho WJ, Jaffee EM, Zhu Q, Anders RA, Yarchoan M, Kagohara LT, Fertig EJ, Popel AS. Integration of Clinical Trial Spatial Multiomics Analysis and Virtual Clinical Trials Enables Immunotherapy Response Prediction and Biomarker Discovery. Cancer Res 2024; 84:2734-2748. [PMID: 38861365 PMCID: PMC12010747 DOI: 10.1158/0008-5472.can-24-0943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Due to the lack of treatment options, there remains a need to advance new therapeutics in hepatocellular carcinoma (HCC). The traditional approach moves from initial molecular discovery through animal models to human trials to advance novel systemic therapies that improve treatment outcomes for patients with cancer. Computational methods that simulate tumors mathematically to describe cellular and molecular interactions are emerging as promising tools to simulate the impact of therapy entirely in silico, potentially greatly accelerating delivery of new therapeutics to patients. To facilitate the design of dosing regimens and identification of potential biomarkers for immunotherapy, we developed a new computational model to track tumor progression at the organ scale while capturing the spatial heterogeneity of the tumor in HCC. This computational model of spatial quantitative systems pharmacology was designed to simulate the effects of combination immunotherapy. The model was initiated using literature-derived parameter values and fitted to the specifics of HCC. Model validation was done through comparison with spatial multiomics data from a neoadjuvant HCC clinical trial combining anti-PD1 immunotherapy and a multitargeted tyrosine kinase inhibitor cabozantinib. Validation using spatial proteomics data from imaging mass cytometry demonstrated that closer proximity between CD8 T cells and macrophages correlated with nonresponse. We also compared the model output with Visium spatial transcriptomics profiling of samples from posttreatment tumor resections in the clinical trial and from another independent study of anti-PD1 monotherapy. Spatial transcriptomics data confirmed simulation results, suggesting the importance of spatial patterns of tumor vasculature and TGFβ in tumor and immune cell interactions. Our findings demonstrate that incorporating mathematical modeling and computer simulations with high-throughput spatial multiomics data provides a novel approach for patient outcome prediction and biomarker discovery. Significance: Incorporating mathematical modeling and computer simulations with high-throughput spatial multiomics data provides an effective approach for patient outcome prediction and biomarker discovery.
Collapse
Affiliation(s)
- Shuming Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atul Deshpande
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Babita K. Verma
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haoyang Mi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Long Yuan
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Won Jin Ho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth M. Jaffee
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Qingfeng Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert A. Anders
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark Yarchoan
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Luciane T. Kagohara
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Elana J. Fertig
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Jointly supervised research
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Jointly supervised research
| |
Collapse
|
7
|
Schirru M, Charef H, Ismaili KE, Fenneteau F, Zugaj D, Tremblay PO, Nekka F. Predicting efficacy assessment of combined treatment of radiotherapy and nivolumab for NSCLC patients through virtual clinical trials using QSP modeling. J Pharmacokinet Pharmacodyn 2024; 51:319-333. [PMID: 38493439 DOI: 10.1007/s10928-024-09903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
Non-Small Cell Lung Cancer (NSCLC) remains one of the main causes of cancer death worldwide. In the urge of finding an effective approach to treat cancer, enormous therapeutic targets and treatment combinations are explored in clinical studies, which are not only costly, suffer from a shortage of participants, but also unable to explore all prospective therapeutic solutions. Within the evolving therapeutic landscape, the combined use of radiotherapy (RT) and checkpoint inhibitors (ICIs) emerged as a promising avenue. Exploiting the power of quantitative system pharmacology (QSP), we undertook a study to anticipate the therapeutic outcomes of these interventions, aiming to address the limitations of clinical trials. After enhancing a pre-existing QSP platform and accurately replicating clinical data outcomes, we conducted an in-depth study, examining different treatment protocols with nivolumab and RT, both as monotherapy and in combination, by assessing their efficacy through clinical endpoints, namely time to progression (TTP) and duration of response (DOR). As result, the synergy of combined protocols showcased enhanced TTP and extended DOR, suggesting dual advantages of extended response and slowed disease progression with certain combined regimens. Through the lens of QSP modeling, our findings highlight the potential to fine-tune combination therapies for NSCLC, thereby providing pivotal insights for tailoring patient-centric therapeutic interventions.
Collapse
Affiliation(s)
- Miriam Schirru
- Laboratoire de recherche en pharmacométrie, Faculté de pharmacie, Université de Montréal, Montreal, Canada.
| | - Hamza Charef
- Laboratoire de recherche en pharmacométrie, Faculté de pharmacie, Université de Montréal, Montreal, Canada
| | - Khalil-Elmehdi Ismaili
- Laboratoire de recherche en pharmacométrie, Faculté de pharmacie, Université de Montréal, Montreal, Canada
| | - Frédérique Fenneteau
- Laboratoire de recherche en pharmacométrie, Faculté de pharmacie, Université de Montréal, Montreal, Canada
| | - Didier Zugaj
- Clinical Pharmacology, Syneos Health, Quebec, Quebec G1P 0A2, Canada
| | | | - Fahima Nekka
- Laboratoire de recherche en pharmacométrie, Faculté de pharmacie, Université de Montréal, Montreal, Canada
- Centre de recherches mathématiques (CRM), Université de Montréal, Montreal, Canada
- Centre for Applied Mathematics in Bioscience and Medicine (CAMBAM), McGill University, Montreal, Canada
| |
Collapse
|
8
|
Wang H, Arulraj T, Ippolito A, Popel AS. From virtual patients to digital twins in immuno-oncology: lessons learned from mechanistic quantitative systems pharmacology modeling. NPJ Digit Med 2024; 7:189. [PMID: 39014005 PMCID: PMC11252162 DOI: 10.1038/s41746-024-01188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
Virtual patients and digital patients/twins are two similar concepts gaining increasing attention in health care with goals to accelerate drug development and improve patients' survival, but with their own limitations. Although methods have been proposed to generate virtual patient populations using mechanistic models, there are limited number of applications in immuno-oncology research. Furthermore, due to the stricter requirements of digital twins, they are often generated in a study-specific manner with models customized to particular clinical settings (e.g., treatment, cancer, and data types). Here, we discuss the challenges for virtual patient generation in immuno-oncology with our most recent experiences, initiatives to develop digital twins, and how research on these two concepts can inform each other.
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Theinmozhi Arulraj
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alberto Ippolito
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Medicine and Oncology, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Oishi M, Sayama H, Toshimoto K, Nakayama T, Nagasaka Y. Practical QSP application from the preclinical phase to enhance the probability of clinical success: Insights from case studies in oncology. Drug Metab Pharmacokinet 2024; 56:101020. [PMID: 38797089 DOI: 10.1016/j.dmpk.2024.101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Quantitative Systems Pharmacology (QSP) has emerged as a promising modeling and simulation (M&S) approach in drug development, with potential to improve clinical success rates. While conventional M&S has significantly contributed to quantitative understanding in late preclinical and clinical phases, it falls short in explaining unexpected phenomena and testing hypotheses in the early research phase. QSP presents a solution to these limitations. To harness the full potential of QSP in early preclinical stages, preclinical modelers who are familiar with conventional M&S need to update their understanding of the differences between conventional M&S and QSP. This review focuses on QSP applications during the preclinical stage, citing case examples and sharing our experiences in oncology. We emphasize the critical role of QSP in increasing the probability of success for clinical proof of concept (PoC) when applied from the early preclinical stage. Enhancing the quality of both hypotheses and QSP models from early preclinical stage is of critical importance. Once a QSP model achieves credibility, it facilitates predictions of clinical responses and potential biomarkers. We propose that sequential QSP applications from preclinical stages can improve success rates of clinical PoC, and emphasize the importance of refining both hypotheses and QSP models throughout the process.
Collapse
Affiliation(s)
- Masayo Oishi
- Systems Pharmacology, Non-Clinical Biomedical Science, Applied Research & Operations, Astellas Pharma Inc., Tsukuba, Ibaraki, 305-8585, Japan.
| | - Hiroyuki Sayama
- Systems Pharmacology, Non-Clinical Biomedical Science, Applied Research & Operations, Astellas Pharma Inc., Tsukuba, Ibaraki, 305-8585, Japan
| | - Kota Toshimoto
- Systems Pharmacology, Non-Clinical Biomedical Science, Applied Research & Operations, Astellas Pharma Inc., Tsukuba, Ibaraki, 305-8585, Japan
| | - Takeshi Nakayama
- Systems Pharmacology, Non-Clinical Biomedical Science, Applied Research & Operations, Astellas Pharma Inc., Tsukuba, Ibaraki, 305-8585, Japan
| | - Yasuhisa Nagasaka
- Non-Clinical Biomedical Science, Applied Research & Operations, Astellas Pharma Inc., Tsukuba, Ibaraki, 305-8585, Japan
| |
Collapse
|
10
|
Pawłowski T, Bokota G, Lazarou G, Kierzek AM, Sroka J. Emulation of Quantitative Systems Pharmacology models to accelerate virtual population inference in immuno-oncology. Methods 2024; 223:118-126. [PMID: 38246229 DOI: 10.1016/j.ymeth.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/12/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Quantitative Systems Pharmacology (QSP) models are increasingly being applied for target discovery and dose selection in immuno-oncology (IO). Typical application involves virtual trial, a simulation of a virtual population of hundreds of model instances with model inputs reflecting individual variability. While the structure of the model and initial parameterisation are based on literature describing the underlying biology, calibration of the virtual population by existing clinical data is frequently required to create tumour and patient population specific model instances. Since comparison of a virtual trial with clinical output requires hundreds of large-scale, non-linear model evaluations, the inference of a virtual population is computationally expensive, frequently becoming a bottleneck. Here, we present novel approach to virtual population inference in IO using emulation of the QSP model and an objective function based on Kolmogorov-Smirnov statistics to maximise congruence of simulated and observed clinical tumour size distributions. We sample the parameter space of a QSP IO model to collect a set of tumour growth time profiles. We evaluate performance of several machine learning approaches in interpolating these time profiles and create a surrogate model, which computes tumor growth profiles faster than the original model and allows examination of tens of millions of virtual patients. We use the surrogate model to infer a virtual population maximising congruence with the waterfall plot of a pembrolizumab clinical trial. We believe that our approach is applicable not only in QSP IO, but also in other applications where virtual populations need to be inferred for computationally expensive mechanistic models.
Collapse
Affiliation(s)
| | | | | | - Andrzej M Kierzek
- Certara QSP, Certara UK Ltd, Sheffield, UK; School of Biosciences and Medicine, University of Surrey, Guildford, UK.
| | - Jacek Sroka
- Institute of Informatics, University of Warsaw, Poland.
| |
Collapse
|
11
|
Wang CY, Dai HR, Tan YP, Yang DH, Niu XM, Han L, Wang W, Ma LL, Julku A, Jiao Z. Development and Evaluation of a Quantitative Systems Pharmacology Model for Mechanism Interpretation and Efficacy Prediction of Atezolizumab in Combination with Carboplatin and Nab-Paclitaxel in Patients with Non-Small-Cell Lung Cancer. Pharmaceuticals (Basel) 2024; 17:238. [PMID: 38399453 PMCID: PMC10893226 DOI: 10.3390/ph17020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Immunotherapy has shown clinical benefit in patients with non-small-cell lung cancer (NSCLC). Due to the limited response of monotherapy, combining immune checkpoint inhibitors (ICIs) and chemotherapy is considered a treatment option for advanced NSCLC. However, the mechanism of combined therapy and the potential patient population that could benefit from combined therapy remain undetermined. Here, we developed an NSCLC model based on the published quantitative systems pharmacology (QSP)-immuno-oncology platform by making necessary adjustments. After calibration and validation, the established QSP model could adequately characterise the biological mechanisms of action of the triple combination of atezolizumab, nab-paclitaxel, and carboplatin in patients with NSCLC, and identify predictive biomarkers for precision dosing. The established model could efficiently characterise the objective response rate and duration of response of the IMpower131 trial, reproducing the efficacy of alternative dosing. Furthermore, CD8+ and CD4+ T cell densities in tumours were found to be significantly related to the response status. This significant extension of the QSP model not only broadens its applicability but also more accurately reflects real-world clinical settings. Importantly, it positions the model as a critical foundation for model-informed drug development and the customisation of treatment plans, especially in the context of combining single-agent ICIs with platinum-doublet chemotherapy.
Collapse
Affiliation(s)
- Chen-Yu Wang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (C.-Y.W.); (H.-R.D.); (Y.-P.T.); (D.-H.Y.); (L.H.)
| | - Hao-Ran Dai
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (C.-Y.W.); (H.-R.D.); (Y.-P.T.); (D.-H.Y.); (L.H.)
| | - Yu-Ping Tan
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (C.-Y.W.); (H.-R.D.); (Y.-P.T.); (D.-H.Y.); (L.H.)
| | - Di-Hong Yang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (C.-Y.W.); (H.-R.D.); (Y.-P.T.); (D.-H.Y.); (L.H.)
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xiao-Min Niu
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China;
| | - Lu Han
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (C.-Y.W.); (H.-R.D.); (Y.-P.T.); (D.-H.Y.); (L.H.)
| | - Wen Wang
- Puissan Biotech Oy, 00510 Helsinki, Finland; (W.W.); (L.-L.M.)
| | - Ling-Ling Ma
- Puissan Biotech Oy, 00510 Helsinki, Finland; (W.W.); (L.-L.M.)
| | - Aleksi Julku
- Puissan Biotech Oy, 00510 Helsinki, Finland; (W.W.); (L.-L.M.)
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (C.-Y.W.); (H.-R.D.); (Y.-P.T.); (D.-H.Y.); (L.H.)
| |
Collapse
|
12
|
Anderson HG, Takacs GP, Harris DC, Kuang Y, Harrison JK, Stepien TL. Global stability and parameter analysis reinforce therapeutic targets of PD-L1-PD-1 and MDSCs for glioblastoma. J Math Biol 2023; 88:10. [PMID: 38099947 PMCID: PMC10724342 DOI: 10.1007/s00285-023-02027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/30/2023] [Accepted: 11/05/2023] [Indexed: 12/18/2023]
Abstract
Glioblastoma (GBM) is an aggressive primary brain cancer that currently has minimally effective treatments. Like other cancers, immunosuppression by the PD-L1-PD-1 immune checkpoint complex is a prominent axis by which glioma cells evade the immune system. Myeloid-derived suppressor cells (MDSCs), which are recruited to the glioma microenviroment, also contribute to the immunosuppressed GBM microenvironment by suppressing T cell functions. In this paper, we propose a GBM-specific tumor-immune ordinary differential equations model of glioma cells, T cells, and MDSCs to provide theoretical insights into the interactions between these cells. Equilibrium and stability analysis indicates that there are unique tumorous and tumor-free equilibria which are locally stable under certain conditions. Further, the tumor-free equilibrium is globally stable when T cell activation and the tumor kill rate by T cells overcome tumor growth, T cell inhibition by PD-L1-PD-1 and MDSCs, and the T cell death rate. Bifurcation analysis suggests that a treatment plan that includes surgical resection and therapeutics targeting immune suppression caused by the PD-L1-PD1 complex and MDSCs results in the system tending to the tumor-free equilibrium. Using a set of preclinical experimental data, we implement the approximate Bayesian computation (ABC) rejection method to construct probability density distributions that estimate model parameters. These distributions inform an appropriate search curve for global sensitivity analysis using the extended fourier amplitude sensitivity test. Sensitivity results combined with the ABC method suggest that parameter interaction is occurring between the drivers of tumor burden, which are the tumor growth rate and carrying capacity as well as the tumor kill rate by T cells, and the two modeled forms of immunosuppression, PD-L1-PD-1 immune checkpoint and MDSC suppression of T cells. Thus, treatment with an immune checkpoint inhibitor in combination with a therapeutic targeting the inhibitory mechanisms of MDSCs should be explored.
Collapse
Affiliation(s)
- Hannah G Anderson
- Department of Mathematics, University of Florida, Gainesville, FL, USA
| | - Gregory P Takacs
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Duane C Harris
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | - Yang Kuang
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | - Jeffrey K Harrison
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Tracy L Stepien
- Department of Mathematics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
13
|
Nikmaneshi MR, Baish JW, Zhou H, Padera TP, Munn LL. Transport Barriers Influence the Activation of Anti-Tumor Immunity: A Systems Biology Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304076. [PMID: 37949675 PMCID: PMC10754116 DOI: 10.1002/advs.202304076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/07/2023] [Indexed: 11/12/2023]
Abstract
Effective anti-cancer immune responses require activation of one or more naïve T cells. If the correct naïve T cell encounters its cognate antigen presented by an antigen presenting cell, then the T cell can activate and proliferate. Here, mathematical modeling is used to explore the possibility that immune activation in lymph nodes is a rate-limiting step in anti-cancer immunity and can affect response rates to immune checkpoint therapy. The model provides a mechanistic framework for optimizing cancer immunotherapy and developing testable solutions to unleash anti-tumor immune responses for more patients with cancer. The results show that antigen production rate and trafficking of naïve T cells into the lymph nodes are key parameters and that treatments designed to enhance tumor antigen production can improve immune checkpoint therapies. The model underscores the potential of radiation therapy in augmenting tumor immunogenicity and neoantigen production for improved ICB therapy, while emphasizing the need for careful consideration in cases where antigen levels are already sufficient to avoid compromising the immune response.
Collapse
Affiliation(s)
- Mohammad R. Nikmaneshi
- Department of Radiation OncologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - James W. Baish
- Biomedical EngineeringBucknell UniversityLewisburgPA17837USA
| | - Hengbo Zhou
- Department of Radiation OncologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Timothy P. Padera
- Department of Radiation OncologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Lance L. Munn
- Department of Radiation OncologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| |
Collapse
|
14
|
Smieja J. Mathematical Modeling Support for Lung Cancer Therapy-A Short Review. Int J Mol Sci 2023; 24:14516. [PMID: 37833963 PMCID: PMC10572824 DOI: 10.3390/ijms241914516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023] Open
Abstract
The paper presents a review of models that can be used to describe dynamics of lung cancer growth and its response to treatment at both cell population and intracellular processes levels. To address the latter, models of signaling pathways associated with cellular responses to treatment are overviewed. First, treatment options for lung cancer are discussed, and main signaling pathways and regulatory networks are briefly reviewed. Then, approaches used to model specific therapies are discussed. Following that, models of intracellular processes that are crucial in responses to therapies are presented. The paper is concluded with a discussion of the applicability of the presented approaches in the context of lung cancer.
Collapse
Affiliation(s)
- Jaroslaw Smieja
- Department of Systems Biology and Engineering, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
| |
Collapse
|
15
|
Parra-Guillen ZP, Sancho-Araiz A, Mayawala K, Zalba S, Garrido MJ, de Alwis D, Troconiz IF, Freshwater T. Assessment of Clinical Response to V937 Oncolytic Virus After Intravenous or Intratumoral Administration Using Physiologically-Based Modeling. Clin Pharmacol Ther 2023; 114:623-632. [PMID: 37170933 DOI: 10.1002/cpt.2937] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Oncolytic viruses (OVs) represent a potential therapeutic strategy in cancer treatment. However, there is currently a lack of comprehensive quantitative models characterizing clinical OV kinetics and distribution to the tumor. In this work, we present a mechanistic modeling framework for V937 OV, after intratumoral (i.t.) or intravascular (i.v.) administration in patients with cancer. A minimal physiologically-based pharmacokinetic model was built to characterize biodistribution of OVs in humans. Viral dynamics was incorporated at the i.t. cellular level and linked to tumor response, enabling the characterization of a direct OV killing triggered by the death of infected tumor cells and an indirect killing induced by the immune response. The model provided an adequate description of changes in V937 mRNA levels and tumor size obtained from phase I/II clinical trials after V937 administration. The model showed prominent role of viral clearance from systemic circulation and infectivity in addition to known tumor aggressiveness on clinical response. After i.v. administration, i.t. exposure of V937 was predicted to be several orders of magnitude lower compared with i.t. administration. These differences could be overcome if there is high virus infectivity and/or replication. Unfortunately, the latter process could not be identified at the current clinical setting. This work provides insights on selecting optimal OV considering replication rate and infectivity.
Collapse
Affiliation(s)
- Zinnia P Parra-Guillen
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Aymara Sancho-Araiz
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Kapil Mayawala
- Quantitative Pharmacology and Pharmacometrics Immune/Oncology (QP2-I/O), Merck & Co., Inc., Rahway, New Jersey, USA
| | - Sara Zalba
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Maria J Garrido
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Dinesh de Alwis
- Quantitative Pharmacology and Pharmacometrics Immune/Oncology (QP2-I/O), Merck & Co., Inc., Rahway, New Jersey, USA
| | - Iñaki F Troconiz
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Tomoko Freshwater
- Quantitative Pharmacology and Pharmacometrics Immune/Oncology (QP2-I/O), Merck & Co., Inc., Rahway, New Jersey, USA
| |
Collapse
|
16
|
Zhang S, Deshpande A, Verma BK, Wang H, Mi H, Yuan L, Ho WJ, Jaffee EM, Zhu Q, Anders RA, Yarchoan M, Kagohara LT, Fertig EJ, Popel AS. Informing virtual clinical trials of hepatocellular carcinoma with spatial multi-omics analysis of a human neoadjuvant immunotherapy clinical trial. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553000. [PMID: 37645761 PMCID: PMC10462044 DOI: 10.1101/2023.08.11.553000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Human clinical trials are important tools to advance novel systemic therapies improve treatment outcomes for cancer patients. The few durable treatment options have led to a critical need to advance new therapeutics in hepatocellular carcinoma (HCC). Recent human clinical trials have shown that new combination immunotherapeutic regimens provide unprecedented clinical response in a subset of patients. Computational methods that can simulate tumors from mathematical equations describing cellular and molecular interactions are emerging as promising tools to simulate the impact of therapy entirely in silico. To facilitate designing dosing regimen and identifying potential biomarkers, we developed a new computational model to track tumor progression at organ scale while reflecting the spatial heterogeneity in the tumor at tissue scale in HCC. This computational model is called a spatial quantitative systems pharmacology (spQSP) platform and it is also designed to simulate the effects of combination immunotherapy. We then validate the results from the spQSP system by leveraging real-world spatial multi-omics data from a neoadjuvant HCC clinical trial combining anti-PD-1 immunotherapy and a multitargeted tyrosine kinase inhibitor (TKI) cabozantinib. The model output is compared with spatial data from Imaging Mass Cytometry (IMC). Both IMC data and simulation results suggest closer proximity between CD8 T cell and macrophages among non-responders while the reverse trend was observed for responders. The analyses also imply wider dispersion of immune cells and less scattered cancer cells in responders' samples. We also compared the model output with Visium spatial transcriptomics analyses of samples from post-treatment tumor resections in the original clinical trial. Both spatial transcriptomic data and simulation results identify the role of spatial patterns of tumor vasculature and TGFβ in tumor and immune cell interactions. To our knowledge, this is the first spatial tumor model for virtual clinical trials at a molecular scale that is grounded in high-throughput spatial multi-omics data from a human clinical trial.
Collapse
Affiliation(s)
- Shuming Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atul Deshpande
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Babita K. Verma
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haoyang Mi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Long Yuan
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Won Jin Ho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth M. Jaffee
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Qingfeng Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert A. Anders
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark Yarchoan
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Luciane T. Kagohara
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Elana J. Fertig
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Jointly supervised research
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Jointly supervised research
| |
Collapse
|
17
|
Arulraj T, Wang H, Emens LA, Santa-Maria CA, Popel AS. A transcriptome-informed QSP model of metastatic triple-negative breast cancer identifies predictive biomarkers for PD-1 inhibition. SCIENCE ADVANCES 2023; 9:eadg0289. [PMID: 37390206 PMCID: PMC10313177 DOI: 10.1126/sciadv.adg0289] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Triple-negative breast cancer (TNBC), a highly metastatic breast cancer subtype, has limited treatment options. While a small number of patients attain clinical benefit with single-agent checkpoint inhibitors, identifying these patients before the therapy remains challenging. Here, we developed a transcriptome-informed quantitative systems pharmacology model of metastatic TNBC by integrating heterogenous metastatic tumors. In silico clinical trial with an anti-PD-1 drug, pembrolizumab, predicted that several features, such as the density of antigen-presenting cells, the fraction of cytotoxic T cells in lymph nodes, and the richness of cancer clones in tumors, could serve individually as biomarkers but had a higher predictive power as combinations of two biomarkers. We showed that PD-1 inhibition neither consistently enhanced all antitumorigenic factors nor suppressed all protumorigenic factors but ultimately reduced the tumor carrying capacity. Collectively, our predictions suggest several candidate biomarkers that might effectively predict the response to pembrolizumab monotherapy and potential therapeutic targets to develop treatment strategies for metastatic TNBC.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leisha A. Emens
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Cesar A. Santa-Maria
- Department of Oncology, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Anbari S, Wang H, Zhang Y, Wang J, Pilvankar M, Nickaeen M, Hansel S, Popel AS. Using quantitative systems pharmacology modeling to optimize combination therapy of anti-PD-L1 checkpoint inhibitor and T cell engager. Front Pharmacol 2023; 14:1163432. [PMID: 37408756 PMCID: PMC10318535 DOI: 10.3389/fphar.2023.1163432] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023] Open
Abstract
Although immune checkpoint blockade therapies have shown evidence of clinical effectiveness in many types of cancer, the outcome of clinical trials shows that very few patients with colorectal cancer benefit from treatments with checkpoint inhibitors. Bispecific T cell engagers (TCEs) are gaining popularity because they can improve patients' immunological responses by promoting T cell activation. The possibility of combining TCEs with checkpoint inhibitors to increase tumor response and patient survival has been highlighted by preclinical and clinical outcomes. However, identifying predictive biomarkers and optimal dose regimens for individual patients to benefit from combination therapy remains one of the main challenges. In this article, we describe a modular quantitative systems pharmacology (QSP) platform for immuno-oncology that includes specific processes of immune-cancer cell interactions and was created based on published data on colorectal cancer. We generated a virtual patient cohort with the model to conduct in silico virtual clinical trials for combination therapy of a PD-L1 checkpoint inhibitor (atezolizumab) and a bispecific T cell engager (cibisatamab). Using the model calibrated against the clinical trials, we conducted several virtual clinical trials to compare various doses and schedules of administration for two drugs with the goal of therapy optimization. Moreover, we quantified the score of drug synergy for these two drugs to further study the role of the combination therapy.
Collapse
Affiliation(s)
- Samira Anbari
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yu Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jun Wang
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Minu Pilvankar
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Masoud Nickaeen
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Steven Hansel
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
19
|
Wang H, Arulraj T, Kimko H, Popel AS. Generating immunogenomic data-guided virtual patients using a QSP model to predict response of advanced NSCLC to PD-L1 inhibition. NPJ Precis Oncol 2023; 7:55. [PMID: 37291190 DOI: 10.1038/s41698-023-00405-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Generating realistic virtual patients from a limited amount of patient data is one of the major challenges for quantitative systems pharmacology modeling in immuno-oncology. Quantitative systems pharmacology (QSP) is a mathematical modeling methodology that integrates mechanistic knowledge of biological systems to investigate dynamics in a whole system during disease progression and drug treatment. In the present analysis, we parameterized our previously published QSP model of the cancer-immunity cycle to non-small cell lung cancer (NSCLC) and generated a virtual patient cohort to predict clinical response to PD-L1 inhibition in NSCLC. The virtual patient generation was guided by immunogenomic data from iAtlas portal and population pharmacokinetic data of durvalumab, a PD-L1 inhibitor. With virtual patients generated following the immunogenomic data distribution, our model predicted a response rate of 18.6% (95% bootstrap confidence interval: 13.3-24.2%) and identified CD8/Treg ratio as a potential predictive biomarker in addition to PD-L1 expression and tumor mutational burden. We demonstrated that omics data served as a reliable resource for virtual patient generation techniques in immuno-oncology using QSP models.
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Theinmozhi Arulraj
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Holly Kimko
- Clinical Pharmacology & Quantitative Pharmacology, AstraZeneca, Gaithersburg, MD, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Oncology, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
20
|
Nikfar M, Mi H, Gong C, Kimko H, Popel AS. Quantifying Intratumoral Heterogeneity and Immunoarchitecture Generated In-Silico by a Spatial Quantitative Systems Pharmacology Model. Cancers (Basel) 2023; 15:2750. [PMID: 37345087 DOI: 10.3390/cancers15102750] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
Spatial heterogeneity is a hallmark of cancer. Tumor heterogeneity can vary with time and location. The tumor microenvironment (TME) encompasses various cell types and their interactions that impart response to therapies. Therefore, a quantitative evaluation of tumor heterogeneity is crucial for the development of effective treatments. Different approaches, such as multiregional sequencing, spatial transcriptomics, analysis of autopsy samples, and longitudinal analysis of biopsy samples, can be used to analyze the intratumoral heterogeneity (ITH) and temporal evolution and to reveal the mechanisms of therapeutic response. However, because of the limitations of these data and the uncertainty associated with the time points of sample collection, having a complete understanding of intratumoral heterogeneity role is challenging. Here, we used a hybrid model that integrates a whole-patient compartmental quantitative-systems-pharmacology (QSP) model with a spatial agent-based model (ABM) describing the TME; we applied four spatial metrics to quantify model-simulated intratumoral heterogeneity and classified the TME immunoarchitecture for representative cases of effective and ineffective anti-PD-1 therapy. The four metrics, adopted from computational digital pathology, included mixing score, average neighbor frequency, Shannon's entropy and area under the curve (AUC) of the G-cross function. A fifth non-spatial metric was used to supplement the analysis, which was the ratio of the number of cancer cells to immune cells. These metrics were utilized to classify the TME as "cold", "compartmentalized" and "mixed", which were related to treatment efficacy. The trends in these metrics for effective and ineffective treatments are in qualitative agreement with the clinical literature, indicating that compartmentalized immunoarchitecture is likely to result in more efficacious treatment outcomes.
Collapse
Affiliation(s)
- Mehdi Nikfar
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Haoyang Mi
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chang Gong
- Clinical Pharmacology & Quantitative Pharmacology, AstraZeneca, Waltham, MA 02451, USA
| | - Holly Kimko
- Clinical Pharmacology & Quantitative Pharmacology, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| |
Collapse
|
21
|
Wang H, Arulraj T, Kimko H, Popel AS. Generating immunogenomic data-guided virtual patients using a QSP model to predict response of advanced NSCLC to PD-L1 inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538191. [PMID: 37162938 PMCID: PMC10168221 DOI: 10.1101/2023.04.25.538191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Generating realistic virtual patients from a limited amount of patient data is one of the major challenges for quantitative systems pharmacology modeling in immuno-oncology. Quantitative systems pharmacology (QSP) is a mathematical modeling methodology that integrates mechanistic knowledge of biological systems to investigate dynamics in a whole system during disease progression and drug treatment. In the present analysis, we parameterized our previously published QSP model of the cancer-immunity cycle to non-small cell lung cancer (NSCLC) and generated a virtual patient cohort to predict clinical response to PD-L1 inhibition in NSCLC. The virtual patient generation was guided by immunogenomic data from iAtlas portal and population pharmacokinetic data of durvalumab, a PD-L1 inhibitor. With virtual patients generated following the immunogenomic data distribution, our model predicted a response rate of 18.6% (95% bootstrap confidence interval: 13.3-24.2%) and identified CD8/Treg ratio as a potential predictive biomarker in addition to PD-L1 expression and tumor mutational burden. We demonstrated that omics data served as a reliable resource for virtual patient generation techniques in immuno-oncology using QSP models.
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Theinmozhi Arulraj
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Holly Kimko
- Clinical Pharmacology & Quantitative Pharmacology, AstraZeneca, Gaithersburg, MD, USA
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
22
|
Creemers JHA, Ankan A, Roes KCB, Schröder G, Mehra N, Figdor CG, de Vries IJM, Textor J. In silico cancer immunotherapy trials uncover the consequences of therapy-specific response patterns for clinical trial design and outcome. Nat Commun 2023; 14:2348. [PMID: 37095077 PMCID: PMC10125995 DOI: 10.1038/s41467-023-37933-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
Late-stage cancer immunotherapy trials often lead to unusual survival curve shapes, like delayed curve separation or a plateauing curve in the treatment arm. It is critical for trial success to anticipate such effects in advance and adjust the design accordingly. Here, we use in silico cancer immunotherapy trials - simulated trials based on three different mathematical models - to assemble virtual patient cohorts undergoing late-stage immunotherapy, chemotherapy, or combination therapies. We find that all three simulation models predict the distinctive survival curve shapes commonly associated with immunotherapies. Considering four aspects of clinical trial design - sample size, endpoint, randomization rate, and interim analyses - we demonstrate how, by simulating various possible scenarios, the robustness of trial design choices can be scrutinized, and possible pitfalls can be identified in advance. We provide readily usable, web-based implementations of our three trial simulation models to facilitate their use by biomedical researchers, doctors, and trialists.
Collapse
Affiliation(s)
- Jeroen H A Creemers
- Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | - Ankur Ankan
- Data Science group, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands
| | - Kit C B Roes
- Department of Health Evidence, Section Biostatistics, Radboud university medical center, Nijmegen, The Netherlands
| | - Gijs Schröder
- Data Science group, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherlands
| | - Carl G Figdor
- Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Johannes Textor
- Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands.
- Data Science group, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
23
|
Roulleaux Dugage M, Albarrán-Artahona V, Laguna JC, Chaput N, Vignot S, Besse B, Mezquita L, Auclin E. Biomarkers of response to immunotherapy in early stage non-small cell lung cancer. Eur J Cancer 2023; 184:179-196. [PMID: 36963241 DOI: 10.1016/j.ejca.2023.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023]
Abstract
Immunotherapy with immune-checkpoint inhibitors (ICIs) targeting programmed cell death 1 or programmed death-ligand 1 has revolutionised the treatment of advanced non-small cell lung cancer (NSCLC) and has been investigated in early NSCLC, alone or in combination with chemotherapy, anti-CTLA-4 antibodies and radiotherapy. Although more mature data are needed before setting a change of paradigm in early stages, reports of pathological response rates and disease-free survival are promising, especially with neoadjuvant multimodality approaches. Nevertheless, major pathological response rates for neoadjuvant anti-PD-(L)1 monotherapy rarely exceed 40%, and biomarkers for characterising patients who may benefit the most from ICIs are lacking. These biomarkers have a distinct value from the metastatic setting, with highly different tumour biologies. Among the most investigated so far in this context, programmed death-ligand 1 expression and, to a lesser extent, tumour mutational burden seem to correlate better with higher pathological response rates and survival. Epidermal growth factor receptor, Serine/Threonine Kinase 11and Kelch-like ECH-associated protein 1 mutations rise as essential determinations for the treatment selection in early-stage NSCLC. Emerging and promising approaches comprise evaluation of blood-based ratios, microbiota, and baseline intratumoural TCR clonality. Circulating tumour DNA will be of great help in the near future when selecting best candidates for adjuvant ICIs, monitoring the tumour response to the neoadjuvant treatment in order to improve the rates of complete resections in the early stage.
Collapse
Affiliation(s)
- Matthieu Roulleaux Dugage
- Department of Oncology, Hôpital Européen Georges Pompidou, AP-HP, Université Paris Cité, Paris, France; Laboratoire D'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, Île-de-France, France
| | - Víctor Albarrán-Artahona
- Medical Oncology Department, Hospital Clinic de Barcelona, Spain; Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
| | | | - Nathalie Chaput
- Laboratoire D'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, Île-de-France, France
| | | | - Benjamin Besse
- Department of Oncology, Gustave Roussy, Villejuif, Île-de-France, France
| | - Laura Mezquita
- Medical Oncology Department, Hospital Clinic de Barcelona, Spain; Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Edouard Auclin
- Department of Oncology, Hôpital Européen Georges Pompidou, AP-HP, Université Paris Cité, Paris, France.
| |
Collapse
|
24
|
Sové RJ, Verma BK, Wang H, Ho WJ, Yarchoan M, Popel AS. Virtual clinical trials of anti-PD-1 and anti-CTLA-4 immunotherapy in advanced hepatocellular carcinoma using a quantitative systems pharmacology model. J Immunother Cancer 2022; 10:e005414. [PMID: 36323435 PMCID: PMC9639136 DOI: 10.1136/jitc-2022-005414] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and is the third-leading cause of cancer-related death worldwide. Most patients with HCC are diagnosed at an advanced stage, and the median survival for patients with advanced HCC treated with modern systemic therapy is less than 2 years. This leaves the advanced stage patients with limited treatment options. Immune checkpoint inhibitors (ICIs) targeting programmed cell death protein 1 (PD-1) or its ligand, are widely used in the treatment of HCC and are associated with durable responses in a subset of patients. ICIs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) also have clinical activity in HCC. Combination therapy of nivolumab (anti-PD-1) and ipilimumab (anti-CTLA-4) is the first treatment option for HCC to be approved by Food and Drug Administration that targets more than one immune checkpoints. METHODS In this study, we used the framework of quantitative systems pharmacology (QSP) to perform a virtual clinical trial for nivolumab and ipilimumab in HCC patients. Our model incorporates detailed biological mechanisms of interactions of immune cells and cancer cells leading to antitumor response. To conduct virtual clinical trial, we generate virtual patient from a cohort of 5,000 proposed patients by extending recent algorithms from literature. The model was calibrated using the data of the clinical trial CheckMate 040 (ClinicalTrials.gov number, NCT01658878). RESULTS Retrospective analyses were performed for different immune checkpoint therapies as performed in CheckMate 040. Using machine learning approach, we predict the importance of potential biomarkers for immune blockade therapies. CONCLUSIONS This is the first QSP model for HCC with ICIs and the predictions are consistent with clinically observed outcomes. This study demonstrates that using a mechanistic understanding of the underlying pathophysiology, QSP models can facilitate patient selection and design clinical trials with improved success.
Collapse
Affiliation(s)
- Richard J Sové
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Babita K Verma
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Won Jin Ho
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Yarchoan
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Wang H, Zhao C, Santa-Maria CA, Emens LA, Popel AS. Dynamics of tumor-associated macrophages in a quantitative systems pharmacology model of immunotherapy in triple-negative breast cancer. iScience 2022; 25:104702. [PMID: 35856032 PMCID: PMC9287616 DOI: 10.1016/j.isci.2022.104702] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/05/2022] [Accepted: 06/27/2022] [Indexed: 11/07/2022] Open
Abstract
Quantitative systems pharmacology (QSP) modeling is an emerging mechanistic computational approach that couples drug pharmacokinetics/pharmacodynamics and the course of disease progression. It has begun to play important roles in drug development for complex diseases such as cancer, including triple-negative breast cancer (TNBC). The combination of the anti-PD-L1 antibody atezolizumab and nab-paclitaxel has shown clinical activity in advanced TNBC with PD-L1-positive tumor-infiltrating immune cells. As tumor-associated macrophages (TAMs) serve as major contributors to the immuno-suppressive tumor microenvironment, we incorporated the dynamics of TAMs into our previously published QSP model to investigate their impact on cancer treatment. We show that through proper calibration, the model captures the macrophage heterogeneity in the tumor microenvironment while maintaining its predictive power of the trial results at the population level. Despite its high mechanistic complexity, the modularized QSP platform can be readily reproduced, expanded for new species of interest, and applied in clinical trial simulation. A mechanistic model of quantitative systems pharmacology in immuno-oncology Dynamics of tumor-associated macrophages are integrated into our previous work Conducting in silico clinical trials to predict clinical response to cancer therapy
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chen Zhao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu211166, China
| | - Cesar A Santa-Maria
- Department of Oncology, the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Leisha A Emens
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Oncology, the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| |
Collapse
|
26
|
Ruiz-Martinez A, Gong C, Wang H, Sové RJ, Mi H, Kimko H, Popel AS. Simulations of tumor growth and response to immunotherapy by coupling a spatial agent-based model with a whole-patient quantitative systems pharmacology model. PLoS Comput Biol 2022; 18:e1010254. [PMID: 35867773 PMCID: PMC9348712 DOI: 10.1371/journal.pcbi.1010254] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/03/2022] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
Quantitative systems pharmacology (QSP) models and spatial agent-based models (ABM) are powerful and efficient approaches for the analysis of biological systems and for clinical applications. Although QSP models are becoming essential in discovering predictive biomarkers and developing combination therapies through in silico virtual trials, they are inadequate to capture the spatial heterogeneity and randomness that characterize complex biological systems, and specifically the tumor microenvironment. Here, we extend our recently developed spatial QSP (spQSP) model to analyze tumor growth dynamics and its response to immunotherapy at different spatio-temporal scales. In the model, the tumor spatial dynamics is governed by the ABM, coupled to the QSP model, which includes the following compartments: central (blood system), tumor, tumor-draining lymph node, and peripheral (the rest of the organs and tissues). A dynamic recruitment of T cells and myeloid-derived suppressor cells (MDSC) from the QSP central compartment has been implemented as a function of the spatial distribution of cancer cells. The proposed QSP-ABM coupling methodology enables the spQSP model to perform as a coarse-grained model at the whole-tumor scale and as an agent-based model at the regions of interest (ROIs) scale. Thus, we exploit the spQSP model potential to characterize tumor growth, identify T cell hotspots, and perform qualitative and quantitative descriptions of cell density profiles at the invasive front of the tumor. Additionally, we analyze the effects of immunotherapy at both whole-tumor and ROI scales under different tumor growth and immune response conditions. A digital pathology computational analysis of triple-negative breast cancer specimens is used as a guide for modeling the immuno-architecture of the invasive front.
Collapse
Affiliation(s)
- Alvaro Ruiz-Martinez
- Department of Biomedical Engineering, Johns Hopkins, University School of Medicine, Baltimore, Maryland, United States of America
| | - Chang Gong
- Department of Biomedical Engineering, Johns Hopkins, University School of Medicine, Baltimore, Maryland, United States of America
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins, University School of Medicine, Baltimore, Maryland, United States of America
| | - Richard J. Sové
- Department of Biomedical Engineering, Johns Hopkins, University School of Medicine, Baltimore, Maryland, United States of America
| | - Haoyang Mi
- Department of Biomedical Engineering, Johns Hopkins, University School of Medicine, Baltimore, Maryland, United States of America
| | - Holly Kimko
- Clinical Pharmacology & Quantitative Pharmacology, AstraZeneca, Gaithersburg, Maryland, United States of America
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins, University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
27
|
T cell therapy against cancer: a predictive diffuse-interface mathematical model informed by pre-clinical studies. J Theor Biol 2022; 547:111172. [DOI: 10.1016/j.jtbi.2022.111172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
|
28
|
Cheng Y, Straube R, Alnaif AE, Huang L, Leil TA, Schmidt BJ. Virtual Populations for Quantitative Systems Pharmacology Models. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2486:129-179. [PMID: 35437722 DOI: 10.1007/978-1-0716-2265-0_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Quantitative systems pharmacology (QSP) places an emphasis on dynamic systems modeling, incorporating considerations from systems biology modeling and pharmacodynamics. The goal of QSP is often to quantitatively predict the effects of clinical therapeutics, their combinations, and their doses on clinical biomarkers and endpoints. In order to achieve this goal, strategies for incorporating clinical data into model calibration are critical. Virtual population (VPop) approaches facilitate model calibration while faced with challenges encountered in QSP model application, including modeling a breadth of clinical therapies, biomarkers, endpoints, utilizing data of varying structure and source, capturing observed clinical variability, and simulating with models that may require more substantial computational time and resources than often found in pharmacometrics applications. VPops are frequently developed in a process that may involve parameterization of isolated pathway models, integration into a larger QSP model, incorporation of clinical data, calibration, and quantitative validation that the model with the accompanying, calibrated VPop is suitable to address the intended question or help with the intended decision. Here, we introduce previous strategies for developing VPops in the context of a variety of therapeutic and safety areas: metabolic disorders, drug-induced liver injury, autoimmune diseases, and cancer. We introduce methodological considerations, prior work for sensitivity analysis and VPop algorithm design, and potential areas for future advancement. Finally, we give a more detailed application example of a VPop calibration algorithm that illustrates recent progress and many of the methodological considerations. In conclusion, although methodologies have varied, VPop strategies have been successfully applied to give valid clinical insights and predictions with the assistance of carefully defined and designed calibration and validation strategies. While a uniform VPop approach for all potential QSP applications may be challenging given the heterogeneity in use considerations, we anticipate continued innovation will help to drive VPop application for more challenging cases of greater scale while developing new rigorous methodologies and metrics.
Collapse
Affiliation(s)
- Yougan Cheng
- QSP and PBPK, Bristol Myers Squibb, Princeton, NJ, USA.,Daiichi Sankyo, Inc., Pennington, NJ, USA
| | - Ronny Straube
- QSP and PBPK, Bristol Myers Squibb, Princeton, NJ, USA
| | - Abed E Alnaif
- QSP and PBPK, Bristol Myers Squibb, Princeton, NJ, USA.,EMD Serono, Billerica, MA, USA
| | - Lu Huang
- QSP and PBPK, Bristol Myers Squibb, Princeton, NJ, USA
| | - Tarek A Leil
- QSP and PBPK, Bristol Myers Squibb, Princeton, NJ, USA.,Daiichi Sankyo, Inc., Pennington, NJ, USA
| | | |
Collapse
|
29
|
Zhang S, Gong C, Ruiz-Martinez A, Wang H, Davis-Marcisak E, Deshpande A, Popel AS, Fertig EJ. Integrating single cell sequencing with a spatial quantitative systems pharmacology model spQSP for personalized prediction of triple-negative breast cancer immunotherapy response. ACTA ACUST UNITED AC 2021; 1-2. [PMID: 34708216 PMCID: PMC8547770 DOI: 10.1016/j.immuno.2021.100002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Response to cancer immunotherapies depends on the complex and dynamic interactions between T cell recognition and killing of cancer cells that are counteracted through immunosuppressive pathways in the tumor microenvironment. Therefore, while measurements such as tumor mutational burden provide biomarkers to select patients for immunotherapy, they neither universally predict patient response nor implicate the mechanisms that underlie immunotherapy resistance. Recent advances in single-cell RNA sequencing technology measure cellular heterogeneity within cells of an individual tumor but have yet to realize the promise of predictive oncology. In addition to data, mechanistic multiscale computational models are developed to predict treatment response. Incorporating single-cell data from tumors to parameterize these computational models provides deeper insights into prediction of clinical outcome in individual patients. Here, we integrate whole-exome sequencing and scRNA-seq data from Triple-Negative Breast Cancer patients to model neoantigen burden in tumor cells as input to a spatial Quantitative System Pharmacology model. The model comprises a four-compartmental Quantitative System Pharmacology sub-model to represent a whole patient and a spatial agent-based sub-model to represent tumor volumes at the cellular scale. We use the high-throughput single-cell data to model the role of antigen burden and heterogeneity relative to the tumor microenvironment composition on predicted immunotherapy response. We demonstrate how this integrated modeling and single-cell analysis framework can be used to relate neoantigen heterogeneity to immunotherapy treatment outcomes. Our results demonstrate feasibility of merging single-cell data to initialize cell states in multiscale computational models such as the spQSP for personalized prediction of clinical outcomes to immunotherapy.
Collapse
Affiliation(s)
- Shuming Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chang Gong
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alvaro Ruiz-Martinez
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Emily Davis-Marcisak
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Atul Deshpande
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elana J Fertig
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
30
|
Aghamiri SS, Amin R, Helikar T. Recent applications of quantitative systems pharmacology and machine learning models across diseases. J Pharmacokinet Pharmacodyn 2021; 49:19-37. [PMID: 34671863 PMCID: PMC8528185 DOI: 10.1007/s10928-021-09790-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022]
Abstract
Quantitative systems pharmacology (QSP) is a quantitative and mechanistic platform describing the phenotypic interaction between drugs, biological networks, and disease conditions to predict optimal therapeutic response. In this meta-analysis study, we review the utility of the QSP platform in drug development and therapeutic strategies based on recent publications (2019-2021). We gathered recent original QSP models and described the diversity of their applications based on therapeutic areas, methodologies, software platforms, and functionalities. The collection and investigation of these publications can assist in providing a repository of recent QSP studies to facilitate the discovery and further reusability of QSP models. Our review shows that the largest number of QSP efforts in recent years is in Immuno-Oncology. We also addressed the benefits of integrative approaches in this field by presenting the applications of Machine Learning methods for drug discovery and QSP models. Based on this meta-analysis, we discuss the advantages and limitations of QSP models and propose fields where the QSP approach constitutes a valuable interface for more investigations to tackle complex diseases and improve drug development.
Collapse
Affiliation(s)
- Sara Sadat Aghamiri
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rada Amin
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
31
|
Sancho-Araiz A, Zalba S, Garrido MJ, Berraondo P, Topp B, de Alwis D, Parra-Guillen ZP, Mangas-Sanjuan V, Trocóniz IF. Semi-Mechanistic Model for the Antitumor Response of a Combination Cocktail of Immuno-Modulators in Non-Inflamed (Cold) Tumors. Cancers (Basel) 2021; 13:cancers13205049. [PMID: 34680196 PMCID: PMC8534053 DOI: 10.3390/cancers13205049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The clinical efficacy of immunotherapies when treating cold tumors is still low, and different treatment combinations are needed when dealing with this challenging scenario. In this work, a middle-out strategy was followed to develop a model describing the antitumor efficacy of different immune-modulator combinations, including an antigen, a toll-like receptor-3 agonist, and an immune checkpoint inhibitor in mice treated with non-inflamed tumor cells. Our results support that clinical response requires antigen-presenting cell activation and also relies on the amount of CD8 T cells and tumor resistance mechanisms present. This mathematical model is a very useful platform to evaluate different immuno-oncology combinations in both preclinical and clinical settings. Abstract Immune checkpoint inhibitors, administered as single agents, have demonstrated clinical efficacy. However, when treating cold tumors, different combination strategies are needed. This work aims to develop a semi-mechanistic model describing the antitumor efficacy of immunotherapy combinations in cold tumors. Tumor size of mice treated with TC-1/A9 non-inflamed tumors and the drug effects of an antigen, a toll-like receptor-3 agonist (PIC), and an immune checkpoint inhibitor (anti-programmed cell death 1 antibody) were modeled using Monolix and following a middle-out strategy. Tumor growth was best characterized by an exponential model with an estimated initial tumor size of 19.5 mm3 and a doubling time of 3.6 days. In the treatment groups, contrary to the lack of response observed in monotherapy, combinations including the antigen were able to induce an antitumor response. The final model successfully captured the 23% increase in the probability of cure from bi-therapy to triple-therapy. Moreover, our work supports that CD8+ T lymphocytes and resistance mechanisms are strongly related to the clinical outcome. The activation of antigen-presenting cells might be needed to achieve an antitumor response in reduced immunogenic tumors when combined with other immunotherapies. These models can be used as a platform to evaluate different immuno-oncology combinations in preclinical and clinical scenarios.
Collapse
Affiliation(s)
- Aymara Sancho-Araiz
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.S.-A.); (S.Z.); (M.J.G.); (Z.P.P.-G.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
| | - Sara Zalba
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.S.-A.); (S.Z.); (M.J.G.); (Z.P.P.-G.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
| | - María J. Garrido
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.S.-A.); (S.Z.); (M.J.G.); (Z.P.P.-G.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
| | - Pedro Berraondo
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
- Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Brian Topp
- Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (B.T.); (D.d.A.)
| | - Dinesh de Alwis
- Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (B.T.); (D.d.A.)
| | - Zinnia P. Parra-Guillen
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.S.-A.); (S.Z.); (M.J.G.); (Z.P.P.-G.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
| | - Víctor Mangas-Sanjuan
- Department of Pharmacy Technology and Parasitology, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain;
- Interuniversity Institute of Recognition Research Molecular and Technological Development, Polytechnic University of Valencia-University of Valencia, 46100 Valencia, Spain
| | - Iñaki F. Trocóniz
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.S.-A.); (S.Z.); (M.J.G.); (Z.P.P.-G.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
- Correspondence:
| |
Collapse
|
32
|
Ma H, Wang H, Sové RJ, Wang J, Giragossian C, Popel AS. Combination therapy with T cell engager and PD-L1 blockade enhances the antitumor potency of T cells as predicted by a QSP model. J Immunother Cancer 2021; 8:jitc-2020-001141. [PMID: 32859743 PMCID: PMC7454244 DOI: 10.1136/jitc-2020-001141] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2020] [Indexed: 12/12/2022] Open
Abstract
Background T cells have been recognized as core effectors for cancer immunotherapy. How to restore the anti-tumor ability of suppressed T cells or improve the lethality of cytotoxic T cells has become the main focus in immunotherapy. Bispecific antibodies, especially bispecific T cell engagers (TCEs), have shown their unique ability to enhance the patient’s immune response to tumors by stimulating T cell activation and cytokine production in an MHC-independent manner. Antibodies targeting the checkpoint inhibitory molecules such as programmed cell death protein 1 (PD-1), PD-ligand 1 (PD-L1) and cytotoxic lymphocyte activated antigen 4 are able to restore the cytotoxic effect of immune suppressed T cells and have also shown durable responses in patients with malignancies. However, both types have their own limitations in treating certain cancers. Preclinical and clinical results have emphasized the potential of combining these two antibodies to improve tumor response and patients’ survival. However, the selection and evaluation of combination partners clinically is a costly endeavor. In addition, despite advances made in immunotherapy, there are subsets of patients who are non-responders, and reliable biomarkers for different immunotherapies are urgently needed to improve the ability to prospectively predict patients’ response and improve clinical study design. Therefore, mathematical and computational models are essential to optimize patient benefit, and guide combination approaches with lower cost and in a faster manner. Method In this study, we continued to extend the quantitative systems pharmacology (QSP) model we developed for a bispecific TCE to explore efficacy of combination therapy with an anti-PD-L1 monoclonal antibody in patients with colorectal cancer. Results Patient-specific response to TCE monotherapy, anti-PD-L1 monotherapy and the combination therapy were predicted using this model according to each patient’s individual characteristics. Conclusions Individual biomarkers for TCE monotherapy, anti-PD-L1 monotherapy and their combination have been determined based on the QSP model. Best treatment options for specific patients could be suggested based on their own characteristics to improve clinical trial efficiency. The model can be further used to assess plausible combination strategies for different TCEs and immune checkpoint inhibitors in different types of cancer.
Collapse
Affiliation(s)
- Huilin Ma
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard J Sové
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Wang
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Craig Giragossian
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Gong C, Ruiz-Martinez A, Kimko H, Popel AS. A Spatial Quantitative Systems Pharmacology Platform spQSP-IO for Simulations of Tumor-Immune Interactions and Effects of Checkpoint Inhibitor Immunotherapy. Cancers (Basel) 2021; 13:3751. [PMID: 34359653 PMCID: PMC8345161 DOI: 10.3390/cancers13153751] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
Quantitative systems pharmacology (QSP) models have become increasingly common in fundamental mechanistic studies and drug discovery in both academic and industrial environments. With imaging techniques widely adopted and other spatial quantification of tumor such as spatial transcriptomics gaining traction, it is crucial that these data reflecting tumor spatial heterogeneity be utilized to inform the QSP models to enhance their predictive power. We developed a hybrid computational model platform, spQSP-IO, to extend QSP models of immuno-oncology with spatially resolved agent-based models (ABM), combining their powers to track whole patient-scale dynamics and recapitulate the emergent spatial heterogeneity in the tumor. Using a model of non-small-cell lung cancer developed based on this platform, we studied the role of the tumor microenvironment and cancer-immune cell interactions in tumor development and applied anti-PD-1 treatment to virtual patients and studied how the spatial distribution of cells changes during tumor growth in response to the immune checkpoint inhibition treatment. Using parameter sensitivity analysis and biomarker analysis, we are able to identify mechanisms and pretreatment measurements correlated with treatment efficacy. By incorporating spatial data that highlight both heterogeneity in tumors and variability among individual patients, spQSP-IO models can extend the QSP framework and further advance virtual clinical trials.
Collapse
Affiliation(s)
- Chang Gong
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (A.R.-M.); (A.S.P.)
| | - Alvaro Ruiz-Martinez
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (A.R.-M.); (A.S.P.)
| | - Holly Kimko
- Clinical Pharmacology & Quantitative Pharmacology, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Aleksander S. Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (A.R.-M.); (A.S.P.)
- Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| |
Collapse
|
34
|
Sancho-Araiz A, Mangas-Sanjuan V, Trocóniz IF. The Role of Mathematical Models in Immuno-Oncology: Challenges and Future Perspectives. Pharmaceutics 2021; 13:pharmaceutics13071016. [PMID: 34371708 PMCID: PMC8309057 DOI: 10.3390/pharmaceutics13071016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Immuno-oncology (IO) focuses on the ability of the immune system to detect and eliminate cancer cells. Since the approval of the first immune checkpoint inhibitor, immunotherapies have become a major player in oncology treatment and, in 2021, represented the highest number of approved drugs in the field. In spite of this, there is still a fraction of patients that do not respond to these therapies and develop resistance mechanisms. In this sense, mathematical models offer an opportunity to identify predictive biomarkers, optimal dosing schedules and rational combinations to maximize clinical response. This work aims to outline the main therapeutic targets in IO and to provide a description of the different mathematical approaches (top-down, middle-out, and bottom-up) integrating the cancer immunity cycle with immunotherapeutic agents in clinical scenarios. Among the different strategies, middle-out models, which combine both theoretical and evidence-based description of tumor growth and immunological cell-type dynamics, represent an optimal framework to evaluate new IO strategies.
Collapse
Affiliation(s)
- Aymara Sancho-Araiz
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31009 Pamplona, Spain; (A.S.-A.); (I.F.T.)
- Navarra Institute for Health Research (IdiSNA), 31009 Pamplona, Spain
| | - Victor Mangas-Sanjuan
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46100 Valencia, Spain
- Interuniversity Research Institute for Molecular Recognition and Technological Development, 46100 Valencia, Spain
- Correspondence: ; Tel.: +34-96354-3351
| | - Iñaki F. Trocóniz
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31009 Pamplona, Spain; (A.S.-A.); (I.F.T.)
- Navarra Institute for Health Research (IdiSNA), 31009 Pamplona, Spain
| |
Collapse
|
35
|
Zhang Z, Liu L, Ma C, Cui X, Lam RHW, Chen W. An in silico glioblastoma microenvironment model dissects the immunological mechanisms of resistance to PD-1 checkpoint blockade immunotherapy. SMALL METHODS 2021; 5:2100197. [PMID: 34423116 PMCID: PMC8372235 DOI: 10.1002/smtd.202100197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 05/02/2023]
Abstract
The PD-1 immune checkpoint-based therapy has emerged as a promising therapy strategy for treating the malignant brain tumor glioblastoma (GBM). However, patient response varies in clinical trials due in large to the tumor heterogeneity and immunological resistance in the tumor microenvironment. To further understand how mechanistically the niche interplay and competition drive anti-PD-1 resistance, we established an in-silico model to quantitatively describe the biological rationale of critical GBM-immune interactions, such as tumor growth and apoptosis, T cell activation and cytotoxicity, and tumor-associated macrophage (TAM) mediated immunosuppression. Such an in-silico experimentation and predictive model, based on the in vitro microfluidic chip-measured end-point data and patient-specific immunological characteristics, allowed for a comprehensive and dynamic analysis of multiple TAM-associated immunosuppression mechanisms against the anti-PD-1 immunotherapy. Our computational model demonstrated that the TAM-associated immunosuppression varied in severity across different GBM subtypes, which resulted in distinct tumor responses. Our prediction results indicated that a combination therapy co-targeting of PD-1 checkpoint and TAM-associated CSF-1R signaling could enhance the immune responses of GBM patients, especially those patients with mesenchymal GBM who are irresponsive to the single anti-PD-1 therapy. The development of a patient-specific in silico-in vitro GBM model would help navigate and personalize immunotherapies for GBM patients.
Collapse
Affiliation(s)
- Zhuoyu Zhang
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Lunan Liu
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Chao Ma
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Xin Cui
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Raymond H W Lam
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY
| |
Collapse
|
36
|
Hwang W, Lei W, Katritsis NM, MacMahon M, Chapman K, Han N. Current and prospective computational approaches and challenges for developing COVID-19 vaccines. Adv Drug Deliv Rev 2021; 172:249-274. [PMID: 33561453 PMCID: PMC7871111 DOI: 10.1016/j.addr.2021.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2, which causes COVID-19, was first identified in humans in late 2019 and is a coronavirus which is zoonotic in origin. As it spread around the world there has been an unprecedented effort in developing effective vaccines. Computational methods can be used to speed up the long and costly process of vaccine development. Antigen selection, epitope prediction, and toxicity and allergenicity prediction are areas in which computational tools have already been applied as part of reverse vaccinology for SARS-CoV-2 vaccine development. However, there is potential for computational methods to assist further. We review approaches which have been used and highlight additional bioinformatic approaches and PK modelling as in silico methods which may be useful for SARS-CoV-2 vaccine design but remain currently unexplored. As more novel viruses with pandemic potential are expected to arise in future, these techniques are not limited to application to SARS-CoV-2 but also useful to rapidly respond to novel emerging viruses.
Collapse
Affiliation(s)
- Woochang Hwang
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK
| | - Winnie Lei
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge, Cambridge, UK
| | - Nicholas M Katritsis
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Méabh MacMahon
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK; Centre for Therapeutics Discovery, LifeArc, Stevenage, UK
| | - Kathryn Chapman
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK
| | - Namshik Han
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
37
|
Bai JPF, Schmidt BJ, Gadkar KG, Damian V, Earp JC, Friedrich C, van der Graaf PH, Madabushi R, Musante CJ, Naik K, Rogge M, Zhu H. FDA-Industry Scientific Exchange on assessing quantitative systems pharmacology models in clinical drug development: a meeting report, summary of challenges/gaps, and future perspective. AAPS JOURNAL 2021; 23:60. [PMID: 33931790 DOI: 10.1208/s12248-021-00585-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
The pharmaceutical industry is actively applying quantitative systems pharmacology (QSP) to make internal decisions and guide drug development. To facilitate the eventual development of a common framework for assessing the credibility of QSP models for clinical drug development, scientists from US Food and Drug Administration and the pharmaceutical industry organized a full-day virtual Scientific Exchange on July 1, 2020. An assessment form was used to ensure consistency in the evaluation process. Among the cases presented, QSP was applied to various therapeutic areas. Applications mostly focused on phase 2 dose selection. Model transparency, including details on expert knowledge and data used for model development, was identified as a major factor for robust model assessment. The case studies demonstrated some commonalities in the workflow of QSP model development, calibration, and validation but differ in the size, scope, and complexity of QSP models, in the acceptance criteria for model calibration and validation, and in the algorithms/approaches used for creating virtual patient populations. Though efforts are being made to build the credibility of QSP models and the confidence is increasing in applying QSP for internal decisions at the clinical stages of drug development, there are still many challenges facing QSP application to late stage drug development. The QSP community needs a strategic plan that includes the ability and flexibility to Adapt, to establish Common expectations for model Credibility needed to inform drug Labeling and patient care, and to AIM to achieve the goal (ACCLAIM).
Collapse
Affiliation(s)
- Jane P F Bai
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20903, USA.
| | - Brian J Schmidt
- Quantitative Clinical Pharmacology, Bristol Myers Squibb, Princeton, New Jersey, USA.
| | - Kapil G Gadkar
- Development Sciences, Genentech Inc., South San Francisco, California, 94080, USA. .,Denali Therapeutics, San Francisco, California, USA.
| | - Valeriu Damian
- GSK R&D - Upper Providence, 1250 S Collegeville Rd, Collegeville, Pennsylvania, 19426, USA
| | - Justin C Earp
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20903, USA
| | | | - Piet H van der Graaf
- Certara, Canterbury, CT2 7FG, UK.,Leiden Academic Centre for Drug Research, Leiden, 2333, CC, the Netherlands
| | - Rajanikanth Madabushi
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20903, USA
| | - Cynthia J Musante
- Early Clinical Development, Pfizer Worldwide Research, Development, & Medical, 1 Portland Street, Cambridge, Massachusetts, 02139, USA
| | - Kunal Naik
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20903, USA
| | - Mark Rogge
- Quantitative Translational Science, Takeda Pharmaceuticals International Co, 40 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| | - Hao Zhu
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20903, USA
| |
Collapse
|
38
|
Bazzazi H, Shahraz A. A mechanistic systems pharmacology modeling platform to investigate the effect of PD-L1 expression heterogeneity and dynamics on the efficacy of PD-1 and PD-L1 blocking antibodies in cancer. J Theor Biol 2021; 522:110697. [PMID: 33794288 DOI: 10.1016/j.jtbi.2021.110697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/14/2020] [Accepted: 03/22/2021] [Indexed: 11/19/2022]
Abstract
Tumors have developed multitude of ways to evade immune response and suppress cytotoxic T cells. Programed cell death protein 1 (PD-1) and programed cell death ligand 1 (PD-L1) are immune checkpoints that when activated, rapidly inactivate the cytolytic activity of T cells. Expression heterogeneity of PD-L1 and the surface receptor dynamics of both PD-1 and PD-L1 may be important parameters in modulating the immune response. PD-L1 is expressed on both tumor and non-tumor immune cells and this differential expression reflects different aspects of anti-tumor immunity. Here, we developed a mechanistic computational model to investigate the role of PD-1 and PD-L1 dynamics in modulating the efficacy of PD-1 and PD-L1 blocking antibodies. Our model incorporates immunological synapse restricted interaction of PD-1 and PD-L1, basal parameters for receptor dynamics, and T cell interaction with tumor and non-tumor immune cells. Simulations predict the existence of a threshold in PD-1 expression above which there is no efficacy for both anti-PD-1 and anti-PD-L1. Model also predicts that anti-tumor response is more sensitive to PD-L1 expression on non-tumor immune cells than tumor cells. New combination strategies are suggested that may enhance efficacy in resistant cases such as combining anti-PD-1 with a low dose of anti-PD-L1 or with inhibitors of PD-L1 recycling and synthesis. Another combination strategy suggested by the model is the combination of anti-PD-1 and anti-PD-L1 with enhancers of PD-L1 degradation rate. Virtual patients are then generated to test specific biomarkers of response. Intriguing predictions that emerge from the virtual patient simulations are that PD-1 blocking antibody results in higher response rate than PD-L1 blockade and that PD-L1 expression density on non-tumor immune cells rather than tumor cells is a predictor of response.
Collapse
Affiliation(s)
- Hojjat Bazzazi
- Millenium Pharmaceuticals, a wholly-owned subsidiary of Takeda Pharmaceuticals, Cambridge, MA, United States.
| | - Azar Shahraz
- Simulations Plus Inc., Lancaster, CA, United States
| |
Collapse
|
39
|
Jenner AL, Cassidy T, Belaid K, Bourgeois-Daigneault MC, Craig M. In silico trials predict that combination strategies for enhancing vesicular stomatitis oncolytic virus are determined by tumor aggressivity. J Immunother Cancer 2021; 9:jitc-2020-001387. [PMID: 33608375 PMCID: PMC7898884 DOI: 10.1136/jitc-2020-001387] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
Background Immunotherapies, driven by immune-mediated antitumorigenicity, offer the potential for significant improvements to the treatment of multiple cancer types. Identifying therapeutic strategies that bolster antitumor immunity while limiting immune suppression is critical to selecting treatment combinations and schedules that offer durable therapeutic benefits. Combination oncolytic virus (OV) therapy, wherein complementary OVs are administered in succession, offer such promise, yet their translation from preclinical studies to clinical implementation is a major challenge. Overcoming this obstacle requires answering fundamental questions about how to effectively design and tailor schedules to provide the most benefit to patients. Methods We developed a computational biology model of combined oncolytic vaccinia (an enhancer virus) and vesicular stomatitis virus (VSV) calibrated to and validated against multiple data sources. We then optimized protocols in a cohort of heterogeneous virtual individuals by leveraging this model and our previously established in silico clinical trial platform. Results Enhancer multiplicity was shown to have little to no impact on the average response to therapy. However, the duration of the VSV injection lag was found to be determinant for survival outcomes. Importantly, through treatment individualization, we found that optimal combination schedules are closely linked to tumor aggressivity. We predicted that patients with aggressively growing tumors required a single enhancer followed by a VSV injection 1 day later, whereas a small subset of patients with the slowest growing tumors needed multiple enhancers followed by a longer VSV delay of 15 days, suggesting that intrinsic tumor growth rates could inform the segregation of patients into clinical trials and ultimately determine patient survival. These results were validated in entirely new cohorts of virtual individuals with aggressive or non-aggressive subtypes. Conclusions Based on our results, improved therapeutic schedules for combinations with enhancer OVs can be studied and implemented. Our results further underline the impact of interdisciplinary approaches to preclinical planning and the importance of computational approaches to drug discovery and development.
Collapse
Affiliation(s)
- Adrianne L Jenner
- Sainte-Justine University Hospital Research Centre, Montreal, Quebec, Canada.,Department of Mathematics and Statistics, Université de Montréal, Montreal, Quebec, Canada
| | - Tyler Cassidy
- Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada.,Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Katia Belaid
- Department of Mathematics and Statistics, Université de Montréal, Montreal, Quebec, Canada.,Statistique et Informatique Décisionnelle, Université Toulouse III Paul Sabatier, Toulouse, Occitanie, France
| | - Marie-Claude Bourgeois-Daigneault
- Institut du Cancer de Montréal, CHUM, Montreal, Quebec, Canada.,Department of Microbiology, Infectious diseases and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Morgan Craig
- Sainte-Justine University Hospital Research Centre, Montreal, Quebec, Canada .,Department of Mathematics and Statistics, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Wang H, Ma H, Sové RJ, Emens LA, Popel AS. Quantitative systems pharmacology model predictions for efficacy of atezolizumab and nab-paclitaxel in triple-negative breast cancer. J Immunother Cancer 2021; 9:jitc-2020-002100. [PMID: 33579739 PMCID: PMC7883871 DOI: 10.1136/jitc-2020-002100] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2021] [Indexed: 12/18/2022] Open
Abstract
Background Immune checkpoint blockade therapy has clearly shown clinical activity in patients with triple-negative breast cancer, but less than half of the patients benefit from the treatments. While a number of ongoing clinical trials are investigating different combinations of checkpoint inhibitors and chemotherapeutic agents, predictive biomarkers that identify patients most likely to benefit remains one of the major challenges. Here we present a modular quantitative systems pharmacology (QSP) platform for immuno-oncology that incorporates detailed mechanisms of immune–cancer cell interactions to make efficacy predictions and identify predictive biomarkers for treatments using atezolizumab and nab-paclitaxel. Methods A QSP model was developed based on published data of triple-negative breast cancer. With the model, we generated a virtual patient cohort to conduct in silico virtual clinical trials and make retrospective analyses of the pivotal IMpassion130 trial that led to the accelerated approval of atezolizumab and nab-paclitaxel for patients with programmed death-ligand 1 (PD-L1) positive triple-negative breast cancer. Available data from clinical trials were used for model calibration and validation. Results With the calibrated virtual patient cohort based on clinical data from the placebo comparator arm of the IMpassion130 trial, we made efficacy predictions and identified potential predictive biomarkers for the experimental arm of the trial using the proposed QSP model. The model predictions are consistent with clinically reported efficacy endpoints and correlated immune biomarkers. We further performed a series of virtual clinical trials to compare different doses and schedules of the two drugs for simulated therapeutic optimization. Conclusions This study provides a QSP platform, which can be used to generate virtual patient cohorts and conduct virtual clinical trials. Our findings demonstrate its potential for making efficacy predictions for immunotherapies and chemotherapies, identifying predictive biomarkers, and guiding future clinical trial designs.
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Huilin Ma
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Richard J Sové
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Leisha A Emens
- Department of Medicine, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Ling B, Ye G, Zhao Q, Jiang Y, Liang L, Tang Q. Identification of an Immunologic Signature of Lung Adenocarcinomas Based on Genome-Wide Immune Expression Profiles. Front Mol Biosci 2021; 7:603701. [PMID: 33505988 PMCID: PMC7832236 DOI: 10.3389/fmolb.2020.603701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Lung cancer is one of the most common types of cancer, and it has a poor prognosis. It is urgent to identify prognostic biomarkers to guide therapy. Methods: The immune gene expression profiles for patients with lung adenocarcinomas (LUADs) were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). The relationships between the expression of 45 immune checkpoint genes (ICGs) and prognosis were analyzed. Additionally, the correlations between the expression of 45 biomarkers and immunotherapy biomarkers, including tumor mutation burden (TMB), mismatch repair defects, neoantigens, and others, were identified. Ultimately, prognostic ICGs were combined to determine immune subgroups, and the prognostic differences between these subgroups were identified in LUAD. Results: A total of 11 and nine ICGs closely related to prognosis were obtained from the GEO and TCGA databases, respectively. CD200R1 expression had a significant negative correlation with TMB and neoantigens. CD200R1 showed a significant positive correlation with CD8A, CD68, and GZMB, indicating that it may cause the disordered expression of adaptive immune resistance pathway genes. Multivariable Cox regression was used to construct a signature composed of four prognostic ICGs (IDO1, CD274, CTLA4, and CD200R1): Risk Score = -0.002* IDO1+0.031* CD274-0.069* CTLA4-0.517* CD200R1. The median Risk Score was used to classify the samples for the high- and low-risk groups. We observed significant differences between groups in the training, testing, and external validation cohorts. Conclusion: Our research provides a method of integrating ICG expression profiles and clinical prognosis information to predict lung cancer prognosis, which will provide a unique reference for gene immunotherapy for LUAD.
Collapse
Affiliation(s)
- Bo Ling
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise, China
| | - Guangbin Ye
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise, China
- Medical College of Guangxi University, Nanning, China
| | - Qiuhua Zhao
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise, China
| | - Yan Jiang
- Medical College of Guangxi University, Nanning, China
| | - Lingling Liang
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise, China
| | - Qianli Tang
- Key Laboratory of High Incidence of Disease Prevention in the West of Guangxi, Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
42
|
Abstract
Modern cancer immunotherapy has revolutionised oncology and carries the potential to radically change the approach to cancer treatment. However, numerous questions remain to be answered to understand immunotherapy response better and further improve the benefit for future cancer patients. Computational models are promising tools that can contribute to accelerated immunotherapy research by providing new clues and hypotheses that could be tested in future trials, based on preceding simulations in addition to the empirical rationale. In this topical review, we briefly summarise the history of cancer immunotherapy, including computational modelling of traditional cancer immunotherapy, and comprehensively review computational models of modern cancer immunotherapy, such as immune checkpoint inhibitors (as monotherapy and combination treatment), co-stimulatory agonistic antibodies, bispecific antibodies, and chimeric antigen receptor T cells. The modelling approaches are classified into one of the following categories: data-driven top-down vs mechanistic bottom-up, simplistic vs detailed, continuous vs discrete, and hybrid. Several common modelling approaches are summarised, such as pharmacokinetic/pharmacodynamic models, Lotka-Volterra models, evolutionary game theory models, quantitative systems pharmacology models, spatio-temporal models, agent-based models, and logic-based models. Pros and cons of each modelling approach are critically discussed, particularly with the focus on the potential for successful translation into immuno-oncology research and routine clinical practice. Specific attention is paid to calibration and validation of each model, which is a necessary prerequisite for any successful model, and at the same time, one of the main obstacles. Lastly, we provide guidelines and suggestions for the future development of the field.
Collapse
Affiliation(s)
- Damijan Valentinuzzi
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia. Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ulica 19, 1111 Ljubljana, Slovenia
| | | |
Collapse
|
43
|
Ma H, Pilvankar M, Wang J, Giragossian C, Popel AS. Quantitative Systems Pharmacology Modeling of PBMC-Humanized Mouse to Facilitate Preclinical Immuno-oncology Drug Development. ACS Pharmacol Transl Sci 2020; 4:213-225. [PMID: 33615174 DOI: 10.1021/acsptsci.0c00178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Progress in immunotherapy has resulted in explosively increased new therapeutic interventions and they have shown promising results in the treatment of cancer. Animal testing is performed to provide preliminary efficacy and safety data for drugs under development prior to clinical trials. However, translational challenges remain for preclinical studies such as study design and the relevance of animal models to humans. Hence, only a small fraction of cancer patients showed response. The explosion of drug candidates and therapies makes preclinical assessment of every plausible option impossible, but it can be easily tested using Quantitative System Pharmacology (QSP) models. Here, we developed a QSP model for humanized mice. Tumor growth dynamics, T cell dynamics, cytokine release, immune checkpoint expression, and drug administration were modeled and calibrated using experimental data. Tumor growth inhibition data were used for model validation. Pharmacokinetics of T cell engager (TCE), tumor growth profile, T cell expansion in the blood and infiltration into tumor, T cell dissemination from primary tumor, cytokine release profile, and expression of additional PD-L1 induced by IFN-γ were modeled and calibrated using a variety of experimental data and showed good consistency. Mouse-specific response to T cell engager monotherapy also showed the key features of in vivo efficacy of TCE. This novel QSP model, designed for human peripheral blood mononuclear cells (PBMC) engrafted xenograft mice, incorporating the most critical components of the mouse model with key cancer and immune cells, can become an integral part of preclinical drug development.
Collapse
Affiliation(s)
- Huilin Ma
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Minu Pilvankar
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut 06877, United States
| | - Jun Wang
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut 06877, United States
| | - Craig Giragossian
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut 06877, United States
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland 21231, United States
| |
Collapse
|
44
|
Alfonso S, Jenner AL, Craig M. Translational approaches to treating dynamical diseases through in silico clinical trials. CHAOS (WOODBURY, N.Y.) 2020; 30:123128. [PMID: 33380031 DOI: 10.1063/5.0019556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The primary goal of drug developers is to establish efficient and effective therapeutic protocols. Multifactorial pathologies, including dynamical diseases and complex disorders, can be difficult to treat, given the high degree of inter- and intra-patient variability and nonlinear physiological relationships. Quantitative approaches combining mechanistic disease modeling and computational strategies are increasingly leveraged to rationalize pre-clinical and clinical studies and to establish effective treatment strategies. The development of clinical trials has led to new computational methods that allow for large clinical data sets to be combined with pharmacokinetic and pharmacodynamic models of diseases. Here, we discuss recent progress using in silico clinical trials to explore treatments for a variety of complex diseases, ultimately demonstrating the immense utility of quantitative methods in drug development and medicine.
Collapse
Affiliation(s)
- Sofia Alfonso
- Department of Physiology, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Adrianne L Jenner
- Department of Mathematics and Statistics, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Morgan Craig
- Department of Physiology, McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
45
|
Mi H, Gong C, Sulam J, Fertig EJ, Szalay AS, Jaffee EM, Stearns V, Emens LA, Cimino-Mathews AM, Popel AS. Digital Pathology Analysis Quantifies Spatial Heterogeneity of CD3, CD4, CD8, CD20, and FoxP3 Immune Markers in Triple-Negative Breast Cancer. Front Physiol 2020; 11:583333. [PMID: 33192595 PMCID: PMC7604437 DOI: 10.3389/fphys.2020.583333] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
Overwhelming evidence has shown the significant role of the tumor microenvironment (TME) in governing the triple-negative breast cancer (TNBC) progression. Digital pathology can provide key information about the spatial heterogeneity within the TME using image analysis and spatial statistics. These analyses have been applied to CD8+ T cells, but quantitative analyses of other important markers and their correlations are limited. In this study, a digital pathology computational workflow is formulated for characterizing the spatial distributions of five immune markers (CD3, CD4, CD8, CD20, and FoxP3) and then the functionality is tested on whole slide images from patients with TNBC. The workflow is initiated by digital image processing to extract and colocalize immune marker-labeled cells and then convert this information to point patterns. Afterward invasive front (IF), central tumor (CT), and normal tissue (N) are characterized. For each region, we examine the intra-tumoral heterogeneity. The workflow is then repeated for all specimens to capture inter-tumoral heterogeneity. In this study, both intra- and inter-tumoral heterogeneities are observed for all five markers across all specimens. Among all regions, IF tends to have higher densities of immune cells and overall larger variations in spatial model fitting parameters and higher density in cell clusters and hotspots compared to CT and N. Results suggest a distinct role of IF in the tumor immuno-architecture. Though the sample size is limited in the study, the computational workflow could be readily reproduced and scaled due to its automatic nature. Importantly, the value of the workflow also lies in its potential to be linked to treatment outcomes and identification of predictive biomarkers for responders/non-responders, and its application to parameterization and validation of computational immuno-oncology models.
Collapse
Affiliation(s)
- Haoyang Mi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chang Gong
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jeremias Sulam
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Johns Hopkins Mathematical Institute for Data Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Elana J Fertig
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Alexander S Szalay
- Henry A. Rowland Department of Physics and Astronomy, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, United States.,Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States.,The Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Vered Stearns
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Leisha A Emens
- Department of Medicine/Hematology-Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Ashley M Cimino-Mathews
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
46
|
Bai R, Li L, Chen X, Chen N, Song W, Cui J. Neoadjuvant and Adjuvant Immunotherapy: Opening New Horizons for Patients With Early-Stage Non-small Cell Lung Cancer. Front Oncol 2020; 10:575472. [PMID: 33163406 PMCID: PMC7581706 DOI: 10.3389/fonc.2020.575472] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is the most common malignant tumor with the highest mortality, and about 84% are non-small cell lung cancer (NSCLC). However, only a small proportion of patients with newly diagnosed lung tumors can receive curative surgery and have a high risk of postoperative recurrence. At present, there are many perioperative treatment methods being continuously explored, such as chemotherapy and targeted therapy, continuously enriching the content of neoadjuvant and adjuvant therapy in early-stage NSCLC. But disappointingly, for patients with driver gene mutation, the significant disease-free survival (DFS) benefit of targeted drugs failed to translate into overall survival (OS) benefit, and for negative patients, chemotherapy has reached a plateau in improving efficacy and survival. Immunotherapy represented by immune checkpoint inhibitors (ICIs) has been researched in more and more clinical trials in patients with early-stage operable disease, gradually enriching the existing treatments. This review focuses on the research progress of clinical trials of neoadjuvant and adjuvant therapy with ICIs in early-stage NSCLC, the exploration of response evaluation and predictive biomarkers, and the urgent problems to be solved in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
47
|
Sové RJ, Jafarnejad M, Zhao C, Wang H, Ma H, Popel AS. QSP-IO: A Quantitative Systems Pharmacology Toolbox for Mechanistic Multiscale Modeling for Immuno-Oncology Applications. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2020; 9:484-497. [PMID: 32618119 PMCID: PMC7499194 DOI: 10.1002/psp4.12546] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
Abstract
Immunotherapy has shown great potential in the treatment of cancer; however, only a fraction of patients respond to treatment, and many experience autoimmune‐related side effects. The pharmaceutical industry has relied on mathematical models to study the behavior of candidate drugs and more recently, complex, whole‐body, quantitative systems pharmacology (QSP) models have become increasingly popular for discovery and development. QSP modeling has the potential to discover novel predictive biomarkers as well as test the efficacy of treatment plans and combination therapies through virtual clinical trials. In this work, we present a QSP modeling platform for immuno‐oncology (IO) that incorporates detailed mechanisms for important immune interactions. This modular platform allows for the construction of QSP models of IO with varying degrees of complexity based on the research questions. Finally, we demonstrate the use of the platform through two example applications of immune checkpoint therapy.
Collapse
Affiliation(s)
- Richard J Sové
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mohammad Jafarnejad
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chen Zhao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Huilin Ma
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
48
|
Chelliah V, Lazarou G, Bhatnagar S, Gibbs JP, Nijsen M, Ray A, Stoll B, Thompson RA, Gulati A, Soukharev S, Yamada A, Weddell J, Sayama H, Oishi M, Wittemer-Rump S, Patel C, Niederalt C, Burghaus R, Scheerans C, Lippert J, Kabilan S, Kareva I, Belousova N, Rolfe A, Zutshi A, Chenel M, Venezia F, Fouliard S, Oberwittler H, Scholer-Dahirel A, Lelievre H, Bottino D, Collins SC, Nguyen HQ, Wang H, Yoneyama T, Zhu AZX, van der Graaf PH, Kierzek AM. Quantitative Systems Pharmacology Approaches for Immuno-Oncology: Adding Virtual Patients to the Development Paradigm. Clin Pharmacol Ther 2020; 109:605-618. [PMID: 32686076 PMCID: PMC7983940 DOI: 10.1002/cpt.1987] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Drug development in oncology commonly exploits the tools of molecular biology to gain therapeutic benefit through reprograming of cellular responses. In immuno‐oncology (IO) the aim is to direct the patient’s own immune system to fight cancer. After remarkable successes of antibodies targeting PD1/PD‐L1 and CTLA4 receptors in targeted patient populations, the focus of further development has shifted toward combination therapies. However, the current drug‐development approach of exploiting a vast number of possible combination targets and dosing regimens has proven to be challenging and is arguably inefficient. In particular, the unprecedented number of clinical trials testing different combinations may no longer be sustainable by the population of available patients. Further development in IO requires a step change in selection and validation of candidate therapies to decrease development attrition rate and limit the number of clinical trials. Quantitative systems pharmacology (QSP) proposes to tackle this challenge through mechanistic modeling and simulation. Compounds’ pharmacokinetics, target binding, and mechanisms of action as well as existing knowledge on the underlying tumor and immune system biology are described by quantitative, dynamic models aiming to predict clinical results for novel combinations. Here, we review the current QSP approaches, the legacy of mathematical models available to quantitative clinical pharmacologists describing interaction between tumor and immune system, and the recent development of IO QSP platform models. We argue that QSP and virtual patients can be integrated as a new tool in existing IO drug development approaches to increase the efficiency and effectiveness of the search for novel combination therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Avijit Ray
- Abbvie Inc., North Chicago, Illinois, USA
| | | | | | - Abhishek Gulati
- Astellas Pharma Global Development Inc./Astellas Pharma Inc., Northbrook, Illinois, USA.,Astellas Pharma Global Development Inc./Astellas Pharma Inc., Tokyo or Tsukuba-shi, Japan
| | - Serguei Soukharev
- Astellas Pharma Global Development Inc./Astellas Pharma Inc., Northbrook, Illinois, USA.,Astellas Pharma Global Development Inc./Astellas Pharma Inc., Tokyo or Tsukuba-shi, Japan
| | - Akihiro Yamada
- Astellas Pharma Global Development Inc./Astellas Pharma Inc., Northbrook, Illinois, USA.,Astellas Pharma Global Development Inc./Astellas Pharma Inc., Tokyo or Tsukuba-shi, Japan
| | - Jared Weddell
- Astellas Pharma Global Development Inc./Astellas Pharma Inc., Northbrook, Illinois, USA.,Astellas Pharma Global Development Inc./Astellas Pharma Inc., Tokyo or Tsukuba-shi, Japan
| | - Hiroyuki Sayama
- Astellas Pharma Global Development Inc./Astellas Pharma Inc., Northbrook, Illinois, USA.,Astellas Pharma Global Development Inc./Astellas Pharma Inc., Tokyo or Tsukuba-shi, Japan
| | - Masayo Oishi
- Astellas Pharma Global Development Inc./Astellas Pharma Inc., Northbrook, Illinois, USA.,Astellas Pharma Global Development Inc./Astellas Pharma Inc., Tokyo or Tsukuba-shi, Japan
| | | | | | | | | | | | | | | | - Irina Kareva
- EMD Serono, Merck KGaA, Billerica, Massachusetts, USA
| | | | - Alex Rolfe
- EMD Serono, Merck KGaA, Billerica, Massachusetts, USA
| | - Anup Zutshi
- EMD Serono, Merck KGaA, Billerica, Massachusetts, USA
| | | | | | | | | | | | | | - Dean Bottino
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts, USA
| | - Sabrina C Collins
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts, USA
| | - Hoa Q Nguyen
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts, USA
| | - Haiqing Wang
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts, USA
| | - Tomoki Yoneyama
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts, USA
| | - Andy Z X Zhu
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
49
|
Ma H, Wang H, Sove RJ, Jafarnejad M, Tsai CH, Wang J, Giragossian C, Popel AS. A Quantitative Systems Pharmacology Model of T Cell Engager Applied to Solid Tumor. AAPS JOURNAL 2020; 22:85. [PMID: 32533270 PMCID: PMC7293198 DOI: 10.1208/s12248-020-00450-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022]
Abstract
Cancer immunotherapy has recently drawn remarkable attention as promising results in the clinic have shown its ability to improve the overall survival, and T cells are considered to be one of the primary effectors for cancer immunotherapy. Enhanced and restored T cell tumoricidal activity has shown great potential for killing cancer cells. Bispecific T cell engagers (TCEs) are a growing class of molecules that are designed to bind two different antigens on the surface of T cells and cancer cells to bring them in close proximity and selectively activate effector T cells to kill target cancer cells. New T cell engagers are being investigated for the treatment of solid tumors. The activity of newly developed T cell engagers showed a strong correlation with tumor target antigen expression. However, the correlation between tumor-associated antigen expression and overall response of cancer patients is poorly understood. In this study, we used a well-calibrated quantitative systems pharmacology (QSP) model extended to bispecific T cell engagers to explore their efficacy and identify potential biomarkers. In principle, patient-specific response can be predicted through this model according to each patient's individual characteristics. This extended QSP model has been calibrated with available experimental data and provides predictions of patients' response to TCE treatment.
Collapse
Affiliation(s)
- Huilin Ma
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard J Sove
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mohammad Jafarnejad
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chia-Hung Tsai
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Jun Wang
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Craig Giragossian
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
50
|
Wang S, Mao Y. [Progress in Neoadjuvant Immunotherapies for Resectable Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:371-380. [PMID: 32283581 PMCID: PMC7260379 DOI: 10.3779/j.issn.1009-3419.2020.103.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
可切除非小细胞肺癌(non-small cell lung cancer, NSCLC)是一种潜在可治愈性疾病。尽管外科手术仍然是可切除NSCLC的主要治疗手段,但仍有部分患者术后出现局部复发和远距离转移。因此,为改善长期生存效果术前术后辅助治疗可能仍有必要。免疫检查点抑制剂已经临床试验证实其治疗效果,目前已被批准用于转移性NSCLC或部分Ⅲ期局部晚期NSCLC的一线或二线使用。免疫治疗在晚期肺癌的显著疗效使研究者开始关注免疫治疗是否用于可切除非小细胞肺癌中的新辅助治疗。本文对免疫治疗作为可切除非小细胞肺癌的新辅助治疗的研究进行综述。
Collapse
Affiliation(s)
- Shuaibo Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yousheng Mao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|