1
|
V A S, Nayak UY, Sathyanarayana MB, Chaudhari BB, Bhat K. Formulation Strategy of BCS-II Drugs by Coupling Mechanistic In-Vitro and Nonclinical In-Vivo Data with PBPK: Fundamentals of Absorption-Dissolution to Parameterization of Modelling and Simulation. AAPS PharmSciTech 2025; 26:106. [PMID: 40244539 DOI: 10.1208/s12249-025-03093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
BCS class II candidates pose challenges in drug development due to their low solubility and permeability. Researchers have explored various techniques; co-amorphous and solid dispersion are major approaches to enhance in-vitro drug solubility and dissolution. However, in-vivo oral bioavailability remains challenging. Physiologically based pharmacokinetic (PBPK) modeling with a detailed understanding of drug absorption, distribution, metabolism, and excretion (ADME) using a mechanistic approach is emerging. This review summarizes the fundamentals of the PBPK, dissolution-absorption models, parameterization of oral absorption for BCS class II drugs, and provides information about newly emerging artificial intelligence/machine learning (AI/ML) linked PBPK approaches with their advantages, disadvantages, challenges and areas of further exploration. Additionally, the fully integrated workflow for formulation design for investigational new drugs (INDs) and virtual bioequivalence for generic molecules falling under BCS-II are discussed.
Collapse
Affiliation(s)
- Shriya V A
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Muddukrishna Badamane Sathyanarayana
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Bhim Bahadur Chaudhari
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Krishnamurthy Bhat
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
2
|
Vinarov Z, Butler J, Kesisoglou F, Koziolek M, Augustijns P. Assessment of food effects during clinical development. Int J Pharm 2023; 635:122758. [PMID: 36801481 DOI: 10.1016/j.ijpharm.2023.122758] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/27/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Food-drug interactions frequently hamper oral drug development due to various physicochemical, physiological and formulation-dependent mechanisms. This has stimulated the development of a range of promising biopharmaceutical assessment tools which, however, lack standardized settings and protocols. Hence, this manuscript aims to provide an overview of the general approach and the methodology used in food effect assessment and prediction. For in vitro dissolution-based predictions, the expected food effect mechanism should be carefully considered when selecting the level of complexity of the model, together with its drawbacks and advantages. Typically, in vitro dissolution profiles are then incorporated into physiologically based pharmacokinetic models, which can estimate the impact of food-drug interactions on bioavailability within 2-fold prediction error, at least. Positive food effects related to drug solubilization in the GI tract are easier to predict than negative food effects. Preclinical animal models also provide a good level of food effect prediction, with beagle dogs remaining the gold standard. When solubility-related food-drug interactions have large clinical impact, advanced formulation approaches can be used to improve fasted state pharmacokinetics, hence decreasing the fasted/fed difference in oral bioavailability. Finally, the knowledge from all studies should be combined to secure regulatory approval of the labelling instructions.
Collapse
Affiliation(s)
- Zahari Vinarov
- Department of Chemical and Pharmaceutical Engineering, Sofia University, Sofia, Bulgaria; Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - James Butler
- Medicine Development and Supply, GlaxoSmithKline Research and Development, Ware, United Kingdom
| | | | - Mirko Koziolek
- AbbVie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Ludwigshafen, Germany
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Sotthivirat S, Ren J, Wasylaschuk W, Afanador N, Rosenberg K, Taggart RV, Skomski D, Brown C. An Integrated Approach for High-Shear Wet Granulation (HSWG) Processing of TPGS-Based Formulations: Demonstration of Process Robustness through Experimental Design Conditions. J Pharm Sci 2021; 110:2934-2945. [PMID: 33794276 DOI: 10.1016/j.xphs.2021.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 11/19/2022]
Abstract
The goal of this study was to understand the impact of high-shear wet granulation (HSWG) processing conditions on product attributes for a tablet formulation containing the non-ionic surfactant TPGS. The use of TPGS in oral solid drug products has been reported to be challenging due to the low melting temperature of TPGS. In addition, literature on TPGS-based HSWG formulations, especially practical processing and scale-up knowledge, is limited. Presented here is an extension of this TPGS application in a tablet formulation, with a focus on the HSWG processing and scale-up across different granulators. To understand the processing space for this TPGS-based HSWG formulation, two consecutive studies were conducted with different objectives. First, an exploratory study was conducted to understand the impact of extreme processing conditions on product attributes. Subsequently, a factorial design of experiment (DoE) study assessed the separate contributions and interactions from HSWG processing variables. The outcome of both studies led to a successful process scale-up and product transfer from lab to commercial development using different granulators. The TPGS-based formulation was demonstrated to provide robust downstream processing (improved flowability and reduced segregation potential) within a wide HSWG operating space, while having a minimal impact on product performance across different granulators.
Collapse
Affiliation(s)
- S Sotthivirat
- Oral Formulation Sciences and Technology, Merck & Co., Inc., West Point, PA 19486, USA.
| | - J Ren
- Oral Formulation Sciences and Technology, Merck & Co., Inc., West Point, PA 19486, USA
| | - W Wasylaschuk
- Analytical Sciences, Merck & Co., Inc., West Point, PA 19486, USA
| | - N Afanador
- Research CMC Statistics, Merck & Co., Inc., West Point, PA 19486, USA
| | - K Rosenberg
- Center for Materials Science & Engineering, Merck & Co., Inc., West Point, PA 19486, USA
| | - R V Taggart
- Oral Formulation Sciences and Technology, Merck & Co., Inc., West Point, PA 19486, USA
| | - D Skomski
- Preformulation Sciences, Merck & Co., Inc., West Point, PA 19486, USA
| | - C Brown
- Oral Formulation Sciences and Technology, Merck & Co., Inc., West Point, PA 19486, USA
| |
Collapse
|
4
|
Challenges of Dissolution Methods Development for Soft Gelatin Capsules. Pharmaceutics 2021; 13:pharmaceutics13020214. [PMID: 33557167 PMCID: PMC7913951 DOI: 10.3390/pharmaceutics13020214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, the development of soft gelatin capsules (SGCs) dosage forms has attracted a great deal of interest in the oral delivery of poorly water-soluble drugs. This is attributed to the increased number of poorly soluble drugs in the pipeline, and hence the challenges of finding innovative ways of developing bioavailable and stable dosage forms. Encapsulation of these drugs into SGCs is one of the approaches that is utilized to deliver the active ingredients to the systemic circulation to overcome certain formulation hurdles. Once formulated, encapsulated drugs in the form of SGCs require suitable in vitro dissolution test methods to ensure drug product quality and performance. This review focuses on challenges facing dissolution test method development for SGCs. A brief discussion of the physicochemical and formulation factors that affect the dissolution properties of SGCs will be highlighted. Likewise, the influence of cross-linking of gelatin on the dissolution properties of SGCs will also be discussed.
Collapse
|
5
|
Sotthivirat S, Ramesh R, Wasylaschuk W, Bottone C, Xia B, Stellabott J, McNevin M, Skomski D, Brown C. Effect of TPGS surfactant on dissolution sensitivity of a poorly water-soluble drug using high-shear wet granulation. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.07.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Selen A, Müllertz A, Kesisoglou F, Ho RJY, Cook JA, Dickinson PA, Flanagan T. Integrated Multi-stakeholder Systems Thinking Strategy: Decision-making with Biopharmaceutics Risk Assessment Roadmap (BioRAM) to Optimize Clinical Performance of Drug Products. AAPS JOURNAL 2020; 22:97. [PMID: 32719954 DOI: 10.1208/s12248-020-00470-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
Decision-making in drug development benefits from an integrated systems approach, where the stakeholders identify and address the critical questions for the system through carefully designed and performed studies. Biopharmaceutics Risk Assessment Roadmap (BioRAM) is such a systems approach for application of systems thinking to patient focused and timely decision-making, suitable for all stages of drug discovery and development. We described the BioRAM therapy-driven drug delivery framework, strategic roadmap, and integrated risk assessment instrument (BioRAM Scoring Grid) in previous publications (J Pharm Sci 103:3377-97, 2014; J Pharm Sci 105:3243-55, 2016). Integration of systems thinking with pharmaceutical development, manufacturing, and clinical sciences and health care is unique to BioRAM where the developed strategy identifies the system and enables risk characterization and balancing for the entire system. Successful decision-making process in BioRAM starts with the Blueprint (BP) meetings. Through shared understanding of the system, the program strategy is developed and captured in the program BP. Here, we provide three semi-hypothetical examples for illustrating risk-based decision-making in high and moderate risk settings. In the high-risk setting, which is a rare disease area, two completely alternate development approaches are considered (gene therapy and small molecule). The two moderate-risk examples represent varied knowledge levels and drivers for the programs. In one moderate-risk example, knowledge leveraging opportunities are drawn from the manufacturing knowledge and clinical performance of a similar drug substance. In the other example, knowledge on acute tolerance patterns for a similar mechanistic pathway is utilized for identifying markers to inform the drug release profile from the dosage form with the necessary "flexibility" for dosing. All examples illustrate implementation of the BioRAM strategy for leveraging knowledge and decision-making to optimize the clinical performance of drug products for patient benefit.
Collapse
Affiliation(s)
- Arzu Selen
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Testing and Research, 10903 New Hampshire Ave., Silver Spring, Maryland, 20993, USA.
| | - Anette Müllertz
- Bioneer: FARMA, Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Filippos Kesisoglou
- Biopharmaceutics, Pharmaceutical Sciences and Clinical Supply, Merck & Co, Inc., West Point, Pennsylvania, 19486, USA
| | - Rodney J Y Ho
- University of Washington, Seattle, Washington, 98195, USA
| | - Jack A Cook
- Clinical Pharmacology Department, Global Product Development, Pfizer, Inc., Groton, Connecticut, 06340, USA
| | - Paul A Dickinson
- Seda Pharmaceutical Development Services, Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | - Talia Flanagan
- UCB Pharma S.A., Avenue de l'Industrie, 1420, Braine - l'Alleud, Belgium
| |
Collapse
|
7
|
Njoku JO, Amaral Silva D, Mukherjee D, Webster GK, Löbenberg R. In silico Tools at Early Stage of Pharmaceutical Development: Data Needs and Software Capabilities. AAPS PharmSciTech 2019; 20:243. [PMID: 31264126 DOI: 10.1208/s12249-019-1461-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/18/2019] [Indexed: 01/17/2023] Open
Abstract
In early drug development, the selection of a formulation platform and decisions on formulation strategies have to be made within a short timeframe and often with minimal use of the active pharmaceutical ingredient (API). The current work evaluated the various physicochemical parameters required to improve the prediction accuracy of simulation software for immediate release tablets in early drug development. DDDPlus™ was used in simulating dissolution test profiles of immediate release tablets of ritonavir and all simulations were compared with experimental results. The minimum data requirements to make useful predictions were assessed using the ADMET predictor (part of DDDPlus) and Chemicalize (an online resource). A surfactant model was developed to estimate the solubility enhancement in media containing surfactant and the software's transfer model based on the USP two-tiered dissolution test was assessed. One measured data point was shown to be sufficient to make predictive simulations in DDDPlus. At pH 2.0, the software overestimated drug release while at pH 1.0 and 6.8, simulations were close to the measured values. A surfactant solubility model established with measured data gave good dissolution predictions. The transfer model uses a single-vessel model and was unable to predict the two in vivo environments separately. For weak bases like ritonavir, a minimum of three solubility data points is recommended for in silico predictions in buffered media. A surfactant solubility model is useful when predicting dissolution behavior in surfactant media and in silico predictions need measured solubility data to be predictive.
Collapse
|
8
|
Pentafragka C, Symillides M, McAllister M, Dressman J, Vertzoni M, Reppas C. The impact of food intake on the luminal environment and performance of oral drug products with a view to in vitro and in silico simulations: a PEARRL review. J Pharm Pharmacol 2018; 71:557-580. [DOI: 10.1111/jphp.12999] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/04/2018] [Indexed: 01/24/2023]
Abstract
Abstract
Objectives
Using the type of meal and dosing conditions suggested by regulatory agencies as a basis, this review has two specific objectives: first, to summarize our understanding on the impact of food intake on luminal environment and drug product performance and second, to summarize the usefulness and limitations of available in vitro and in silico methodologies for the evaluation of drug product performance after food intake.
Key findings
Characterization of the luminal environment and studies evaluating product performance in the lumen, under conditions suggested by regulatory agencies for simulating the fed state, are limited. Various in vitro methodologies have been proposed for evaluating drug product performance in the fed state, but systematic validation is lacking. Physiologically based pharmacokinetic (PBPK) modelling approaches require the use of in vitro biorelevant data and, to date, have been used primarily for investigating the mechanisms via which an already observed food effect is mediated.
Summary
Better understanding of the impact of changes induced by the meal administration conditions suggested by regulatory agencies on the luminal fate of the drug product is needed. Relevant information will be useful for optimizing the in vitro test methods and increasing the usefulness of PBPK modelling methodologies.
Collapse
Affiliation(s)
- Christina Pentafragka
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Mira Symillides
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt/Main, Germany
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
O'Shea JP, Holm R, O'Driscoll CM, Griffin BT. Food for thought: formulating away the food effect - a PEARRL review. ACTA ACUST UNITED AC 2018; 71:510-535. [PMID: 29956330 DOI: 10.1111/jphp.12957] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/03/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Co-ingestion of oral dosage forms with meals can cause substantial changes in bioavailability relative to the fasted state. Food-mediated effects on bioavailability can have significant consequences in drug development, regulatory and clinical settings. To date, the primary focus of research has focused on the ability to mechanistically understand the causes and predict the occurrence of these effects. KEY FINDINGS The current review describes the mechanisms underpinning the occurrence of food effects, sheds new insights on the relative frequency for newly licensed medicines and describes the various methods by which they can be overcome. Analysis of oral medicines licensed by either the EMA or FDA since 2010 revealed that over 40% display significant food effects. Due to altered bioavailability, these medicines are often required to be dosed, rather restrictively, in either the fed or the fasted state, which can hinder clinical usefulness. SUMMARY There are clinical and commercial advantages to predicting the presence of food effects early in the drug development process, in order to mitigate this risk of variable food effect bioavailability. Formulation approaches aimed at reducing variable food-dependent bioavailability, through the use of bio-enabling formulations, are an essential tool in addressing this challenge and the latest state of the art in this field are summarised here.
Collapse
Affiliation(s)
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson and Johnson, Beerse, Belgium
| | | | | |
Collapse
|
10
|
Chung J, Kesisoglou F. Physiologically Based Oral Absorption Modelling to Study Gut-Level Drug Interactions. J Pharm Sci 2017; 107:18-23. [PMID: 28847476 DOI: 10.1016/j.xphs.2017.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 01/11/2023]
Abstract
Physiologically based oral absorption models are in silico tools primarily used to guide formulation development and project the clinical performance of formulation variants. This commentary briefly discusses additional oral absorption model applications, focusing on gut-level drug interactions. Gut-level drug interactions can involve drug degradation, metabolic enzymes, transporters, gastrointestinal motility modulators, acid-reducing agents, and food. The growth in publications reporting physiologically based oral absorption model utilization and successful pharmacokinetic prediction (e.g., after acid-reducing agents or food coadministration) indicate that oral absorption models have achieved a level of maturity within the industry particularly over the past 15 years. Provided appropriate data and model validation, oral absorption modeling/simulation may serve as a surrogate for clinical studies by providing both mechanistic and quantitative understanding of oral delivery considerations on pharmacokinetics.
Collapse
Affiliation(s)
- John Chung
- Drug Product Technologies, Amgen, Inc., Thousand Oaks, California 91320.
| | - Filippos Kesisoglou
- Biopharmaceutics and Specialty Dosage Forms, Pharmaceutical Sciences and Clinical Supply, Merck & Company, Inc., West Point, Pennsylvania 19486
| |
Collapse
|
11
|
Guimarães TF, Comelli ACC, Tacón LA, Cunha TA, Marreto RN, Freitas LAP. Fluidized Bed Hot Melt Granulation with Hydrophilic Materials Improves Enalapril Maleate Stability. AAPS PharmSciTech 2017; 18:1302-1310. [PMID: 27488342 DOI: 10.1208/s12249-016-0593-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/18/2016] [Indexed: 11/30/2022] Open
Abstract
This work aimed at developing enalapril maleate granules in order to improve its stability in solid dosage form. Granules were prepared by hot melt granulation using a fluidized bed apparatus. Gelucire 50/13®, polyethylene glycol 6000 e Poloxamer 407® were studied and compared as binders in 2 × 2 factorial designs where the proportions of enalapril maleate, binders and spray dried lactose were varied. The granulation process resulted in high yields and granule sizes that indicated the prevalence of particles coating. Furthermore, the granules obtained showed adequate flowability and a fast dissolution rate of enalapril maleate with almost 100% of the drug released in 10 min. The stability of enalapril maleate in hard gelatin capsules showed that the drug stability was greatly increased in granules, since for raw drug, the remaining content of enalapril maleate after 91 days was 68.4% and, for granules, the content was always above 93%. This result was confirmed by the quantification of the degradation products, enalaprilat and diketopiperazine, which were found in very low content in granules samples. The results demonstrate that fluidized bed hot melt granulation with hydrophilic binders is a suitable alternative for improving the chemical stability of enalapril maleate.
Collapse
|
12
|
Pandey P, Levins C, Pafiakis S, Zacour B, Bindra DS, Trinh J, Buckley D, Gour S, Sharif S, Stamato H. Enhancing tablet disintegration characteristics of a highly water-soluble high-drug-loading formulation by granulation process. Pharm Dev Technol 2016; 23:587-595. [PMID: 27879156 DOI: 10.1080/10837450.2016.1264416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The objective of this study was to improve the disintegration and dissolution characteristics of a highly water-soluble tablet matrix by altering the manufacturing process. A high disintegration time along with high dependence of the disintegration time on tablet hardness was observed for a high drug loading (70% w/w) API when formulated using a high-shear wet granulation (HSWG) process. Keeping the formulation composition mostly constant, a fluid-bed granulation (FBG) process was explored as an alternate granulation method using a 2(4-1) fractional factorial design with two center points. FBG batches (10 batches) were manufactured using varying disingtegrant amount, spray rate, inlet temperature (T) and atomization air pressure. The resultant final blend particle size was affected significantly by spray rate (p = .0009), inlet T (p = .0062), atomization air pressure (p = .0134) and the interaction effect between inlet T*spray rate (p = .0241). The compactibility of the final blend was affected significantly by disintegrant amount (p < .0001), atomization air pressure (p = .0013) and spray rate (p = .05). It was observed that the fluid-bed batches gave significantly lower disintegration times than the HSWG batches, and mercury intrusion porosimetry data revealed that this was caused by the higher internal pore structure of tablets manufactured using the FBG batches.
Collapse
Affiliation(s)
- Preetanshu Pandey
- a Drug Product Science and Technology, Bristol-Myers Squibb , New Brunswick , NJ , USA
| | - Christopher Levins
- a Drug Product Science and Technology, Bristol-Myers Squibb , New Brunswick , NJ , USA
| | - Steve Pafiakis
- a Drug Product Science and Technology, Bristol-Myers Squibb , New Brunswick , NJ , USA
| | - Brian Zacour
- a Drug Product Science and Technology, Bristol-Myers Squibb , New Brunswick , NJ , USA
| | - Dilbir S Bindra
- a Drug Product Science and Technology, Bristol-Myers Squibb , New Brunswick , NJ , USA
| | - Jade Trinh
- a Drug Product Science and Technology, Bristol-Myers Squibb , New Brunswick , NJ , USA
| | - David Buckley
- a Drug Product Science and Technology, Bristol-Myers Squibb , New Brunswick , NJ , USA
| | - Shruti Gour
- a Drug Product Science and Technology, Bristol-Myers Squibb , New Brunswick , NJ , USA
| | - Shasad Sharif
- a Drug Product Science and Technology, Bristol-Myers Squibb , New Brunswick , NJ , USA
| | - Howard Stamato
- a Drug Product Science and Technology, Bristol-Myers Squibb , New Brunswick , NJ , USA
| |
Collapse
|
13
|
Rezhdo O, Speciner L, Carrier R. Lipid-associated oral delivery: Mechanisms and analysis of oral absorption enhancement. J Control Release 2016; 240:544-560. [PMID: 27520734 PMCID: PMC5082615 DOI: 10.1016/j.jconrel.2016.07.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/29/2023]
Abstract
The majority of newly discovered oral drugs are poorly water soluble, and co-administration with lipids has proven effective in significantly enhancing bioavailability of some compounds with low aqueous solubility. Yet, lipid-based delivery technologies have not been widely employed in commercial oral products. Lipids can impact drug transport and fate in the gastrointestinal (GI) tract through multiple mechanisms including enhancement of solubility and dissolution kinetics, enhancement of permeation through the intestinal mucosa, and triggering drug precipitation upon lipid emulsion depletion (e.g., by digestion). The effect of lipids on drug absorption is currently not quantitatively predictable, in part due to the multiple complex dynamic processes that can be impacted by lipids. Quantitative mechanistic analysis of the processes significant to lipid system function and overall impact on drug absorption can aid in the understanding of drug-lipid interactions in the GI tract and exploitation of such interactions to achieve optimal lipid-based drug delivery. In this review, we discuss the impact of co-delivered lipids and lipid digestion on drug dissolution, partitioning, and absorption in the context of the experimental tools and associated kinetic expressions used to study and model these processes. The potential benefit of a systems-based consideration of the concurrent multiple dynamic processes occurring upon co-dosing lipids and drugs to predict the impact of lipids on drug absorption and enable rational design of lipid-based delivery systems is presented.
Collapse
Affiliation(s)
- Oljora Rezhdo
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Lauren Speciner
- Department of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Rebecca Carrier
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States.
| |
Collapse
|
14
|
Hartmanshenn C, Scherholz M, Androulakis IP. Physiologically-based pharmacokinetic models: approaches for enabling personalized medicine. J Pharmacokinet Pharmacodyn 2016; 43:481-504. [PMID: 27647273 DOI: 10.1007/s10928-016-9492-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/06/2016] [Indexed: 12/17/2022]
Abstract
Personalized medicine strives to deliver the 'right drug at the right dose' by considering inter-person variability, one of the causes for therapeutic failure in specialized populations of patients. Physiologically-based pharmacokinetic (PBPK) modeling is a key tool in the advancement of personalized medicine to evaluate complex clinical scenarios, making use of physiological information as well as physicochemical data to simulate various physiological states to predict the distribution of pharmacokinetic responses. The increased dependency on PBPK models to address regulatory questions is aligned with the ability of PBPK models to minimize ethical and technical difficulties associated with pharmacokinetic and toxicology experiments for special patient populations. Subpopulation modeling can be achieved through an iterative and integrative approach using an adopt, adapt, develop, assess, amend, and deliver methodology. PBPK modeling has two valuable applications in personalized medicine: (1) determining the importance of certain subpopulations within a distribution of pharmacokinetic responses for a given drug formulation and (2) establishing the formulation design space needed to attain a targeted drug plasma concentration profile. This review article focuses on model development for physiological differences associated with sex (male vs. female), age (pediatric vs. young adults vs. elderly), disease state (healthy vs. unhealthy), and temporal variation (influence of biological rhythms), connecting them to drug product formulation development within the quality by design framework. Although PBPK modeling has come a long way, there is still a lengthy road before it can be fully accepted by pharmacologists, clinicians, and the broader industry.
Collapse
Affiliation(s)
- Clara Hartmanshenn
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
| | - Megerle Scherholz
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
| | - Ioannis P Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA. .,Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
15
|
Kesisoglou F, Chung J, van Asperen J, Heimbach T. Physiologically Based Absorption Modeling to Impact Biopharmaceutics and Formulation Strategies in Drug Development—Industry Case Studies. J Pharm Sci 2016; 105:2723-2734. [DOI: 10.1016/j.xphs.2015.11.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Cao X, Zhou X, Wang Y, Gong T, Zhang ZR, Liu R, Fu Y. Diblock- and triblock-copolymer based mixed micelles with high tumor penetration in vitro and in vivo. J Mater Chem B 2016; 4:3216-3224. [PMID: 32263257 DOI: 10.1039/c6tb00508j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A series of self-assembled mixed micelles composed of TPGS and Pluronics were fabricated and their cellular uptake and exocytosis behaviors were studied in 2D cell and 3D tumor spheroid models.
Collapse
Affiliation(s)
- Xi Cao
- Key Laboratory of Drug Targeting and Delivery
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Xu Zhou
- Key Laboratory of Drug Targeting and Delivery
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Yu Wang
- Key Laboratory of Drug Targeting and Delivery
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Tao Gong
- Key Laboratory of Drug Targeting and Delivery
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Zhi-Rong Zhang
- Key Laboratory of Drug Targeting and Delivery
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Renhe Liu
- Department of Chemistry
- The Scripps Research Institute
- La Jolla
- USA
| | - Yao Fu
- Key Laboratory of Drug Targeting and Delivery
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
| |
Collapse
|
17
|
Pandey P, Badawy S. A quality by design approach to scale-up of high-shear wet granulation process. Drug Dev Ind Pharm 2015; 42:175-89. [PMID: 26489403 DOI: 10.3109/03639045.2015.1100199] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
High-shear wet granulation is a complex process that in turn makes scale-up a challenging task. Scale-up of high-shear wet granulation process has been studied extensively in the past with various different methodologies being proposed in the literature. This review article discusses existing scale-up principles and categorizes the various approaches into two main scale-up strategies - parameter-based and attribute-based. With the advent of quality by design (QbD) principle in drug product development process, an increased emphasis toward the latter approach may be needed to ensure product robustness. In practice, a combination of both scale-up strategies is often utilized. In a QbD paradigm, there is also a need for an increased fundamental and mechanistic understanding of the process. This can be achieved either by increased experimentation that comes at higher costs, or by using modeling techniques, that are also discussed as part of this review.
Collapse
Affiliation(s)
- Preetanshu Pandey
- a Drug Product Science and Technology, Bristol-Myers Squibb , New Brunswick , NJ , USA
| | - Sherif Badawy
- a Drug Product Science and Technology, Bristol-Myers Squibb , New Brunswick , NJ , USA
| |
Collapse
|
18
|
Tao J, Pandey P, Bindra DS, Gao JZ, Narang AS. Evaluating Scale-Up Rules of a High-Shear Wet Granulation Process. J Pharm Sci 2015; 104:2323-33. [DOI: 10.1002/jps.24504] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 11/10/2022]
|
19
|
Mathias N, Xu Y, Vig B, Kestur U, Saari A, Crison J, Desai D, Vanarase A, Hussain M. Food Effect in Humans: Predicting the Risk Through In Vitro Dissolution and In Vivo Pharmacokinetic Models. AAPS JOURNAL 2015; 17:988-98. [PMID: 25933598 DOI: 10.1208/s12248-015-9759-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/24/2015] [Indexed: 11/30/2022]
Abstract
In vitro and in vivo experimental models are frequently used to assess a new chemical entity's (NCE) biopharmaceutical performance risk for food effect (FE) in humans. Their ability to predict human FE hinges on replicating key features of clinical FE studies and building an in vitro-in vivo relationship (IVIVR). In this study, 22 compounds that span a wide range of physicochemical properties, Biopharmaceutics Classification System (BCS) classes, and food sensitivity were evaluated for biorelevant dissolution in fasted- and fed-state intestinal media and the dog fed/fasted-state pharmacokinetic model. Using the area under the curve (AUC) as a performance measure, the ratio of the fed-to-fasted AUC (FE ratio) was used to correlate each experimental model to FE ratio in humans. A linear correlation was observed for the in vitro dissolution-human IVIVR (R (2) = 0.66, % mean square error 20.7%). Similarly, the dog FE ratio correlated linearly with the FE ratio in humans (R (2) = 0.74, % mean square error 16.25%) for 15 compounds. Data points near the correlation line indicate dissolution-driven mechanism for food effect, while deviations from the correlation line shed light on unique mechanisms that can come into play such as GI physiology or unusual physicochemical properties. In summary, fed/fasted dissolution studies and dog PK studies show a reasonable correlation to human FE, hence are useful tools to flag high-risk NCEs entering clinical development. Combining kinetic dissolution, dog FE model and in silico modeling one can study FE mechanism and formulation strategies to mitigate the FE risk.
Collapse
Affiliation(s)
- Neil Mathias
- Drug Product Science & Technology, Bristol-Myers Squibb Co., New Brunswick, New Jersey, 08903, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|