1
|
Zapolski R, Musiał W. The Response Surface Methodology for Assessment of HLB Values of Mixtures of Non-Ionic Surfactants Using Parameters from Their π-A Isotherms. Molecules 2024; 29:2351. [PMID: 38792213 PMCID: PMC11124233 DOI: 10.3390/molecules29102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The aim of the work was to determine important parameters of the course of π-A isotherms, which can determine the HLB (hydrophilic-lipophilic balance) value of surfactant mixtures with selected structural features, such as a straight or branched hydrocarbon chain and a double bond, using RSM (response surface methodology) computational methods. Mixtures of surfactants derived from fatty acids and sorbitan with specific HLB values were evaluated by Langmuir trough. The resulting elasticity modules (ELM) and molecules surfaces (SAM) were evaluated via response surface methodology and respective equations were calculated. The π-A isotherm determined in a Langmuir trough and the ELM and SAM parameters determined on the basis of this isotherm may be useful for determining the HLB of a fixed surfactant mixture. The RSM method used, in which ELM and SAM were assumed as two independent variables, can be a useful technique for tracking the influence of individual molecular characteristics on the hydrophilic-lipophilic properties of mixtures of surfactant compounds. Changes in HLB as a dependent variable can be described as a function of ELM and SAM.
Collapse
Affiliation(s)
| | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland;
| |
Collapse
|
2
|
Kumar L, Rana R, Kukreti G, Aggarwal V, Chaurasia H, Sharma P, Jyothiraditya V. Overview of Spanlastics: A Groundbreaking Elastic Medication Delivery Device with Versatile Prospects for Administration via Various Routes. Curr Pharm Des 2024; 30:2206-2221. [PMID: 38967069 DOI: 10.2174/0113816128313398240613063019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 07/06/2024]
Abstract
When compared to the challenges associated with traditional dosage forms, medication delivery systems based on nanotechnology have been a huge boon. One such candidate for medication delivery is spanlastics, an elastic nanovesicle that can transport a diverse array of medicinal compounds. The use of spanlastics has been associated with an increase in interest in alternative administration methods. The non-ionic surfactant or surfactant blend is the main component of spanlastics. The purpose of this review was primarily to examine the potential of spanlastics as a delivery system for a variety of medication classes administered via diverse routes. Science Direct, Google Scholar, and Pubmed were utilized to search the academic literature for this review. Several studies have demonstrated that spanlastics greatly improve therapeutic effectiveness, increase medication absorption, and decrease drug toxicity. This paper provides a summary of the composition and structure of spanlastics along with their utility in the delivery of various therapeutic agents by adopting different routes. Additionally, it provides an overview of the numerous disorders that may be treated using drugs that are contained in spanlastic vesicles.
Collapse
Affiliation(s)
- Lalit Kumar
- Department of Pharmaceutics, GNA School of Pharmacy, GNA University, Phagwara, Punjab 144401, India
| | - Ritesh Rana
- Department of Pharmaceutical Sciences (Pharmaceutics), Laureate Institute of Pharmacy, Kathog-Kangra, Himachal Pradesh 176031, India
| | - Gauree Kukreti
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala Dehradun, Uttarakhand 248161, India
| | - Vikas Aggarwal
- Senior Pharmacovigilance Specialist, Continuum India LLP, 3rd Floor, Tower F DLF Building, Chandigarh Technology Park, Chandigarh 160101, India
| | - Himanshu Chaurasia
- Department of Pharmacy, Quantum School of Health Science, Quantum University, Vill. Mandawar (N.H.73), Roorkee-Dehradun Highway, Roorkee, Uttrakhand 247662, India
| | - Puneet Sharma
- Department of Pharmaceutical Sciences (Pharmaceutics), Himachal Institute of Pharmaceutical Education and Research (HIPER), Bela-Nadaun, District-Hamirpur, H.P. 177033, India
| | - Vuluchala Jyothiraditya
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| |
Collapse
|
3
|
Ahuja A, Bajpai M. Novel Arena of Nanocosmetics: Applications and their Remarkable Contribution in the Management of Dermal Disorders, Topical Delivery, Future Trends and Challenges. Curr Pharm Des 2024; 30:115-139. [PMID: 38204262 DOI: 10.2174/0113816128288516231228101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Nanocosmetics have attracted a considerable audience towards natural care due to their low cost, target-specific delivery, and reduced toxicity compared to chemical-based cosmetics. Nanofomulations, including nanoemulsions, nanotubes, and polymeric carriers, have become next-generation products explored for the multifaced applications of nanotechnology in skin care. The rise in the cosmetic industry demands innovative and personalized products designed using nanocarriers for better targeting and improving patient compliance. Furthermore, nanocosmetics increase the efficiency of skin permeation active ingredient entrapment, providing better UV protection. Moreover, it offers controlled drug release, targeting active sites and enhancing physical stability. Further, overcoming the drawback of penetration problems makes them sustainable formulations for precision medicine. Skincare nourishment with nanocosmetics using Indian spices helps to maintain, beautify, and rejuvenate human skin. Nanophytopharmaceuticals extracted from plants, including alkaloids, flavonoids, antioxidants, and volatile oils, are essential phyto-products for skin care. Nano herbals and nanocosmetics are a growing market and gift of nature that nourishes and cures skin ailments like acne, pemphigus, anti-aging, albinism, psoriasis, and fungal infections. The emerging concern is highlighted in the investigation of nanoformulation toxicity and safety concerns in skin care. Further, it helps to manifest research, development, and innovation in expanding the scope of herbal industries.
Collapse
Affiliation(s)
- Ashima Ahuja
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| |
Collapse
|
4
|
Phanphothong P, Kanpipit N, Thapphasaraphong S. The characteristics and biological activity enhancements of melatonin encapsulations for skin care product applications. Int J Pharm X 2023; 6:100217. [PMID: 37927583 PMCID: PMC10624970 DOI: 10.1016/j.ijpx.2023.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/27/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Melatonin (MLT) exhibits antioxidant, ultraviolet protection, anti-inflammatory, and anti-aging properties. However, its effectiveness is limited by instability, a short half-life, and incompatible absorption. In this research, we encapsulated melatonin (MLT) in transfersomes (MT) and niosomes (MN) to enhance their properties and investigate their effects through in vitro cell assays using murine macrophages cells and human foreskin fibroblasts cells. The vesicle morphology, vesicle size, polydispersity index, zeta potential, entrapment efficiency (EE%), attenuated total reflectance-Fourier transform spectroscopy (ATR-FTIR) spectra, along with in vitro release, permeation profiles, and stability study were also evaluated. The results showed that both encapsulations displayed spherical morphology at the nanometric scale, their great physical stability and provided an EE% range of 58-78%. The MLT incorporation into the vesicle was confirmed by the ATR-FTIR spectra. Additionally, the encapsulation' release profiles fitted with the Higuchi model, indicating controlled release of melatonin. Furthermore, MT showed greater permeability than MN and MS including melatonin deposition. In cell assays, MT exhibited significantly higher nitric oxide inhibition and stimulation of collagen compared to MN and MS. Therefore, MT demonstrated the highest possibility for anti-inflammatory and collagen-stimulating activities that could be applied in pharmaceutical or anti-aging cosmetic products.
Collapse
Affiliation(s)
- Phongsapak Phanphothong
- Pharmaceutical Chemistry and Natural Products Program, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nattawadee Kanpipit
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suthasinee Thapphasaraphong
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
5
|
Xie YQ, Huang JY, Chen YX, Zhou Q, Zhou QX, Yang ZY, Xu SK, Tan WH, Liu L. Anti-inflammatory and analgesic effects of Streblus indicus. Front Pharmacol 2023; 14:1249234. [PMID: 37829300 PMCID: PMC10565225 DOI: 10.3389/fphar.2023.1249234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023] Open
Abstract
The bark of Streblus indicus, a Dai medicine in China, has been listed in the Chinese Materia Medica as possessing hemostatic and analgesic properties. Ethnic medicine books record that its bark or leaves for the treatment of mumps and lymphoma. However, according to the literature survey, anti-inflammatory and analgesic studies available for leaves and branches of S. indicus have been seldom reported so far. The current study focuses on the metabolites of S. indicus bark and leaves responsible for anti-inflammatory and analgesic effects on the basis of bioactive-included acetic acid writhing, hot-plate, and xylene-induced ear swelling. The secretion of inflammatory mediators, TNF-α, IL-6, IL-1β, IL-4, and IL-10, were evaluated for their anti-inflammatory by xylene-induced in mouse ear cells. Histological examination was used to assess the anti-inflammatory and analgesic effects of the branches and leaves of S. indicus, and Western blot analysis determined the mechanism of the methanolic extract of branches and leaves. Different metabolites of S. indicus significantly alleviated analgesic and anti-inflammatory effects, with no discernable differences among them. All metabolites decreased the levels of TNF-α, IL-1β, and IL-6 and increased the levels of IL-4 and IL-10. The analgesic and anti-inflammatory mechanism of the methanolic extract was related to the NF-kB signaling pathway. These results not only would account for scientific knowledge for the traditional application of S. indicus, but also provide a credible theoretical foundation for the further development of anti-inflammatory and analgesic agents.
Collapse
Affiliation(s)
- Yan-Qing Xie
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, China
| | - Jing-Yao Huang
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, China
| | - Yun-Xiu Chen
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, China
| | - Qian Zhou
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, China
| | - Qi-Xiu Zhou
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhu-Ya Yang
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, China
| | - Shi-Kui Xu
- Yunnan Institute for Food and Drug Control, Kunming, China
| | - Wen-Hong Tan
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, China
| | - Lu Liu
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
6
|
Liu HM, Cheng MY, Xun MH, Zhao ZW, Zhang Y, Tang W, Cheng J, Ni J, Wang W. Possible Mechanisms of Oxidative Stress-Induced Skin Cellular Senescence, Inflammation, and Cancer and the Therapeutic Potential of Plant Polyphenols. Int J Mol Sci 2023; 24:ijms24043755. [PMID: 36835162 PMCID: PMC9962998 DOI: 10.3390/ijms24043755] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
As the greatest defense organ of the body, the skin is exposed to endogenous and external stressors that produce reactive oxygen species (ROS). When the antioxidant system of the body fails to eliminate ROS, oxidative stress is initiated, which results in skin cellular senescence, inflammation, and cancer. Two main possible mechanisms underlie oxidative stress-induced skin cellular senescence, inflammation, and cancer. One mechanism is that ROS directly degrade biological macromolecules, including proteins, DNA, and lipids, that are essential for cell metabolism, survival, and genetics. Another one is that ROS mediate signaling pathways, such as MAPK, JAK/STAT, PI3K/AKT/mTOR, NF-κB, Nrf2, and SIRT1/FOXO, affecting cytokine release and enzyme expression. As natural antioxidants, plant polyphenols are safe and exhibit a therapeutic potential. We here discuss in detail the therapeutic potential of selected polyphenolic compounds and outline relevant molecular targets. Polyphenols selected here for study according to their structural classification include curcumin, catechins, resveratrol, quercetin, ellagic acid, and procyanidins. Finally, the latest delivery of plant polyphenols to the skin (taking curcumin as an example) and the current status of clinical research are summarized, providing a theoretical foundation for future clinical research and the generation of new pharmaceuticals and cosmetics.
Collapse
Affiliation(s)
- Hui-Min Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
| | - Ming-Yan Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Meng-Han Xun
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhi-Wei Zhao
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yun Zhang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Tang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jun Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jia Ni
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
- Correspondence: ; Tel.: +86-18918830550
| |
Collapse
|
7
|
Tuntiyasawasdikul S, Sripanidkulchai B. Curcuma comosa loaded transfersomal gel for transdermal application: Formulation, in vitro and in vivo evaluation. Drug Dev Ind Pharm 2022; 47:1824-1834. [DOI: 10.1080/03639045.2022.2064486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sarunya Tuntiyasawasdikul
- Faculty of Pharmaceutical Sciences, Khon Kaen University
- Center for Research and Development of Herbal Health Products (CRD-HHP), Faculty of Pharmaceutical Sciences, Khon Kaen University
| | - Bungorn Sripanidkulchai
- Center for Research and Development of Herbal Health Products (CRD-HHP), Faculty of Pharmaceutical Sciences, Khon Kaen University
| |
Collapse
|
8
|
Novel nano spanlastic carrier system for buccal delivery of lacidipine. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Ionic liquid-based catanionic vesicles: A de novo system to judiciously improve the solubility, stability and antimicrobial activity of curcumin. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Sudhakar K, Fuloria S, Subramaniyan V, Sathasivam KV, Azad AK, Swain SS, Sekar M, Karupiah S, Porwal O, Sahoo A, Meenakshi DU, Sharma VK, Jain S, Charyulu RN, Fuloria NK. Ultraflexible Liposome Nanocargo as a Dermal and Transdermal Drug Delivery System. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2557. [PMID: 34685005 PMCID: PMC8537378 DOI: 10.3390/nano11102557] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 12/11/2022]
Abstract
A selected active pharmaceutical ingredient must be incorporated into a cargo carrier in a particular manner so that it achieves its goal. An amalgamation of active pharmaceutical ingredients (APIs) should be conducted in such a manner that it is simple, professional, and more beneficial. Lipids/polymers that are known to be used in nanocarriers for APIs can be transformed into a vesicular formulation, which offers elegant solutions to many problems. Phospholipids with other ingredients, such as ethanol and water, form suitable vesicular carriers for many drugs, overcoming many problems related to poor bioavailability, poor solubility, etc. Ultraflexible liposomes are novel carriers and new frontiers of drug delivery for transdermal systems. Auxiliary advances in vesicular carrier research have been made, enabling polymer-coated ethanolic liposomes to avoid detection by the body's immune system-specifically, the cells of the reticuloendothelial system. Ultraflexible liposomes act as a cargo system and a nanotherapeutic approach for the transport of therapeutic drugs and bioactive agents. Various applications of liposome derivatives in different diseases are emphasized in this review.
Collapse
Affiliation(s)
- Kalvatala Sudhakar
- School of Pharmaceutical Sciences (LIT-Pharmacy), Lovely Professional University, Jalandhar 144411, India;
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia;
- Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia;
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia;
| | - Kathiresan V. Sathasivam
- Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia;
- Faculty of Applied Science, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Abul Kalam Azad
- Advanced Drug Delivery Laboratory, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia;
| | - Shasank S. Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar 751023, India;
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia;
| | - Sundram Karupiah
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia;
| | - Omji Porwal
- Department of Pharmacognosy, Tishk International University, Erbil 44001, KRG, Iraq;
| | - Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar 751003, India;
| | | | - Vipin Kumar Sharma
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar 249404, Uttarakhand, India;
| | - Sanjay Jain
- Faculty of Pharmacy, Medicaps University, Indore 453331, MP, India;
| | - R. Narayana Charyulu
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Mangalore 575018, India;
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia;
- Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia;
| |
Collapse
|
11
|
Zolmitriptan Intranasal Spanlastics for Enhanced Migraine Treatment; Formulation Parameters Optimized via Quality by Design Approach. Sci Pharm 2021. [DOI: 10.3390/scipharm89020024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Zolmitriptan is a potent second-generation triptan prescribed for migraine attacks. It suffers low bioavailability (40%) after oral administration due to the hepatic first-pass metabolism. Spanlastics are surfactant-based elastic vesicular drug carrier systems. This study aimed to design and optimize intranasal spanlastic formulations as an alternative approach that directly targets brain delivery, enhancing its bioavailability and avoiding the first-pass effect. The quality by design approach was applied to correlate the formulation parameters (Span 60 and Tween 80 concentrations) and critical quality attributes (entrapment efficiency (EE%) and particle size). Spanlastic formulations were designed based on response surface central composite design and prepared via an ethanol injection method. Designed formulations were characterized by EE% and particle size measurements to select the optimized formula (with a combination of small particle size and high EE%). The optimized formula was further subjected to transmission electron microscopy, zeta potential measurement and ex vivo permeation study. The optimized formulation showed a particle size of 117.5 nm and EE% of 45.65%, with a low percentage of error between the observed and predicted values. Seventy percent of zolmitriptan was permeated through the nasal membrane within 30 min, and it completely permeated within 2 h with a significantly higher steady-state flux compared to plain gel. This study introduced a successful and promising intranasal formulation suitable for further brain delivery analysis.
Collapse
|
12
|
Sandhu SK, Kumar S, Raut J, Singh M, Kaur S, Sharma G, Roldan TL, Trehan S, Holloway J, Wahler G, Laskin JD, Sinko PJ, Berthiaume F, Michniak-Kohn B, Rishi P, Ganesh N, Kaur IP. Systematic Development and Characterization of Novel, High Drug-Loaded, Photostable, Curcumin Solid Lipid Nanoparticle Hydrogel for Wound Healing. Antioxidants (Basel) 2021; 10:725. [PMID: 34063003 PMCID: PMC8148018 DOI: 10.3390/antiox10050725] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 01/14/2023] Open
Abstract
The study aims to develop high drug-loaded (about 15% lipid matrix) curcumin solid lipid nanoparticles (CSLNs) for wound healing. CSLNs prepared by hot, high-pressure homogenization, without using organic solvents, were optimized using the Taguchi design followed by the central composite design. The optimized CSLNs exhibited a high assay/drug content (0.6% w/w), solubility (6 × 105 times), and EE (75%) with a particle size < 200 nm (PDI-0.143). The CSLNs were safe (in vitro and in vivo), photostable, autoclavable, stable up to one year at 30 °C and under refrigeration and exhibited a controlled release (zero-order; 5 days). XRD, FTIR, and DSC confirmed solubilization and entrapment of the curcumin within the SLNs. TEM and FESEM revealed a smooth and spherical shape. The CSLNs showed a significant antimicrobial effect (MIC of 64 µg/mL for planktonic cells; 512 µg/mL for biofilm formation; and 2 mg/mL for mature biofilm) against Staphylococcus aureus 9144, while free curcumin dispersion did not exhibit any effect. This is the first report on the disruption of mature biofilms by curcumin solid lipid nanoparticles (CSLNs). The cell proliferation potential of CSLNs was also evaluated in vitro while the wound healing potential of CSLNs (incorporated in a hydrogel) was assessed in vivo. In (i) nitrogen mustard gas and (ii) a full-thickness excision wound model, CSLNs exhibited (a) significantly faster wound closure, (b) histologically and immunohistochemically better healing, (c) lower oxidative stress (LPO) and (d) inflammation (TNFα), and (e) increased angiogenesis (VEGF) and antioxidant enzymes, i.e., catalase and GSH levels. CSLNs thus offer a promising modern wound therapy especially for infected wounds, considering their effects in mature biofilm disruption.
Collapse
Affiliation(s)
- Simarjot Kaur Sandhu
- Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India; (S.K.S.); (J.R.); (M.S.); (S.K.); (G.S.)
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA; (S.K.); (F.B.)
| | - Jayant Raut
- Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India; (S.K.S.); (J.R.); (M.S.); (S.K.); (G.S.)
| | - Mandeep Singh
- Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India; (S.K.S.); (J.R.); (M.S.); (S.K.); (G.S.)
| | - Sandeep Kaur
- Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India; (S.K.S.); (J.R.); (M.S.); (S.K.); (G.S.)
| | - Garima Sharma
- Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India; (S.K.S.); (J.R.); (M.S.); (S.K.); (G.S.)
| | - Tomas L. Roldan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA; (T.L.R.); (J.H.); (P.J.S.); (B.M.-K.)
- Counter ACT Center of Excellence, Rutgers University, Piscataway, NJ 08854, USA; (G.W.); (J.D.L.)
| | - Sonia Trehan
- Center for Dermal Research (CDR), Life Sciences Building, Rutgers University, Piscataway, NJ 08854, USA;
| | - Jennifer Holloway
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA; (T.L.R.); (J.H.); (P.J.S.); (B.M.-K.)
- Counter ACT Center of Excellence, Rutgers University, Piscataway, NJ 08854, USA; (G.W.); (J.D.L.)
| | - Gabriella Wahler
- Counter ACT Center of Excellence, Rutgers University, Piscataway, NJ 08854, USA; (G.W.); (J.D.L.)
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jeffrey D. Laskin
- Counter ACT Center of Excellence, Rutgers University, Piscataway, NJ 08854, USA; (G.W.); (J.D.L.)
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Patrick J. Sinko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA; (T.L.R.); (J.H.); (P.J.S.); (B.M.-K.)
- Counter ACT Center of Excellence, Rutgers University, Piscataway, NJ 08854, USA; (G.W.); (J.D.L.)
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA; (S.K.); (F.B.)
| | - Bozena Michniak-Kohn
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA; (T.L.R.); (J.H.); (P.J.S.); (B.M.-K.)
- Center for Dermal Research (CDR), Life Sciences Building, Rutgers University, Piscataway, NJ 08854, USA;
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh 160014, India;
| | - Narayanan Ganesh
- Jawaharlal Nehru Cancer Hospital & Research Centre, Bhopal 462001, India;
| | - Indu Pal Kaur
- Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India; (S.K.S.); (J.R.); (M.S.); (S.K.); (G.S.)
| |
Collapse
|
13
|
Batista de Andrade Neto J, Pessoa de Farias Cabral V, Brito Nogueira LF, Rocha da Silva C, Gurgel do Amaral Valente Sá L, Ramos da Silva A, Barbosa da Silva WM, Silva J, Marinho ES, Cavalcanti BC, Odorico de Moraes M, Nobre Júnior HV. Anti-MRSA activity of curcumin in planktonic cells and biofilms and determination of possible action mechanisms. Microb Pathog 2021; 155:104892. [PMID: 33894289 DOI: 10.1016/j.micpath.2021.104892] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is a commensal bacterium and opportunistic human pathogen that can cause a wide variety of clinical infections. It is recognized for its ability to acquire antimicrobial resistance, so methicillin-resistant Staphylococcus aureus (MRSA) infections are a global healthcare challenge. Therefore, the development of new therapeutic options and alternative therapies for treatment is necessary. Curcumin, a polyphenolic substance found in the rhizome of turmeric longa L, has been shown to have several therapeutic properties, including antimicrobial activity. The objective of the study was to evaluate the in vitro antibacterial activity of curcumin alone and associated with oxacillin against MRSA strains, to analyze the mechanism of cell death involved in the isolated action of curcumin by means of flow cytometry and molecular docking, and to verify its superbiofilm action. Curcumin showed antibacterial activity in the range of 125-500 μg/mL against the tested strains, since it caused an increase in membrane permeability and DNA fragmentation, as revealed by flow cytometry analysis. Moreover, it was possible to observe interactions of curcumin with wild-type S. aureus DHFR, S. aureus gyrase and S. aureus gyrase complex with DNA, DNA (5'-D(*CP*GP*AP*TP*GP*CP*G)-3') and Acyl-PBP2a from MRSA by molecular docking. Curcumin also had a synergistic and additive effect when associated with oxacillin, and significantly reduced the cell viability of the analyzed biofilms. Thus, curcumin is a possible candidate for pharmaceutical formulation development for the treatment of MRSA infections.
Collapse
Affiliation(s)
- João Batista de Andrade Neto
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil; Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Vitória Pessoa de Farias Cabral
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Cecília Rocha da Silva
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil; Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil; Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil; Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Anderson Ramos da Silva
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Jacilene Silva
- Department of Chemistry, Group for Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, Brazil
| | - Emmanuel Silva Marinho
- Department of Chemistry, Group for Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, Brazil
| | - Bruno Coelho Cavalcanti
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel Odorico de Moraes
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil; Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
14
|
Dellali M, Iurciuc (Tincu) CE, Savin CL, Spahis N, Djennad M, Popa M. Hydrogel Films Based on Chitosan and Oxidized Carboxymethylcellulose Optimized for the Controlled Release of Curcumin with Applications in Treating Dermatological Conditions. Molecules 2021; 26:2185. [PMID: 33920154 PMCID: PMC8069243 DOI: 10.3390/molecules26082185] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 01/27/2023] Open
Abstract
Cross-linked chitosan (CS) films with aldehyde groups obtained by oxidation of carboxymethyl cellulose (CMC) with NaIO4 were prepared using different molar ratios between the CHO groups from oxidized carboxymethyl cellulose (CMCOx) and NH2 groups from CS (from 0.25:1 to 2:1). Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy demonstrated the aldehyde groups' presence in the CMCOx. The maximum oxidation degree was 22.9%. In the hydrogel, the amino groups' conversion index value increased when the -CHO/-NH2 molar ratio, cross-linking temperature, and time increased, while the swelling degree values decreased. The hydrogel films were characterized by scanning electron microscopy (SEM) and FTIR analysis. The curcumin encapsulation efficiency decreases from 56.74% to 16.88% when the cross-linking degree increases. The immobilized curcumin release efficiency (REf%) and skin membrane permeability were evaluated in vitro in two different pH solutions using a Franz diffusion cell, and it was found to decrease when the molar ratio -CH=O/NH2 increases. The curcumin REf% in the receptor compartment was higher at pH = 7.4 (18%- for the sample with a molar ratio of 0.25:1) than at pH = 5.5 (16.5%). The curcumin absorption in the skin membrane at pH = 5.5 (47%) was more intense than at pH = 7.4 (8.6%). The curcumin-loaded films' antioxidant activity was improved due to the CS presence.
Collapse
Affiliation(s)
- Mohamed Dellali
- Laboratory of Structure, Elaboration, and Application of Molecular Materials, Abdelhamid Ibn Badis University of Mostaganem, Mostaganem 27000, Algeria; (M.D.); (M.D.)
- Faculty of Technology, Hassiba Benbouali University of Chlef, BP 151, Chlef 02000, Algeria;
- Department of Natural and Synthetic Polymers, Gheorghe Asachi Technical University of Iasi, Mangeron Blvd. no. 73, 700050 Iasi, Romania;
| | - Camelia Elena Iurciuc (Tincu)
- Department of Natural and Synthetic Polymers, Gheorghe Asachi Technical University of Iasi, Mangeron Blvd. no. 73, 700050 Iasi, Romania;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, no. 16, 700115 Iaşi, Romania
| | - Corina Lenuța Savin
- Department of Natural and Synthetic Polymers, Gheorghe Asachi Technical University of Iasi, Mangeron Blvd. no. 73, 700050 Iasi, Romania;
| | - Nawel Spahis
- Faculty of Technology, Hassiba Benbouali University of Chlef, BP 151, Chlef 02000, Algeria;
| | - M’hamed Djennad
- Laboratory of Structure, Elaboration, and Application of Molecular Materials, Abdelhamid Ibn Badis University of Mostaganem, Mostaganem 27000, Algeria; (M.D.); (M.D.)
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Gheorghe Asachi Technical University of Iasi, Mangeron Blvd. no. 73, 700050 Iasi, Romania;
- Academy of Romanian Scientists, Splaiul Independentei Street, No 54, 050094 Bucharest, Romania
| |
Collapse
|
15
|
Ahmadabady S, Beheshti F, Shahidpour F, Khordad E, Hosseini M. A protective effect of curcumin on cardiovascular oxidative stress indicators in systemic inflammation induced by lipopolysaccharide in rats. Biochem Biophys Rep 2021; 25:100908. [PMID: 33506115 PMCID: PMC7815660 DOI: 10.1016/j.bbrep.2021.100908] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Inflammation has been considered as an important factor in cardiovascular diseases (CVD). Curcumin has been well known for its anti-inflammatory effects. In current research, protective effect of curcumin on cardiovascular oxidative stress indicators in systemic inflammation induced by lipopolysaccharide (LPS) was investigated in rats. MATERIAL AND METHODS The animals were divided into five groups and received the treatments during two weeks [1]: Control in which vehicle was administered instead of curcumin and saline was injected instead of LPS [2], LPS group in which vehicle of curcumin plus LPS (1 mg/kg) was administered [3-5], curcumin groups in them three doses of curcumin (5, 10 and 15 mg/kg) before LPS were administered. RESULTS Administration of LPS was followed by an inflammation status presented by an increased level of white blood cells (WBC) (p < 0.001). An oxidative stress status was also occurred after LPS injection which was presented by an increased level of malondialdehyde (MDA) while, a decrease in thiols, superoxide dismutase (SOD) and catalase(CAT) in all heart, aorta and serum (p < 0.001). The results also showed that curcumin decreased WBC (doses: 10 and 15 mg/kg) (p < 0.001) accompanying with a decrease in MDA (P < 0.01 and P < 0.001). Curcumin also improved the thiols and the activities of SOD and catalase (P < 0.05, P < 0.01 and P < 0.001). CONCLUSION Based on our findings, curcumin can ameliorates oxidative stress and inflammation induced by LPS in rats to protect the cardiovascular system.
Collapse
Affiliation(s)
- Somaieh Ahmadabady
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Fatemeh Shahidpour
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Khordad
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Opatha SAT, Titapiwatanakun V, Chutoprapat R. Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery. Pharmaceutics 2020; 12:E855. [PMID: 32916782 PMCID: PMC7559928 DOI: 10.3390/pharmaceutics12090855] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/11/2022] Open
Abstract
Transdermal delivery systems have gained much interest in recent years owing to their advantages compared to conventional oral and parenteral delivery systems. They are noninvasive and self-administered delivery systems that can improve patient compliance and provide a controlled release of the therapeutic agents. The greatest challenge of transdermal delivery systems is the barrier function of the skin's outermost layer. Molecules with molecular weights greater than 500 Da and ionized compounds generally do not pass through the skin. Therefore, only a limited number of drugs are capable of being administered by this route. Encapsulating the drugs in transfersomes are one of the potential approaches to overcome this problem. They have a bilayered structure that facilitates the encapsulation of lipophilic and hydrophilic, as well as amphiphilic, drug with higher permeation efficiencies compared to conventional liposomes. Transfersomes are elastic in nature, which can deform and squeeze themselves as an intact vesicle through narrow pores that are significantly smaller than its size. This review aims to describe the concept of transfersomes, the mechanism of action, different methods of preparation and characterization and factors affecting the properties of transfersomes, along with their recent applications in the transdermal administration of drugs.
Collapse
Affiliation(s)
| | | | - Romchat Chutoprapat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.A.T.O.); (V.T.)
| |
Collapse
|
17
|
Structural and therapeutic properties of curcumin solubilized pluronic F127 micellar solutions and hydrogels. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113591] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Cantacorps L, Montagud-Romero S, Valverde O. Curcumin treatment attenuates alcohol-induced alterations in a mouse model of foetal alcohol spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109899. [PMID: 32109509 DOI: 10.1016/j.pnpbp.2020.109899] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
Alcohol exposure during development produces physical and mental abnormalities in the foetus that result in long-term molecular adjustments in the brain, which could underlie the neurobehavioural deficits observed in individuals suffering from foetal alcohol spectrum disorders. In this study, we assessed the effects of curcumin on cognitive impairments caused by prenatal and lactational alcohol exposure (PLAE). Furthermore, we examined whether curcumin could counteract the molecular alterations that may underlie these behavioural impairments. We focused on inflammatory and epigenetic mechanisms by analysing the expression of pro-inflammatory mediators, such as IL-6, TNF-α, and NF-κB, in the hippocampus and prefrontal cortex, as well as microglia and astrocyte activation in the dentate gyrus. We also assessed the activity of histone acetyltransferase in these brain areas. To model binge alcohol drinking, we exposed pregnant C57BL/6 mice to a 20% v/v alcohol solution during gestation and lactation, with limited access periods. We treated male offspring with curcumin during postnatal days (PD28-35) and then evaluated their behaviour in adulthood (PD60). Our results showed that curcumin treatment during the peri-adolescence period improved the anxiety and memory deficits observed in PLAE mice. At the molecular level, we found enhanced histone acetyltransferase activity in mice subjected to PLAE that curcumin treatment could not reverse to baseline levels. These mice also showed increased expression of pro-inflammatory mediators, which could be rescued by curcumin treatment. They also displayed astrogliosis and microglia activation. Our study provides further evidence to support the use of curcumin as a therapeutic agent for counteracting behavioural and molecular alterations induced by PLAE.
Collapse
Affiliation(s)
- Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sandra Montagud-Romero
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
19
|
Brasch J, Beck-Jendroschek V, Walther G, Rubbel D. Clinical isolates of Trichophyton rubrum are completely inhibited by photochemical treatment with a γ-cyclodextrin formulation of curcuminoids. Mycoses 2020; 63:369-375. [PMID: 31975440 DOI: 10.1111/myc.13051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION It was shown previously that dermatophytes can markedly be inhibited by a photochemical treatment with curcumin. This kind of photo-inactivation needs to be improved, however, because curcumin is poorly water-soluble. Therefore, a new water-soluble γ-cyclodextrin formulation of curcuminoids was tested for its photochemical inactivation of Trichophyton (T.) rubrum. MATERIALS AND METHODS Conidia were harvested from 6 typical strains of T rubrum and used to inoculate wells of microtiter plates. These wells were also filled with a γ-cyclodextrin curcuminoid formulation with 0.1% DMSO and Sabouraud broth. The assays were then irradiated with visible light (wavelength 420 nm, 45 J/cm2 ). After 24 hours, curcuminoid was added once more, and irradiation was repeated. Fungal growth was monitored photometrically for 8 days and compared with controls. RESULTS Growth of all 6 T rubrum strains was completely inhibited by the photochemical treatment with the γ-cyclodextrin formulation of curcuminoids. The same curcuminoid formulation applied without irradiation had only a minor inhibitory effect. DISCUSSION Photo-inactivation of dermatophytes with a γ-cyclodextrin formulation of curcuminoids plus visible light is a very promising procedure with potential for a new treatment of patients with superficial tinea.
Collapse
Affiliation(s)
- Jochen Brasch
- Department of Dermatology, Venerology and Allergology, University Hospitals of Schleswig-Holstein, Kiel, Germany
| | - Vera Beck-Jendroschek
- Department of Dermatology, Venerology and Allergology, University Hospitals of Schleswig-Holstein, Kiel, Germany
| | - Grit Walther
- German National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Darian Rubbel
- Department of Dermatology, Venerology and Allergology, University Hospitals of Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
20
|
Riaz A, Ahmed N, Khan MI, Haq IU, Rehman AU, Khan GM. Formulation of topical NLCs to target macrophages for cutaneous leishmaniasis. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Ternullo S, Gagnat E, Julin K, Johannessen M, Basnet P, Vanić Ž, Škalko-Basnet N. Liposomes augment biological benefits of curcumin for multitargeted skin therapy. Eur J Pharm Biopharm 2019; 144:154-164. [DOI: 10.1016/j.ejpb.2019.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022]
|
22
|
Panahi Y, Fazlolahzadeh O, Atkin SL, Majeed M, Butler AE, Johnston TP, Sahebkar A. Evidence of curcumin and curcumin analogue effects in skin diseases: A narrative review. J Cell Physiol 2018; 234:1165-1178. [PMID: 30073647 DOI: 10.1002/jcp.27096] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
Abstract
Curcumin, a natural polyphenolic and yellow pigment obtained from the spice turmeric, has strong antioxidative, anti-inflammatory, and antibacterial properties. Due to these properties, curcumin has been used as a remedy for the prevention and treatment of skin aging and disorders such as psoriasis, infection, acne, skin inflammation, and skin cancer. Curcumin has protective effects against skin damage caused by chronic ultraviolet B radiation. One of the challenges in maximizing the therapeutic potential of curcumin is its low bioavailability, limited aqueous solubility, and chemical instability. In this regard, the present review is focused on recent studies concerning the use of curcumin for the treatment of skin diseases, as well as offering new and efficient strategies to optimize its pharmacokinetic profile and increase its bioavailability.
Collapse
Affiliation(s)
- Yunes Panahi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Omid Fazlolahzadeh
- Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, Tehran, Iran
| | | | | | - Alexandra E Butler
- Life Sciences Research Division, Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Brasch J, Freitag-Wolf S, Beck-Jendroschek V, Huber M. Inhibition of dermatophytes by photodynamic treatment with curcumin. Med Mycol 2018; 55:754-762. [PMID: 28053148 DOI: 10.1093/mmy/myw139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/05/2016] [Indexed: 11/13/2022] Open
Abstract
Treatment of dermatophytoses with currently available antimycotic agents is often tedious and sometimes unsatisfactory. A search for better therapeutic methods-ideally with an immediate fungicidal effect-has, among others, lead to photodynamic procedures as a promising alternative, and recently curcumin was found to be a suitable agent for this application. In this study the effect of photodynamic treatment with curcumin on dermatophytes was tested in vitro. Wells of microtiter plates were filled with conidia of Trichophyton rubrum, Trichophyton interdigitale, Trichophyton terrestre, Microsporum canis, Microsporum gypseum and Epidermophyton floccosum in buffer. Then curcumin was added to the conidia and after 20 min the assays were irradiated one time only with visible light (peak wave length 367 nm, 5 J/cm2). Thereafter the wells were filled up with Sabouraud's glucose broth and in the following fungal growth was measured photometrically. The results showed that all dermatophytes were markedly inhibited depending on the concentration of curcumin. With 5.4 mg/l curcumin plus irradiation fungal growth was significantly suppressed over a period of 96 h (P < .001). Even after 96 h inhibition of T. rubrum was still complete and marked for all other species as well. M. gypseum was least susceptible. Our results are very encouraging to pursue the development of a photodynamic therapy of tinea with curcumin. The outstanding tolerance of curcumin and the innocuousness of the required light are favorable preconditions for this task.
Collapse
Affiliation(s)
- Jochen Brasch
- Department of Dermatology, University Hospitals of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Vera Beck-Jendroschek
- Department of Dermatology, University Hospitals of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Martin Huber
- Department of Dermatology, University Hospitals of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
24
|
Brasch J, Beck-Jendroschek V, Mahn V. Photochemical inhibition of Trichophyton rubrum
by different compoundings of curcumin. Mycoses 2018; 61:393-399. [DOI: 10.1111/myc.12758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Jochen Brasch
- Department of Dermatology; University Hospitals of Schleswig-Holstein, Campus Kiel; Kiel Germany
| | - Vera Beck-Jendroschek
- Department of Dermatology; University Hospitals of Schleswig-Holstein, Campus Kiel; Kiel Germany
| | - Viktoria Mahn
- Department of Dermatology; University Hospitals of Schleswig-Holstein, Campus Kiel; Kiel Germany
| |
Collapse
|
25
|
Farghaly DA, Aboelwafa AA, Hamza MY, Mohamed MI. Topical Delivery of Fenoprofen Calcium via Elastic Nano-vesicular Spanlastics: Optimization Using Experimental Design and In Vivo Evaluation. AAPS PharmSciTech 2017; 18:2898-2909. [PMID: 28429293 DOI: 10.1208/s12249-017-0771-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/27/2017] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to investigate the potential of surfactant-based nanovesicular system (spanlastics) for topical delivery of fenoprofen calcium (FPCa) to eliminate its oral gastrointestinal adverse effects. FPCa-loaded spanlastics were prepared by thin film hydration (TFH) technique according to a full factorial design to investigate the influence of formulation variables on the drug entrapment efficiency (%EE), particle size (PS), deformability index (DI), and the % drug released after 24 h through the cellulose membrane (Q24h) using Design-Expert® software. The optimized formula (composed of Span 60 and Tween 60 as an edge activator at weight ratio of 8: 2 in presence of Transcutol P as a cosolvent in the hydration media) exhibited the highest %EE (49.91 ± 2.60%), PS of 536.1 ± 17.14 nm, DI of 5.07 ± 0.06 g, and Q24h of 61.11 ± 2.70%; it was also characterized for morphology and physical stability. In vitro release study of FPCa-loaded spanlastic gel and conventional FPCa gel through a synthetic membrane and hairless rat skin were evaluated. The skin permeation study revealed that spanlastic gel exhibited both consistent and prolonged action. Finally, the % inhibition of carrageenan-induced rat paw edema of spanlastic gel was three times higher than the conventional FPCa gel after 24 h. In conclusion, spanlastic-based gel could be a great approach for improving topical delivery of fenoprofen calcium, providing both prolonged and enhanced anti-inflammatory activity in the treatment of arthritis.
Collapse
|
26
|
Hussain A, Singh S, Sharma D, Webster TJ, Shafaat K, Faruk A. Elastic liposomes as novel carriers: recent advances in drug delivery. Int J Nanomedicine 2017; 12:5087-5108. [PMID: 28761343 PMCID: PMC5522681 DOI: 10.2147/ijn.s138267] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Elastic liposomes (EL) are some of the most versatile deformable vesicular carriers that comprise physiologically biocompatible lipids and surfactants for the delivery of numerous challenging molecules and have marked advantages over other colloidal systems. They have been investigated for a wide range of applications in pharmaceutical technology through topical, transdermal, nasal, and oral routes for efficient and effective drug delivery. Increased drug encapsulation efficiency, enhanced drug permeation and penetration into or across the skin, and ultradeformability have led to widespread interest in ELs to modulate drug release, permeation, and drug action more efficiently than conventional drug-release vehicles. This review provides insights into the versatile role that ELs play in the delivery of numerous drugs and biomolecules by improving drug release, permeation, and penetration across the skin as well as stability. Furthermore, it provides future directions that should ensure the widespread use of ELs across all medical fields.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.,Faculty of Pharmacy, Sachchidananda Sinha College, Aurangabad, Bihar, India
| | - Sima Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Kausar Shafaat
- Faculty of Pharmacy, Sachchidananda Sinha College, Aurangabad, Bihar, India
| | - Abdul Faruk
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University, Srinagar, Uttarakhand, India
| |
Collapse
|
27
|
Ganesan P, Choi DK. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int J Nanomedicine 2016; 11:1987-2007. [PMID: 27274231 PMCID: PMC4869672 DOI: 10.2147/ijn.s104701] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower penetration and high compound instability of various cosmetic products for sustained and enhanced compound delivery to the beauty-based skin therapy. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in cosmeceutical sectors and products. Nanosizing of phytocompounds enhances the aseptic feel in various cosmeceutical products with sustained delivery and enhanced skin protecting activities. Solid lipid nanoparticles, transfersomes, ethosomes, nanostructured lipid carriers, fullerenes, and carbon nanotubes are some of the emerging nanotechnologies currently in use for their enhanced delivery of phytocompounds in skin care. Aloe vera, curcumin, resveratrol, quercetin, vitamins C and E, genistein, and green tea catechins were successfully nanosized using various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, and hair care for their sustained effects. However, certain delivery agents such as carbon nanotubes need to be studied for their roles in toxicity. This review broadly focuses on the usage of phytocompounds in various cosmeceutical products, nanodelivery technologies used in the delivery of phytocompounds to various cosmeceuticals, and various nanosized phytocompounds used in the development of novel nanocosmeceuticals to enhance skin-based therapy.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Department of Applied Life Science, Nanotechnology Research Center, Chungju, Republic of Korea; Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Nanotechnology Research Center, Chungju, Republic of Korea; Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
28
|
Li X, Lu Y, Sun Y, Zhang Q. Effect of curcumin on permeability of coronary artery and expression of related proteins in rat coronary atherosclerosis heart disease model. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:7247-7253. [PMID: 26261622 PMCID: PMC4525956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE Our objective is to explore the effect of curcumin on permeability of coronary artery and expression of related proteins in rat coronary atherosclerosis heart disease model. METHODS 45 healthy male Wistar rats of clean grade were selected and divided into treatment group, model control group and blank control group. The rats in the treatment group and model control group received high-fat diet for 12 weeks and intraperitoneal injection of VD3 to establish rat coronary atherosclerosis heart disease model. After modeling, the rats in the treatment group received gavage of 100 mg/(kg·d) curcimin, and the rats in the model control group and blank control group received gavage of 5 ml/(kg·d) distilled water, the intervention time was 4 weeks. After intervention, the rats were killed, and the hearts were dissected to obtain the samples of coronary artery. After embedding and frozen section, immunofluorescence method was used to detect the change of endarterium permeability in 3 groups, Western blot was used to detect matrix metalloproteinase-9 (MMP-9) and CD40L in coronary artery tissue, and enzyme linked immunosorbent assay (ELISA) was used to detect serum tumor necrosis factor-α (TNF-α) and C reaction protein (CRP). RESULTS After modeling, compared with the blank control group, total cholesterol (TC), triglyceride (TG) and low density lipoprotein cholesterin (LDL-c) in the treatment group and model control group were significantly higher (P<0.05), however, high density lipoprotein cholesterin (HDL-c) was significantly lower. The pathological sections showed that there was lipidosis in rat coronary artery in treatment group and model control group, indicating that the modeling was successful. Immunofluorescence showed that there was only a little fluorochrome permeability in artery in blank control group, there was some fluorochrome permeability in artery in the treatment group and there was a lot of fluorochrome permeability in artery in the model control group. MMP-9 and CD40L in coronary artery tissue in the model control group were significantly higher than the treatment group (P<0.05), MMP-9 and CD40L in coronary artery tissue in the treatment group were significantly higher than the blank control group (P<0.05); serum TNF-α and CRP in the model control group were significantly higher than the treatment group (P<0.05), which were significantly higher in the treatment group than the blank control group (P<0.05). CONCLUSION Rat coronary atherosclerosis heart disease model can be successfully established by feeding with high-fat diet and intraperitoneal injection of VD3, the permeability of coronary artery in coronary heart disease rat model is significantly increased, which may be related to up-regulation of MMP-9, CD40L, TNF-α and CRP expression. Application of curcumin can inhibit expression of MMP-9, CD40L, TNF-α and CRP to improve the permeability of coronary artery.
Collapse
Affiliation(s)
- Xiaolong Li
- Department of Cardiology, Changzhou TCM Hospital Changzhou 610021, Jiangsu, China
| | - Yan Lu
- Department of Cardiology, Changzhou TCM Hospital Changzhou 610021, Jiangsu, China
| | - Yi Sun
- Department of Cardiology, Changzhou TCM Hospital Changzhou 610021, Jiangsu, China
| | - Qi Zhang
- Department of Cardiology, Changzhou TCM Hospital Changzhou 610021, Jiangsu, China
| |
Collapse
|