1
|
Uchibori Y, Suekuni M, Kokaji Y, Yoshida K, Kiyono T, Kasahara Y, Fujita M. AmNA-Modified Antisense Oligonucleotide Targeting MCM8 as a Cancer-Specific Chemosensitizer for Platinum Compounds. Cancer Sci 2025; 116:1405-1416. [PMID: 40098305 PMCID: PMC12044654 DOI: 10.1111/cas.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
MCM8 and MCM9 participate in homologous recombination with long-tract gene conversion to repair double-strand breaks caused by replication stress, which is generally higher in cancer cells than in normal cells. MCM8 is highly expressed in certain cancer cells, where it is necessary for maintaining cell growth, migration, and invasion, although the molecular mechanisms remain unclear. Knockdown with siRNAs or knockout of MCM8 or MCM9 selectively sensitizes cancer cells to cisplatin. Thus, drugs inhibiting MCM8 or MCM9 could serve as novel anti-neoplastic agents and/or chemosensitizers that selectively sensitize cancer cells to platinum compounds. The present study describes the development of an amido-bridged nucleic acid (AmNA)-modified gapmer antisense oligonucleotide (ASO) targeting MCM8, called ASO 8-3419. In vitro, ASO 8-3419 inhibited MCM8 expression in several human cell lines and selectively sensitized cancer cells to cisplatin. Moreover, ASO 8-3419 modestly suppressed the growth of several cancer cell lines whose proliferation has been reported to depend on MCM8. In vivo, ASO 8-3419 inhibited the expression of MCM8 in xenografted tumors of colon cancer-derived HCT116 cells in nude mice and increased tumor sensitivity to cisplatin with minimal toxicity. These findings suggest that AmNA-modified, MCM8-specific ASOs hold promise as novel anti-cancer agents.
Collapse
Affiliation(s)
- Yuki Uchibori
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical SciencesKyushu UniversityHigashi‐kuFukuokaJapan
| | - Masaki Suekuni
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical SciencesKyushu UniversityHigashi‐kuFukuokaJapan
| | - Yuko Kokaji
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical SciencesKyushu UniversityHigashi‐kuFukuokaJapan
| | - Kazumasa Yoshida
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical SciencesKyushu UniversityHigashi‐kuFukuokaJapan
| | - Tohru Kiyono
- Project for Prevention of HPV‐Related Cancer, Exploratory Oncology Research and Clinical Trial CenterNational Cancer CenterKashiwaChibaJapan
| | - Yuuya Kasahara
- National Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)IbarakiOsakaJapan
- Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaOsakaJapan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical SciencesKyushu UniversityHigashi‐kuFukuokaJapan
| |
Collapse
|
2
|
Allen-Brady K, Moore B, Verrilli LE, Alvord MA, Kern M, Camp N, Kelley K, Letourneau J, Cannon-Albright L, Yandell M, Johnstone EB, Welt CK. Breast Cancer Is Increased in Women With Primary Ovarian Insufficiency. J Clin Endocrinol Metab 2025; 110:e1678-e1686. [PMID: 38996041 PMCID: PMC12012772 DOI: 10.1210/clinem/dgae480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
CONTEXT DNA damage/repair gene variants are associated with both primary ovarian insufficiency (POI) and cancer risk. OBJECTIVE We hypothesized that a subset of women with POI and family members would have increased risk for cancer. DESIGN Case-control population-based study using records from 1995 to 2022. SETTING Two major Utah academic health care systems serving 85% of the state. SUBJECTS Women with POI (n = 613) were identified using International Classification of Diseases codes and reviewed for accuracy. Relatives were linked using the Utah Population Database. INTERVENTION Cancer diagnoses were identified using the Utah Cancer Registry. MAIN OUTCOME MEASURES The relative risk of cancer in women with POI and relatives was estimated by comparison to population rates. Whole genome sequencing was performed on a subset of women. RESULTS Breast cancer was increased in women with POI (OR, 2.20; 95% CI, 1.30-3.47; P = .0023) and there was a nominally significant increase in ovarian cancer. Probands with POI were 36.5 ± 4.3 years and 59.5 ± 12.7 years when diagnosed with POI and cancer, respectively. Causal and candidate gene variants for cancer and POI were identified. Among second-degree relatives of these women, there was an increased risk of breast (OR, 1.28; 95% CI, 1.08-1.52; P = .0078) and colon cancer (OR, 1.50; 95% CI, 1.14-1.94; P = .0036). Prostate cancer was increased in first- (OR, 1.64; 95% CI, 1.18-2.23; P = .0026), second- (OR, 1.54; 95% CI, 1.32-1.79; P < .001), and third-degree relatives (OR, 1.33; 95% CI, 1.20-1.48; P < .001). CONCLUSION Data suggest common genetic risk for POI and reproductive cancers. Tools are needed to predict cancer risk in women with POI and potentially to counsel about risks of hormone replacement therapy.
Collapse
Affiliation(s)
- Kristina Allen-Brady
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Barry Moore
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Lauren E Verrilli
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Intermountain Healthcare, Murray, UT 84107, USA
| | - Margaret A Alvord
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Marina Kern
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Nicola Camp
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Kristen Kelley
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Joseph Letourneau
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Lisa Cannon-Albright
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Mark Yandell
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Erica B Johnstone
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Corrine K Welt
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Gu R, Wu T, Fu J, Sun YJ, Sun XX. Advances in the genetic etiology of female infertility. J Assist Reprod Genet 2024; 41:3261-3286. [PMID: 39320554 PMCID: PMC11707141 DOI: 10.1007/s10815-024-03248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024] Open
Abstract
Human reproduction is a complex process involving gamete maturation, fertilization, embryo cleavage and development, blastocyst formation, implantation, and live birth. If any of these processes are abnormal or arrest, reproductive failure will occur. Infertility is a state of reproductive dysfunction caused by various factors. Advances in molecular genetics, including cell and molecular genetics, and high-throughput sequencing technologies, have found that genetic factors are important causes of infertility. Genetic variants have been identified in infertile women or men and can cause gamete maturation arrest, poor quality gametes, fertilization failure, and embryonic developmental arrest during assisted reproduction technology (ART), and thus reduce the clinical success rates of ART. This article reviews clinical studies on repeated in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) failures caused by ovarian dysfunction, oocyte maturation defects, oocyte abnormalities, fertilization disorders, and preimplantation embryonic development arrest due to female genetic etiology, the accumulation of pathogenic genes and gene pathogenic loci, and the functional mechanism and clinical significance of pathogenic genes in gametogenesis and early embryonic development.
Collapse
Affiliation(s)
- Ruihuan Gu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Tianyu Wu
- Institute of Pediatrics, State Key Laboratory of Genetic Engineering, Institutes of BiomedicalSciences, Shanghai Key Laboratory of Medical Epigenetics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Jing Fu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Yi-Juan Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| | - Xiao-Xi Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| |
Collapse
|
4
|
Helbling-Leclerc A, Falampin M, Heddar A, Guerrini-Rousseau L, Marchand M, Cavadias I, Auger N, Bressac-de Paillerets B, Brugieres L, Lopez BS, Polak M, Rosselli F, Misrahi M. Biallelic Germline BRCA1 Frameshift Mutations Associated with Isolated Diminished Ovarian Reserve. Int J Mol Sci 2024; 25:12460. [PMID: 39596525 PMCID: PMC11594631 DOI: 10.3390/ijms252212460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The use of next-generation sequencing (NGS) has recently enabled the discovery of genetic causes of primary ovarian insufficiency (POI) with high genetic heterogeneity. In contrast, the causes of diminished ovarian reserve (DOR) remain poorly understood. Here, we identified by NGS and whole exome sequencing (WES) the cause of isolated DOR in a 14-year-old patient. Two frameshift mutations in BRCA1 (NM_007294.4) were found: in exon 8 (c.470_471del; p.Ser157Ter) and in exon 11 (c.791_794del, p.Ser264MetfsTer33). Unexpectedly, the patient presented no signs of Fanconi anemia (FA), i.e., no developmental abnormalities or indications of bone marrow failure. However, high chromosomal fragility was found in the patient's cells, consistent with an FA diagnosis. RT-PCR and Western-blot analysis support the fact that the c. 791_794del BRCA1 allele is transcribed and translated into a shorter protein (del11q), while no expression of the full-length BRCA1 protein was found. DNA damage response (DDR) studies after genotoxic agents demonstrate normal activation of the early stages of the DDR and FANC/BRCA pathway. This is consistent with the maintenance of residual repair activity for the del11q BRCA1 isoform. Our observation is the first implication of bi-allelic BRCA1 mutations in isolated ovarian dysfunction or infertility in humans, without clinical signs of FA, and highlights the importance of BRCA1 in ovarian development and function.
Collapse
Affiliation(s)
- Anne Helbling-Leclerc
- Genome Integrity and Cancer, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy, 94805 Villejuif, France; (A.H.-L.); (F.R.)
| | - Marie Falampin
- Service d’Endocrinologie, Gynécologie et Diabétologie Pédiatrique, APHP Hôpital Universitaire Necker Enfants Malades, 75743 Paris, France; (M.F.); (M.M.); (I.C.); (M.P.)
- Centre de Référence Maladies Rares-CRMR des Pathologies Gynécologiques Rares, 75743 Paris, France
| | - Abdelkader Heddar
- Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Laboratoire de Référence Pour les Infertilités Génétiques, APHP Hôpitaux Universitaires Paris-Saclay, Faculté de Médecine Paris Saclay, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre, France;
| | - Léa Guerrini-Rousseau
- Département de Cancérologie de L’enfant et de L’adolescent, Gustave Roussy, Université Paris Saclay, 94805 Villejuif, France; (L.G.-R.); (L.B.)
| | - Maud Marchand
- Service d’Endocrinologie, Gynécologie et Diabétologie Pédiatrique, APHP Hôpital Universitaire Necker Enfants Malades, 75743 Paris, France; (M.F.); (M.M.); (I.C.); (M.P.)
- Centre de Référence Maladies Rares-CRMR des Pathologies Gynécologiques Rares, 75743 Paris, France
| | - Iphigenie Cavadias
- Service d’Endocrinologie, Gynécologie et Diabétologie Pédiatrique, APHP Hôpital Universitaire Necker Enfants Malades, 75743 Paris, France; (M.F.); (M.M.); (I.C.); (M.P.)
- Centre de Référence Maladies Rares-CRMR des Pathologies Gynécologiques Rares, 75743 Paris, France
| | - Nathalie Auger
- Département de Biologie et de Pathologie Médicales, Gustave Roussy, 94805 Villejuif, France;
| | - Brigitte Bressac-de Paillerets
- Département de Biologie et Pathologies Médicales et U1279 INSERM, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France;
| | - Laurence Brugieres
- Département de Cancérologie de L’enfant et de L’adolescent, Gustave Roussy, Université Paris Saclay, 94805 Villejuif, France; (L.G.-R.); (L.B.)
| | - Bernard S. Lopez
- Faculte de Medecine, INSERM 1016, UMR 80104 CNRS, Institut Cochin, Université de Paris-Cité, 24 Rue du Faubourg ST Jacques, 75014 Paris, France;
| | - Michel Polak
- Service d’Endocrinologie, Gynécologie et Diabétologie Pédiatrique, APHP Hôpital Universitaire Necker Enfants Malades, 75743 Paris, France; (M.F.); (M.M.); (I.C.); (M.P.)
- Centre de Référence Maladies Rares-CRMR des Pathologies Gynécologiques Rares, 75743 Paris, France
- Faculté de Santé, Université de Paris, 75006 Paris, France
- Groupement de Coopération Sanitaire-GCS SeqOIA, Référent Clinicien Préindication Insuffisance Ovarienne Primitive and Plan France Médecine Génomique 2025, 78 rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Filippo Rosselli
- Genome Integrity and Cancer, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy, 94805 Villejuif, France; (A.H.-L.); (F.R.)
| | - Micheline Misrahi
- Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Laboratoire de Référence Pour les Infertilités Génétiques, APHP Hôpitaux Universitaires Paris-Saclay, Faculté de Médecine Paris Saclay, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre, France;
| |
Collapse
|
5
|
Mishra R, Kumar N, Bargali A, Maich G. Understanding the novel MCM8 gene mutation: primary ovarian insufficiency and uterine hypoplasia in siblings. BMJ Case Rep 2024; 17:e259433. [PMID: 39074937 DOI: 10.1136/bcr-2023-259433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
This case report elucidates a scenario involving two sibling sisters born out of consanguineous marriage-one initially presenting with lower respiratory infection, concurrently exhibiting short stature and primary amenorrhoea. Investigation into the primary amenorrhoea unveiled hypergonadotropic hypogonadism, confirmed by the absence of ovaries and a hypoplastic uterus on pelvic MRI. Genetic analysis via whole exome sequencing identified a homozygous variant NM_001282717.2: c.808C>T in the MCM8 gene, located on exon 8 of chromosome 20, inherited in an autosomal recessive manner. The scarcity of primary ovarian insufficiency cases linked to MCM8 highlights the necessity of thoroughly investigating the genetic and clinical consequences of such variants.
Collapse
Affiliation(s)
- Rashmi Mishra
- Medicine, Maulana Azad Medical College, New Delhi, Delhi, India
| | - Naresh Kumar
- Medicine, Maulana Azad Medical College, New Delhi, Delhi, India
| | - Arun Bargali
- Medicine, Maulana Azad Medical College, New Delhi, Delhi, India
| | - Grisha Maich
- Medicine, Maulana Azad Medical College, New Delhi, Delhi, India
| |
Collapse
|
6
|
Wen C, Cao L, Wang S, Xu W, Yu Y, Zhao S, Yang F, Chen ZJ, Zhao S, Yang Y, Qin Y. MCM8 interacts with DDX5 to promote R-loop resolution. EMBO J 2024; 43:3044-3071. [PMID: 38858601 PMCID: PMC11251167 DOI: 10.1038/s44318-024-00134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
MCM8 has emerged as a core gene in reproductive aging and is crucial for meiotic homologous recombination repair. It also safeguards genome stability by coordinating the replication stress response during mitosis, but its function in mitotic germ cells remains elusive. Here we found that disabling MCM8 in mice resulted in proliferation defects of primordial germ cells (PGCs) and ultimately impaired fertility. We further demonstrated that MCM8 interacted with two known helicases DDX5 and DHX9, and loss of MCM8 led to R-loop accumulation by reducing the retention of these helicases at R-loops, thus inducing genome instability. Cells expressing premature ovarian insufficiency-causative mutants of MCM8 with decreased interaction with DDX5 displayed increased R-loop levels. These results show MCM8 interacts with R-loop-resolving factors to prevent R-loop-induced DNA damage, which may contribute to the maintenance of genome integrity of PGCs and reproductive reserve establishment. Our findings thus reveal an essential role for MCM8 in PGC development and improve our understanding of reproductive aging caused by genome instability in mitotic germ cells.
Collapse
Affiliation(s)
- Canxin Wen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Lili Cao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Shuhan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Weiwei Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Yongze Yu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Simin Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Fan Yang
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shidou Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| | - Yajuan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| | - Yingying Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| |
Collapse
|
7
|
Bakhshalizadeh S, Bird AD, Sreenivasan R, Bell KM, Robevska G, van den Bergen J, Asghari-Jafarabadi M, Kueh AJ, Touraine P, Lokchine A, Jaillard S, Ayers KL, Wilhelm D, Sinclair AH, Tucker EJ. A Human Homozygous HELQ Missense Variant Does Not Cause Premature Ovarian Insufficiency in a Mouse Model. Genes (Basel) 2024; 15:333. [PMID: 38540391 PMCID: PMC10970702 DOI: 10.3390/genes15030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2024] Open
Abstract
Disruption of meiosis and DNA repair genes is associated with female fertility disorders like premature ovarian insufficiency (POI). In this study, we identified a homozygous missense variant in the HELQ gene (c.596 A>C; p.Gln199Pro) through whole exome sequencing in a POI patient, a condition associated with disrupted ovarian function and female infertility. HELQ, an enzyme involved in DNA repair, plays a crucial role in repairing DNA cross-links and has been linked to germ cell maintenance, fertility, and tumour suppression in mice. To explore the potential association of the HELQ variant with POI, we used CRISPR/Cas9 to create a knock-in mouse model harbouring the equivalent of the human HELQ variant identified in the POI patient. Surprisingly, Helq knock-in mice showed no discernible phenotype, with fertility levels, histological features, and follicle development similar to wild-type mice. Despite the lack of observable effects in mice, the potential role of HELQ in human fertility, especially in the context of POI, should not be dismissed. Larger studies encompassing diverse ethnic populations and alternative functional approaches will be necessary to further examine the role of HELQ in POI. Our results underscore the potential uncertainties associated with genomic variants and the limitations of in vivo animal modelling.
Collapse
Affiliation(s)
- Shabnam Bakhshalizadeh
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Anthony D. Bird
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; (A.D.B.); (D.W.)
- Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Melbourne, VIC 3168, Australia
| | - Rajini Sreenivasan
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
| | - Katrina M. Bell
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
| | - Gorjana Robevska
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
| | - Jocelyn van den Bergen
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
| | - Mohammad Asghari-Jafarabadi
- Biostatistics Unit, School of Public Health and Preventative Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia;
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Andrew J. Kueh
- The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, Pitie Salpetriere Hospital, AP-HP, Sorbonne University Medicine, 75013 Paris, France;
| | - Anna Lokchine
- IRSET (Institut de Recherche en Santé, Environnement et Travail), INSERM/EHESP/Univ Rennes/CHU Rennes–UMR_S 1085, 35000 Rennes, France; (A.L.); (S.J.)
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, 35033 Rennes, France
| | - Sylvie Jaillard
- IRSET (Institut de Recherche en Santé, Environnement et Travail), INSERM/EHESP/Univ Rennes/CHU Rennes–UMR_S 1085, 35000 Rennes, France; (A.L.); (S.J.)
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, 35033 Rennes, France
| | - Katie L. Ayers
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Dagmar Wilhelm
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; (A.D.B.); (D.W.)
| | - Andrew H. Sinclair
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Elena J. Tucker
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
8
|
Mirinezhad MR, Aghsizadeh M, Ghazizadeh H, Ghoflchi S, Bidary MZ, Naghipour A, Ferns GA, Hamzehloei T, Pasdar A, Ghayour-Mobarhan M. Micronutrients intake and genetic variants associated with premature ovarian insufficiency; MASHAD cohort study. BMC Womens Health 2024; 24:91. [PMID: 38311764 PMCID: PMC10840145 DOI: 10.1186/s12905-023-02865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/25/2023] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND AND AIM premature ovarian insufficiency (POI) is defined as the menopause before 40 years of age, and its prevalence is reported to be two-fold higher in Iranian women than the average for woman globally. POI is associated with several cardio/cerebrovascular complications as well as an increased overall mortality. Genetic factors, and serum levels of minerals and vitamin D, have been reported to be related to the prevalence of POI. We have investigated the association between some POI -related genotypes with the serum levels of some important micronutrients. METHODS One hundred and seventeen women with POI and 183 controls without any renal, hepatic, and thyroid abnormalities were recruited as part of the MASHAD study. Demographic and anthropometric features were recorded and blood samples were collected and processed. DNA was extracted from the buffy coat of blood samples from all participants and 8 POI-related single nucleotide polymorphisms (SNPs) were determined using ASO-PCR or Tetra ARMS-PCR. Serum minerals and vitamin D concentrations were measured using routine methods. RESULTS In women with POI, serum copper, phosphate, and calcium were significantly different for those with rs244715, rs16991615, and rs4806660 genotypes, respectively. In our control population, significant differences were also found in serum copper concentrations between different genotypes of rs4806660, rs7246479, rs1046089, and rs2303369. After adjusting for all confounding factors, the women with POI carrying TC genotype (rs4806660) had a lower risk to have serum copper levels < 80 (µg/dL) than those carrying a TT genotype. Furthermore, women with POI carrying GG genotype (rs244715) had a 6-fold higher risk to have serum copper levels > 155 than those carrying AA genotype. CONCLUSION The C and G alleles of the rs4806660 and rs244715 polymorphisms respectively are independently associated with serum copper in women with POI. Further studies are necessary to investigate the association of serum copper and other micronutrients in women and other POI -related polymorphisms.
Collapse
Affiliation(s)
- Mohammad Reza Mirinezhad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maliheh Aghsizadeh
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Ghazizadeh
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Ghoflchi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Alireza Naghipour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Tayebeh Hamzehloei
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alireza Pasdar
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, 99199-91766, Iran.
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, 99199-91766, Iran.
| |
Collapse
|
9
|
Ding X, Gong X, Fan Y, Cao J, Zhao J, Zhang Y, Wang X, Meng K. DNA double-strand break genetic variants in patients with premature ovarian insufficiency. J Ovarian Res 2023; 16:135. [PMID: 37430352 DOI: 10.1186/s13048-023-01221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 06/20/2023] [Indexed: 07/12/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a clinically heterogeneous disease that may seriously affect the physical and mental health of women of reproductive age. POI primarily manifests as ovarian function decline and endocrine disorders in women prior to age 40 and is an established cause of female infertility. It is crucial to elucidate the causative factors of POI, not only to expand the understanding of ovarian physiology, but also to provide genetic counselling and fertility guidance to affected patients. Factors leading to POI are multifaceted with genetic factors accounting for 7% to 30%. In recent years, an increasing number of DNA damage-repair-related genes have been linked with the occurrence of POI. Among them, DNA double-strand breaks (DSBs), one of the most damaging to DNA, and its main repair methods including homologous recombination (HR) and non-homologous end joining (NHEJ) are of particular interest. Numerous genes are known to be involved in the regulation of programmed DSB formation and damage repair. The abnormal expression of several genes have been shown to trigger defects in the overall repair pathway and induce POI and other diseases. This review summarises the DSB-related genes that may contribute to the development of POI and their potential regulatory mechanisms, which will help to further establish role of DSB in the pathogenesis of POI and provide theoretical guidance for the study of the pathogenesis and clinical treatment of this disease.
Collapse
Affiliation(s)
- Xuechun Ding
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaowei Gong
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yingying Fan
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Jinghe Cao
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Jingyu Zhao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China.
| | - Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China.
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
| |
Collapse
|
10
|
Helderman NC, Terlouw D, Bonjoch L, Golubicki M, Antelo M, Morreau H, van Wezel T, Castellví-Bel S, Goldberg Y, Nielsen M. Molecular functions of MCM8 and MCM9 and their associated pathologies. iScience 2023; 26:106737. [PMID: 37378315 PMCID: PMC10291252 DOI: 10.1016/j.isci.2023.106737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Minichromosome Maintenance 8 Homologous Recombination Repair Factor (MCM8) and Minichromosome Maintenance 9 Homologous Recombination Repair Factor (MCM9) are recently discovered minichromosome maintenance proteins and are implicated in multiple DNA-related processes and pathologies, including DNA replication (initiation), meiosis, homologous recombination and mismatch repair. Consistent with these molecular functions, variants of MCM8/MCM9 may predispose carriers to disorders such as infertility and cancer and should therefore be included in relevant diagnostic testing. In this overview of the (patho)physiological functions of MCM8 and MCM9 and the phenotype of MCM8/MCM9 variant carriers, we explore the potential clinical implications of MCM8/MCM9 variant carriership and highlight important future directions of MCM8 and MCM9 research. With this review, we hope to contribute to better MCM8/MCM9 variant carrier management and the potential utilization of MCM8 and MCM9 in other facets of scientific research and medical care.
Collapse
Affiliation(s)
| | - Diantha Terlouw
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Laia Bonjoch
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mariano Golubicki
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Marina Antelo
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sergi Castellví-Bel
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Yael Goldberg
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petah Tikva, Israel
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
11
|
Klucnika A, Mu P, Jezek J, McCormack M, Di Y, Bradshaw CR, Ma H. REC drives recombination to repair double-strand breaks in animal mtDNA. J Cell Biol 2023; 222:e202201137. [PMID: 36355348 PMCID: PMC9652705 DOI: 10.1083/jcb.202201137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Mechanisms that safeguard mitochondrial DNA (mtDNA) limit the accumulation of mutations linked to mitochondrial and age-related diseases. Yet, pathways that repair double-strand breaks (DSBs) in animal mitochondria are poorly understood. By performing a candidate screen for mtDNA repair proteins, we identify that REC-an MCM helicase that drives meiotic recombination in the nucleus-also localizes to mitochondria in Drosophila. We show that REC repairs mtDNA DSBs by homologous recombination in somatic and germline tissues. Moreover, REC prevents age-associated mtDNA mutations. We further show that MCM8, the human ortholog of REC, also localizes to mitochondria and limits the accumulation of mtDNA mutations. This study provides mechanistic insight into animal mtDNA recombination and demonstrates its importance in safeguarding mtDNA during ageing and evolution.
Collapse
Affiliation(s)
- Anna Klucnika
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Peiqiang Mu
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jan Jezek
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Matthew McCormack
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Ying Di
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Hansong Ma
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Yu M, Wang H, Xu H, Lv Y, Li Q. High MCM8 expression correlates with unfavorable prognosis and induces immune cell infiltration in hepatocellular carcinoma. Aging (Albany NY) 2022; 14:10027-10049. [PMID: 36575045 PMCID: PMC9831725 DOI: 10.18632/aging.204440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND MCM8 has been reported highly expressed in several human malignancies. However, its role in HCC has not yet been researched. METHODS The prognostic significance of MCM8 mRNA expression was analyzed using datasets from TCGA and GEO databases. Immunohistochemistry (IHC) assay was used to detect the MCM8 protein expression in HCC tissues. The Cox regression analysis was employed to determine the independent prognostic value of MCM8. Then, we established a nomogram for OS and RFS prediction based on MCM8 protein expression. We analyzed the DNA methylation and genetic alteration of MCM8 in HCC. Moreover, GO, KEGG and GSEA were utilized to explore the potential biological functions of MCM8. Subsequently, we evaluate the correlations between MCM8 expression and composition of the tumor microenvironment as well as immunocyte infiltration ratio in HCC. RESULTS MCM8 mRNA and protein were significantly overexpressed in HCC tissues. High MCM8 protein expression was an independent risk factor for OS and RFS of HCC patients. MCM8 expression is altered in 60% of queried HCC patients. In addition, higher methylation of the CpG site cg03098629, cg10518808, and 17230679 correlated with lower MCM8 levels. MCM8 expression correlated with cell cycle and DNA replication signaling. Moreover, MCM8 may be correlated with different compositions of the tumor microenvironment and immunocyte infiltration ratio in HCC. CONCLUSIONS MCM8 was highly expressed in HCC tissues and was associated with poor prognosis. Meanwhile, high expression of MCM8 may induce immune cell infiltration and may be a promising prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Meng Yu
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang, China
| | - Huaxiang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Hongyang Xu
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang, China
| | - Yuhang Lv
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang, China
| | - Qingsong Li
- Department of Gastroenterology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang, China
| |
Collapse
|
13
|
Heddar A, Ogur C, Da Costa S, Braham I, Billaud-Rist L, Findikli N, Beneteau C, Reynaud R, Mahmoud K, Legrand S, Marchand M, Cedrin-Durnerin I, Cantalloube A, Peigne M, Bretault M, Dagher-Hayeck B, Perol S, Droumaguet C, Cavkaytar S, Nicolas-Bonne C, Elloumi H, Khrouf M, Rougier-LeMasle C, Fradin M, Le Boette E, Luigi P, Guerrot AM, Ginglinger E, Zampa A, Fauconnier A, Auger N, Paris F, Brischoux-Boucher E, Cabrol C, Brun A, Guyon L, Berard M, Riviere A, Gruchy N, Odent S, Gilbert-Dussardier B, Isidor B, Piard J, Lambert L, Hamamah S, Guedj AM, Brac de la Perriere A, Fernandez H, Raffin-Sanson ML, Polak M, Letur H, Epelboin S, Plu-Bureau G, Wołczyński S, Hieronimus S, Aittomaki K, Catteau-Jonard S, Misrahi M. Genetic landscape of a large cohort of Primary Ovarian Insufficiency: New genes and pathways and implications for personalized medicine. EBioMedicine 2022; 84:104246. [PMID: 36099812 PMCID: PMC9475279 DOI: 10.1016/j.ebiom.2022.104246] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Background Primary Ovarian Insufficiency (POI), a public health problem, affects 1-3.7% of women under 40 yielding infertility and a shorter lifespan. Most causes are unknown. Recently, genetic causes were identified, mostly in single families. We studied an unprecedented large cohort of POI to unravel its molecular pathophysiology. Methods 375 patients with 70 families were studied using targeted (88 genes) or whole exome sequencing with pathogenic/likely-pathogenic variant selection. Mitomycin-induced chromosome breakages were studied in patients’ lymphocytes if necessary. Findings A high-yield of 29.3% supports a clinical genetic diagnosis of POI. In addition, we found strong evidence of pathogenicity for nine genes not previously related to a Mendelian phenotype or POI: ELAVL2, NLRP11, CENPE, SPATA33, CCDC150, CCDC185, including DNA repair genes: C17orf53(HROB), HELQ, SWI5 yielding high chromosomal fragility. We confirmed the causal role of BRCA2, FANCM, BNC1, ERCC6, MSH4, BMPR1A, BMPR1B, BMPR2, ESR2, CAV1, SPIDR, RCBTB1 and ATG7 previously reported in isolated patients/families. In 8.5% of cases, POI is the only symptom of a multi-organ genetic disease. New pathways were identified: NF-kB, post-translational regulation, and mitophagy (mitochondrial autophagy), providing future therapeutic targets. Three new genes have been shown to affect the age of natural menopause supporting a genetic link. Interpretation We have developed high-performance genetic diagnostic of POI, dissecting the molecular pathogenesis of POI and enabling personalized medicine to i) prevent/cure comorbidities for tumour/cancer susceptibility genes that could affect life-expectancy (37.4% of cases), or for genetically-revealed syndromic POI (8.5% of cases), ii) predict residual ovarian reserve (60.5% of cases). Genetic diagnosis could help to identify patients who may benefit from the promising in vitro activation-IVA technique in the near future, greatly improving its success in treating infertility. Funding Université Paris Saclay, Agence Nationale de Biomédecine.
Collapse
Affiliation(s)
- Abdelkader Heddar
- Université Paris Saclay, Faculté de Médecine. Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, AP-HP, Hôpitaux Universitaires Paris-Saclay, Le Kremlin-Bicêtre, France; UMR-S 1193, INSERM, Université Paris Saclay, Faculté de Médecine, Hôpital Paul Brousse, Villejuif, France
| | - Cagri Ogur
- Igenomix Turkey, İstanbul, Turkey; Institute of Science, Department of Bioengineering Yildiz Technical University, İstanbul, Turkey
| | - Sabrina Da Costa
- Service d'Endocrinologie Pédiatrique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, CNR pathologies gynécologiques rares, 75015, Paris, France
| | - Inès Braham
- Service d'Endocrinologie et de Médicine de la Reproduction, Hôpital Universitaire de Nice, 06200, Nice, France
| | - Line Billaud-Rist
- Service d'Endocrinologie, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin/Port-Royal, 75005, Paris, France
| | - Necati Findikli
- Bahçeci Umut IVF Centre, Altunizade, İstanbul, Turkey; Faculty of Engineering and Architecture, Department of Biomedical Engineering, Beykent University, İstanbul, Turkey
| | - Claire Beneteau
- Service de Génétique Médicale, Centre Hospitalier Universitaire Nantes, 44000, Nantes, France
| | - Rachel Reynaud
- Aix Marseille Université, Assistance-Publique des Hôpitaux de Marseille (AP-HM), Service de Pédiatrie multidisciplinaire Hôpital de la Timone Enfants, 13385, Marseille Cedex 05, France
| | - Khaled Mahmoud
- Centre FERTILLIA de Médecine de la Reproduction- Clinique la ROSE, Tunis, Tunisie
| | - Stéphanie Legrand
- Centre de Fertilité - Clinique de l'Atlantique La Rochelle, 17000, La Rochelle, France
| | - Maud Marchand
- Service d'Endocrinologie Pédiatrique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, CNR pathologies gynécologiques rares, 75015, Paris, France
| | - Isabelle Cedrin-Durnerin
- Service de Médecine de la Reproduction et Préservation de la Fertilité, hôpital Jean-Verdier, Assistance Publique-Hôpitaux de Paris, 93143 Bondy, France
| | - Adèle Cantalloube
- Service de Gynécologie et d'Obstétrique, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, AP-HP. Faculté de Médecine Pierre et Marie Curie. Université de la Sorbonne, Paris, France
| | - Maeliss Peigne
- Service de Médecine de la Reproduction et Préservation de la Fertilité, hôpital Jean-Verdier, Assistance Publique-Hôpitaux de Paris, 93143 Bondy, France
| | - Marion Bretault
- Service d'Endocrinologie, Hôpital Ambroise Paré, Assistance Publique-Hôpitaux de Paris, 92100, Boulogne Billancourt, France
| | - Benedicte Dagher-Hayeck
- Service de Médecine de la Reproduction et Préservation de la Fertilité, hôpital Jean-Verdier, Assistance Publique-Hôpitaux de Paris, 93143 Bondy, France
| | - Sandrine Perol
- Unité de gynécologie médicale, APHP, Hôpital Port-Royal Cochin, 27 Rue du Faubourg Saint-Jacques, Paris 75014, France
| | - Celine Droumaguet
- Service de Médecine Interne, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris, 94000 Créteil, France
| | - Sabri Cavkaytar
- Bahçeci Umut IVF Centre, Altunizade, İstanbul, Turkey; Üsküdar University, Faculty of Medicine, Department of Obstetrics and Gynecology, İstanbul, Turkey
| | - Carole Nicolas-Bonne
- Service de Gynécologie et d'Obstétrique, Centre Hospitalier Alpes Léman, 74130, Contamine-Sur-Arve, France
| | - Hanen Elloumi
- Centre FERTILLIA de Médecine de la Reproduction- Clinique la ROSE, Tunis, Tunisie
| | - Mohamed Khrouf
- Centre FERTILLIA de Médecine de la Reproduction- Clinique la ROSE, Tunis, Tunisie
| | - Charlotte Rougier-LeMasle
- Service d'Endocrinologie et de Médicine de la Reproduction, Hôpital Universitaire de Nice, 06200, Nice, France
| | - Melanie Fradin
- Service de Génétique Clinique, Centre Hospitalier Universitaire de Rennes, Hôpital Sud, Univ Rennes, CNRS IGDR UMR 6290, Centre de référence Anomalies du développement CLAD-Ouest, ERN ITHACA, 35203, Rennes, France; Service de Génétique Médicale, Centre Hospitalier de Saint Brieuc, 22000, Saint-Brieuc, France
| | - Elsa Le Boette
- Service de Génétique Médicale, Centre Hospitalier de Saint Brieuc, 22000, Saint-Brieuc, France
| | - Perrine Luigi
- Service d'Endocrinologie-Diabétologie, Centre Hospitalier Antibes Juan Les Pins, 06600, Antibes, France
| | - Anne-Marie Guerrot
- Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU G4 Génomique, F-76000 Rouen, France
| | | | - Amandine Zampa
- Service de Génétique, Centre Hospitalier de Mulhouse, 68100, Mulhouse, France
| | - Anais Fauconnier
- Service d'Endocrinologie, Diabète et Maladies Métaboliques, Centre Hospitalier Universitaire de Saint-Etienne, 42270, Saint-Priest-en-Jarez, France
| | - Nathalie Auger
- Service de génétique des tumeurs. Institut Gustave Roussy, 94805, Villejuif, France
| | - Françoise Paris
- Département de Pédiatrie, Unité d'Endocrinologie-Gynécologie Pédiatrique, Hôpital A.-de-Villeneuve, Centre Hospitalier Universitaire Montpellier et Université Montpellier, 34090, Montpellier, France; Constitutif Sud, Centre de Référence Maladies Rares du Développement Génital, Hôpital Lapeyronie, Centre Hospitalier Universitaire Montpellier, Université de Montpellier, 34090 Montpellier, France; INSERM 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, 34090, Montpellier, France
| | - Elise Brischoux-Boucher
- Centre de Génétique Humaine, Université de Franche-Comté, Centre Hospitalier Universitaire de Besançon, 25000, Besançon, France
| | - Christelle Cabrol
- Centre de Génétique Humaine, Université de Franche-Comté, Centre Hospitalier Universitaire de Besançon, 25000, Besançon, France
| | - Aurore Brun
- Service de Génétique, Centre Hospitalier Universitaire de Poitiers, Université de Poitiers, 86021, Poitiers, France
| | - Laura Guyon
- Service de Génétique Médicale, Centre Hospitalier Universitaire Nantes, 44000, Nantes, France
| | - Melanie Berard
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire de Nancy, F-54000, Nancy, France
| | - Axelle Riviere
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire de Nancy, F-54000, Nancy, France
| | - Nicolas Gruchy
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, EA 7450 BioTARGen, FHU G4 Genomics, Caen, France
| | - Sylvie Odent
- Service de Génétique Clinique, Centre Hospitalier Universitaire de Rennes, Hôpital Sud, Univ Rennes, CNRS IGDR UMR 6290, Centre de référence Anomalies du développement CLAD-Ouest, ERN ITHACA, 35203, Rennes, France
| | - Brigitte Gilbert-Dussardier
- Service de Génétique, Centre Hospitalier Universitaire de Poitiers, Université de Poitiers, 86021, Poitiers, France
| | - Bertrand Isidor
- Service de Génétique Médicale, Centre Hospitalier Universitaire Nantes, 44000, Nantes, France
| | - Juliette Piard
- Centre de Génétique Humaine, Université de Franche-Comté, Centre Hospitalier Universitaire de Besançon, 25000, Besançon, France
| | - Laetitia Lambert
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire de Nancy, F-54000, Nancy, France
| | - Samir Hamamah
- INSERM 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, 34090, Montpellier, France; Centre Hospitalier Universitaire de Montpellier, Département de Biologie de la Reproduction, Biologie de la Reproduction/DPI et CECOS, Université de Montpellier, Montpellier, France
| | - Anne Marie Guedj
- Service d'Endocrinologie et de Maladies Métaboliques, Centre Hospitalier Universitaire Nîmes, Université de Montpellier, 30029, Nîmes, France
| | - Aude Brac de la Perriere
- Fédération d'Endocrinologie, Centre de Référence des Maladies Rares du Développement Génital, Groupement Hospitalier Est, Hôpital Louis Pradel, 69002, Lyon, France
| | - Hervé Fernandez
- Service de Gynecologie et d'Obstétrique, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Faculté de médicine, Université Paris-Saclay, 94270 Le Kremlin Bicêtre, France; UVSQ, Inserm, CESP, Université Paris-Saclay, 94807 Villejuif, France
| | - Marie-Laure Raffin-Sanson
- Service d'Endocrinologie, Hôpital Ambroise Paré, Assistance Publique-Hôpitaux de Paris, 92100, Boulogne Billancourt, France
| | - Michel Polak
- Service d'Endocrinologie Pédiatrique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, CNR pathologies gynécologiques rares, 75015, Paris, France
| | - Hélène Letur
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Foch, 40 rue Worth 92 150 Suresnes, France; Service de Médecine de la Reproduction et Préservation de la Fertilité, Polyclinique de Navarre, 8, boulevard Hauterive, 64000 Pau, France
| | - Sylvie Epelboin
- Service de Gynécologie et d'Obstétrique, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, AP-HP. Faculté de Médecine Pierre et Marie Curie. Université de la Sorbonne, Paris, France
| | - Genevieve Plu-Bureau
- Unité de gynécologie médicale, APHP, Hôpital Port-Royal Cochin, 27 Rue du Faubourg Saint-Jacques, Paris 75014, France
| | - Sławomir Wołczyński
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Sylvie Hieronimus
- Service d'Endocrinologie et de Médicine de la Reproduction, Hôpital Universitaire de Nice, 06200, Nice, France
| | - Kristiina Aittomaki
- Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Sophie Catteau-Jonard
- Service de gynécologie médicale, orthogénie et sexologie, Centre Hospitalier Universitaire de Lille, Université de Lille, 59000 Lille, France
| | - Micheline Misrahi
- Université Paris Saclay, Faculté de Médecine. Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, AP-HP, Hôpitaux Universitaires Paris-Saclay, Le Kremlin-Bicêtre, France; UMR-S 1193, INSERM, Université Paris Saclay, Faculté de Médecine, Hôpital Paul Brousse, Villejuif, France.
| |
Collapse
|
14
|
Gorsi B, Hernandez E, Moore MB, Moriwaki M, Chow CY, Coelho E, Taylor E, Lu C, Walker A, Touraine P, Nelson LM, Cooper AR, Mardis ER, Rajkovic A, Yandell M, Welt CK. Causal and Candidate Gene Variants in a Large Cohort of Women With Primary Ovarian Insufficiency. J Clin Endocrinol Metab 2022; 107:685-714. [PMID: 34718612 PMCID: PMC9006976 DOI: 10.1210/clinem/dgab775] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT A genetic etiology likely accounts for the majority of unexplained primary ovarian insufficiency (POI). OBJECTIVE We hypothesized that heterozygous rare variants and variants in enhanced categories are associated with POI. DESIGN The study was an observational study. SETTING Subjects were recruited at academic institutions. PATIENTS Subjects from Boston (n = 98), the National Institutes of Health and Washington University (n = 98), Pittsburgh (n = 20), Italy (n = 43), and France (n = 32) were diagnosed with POI (amenorrhea with an elevated follicle-stimulating hormone level). Controls were recruited for health in old age or were from the 1000 Genomes Project (total n = 233). INTERVENTION We performed whole exome sequencing (WES), and data were analyzed using a rare variant scoring method and a Bayes factor-based framework for identifying genes harboring pathogenic variants. We performed functional studies on identified genes that were not previously implicated in POI in a D. melanogaster model. MAIN OUTCOME Genes with rare pathogenic variants and gene sets with increased burden of deleterious variants were identified. RESULTS Candidate heterozygous variants were identified in known genes and genes with functional evidence. Gene sets with increased burden of deleterious alleles included the categories transcription and translation, DNA damage and repair, meiosis and cell division. Variants were found in novel genes from the enhanced categories. Functional evidence supported 7 new risk genes for POI (USP36, VCP, WDR33, PIWIL3, NPM2, LLGL1, and BOD1L1). CONCLUSIONS Candidate causative variants were identified through WES in women with POI. Aggregating clinical data and genetic risk with a categorical approach may expand the genetic architecture of heterozygous rare gene variants causing risk for POI.
Collapse
Affiliation(s)
- Bushra Gorsi
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Edgar Hernandez
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Marvin Barry Moore
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Mika Moriwaki
- Division of Endocrinology, Metabolism and Diabetes, University of Utah, Salt Lake City, UT, USA
| | - Clement Y Chow
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Emily Coelho
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Elaine Taylor
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Claire Lu
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Amanda Walker
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Philippe Touraine
- Sorbonne Universite, Hôpital Universitaire Pitié Salpêtrière-Charles Foix, Service d’Endocrinologie et Médecine de la Reproduction, Centre de Maladies Endocriniennes Rares de la Croissance et du Développement, Centre de Pathologies Gynécologiques Rares, Paris, France
| | | | | | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Ohio State University College of Medicine, Columbus, OH, USA
| | - Aleksander Rajkovic
- Department of Pathology, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Mark Yandell
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Corrine K Welt
- Division of Endocrinology, Metabolism and Diabetes, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
15
|
Tucker EJ, Bell KM, Robevska G, van den Bergen J, Ayers KL, Listyasari N, Faradz SMH, Dulon J, Bakhshalizadeh S, Sreenivasan R, Nouyou B, Carre W, Akloul L, Duros S, Domin-Bernhard M, Belaud-Rotureau MA, Touraine P, Jaillard S, Sinclair AH. Meiotic genes in premature ovarian insufficiency: variants in HROB and REC8 as likely genetic causes. Eur J Hum Genet 2022; 30:219-228. [PMID: 34707299 PMCID: PMC8821714 DOI: 10.1038/s41431-021-00977-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 09/27/2021] [Indexed: 02/03/2023] Open
Abstract
Premature ovarian insufficiency (POI), affecting 1 in 100 women, is characterised by loss of ovarian function associated with elevated gonadotropin, before the age of 40. In addition to infertility, patients face increased risk of comorbidities such as heart disease, osteoporosis, cancer and/or early mortality. We used whole exome sequencing to identify the genetic cause of POI in seven women. Each had biallelic candidate variants in genes with a primary role in DNA damage repair and/or meiosis. This includes two genes, REC8 and HROB, not previously associated with autosomal recessive POI. REC8 encodes a component of the cohesin complex and HROB encodes a factor that recruits MCM8/9 for DNA damage repair. In silico analyses, combined with concordant mouse model phenotypes support these as new genetic causes of POI. We also identified novel variants in MCM8, NUP107, STAG3 and HFM1 and a known variant in POF1B. Our study highlights the pivotal role of meiosis in ovarian function. We identify novel variants, consolidate the pathogenicity of variants previously considered of unknown significance, and propose HROB and REC8 variants as new genetic causes while exploring their link to pathogenesis.
Collapse
Affiliation(s)
- Elena J. Tucker
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Paediatrics, University of Melbourne, Melbourne, VIC Australia
| | - Katrina M. Bell
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Melbourne, VIC Australia
| | - Gorjana Robevska
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Melbourne, VIC Australia
| | - Jocelyn van den Bergen
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Melbourne, VIC Australia
| | - Katie L. Ayers
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Paediatrics, University of Melbourne, Melbourne, VIC Australia
| | - Nurin Listyasari
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Melbourne, VIC Australia ,grid.412032.60000 0001 0744 0787Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University/Diponegoro National Hospital, Semarang, Indonesia
| | - Sultana MH Faradz
- grid.412032.60000 0001 0744 0787Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University/Diponegoro National Hospital, Semarang, Indonesia
| | - Jérôme Dulon
- grid.50550.350000 0001 2175 4109Department of Endocrinology and Reproductive Medicine, AP‐HP, Sorbonne University Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et du Développement, Centre des Pathologies Gynécologiques Rares, Paris, France
| | - Shabnam Bakhshalizadeh
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Paediatrics, University of Melbourne, Melbourne, VIC Australia
| | - Rajini Sreenivasan
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Paediatrics, University of Melbourne, Melbourne, VIC Australia
| | - Benedicte Nouyou
- grid.411154.40000 0001 2175 0984CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033 Rennes, France
| | - Wilfrid Carre
- grid.411154.40000 0001 2175 0984CHU Rennes, UF Bioinformatique et Génétique Computationnelle, Service de Génétique Moléculaire et Génomique, F-35033 Rennes, France
| | - Linda Akloul
- grid.411154.40000 0001 2175 0984CHU Rennes, Service de Génétique Clinique, CLAD Ouest, F-35033 Rennes, France
| | - Solène Duros
- grid.411154.40000 0001 2175 0984CHU Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine, F-35033 Rennes, France
| | - Mathilde Domin-Bernhard
- grid.411154.40000 0001 2175 0984CHU Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine, F-35033 Rennes, France
| | - Marc-Antoine Belaud-Rotureau
- grid.411154.40000 0001 2175 0984CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033 Rennes, France ,grid.411154.40000 0001 2175 0984Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) – UMR_S 1085, F-35000 Rennes, France
| | - Philippe Touraine
- grid.50550.350000 0001 2175 4109Department of Endocrinology and Reproductive Medicine, AP‐HP, Sorbonne University Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et du Développement, Centre des Pathologies Gynécologiques Rares, Paris, France
| | - Sylvie Jaillard
- grid.411154.40000 0001 2175 0984CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033 Rennes, France ,grid.411154.40000 0001 2175 0984Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) – UMR_S 1085, F-35000 Rennes, France
| | - Andrew H. Sinclair
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Paediatrics, University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
16
|
Heddar A, Guichoux N, Auger N, Misrahi M. A SPIDR homozygous nonsense pathogenic variant in isolated primary ovarian insufficiency with chromosomal instability. Clin Genet 2021; 101:242-246. [PMID: 34697795 DOI: 10.1111/cge.14080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/16/2023]
Abstract
Primary ovarian insufficiency (POI), affecting 1% of women under 40 years is a public health problem. Genes involved in meiosis/DNA repair were recently shown to be the leading family of associated causal genes, some of them also cause tumors/cancers. Here, using targeted next-generation sequencing in an Indian POI patient with primary amenorrhea and streak ovaries, we identified a novel homozygous nonsense variant in exon 7 of SPIDR (KIAA0146) c.814C > T, R272*, predicted to lead a nonsense-mediated mRNA decay. SPIDR was recently identified by in vitro assays as an auxiliary protein interacting with RAD51 and BLM, two major proteins involved in genome stability. Consistent with alteration of the RAD51 pathway, we observed a strong increase in mitomycin C-induced DNA breaks and aberrant metaphases in the patient's cells compared to a control. However, sister chromatid exchanges were normal in contrast to the sharp increase characteristic of the BLM pathway. This is the first evidence of chromosomal instability associated with a SPIDR molecular defect, which supports the role of SPIDR in double-stranded DNA damage repair in vivo in humans and its causal role in POI. Our study increases knowledge on the SPIDR function and has broad implications in the management of such patients.
Collapse
Affiliation(s)
- Abdelkader Heddar
- Université Paris Saclay, Faculté de Médecine; Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Hôpitaux Universitaires Paris-Saclay, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,UMR-S 1193, INSERM, Université Paris Saclay, Faculté de Médecine, Hôpital Paul Brousse, Villejuif, France
| | - Nathalie Guichoux
- Service de Pédiatrie et des Urgences Pédiatriques, Hôpital Ambroise-Paré, Hôpitaux Universitaires Paris-Saclay, Boulogne-Billancourt, France
| | - Nathalie Auger
- Département de Biologie et de Pathologie, Institut Gustave Roussy, Villejuif, France
| | - Micheline Misrahi
- Université Paris Saclay, Faculté de Médecine; Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Hôpitaux Universitaires Paris-Saclay, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,UMR-S 1193, INSERM, Université Paris Saclay, Faculté de Médecine, Hôpital Paul Brousse, Villejuif, France
| |
Collapse
|
17
|
Yang Q, Mumusoglu S, Qin Y, Sun Y, Hsueh AJ. A kaleidoscopic view of ovarian genes associated with premature ovarian insufficiency and senescence. FASEB J 2021; 35:e21753. [PMID: 34233068 DOI: 10.1096/fj.202100756r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022]
Abstract
Ovarian infertility and subfertility presenting with premature ovarian insufficiency (POI) and diminished ovarian reserve are major issues facing the developed world due to the trend of delaying childbirth. Ovarian senescence and POI represent a continuum of physiological/pathophysiological changes in ovarian follicle functions. Based on advances in whole exome sequencing, evaluation of gene copy variants, together with family-based and genome-wide association studies, we discussed genes responsible for POI and ovarian senescence. We used a gene-centric approach to sort out literature deposited in the Ovarian Kaleidoscope database (http://okdb.appliedbioinfo.net) by sub-categorizing candidate genes as ligand-receptor signaling, meiosis and DNA repair, transcriptional factors, RNA metabolism, enzymes, and others. We discussed individual gene mutations found in POI patients and verification of gene functions in gene-deleted model organisms. Decreased expression of some of the POI genes could be responsible for ovarian senescence, especially those essential for DNA repair, meiosis and mitochondrial functions. We propose to set up a candidate gene panel for targeted sequencing in POI patients together with studies on mitochondria-associated genes in middle-aged subfertile patients.
Collapse
Affiliation(s)
- Qingling Yang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sezcan Mumusoglu
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Obstetrics and Gynecology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yingpu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Aaron J Hsueh
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
18
|
Structural study of the N-terminal domain of human MCM8/9 complex. Structure 2021; 29:1171-1181.e4. [PMID: 34043945 DOI: 10.1016/j.str.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 11/20/2022]
Abstract
MCM8/9 is a complex involved in homologous recombination (HR) repair pathway. MCM8/9 dysfunction can cause genome instability and result in primary ovarian insufficiency (POI). However, the mechanism underlying these effects is largely unknown. Here, we report crystal structures of the N-terminal domains (NTDs) of MCM8 and MCM9, and build a ring-shaped NTD structure based on a 6.6 Å resolution cryoelectron microscopy map. This shows that the MCM8/9 complex forms a 3:3 heterohexamer in an alternating pattern. A positively charged DNA binding channel and a putative ssDNA exit pathway for fork DNA unwinding are revealed. Based on the atomic model, the potential effects of the clinical POI mutants are interpreted. Surprisingly, the zinc-finger motifs are found to be capable of binding an iron atom as well. Overall, our results provide a model for the formation of the MCM8/9 complex and provide a path for further studies.
Collapse
|
19
|
Heddar A, Misrahi M. Should FANCL heterozygous pathogenic variants be considered as potentially causative of primary ovarian insufficiency? Hum Mutat 2021; 41:1697-1699. [PMID: 32851770 DOI: 10.1002/humu.24077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/29/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Abdelkader Heddar
- Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, APHP Hôpitaux Universitaires Paris-Saclay, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,UMR-S 1193, INSERM, Université Paris Saclay, AP-HP, Hôpital Paul Brousse, Villejuif, France
| | - Micheline Misrahi
- Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, APHP Hôpitaux Universitaires Paris-Saclay, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,UMR-S 1193, INSERM, Université Paris Saclay, AP-HP, Hôpital Paul Brousse, Villejuif, France
| |
Collapse
|
20
|
Li G, Yang X, Wang L, Pan Y, Chen S, Shang L, Zhang Y, Wu Y, Zhou Z, Chen Q, Zhang X, Zhang L, Wang Y, Li J, Jin L, Wu Y, Zhang X, Zhang F. Haploinsufficiency in non-homologous end joining factor 1 induces ovarian dysfunction in humans and mice. J Med Genet 2021; 59:579-588. [PMID: 33888552 DOI: 10.1136/jmedgenet-2020-107398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/16/2021] [Accepted: 03/18/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a common disease in women that leads to a reduced reproductive lifespan. The aetiology of POI is genetically heterogeneous, with certain double-strand break (DSB) repair genes being implicated in POI. Although non-homologous end joining (NHEJ) is an efficient DSB repair pathway, the functional relationship between this pathway and POI remains unknown. METHODS AND RESULTS We conducted whole-exome sequencing in a Chinese family and identified a rare heterozygous loss-of-function variant in non-homologous end joining factor 1 (NHEJ1): c.532C>T (p.R178*), which co-segregated with POI and irregular menstruation. The amount of NHEJ1 protein in the proband was half of the normal level, indicating a link between NHEJ1 haploinsufficiency and POI. Furthermore, another rare heterozygous NHEJ1 variant c.500A>G (p.Y167C) was identified in one of 100 sporadic POI cases. Both variants were predicted to be deleterious by multiple in silico tools. In vitro assays showed that knock-down of NHEJ1 in human KGN ovarian cells impaired DNA repair capacity. We also generated a knock-in mouse model with a heterozygous Nhej1 variant equivalent to NHEJ1 p.R178* in familial patients. Compared with wild-type mice, heterozygous Nhej1-mutated female mice required a longer time to first birth, and displayed reduced numbers of primordial and growing follicles. Moreover, these mice exhibited higher sensitivity to DSB-inducing drugs. All these phenotypes are analogous to the progressive loss of ovarian function observed in POI. CONCLUSIONS Our observations in both humans and mice suggest that NHEJ1 haploinsufficiency is associated with non-syndromic POI, providing novel insights into genetic counselling and clinical prevention of POI.
Collapse
Affiliation(s)
- Guoqing Li
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Xi Yang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Lingbo Wang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yuncheng Pan
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Siyuan Chen
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Lingyue Shang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yicheng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yucheng Wu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Zixue Zhou
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Qing Chen
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xue Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Ling Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yingchen Wang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yanhua Wu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaojin Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
21
|
Genetics of Azoospermia. Int J Mol Sci 2021; 22:ijms22063264. [PMID: 33806855 PMCID: PMC8004677 DOI: 10.3390/ijms22063264] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Azoospermia affects 1% of men, and it can be due to: (i) hypothalamic-pituitary dysfunction, (ii) primary quantitative spermatogenic disturbances, (iii) urogenital duct obstruction. Known genetic factors contribute to all these categories, and genetic testing is part of the routine diagnostic workup of azoospermic men. The diagnostic yield of genetic tests in azoospermia is different in the different etiological categories, with the highest in Congenital Bilateral Absence of Vas Deferens (90%) and the lowest in Non-Obstructive Azoospermia (NOA) due to primary testicular failure (~30%). Whole-Exome Sequencing allowed the discovery of an increasing number of monogenic defects of NOA with a current list of 38 candidate genes. These genes are of potential clinical relevance for future gene panel-based screening. We classified these genes according to the associated-testicular histology underlying the NOA phenotype. The validation and the discovery of novel NOA genes will radically improve patient management. Interestingly, approximately 37% of candidate genes are shared in human male and female gonadal failure, implying that genetic counselling should be extended also to female family members of NOA patients.
Collapse
|
22
|
Huang C, Guo T, Qin Y. Meiotic Recombination Defects and Premature Ovarian Insufficiency. Front Cell Dev Biol 2021; 9:652407. [PMID: 33763429 PMCID: PMC7982532 DOI: 10.3389/fcell.2021.652407] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Premature ovarian insufficiency (POI) is the depletion of ovarian function before 40 years of age due to insufficient oocyte formation or accelerated follicle atresia. Approximately 1–5% of women below 40 years old are affected by POI. The etiology of POI is heterogeneous, including genetic disorders, autoimmune diseases, infection, iatrogenic factors, and environmental toxins. Genetic factors account for 20–25% of patients. However, more than half of the patients were idiopathic. With the widespread application of next-generation sequencing (NGS), the genetic spectrum of POI has been expanded, especially the latest identification in meiosis and DNA repair-related genes. During meiotic prophase I, the key processes include DNA double-strand break (DSB) formation and subsequent homologous recombination (HR), which are essential for chromosome segregation at the first meiotic division and genome diversity of oocytes. Many animal models with defective meiotic recombination present with meiotic arrest, DSB accumulation, and oocyte apoptosis, which are similar to human POI phenotype. In the article, based on different stages of meiotic recombination, including DSB formation, DSB end processing, single-strand invasion, intermediate processing, recombination, and resolution and essential proteins involved in synaptonemal complex (SC), cohesion complex, and fanconi anemia (FA) pathway, we reviewed the individual gene mutations identified in POI patients and the potential candidate genes for POI pathogenesis, which will shed new light on the genetic architecture of POI and facilitate risk prediction, ovarian protection, and early intervention for POI women.
Collapse
Affiliation(s)
- Chengzi Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Ting Guo
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| |
Collapse
|
23
|
Biswas L, Tyc K, Yakoubi WE, Morgan K, Xing J, Schindler K. Meiosis interrupted: the genetics of female infertility via meiotic failure. Reproduction 2021; 161:R13-R35. [PMID: 33170803 PMCID: PMC7855740 DOI: 10.1530/rep-20-0422] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
Idiopathic or 'unexplained' infertility represents as many as 30% of infertility cases worldwide. Conception, implantation, and term delivery of developmentally healthy infants require chromosomally normal (euploid) eggs and sperm. The crux of euploid egg production is error-free meiosis. Pathologic genetic variants dysregulate meiotic processes that occur during prophase I, meiotic resumption, chromosome segregation, and in cell cycle regulation. This dysregulation can result in chromosomally abnormal (aneuploid) eggs. In turn, egg aneuploidy leads to a broad range of clinical infertility phenotypes, including primary ovarian insufficiency and early menopause, egg fertilization failure and embryonic developmental arrest, or recurrent pregnancy loss. Therefore, maternal genetic variants are emerging as infertility biomarkers, which could allow informed reproductive decision-making. Here, we select and deeply examine human genetic variants that likely cause dysregulation of critical meiotic processes in 14 female infertility-associated genes: SYCP3, SYCE1, TRIP13, PSMC3IP, DMC1, MCM8, MCM9, STAG3, PATL2, TUBB8, CEP120, AURKB, AURKC, andWEE2. We discuss the function of each gene in meiosis, explore genotype-phenotype relationships, and delineate the frequencies of infertility-associated variants.
Collapse
Affiliation(s)
- Leelabati Biswas
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Katarzyna Tyc
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Warif El Yakoubi
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Katie Morgan
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
24
|
Mirinezhad MR, Khosroabadi N, Rahpeyma M, Khayami R, Hashemi SR, Ghazizadeh H, Ferns GA, Pasdar A, Ghayour-Mobarhan M, Hamzehloei T. Genetic Determinants of Premature Menopause in A Mashhad Population Cohort. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2021; 15:26-33. [PMID: 33497044 PMCID: PMC7838752 DOI: 10.22074/ijfs.2020.134688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/07/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Premature menopause is characterized by amenorrhea before age of 40 years, markedly raised serum luteinizing hormone (LH) level, follicle-stimulating hormone (FSH) level and reduced serum level of estradiol. Genome-wide analysis suggested several loci associated with premature menopause. Here, we aimed to analyze association of variants at the MCM8, FNDC4, PRRC2A, TLK1, ZNF346 and TMEM150B gene loci with premature menopause. MATERIALS AND METHODS In this cross-sectional study, a total of 117 women with premature menopause were compared to 183 healthy women. Anthropometric indices were measured in all participants: height, weight, body mass index (BMI), waist circumference (WC) and wrist circumference. Eight single-nucleotide polymorphisms (SNPs) of the indicated genes (rs16991615, rs244715, rs451417, rs1046089, rs7246479, rs4806660, rs10183486 and rs2303369) were identified from the literature. Genotyping was performed using tetra-ARMS polymerase chain reaction (PCR) and ASO-PCR methods. RESULTS T allele of the rs16991615, rs1046089, rs7246479 and rs10183486, C allele of rs244715, rs451417 and rs4806660 as well as TT genotype of rs2303369 were associated with an increased risk of premature menopause, likely causing susceptibility to primary ovarian insufficiency (POI) in comparison with C allele. We also found an association between the rs16991615 SNP with premature menopause. Frequency of the minor allele in cases was increased for all SNPs in comparison with controls. All minor alleles, except for rs2303369, showed a statistically significant increased odds ratio (OR). However, after Bonferroni correction for multiple testing, none of the P values were remained significant. CONCLUSION The selected polymorphisms in MCM8, FNDC4, PRRC2A, TLK1, ZNF346 and TMEM150B genes may potentially affect susceptibility to premature menopause, although replication of the results in larger cohort could clarify this.
Collapse
Affiliation(s)
- Mohammad Reza Mirinezhad
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Khosroabadi
- Department of Genetics, Faculty of Biological Science, Shahid Beheshti University, Tehran, Iran
| | - Maliheh Rahpeyma
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Khayami
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Reza Hashemi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Ghazizadeh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tayebeh Hamzehloei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Heddar A, Misrahi M. Concerns regarding the potentially causal role of FANCA heterozygous variants in human primary ovarian insufficiency. Hum Genet 2020; 140:691-694. [PMID: 33151384 DOI: 10.1007/s00439-020-02232-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/20/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Abdelkader Heddar
- Faculté de Médecine; Unité de Génétique Moléculaire Des Maladies Métaboliques Et de La Reproduction, APHP Hôpitaux Universitaires Paris-Saclay, Université Paris Saclay, Hôpital Bicêtre, 94275, Le Kremlin-Bicêtre, France.,Université Paris Saclay, UMR-S 1193, INSERM, Hôpital Paul Brousse, Villejuif, France
| | - Micheline Misrahi
- Faculté de Médecine; Unité de Génétique Moléculaire Des Maladies Métaboliques Et de La Reproduction, APHP Hôpitaux Universitaires Paris-Saclay, Université Paris Saclay, Hôpital Bicêtre, 94275, Le Kremlin-Bicêtre, France. .,Université Paris Saclay, UMR-S 1193, INSERM, Hôpital Paul Brousse, Villejuif, France.
| |
Collapse
|