1
|
Zhang X, Pan Q, Yao G, Kong D, Chen H, Zhang Q, Wang Z. Bacteroides fragilis and propionate synergize with low-dose methimazole to treat Graves' disease. Microbiol Spectr 2025:e0318624. [PMID: 40265938 DOI: 10.1128/spectrum.03186-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
Graves' disease (GD) is a common autoimmune thyroid disease with limited treatment efficacy, high relapse rates, and severe adverse effects. Gut microbiota dysbiosis is thought to play a critical role in GD, with the potential for microbiota-based therapies in GD treatment. However, experimental evidence is needed to validate this hypothesis. In this study, we evaluated the therapeutic effects of the commensal bacterium B. fragilis and its metabolite, propionate, in a GD mouse model. We found that oral supplementation with B. fragilis or propionate significantly reduced serum levels of inflammatory cytokines, total thyroxine (TT4), and TSH receptor antibodies (TRAb). It also decreased the proportion of circulating Th17 cells while increasing the proportion of circulating regulatory T cells (Tregs), thus mitigating systemic inflammation, hyperthyroidism, and the autoimmune response against TSHR. In addition, B. fragilis and propionate significantly decreased the levels of inflammatory cytokines and the proportion of M1 macrophages in thyroid tissue, while increasing the proportions of Treg cells and M2 macrophages, thereby reducing thyroid inflammation and size. Notably, the combination of B. fragilis or propionate with methimazole (MMI) significantly ameliorated pathological changes in GD mice and markedly reduced MMI dosage requirements, demonstrating a synergistic therapeutic effect. Our findings suggest that B. fragilis and propionate could serve as effective adjuvant agents in combination with MMI, thereby enhancing therapeutic efficacy while reducing drug dosage and minimizing side effects. This study opens a new avenue for microbiota-based treatments in managing GD.IMPORTANCEThis study explores a new approach to treat Graves' disease (GD), a major type of hyperthyroidism. Traditional treatments for GD often come with significant side effects and high relapse rates. Researchers found that Bacteroides fragilis, a gut commensal bacterium, and its metabolite propionate can improve the condition of GD mice. When combined with methimazole, a conventional medication for GD treatment, these natural agents demonstrated enhanced therapeutic efficacy, enabling dose reduction of methimazole and consequently reducing adverse effects. This research suggests that combining gut microbiota-based treatments with standard therapies may offer a more effective and safer way to manage GD.
Collapse
Affiliation(s)
- Xinjie Zhang
- Department of Geriatrics, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Biology, University College London, London, United Kingdom
| | - Qingxin Pan
- Shandong First Medical University Second Affiliated Hospital, Tai'an, Shandong, China
| | - Guixiang Yao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, Shandong, China
| | - Danxia Kong
- Department of Occupational Lung Disease, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong, China
| | - Haiyan Chen
- Department of Geriatrics, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, Shandong, China
| | - Zhe Wang
- Department of Geriatrics, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Geng L, Li T, Liu Y, Liu X, Wang J, Zhang L, Yang J, Zhang B. Lycium barbarum polysaccharide corrects CCR9 + Th17/ Treg imbalance in patients with rheumatoid arthritis. Clin Rheumatol 2025:10.1007/s10067-025-07415-x. [PMID: 40146447 DOI: 10.1007/s10067-025-07415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/28/2025]
Abstract
OBJECTIVES The imbalance of Th17 cells and Treg cells in synovium participates in rheumatoid arthritis (RA), and lycium barbarum polysaccharide (LBP) can attenuate arthritis in mice. The study aimed to explore the causes of Th17/Treg cell imbalance and investigate whether LBP could correct this imbalance in patients with RA. METHODS The study recruited 23 healthy controls and 58 RA patients. Flow cytometry was used to analyze the percentage of C-C chemokine receptor 9+ (CCR9) Th17 cells and CCR9+ Treg cells. IL-17A and IL-10 were evaluated by enzyme-linked immunosorbent assay. LBP was added to Treg cells or Th17 cells differentiation system to explore the role of LBP in differentiation of CCR9+ Th17/Treg cells. RESULTS In the peripheral blood (PB) and synovial fluid (SF) of RA patients, there was a rise in the proportion of CCR9+ Th17 cells and a decline in the proportion of CCR9+ Treg cells. Furthermore, a positive association was observed between the CCR9+ Th17/Treg ratio in PB and disease activity. In vitro, LBP could promote the differentiation of CCR9+ Treg cells and inhibit the differentiation of CCR9+ Th17 cells. CONCLUSIONS In summary, the CCR9+ Th17/ Treg ratio is increased in peripheral blood and synovial fluid in patients with RA, and LBP can correct the CCR9+ Th17/ Treg cells imbalance. Key Points • CCR9+ Th17/ Treg ratio is increased in PB and SF in patients with RA. • LBP can correct the CCR9+ Th17/ Treg cells imbalance in vitro.
Collapse
Affiliation(s)
- Lina Geng
- Department of Clinical Laboratory, The First Affiliated Hospital of Hebei North University, 13 Changqing Road, Zhangjiakou City, 075000, Hebei Province, China
| | - Ting Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Hebei North University, 13 Changqing Road, Zhangjiakou City, 075000, Hebei Province, China
| | - Yan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Hebei North University, 13 Changqing Road, Zhangjiakou City, 075000, Hebei Province, China
| | - Xuntao Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Hebei North University, 13 Changqing Road, Zhangjiakou City, 075000, Hebei Province, China
| | - Jing Wang
- Department of Pharmacy, Zhangjiakou Second Hospital, 9 Changcheng West Street, Zhangjiakou City, 075000, Hebei Province, China
| | - Lei Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Hebei North University, 13 Changqing Road, Zhangjiakou City, 075000, Hebei Province, China
| | - Jinliang Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Hebei North University, 13 Changqing Road, Zhangjiakou City, 075000, Hebei Province, China
| | - Bin Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Hebei North University, 13 Changqing Road, Zhangjiakou City, 075000, Hebei Province, China.
| |
Collapse
|
3
|
Wang Y, Zhang X, Ge J, Jin J, Zheng Z, Li J, Wang X, Zhang S, Wang Z, Dong G. Single-Cell Landscape of Peripheral Blood Mononuclear Cells in Patients With Graves Disease. Endocrinology 2025; 166:bqaf038. [PMID: 39996309 DOI: 10.1210/endocr/bqaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/07/2025] [Accepted: 02/23/2025] [Indexed: 02/26/2025]
Abstract
CONTEXT Graves disease (GD) is a thyroid-specific autoimmune disease and the most common cause of hyperthyroidism. Its pathogenesis is associated with the disruption of immune tolerance and autoantibody production. However, the mechanisms underlying immune abnormalities remain incompletely elucidated. OBJECTIVE To investigate changes in the cellular composition and function of peripheral blood mononuclear cells (PBMCs) in GD patients at single-cell resolution. METHODS We employed single-cell RNA sequencing (scRNA-seq) and analyzed 22 680 peripheral blood mononuclear cells (PBMCs) from 8 GD patients and 12 healthy controls. RESULTS Our results unveiled the single-cell landscape of PBMCs in GD patients, revealing substantial heterogeneity and changes in the cellular composition and function of PBMCs. We observed an increase in the proportion of CD16+ natural killer (NK) cells and memory cells in T and B lymphocyte subsets. This increase was accompanied by significantly enhanced functions, including cell activation, immune/defense responses, and inflammatory reactions. Additionally, we detected changes in the activity of transcription factors in various cell types, which were linked to the regulation of genes critical for immune and inflammation responses. Furthermore, we found a reduction in communication between NK cells and other immune cells, including CD4+ T cells, monocytes, and B cells, mediated by killer cell immunoglobulin-like receptor (KIR)-like inhibitory receptors, suggesting their involvement in the pathogenesis of GD. CONCLUSION Our study revealed characteristic alterations in the composition and function of immune cell subsets in the PBMCs of GD patients. These findings shed light on the mechanisms underlying immune dysregulation in GD.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Endocrinology & Geriatrics, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Cardiology, National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xinjie Zhang
- Department of Biology, University College London, London NW1 2HE, UK
| | - Junfeng Ge
- Anesthesiology Department, Jinan Second People's Hospital, Jinan 250026, China
| | - Jiajia Jin
- Department of Cardiology, National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Zhijian Zheng
- Department of Cardiology, National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jiaxuan Li
- Department of Endocrinology & Geriatrics, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Cardiology, National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiaowei Wang
- Department of Cardiology, National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Shucui Zhang
- Department of Cardiology, National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Zhe Wang
- Department of Endocrinology & Geriatrics, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Guangguo Dong
- Anesthesiology Department, Jinan Second People's Hospital, Jinan 250026, China
| |
Collapse
|
4
|
Fang L, Ning J. Recent advances in gut microbiota and thyroid disease: pathogenesis and therapeutics in autoimmune, neoplastic, and nodular conditions. Front Cell Infect Microbiol 2024; 14:1465928. [PMID: 39776440 PMCID: PMC11703873 DOI: 10.3389/fcimb.2024.1465928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
This review synthesizes key findings from the past five years of experimental literature, elucidating the gut microbiome's significant influence on the pathogenesis of thyroid diseases. A pronounced shift in the gut microbiota composition has been consistently observed, with a significant reduction in bacteria such as Bifidobacterium, Bacillaceae, Megamonas, and Clostridium, and a notable increase in bacteria, including Bacteroides, Proteobacteria, Actinobacteria, Desulfobacterota, and Klebsiella. These alterations are implicated in the development and progression of thyroid diseases by impacting metabolic pathways including bile acid and cytokine production, including a decrease in short-chain fatty acids (SCFAs) that are crucial for immune regulation and thyroid hormone homeostasis. The review also highlights the therapeutic implications of probiotics in managing thyroid conditions. Evidence suggests that probiotic adjunct therapy can modulate the gut microbiota, leading to improvements in thyroid function and patient outcomes. The use of specific probiotic strains, such as Lactiplantibacillus plantarum 299v and Bifidobacterium longum, has demonstrated potential in enhancing the effects of traditional treatments and possibly restoring a balanced gut microbiota. Notably, fecal microbiota transplantation (FMT) has emerged as a promising intervention in Graves' Disease (GD), demonstrating the potential to recalibrate the gut microbiota, thereby influencing neurotransmitters and trace elements via the gut-brain and gut-thyroid axes. The integration of microbiome-based therapies with traditional treatments is anticipated to usher in a new era of personalized thyroid disease management, offering a more nuanced approach to patient care. By integrating this body of work, the review offers an innovative perspective on the gut microbiome's broad impact on thyroid diseases and the therapeutic applications of probiotics.
Collapse
Affiliation(s)
| | - Jie Ning
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Hao L, Yang J, Lian B, Yin C, Xiao Y, Liu Y. Study on serum TL1A levels and their correlation with Th17 cells, IL-17 and IL-21 in children with Graves' disease. Front Immunol 2024; 15:1455025. [PMID: 39735549 PMCID: PMC11671471 DOI: 10.3389/fimmu.2024.1455025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/26/2024] [Indexed: 12/31/2024] Open
Abstract
Objective To investigate serum TL1A levels and their correlation with Th17 cells, IL-17, and IL-21 in children with Graves' disease (GD). Methods Thirty-seven children (12 males and 25 females) aged 9-14 years with newly diagnosed and untreated GD were enrolled in this study. Serum TL1A, IL-17, and IL-21 levels were measured using enzyme-linked immunosorbent assay (ELISA). The percentage of Th17 cells in peripheral blood was determined by flow cytometry. The correlation between serum TL1A levels and Th17 cells, IL-17, and IL-21 was analyzed using Pearson's correlation coefficient. Results Serum TL1A levels and the percentage of Th17 cells were significantly higher in children with GD compared to healthy controls (P<0.05). Serum IL-17 and IL-21 levels were also significantly elevated in GD patients (P<0.05). Serum TL1A levels positively correlated with the percentage of Th17 cells (r=0.625, P<0.05), IL-17 (r=0.573, P<0.05), and IL-21 (r=0.542, P<0.05) in children with GD. Conclusion Serum TL1A levels are increased in children with GD and positively correlate with Th17 cells, IL-17, and IL-21, suggesting that TL1A may play a role in the pathogenesis of GD by regulating Th17 cell differentiation and the production of IL-17 and IL-21.
Collapse
Affiliation(s)
- Lijun Hao
- Neonatal Department, Xi’an People’s Hospital (Xi’an Fourth Hospital), Xi’an, China
| | - Jiong Yang
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Biyao Lian
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yanfeng Xiao
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuesheng Liu
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Xie Q, Sun J, Sun M, Wang Q, Wang M. Perturbed microbial ecology in neuromyelitis optica spectrum disorder: Evidence from the gut microbiome and fecal metabolome. Mult Scler Relat Disord 2024; 92:105936. [PMID: 39418776 DOI: 10.1016/j.msard.2024.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is a central nervous system inflammatory demyelinating immune-mediated ailment, which is influenced by genetic, epigenetic, and environmental elements. The escalating incidence of NMOSD in recent years implies alterations in environmental risk factors. Recent research has established a correlation between gut microbiomes and the development of NMOSD. METHODS Metagenomic shotgun sequencing and gas chromatography-mass spectrometry (GC-MS) were employed to assess alterations of the structure and function in the fecal microbiome, as well as levels of short-chain fatty acids (SCFAs) in fecal and blood samples, among individuals with neuromyelitis optica spectrum disorder (NMOSD) during the acute phase (n = 25), the remission phase (n = 11), and a group of healthy controls (HCs) (n = 24). We further explored the correlation between gut microbiota and the pathogenesis of NMOSD through fecal microbiota transplantation (FMT). The gut microbiome from human donors diagnosed with NMOSD or HCs was transplanted into germ-free mice, followed by an analysis of the alterations in the structure and functionality of the transplanted mice's gut microbiome. Additionally, the impact of microbiome transfer on the immunity and spinal cord of germ-free mice was assessed through various techniques, including ELISA, flow cytometry, western blot, histopathology, and transcriptome sequencing. RESULTS (1) At the taxonomic levels of genus and species, there were significant differences in the α-diversity of the microbiome between HCs and NMOSD patients in the acute phase, with NMOSD patients having higher species diversity. (2) In the acute phase, the gut microbiota of NMOSD patients was characterized by Ruminococcaceae_unclassified, Campylobacter, Parabacteroides, Lactobacillus, Akkermansia, Streptococcus oralis, Clostridium leptum, Clostridium asparagiforme, Firmicutes bacterium CAG 238, and Lactobacillus fermentum. (3) The relative abundances of Coprobacter, Turicimonas, Gemmiger, Enterobacter, Roseburia sp.CAG 471, Veillonella tobetsuensis, Proteobacteria bacterium CAG 139, Ruminococcus bicirculans, Lactococcus lactis, Flavonifractor plautii, and Streptococcus cristatus were notably lower in patients experiencing remission compared to NMOSD patients in the acute phase, On the other hand, the relative abundances of Flavonifractor (P = 0.049) and Clostridium aldenense (P = 0.049) were significantly higher. Following medication, the gut microbiome distribution in NMOSD patients during remission closely resembled that of healthy controls (HCs). (4) Compared with HCs, acetate levels in the feces of patients with NMOSD in the acute phase were significantly lower. (5) In addition, we transplanted feces from NMOSD patients into germ-free mice and revealed a significant increase in the levels of IL-6, IL-17A, and IL-23 in the blood of mice belonging to the NMOSD fecal transplantation (NFMT) group. Additionally, the IL-10 level exhibited a significant reduction. Moreover, the proportion of Th17 cells displayed a significant increase, while the proportion of Treg cells exhibited a significant decrease in the spleens of NFMT mice. CONCLUSION Patients in the acute phase of neuromyelitis optica spectrum disorder (NMOSD) exhibited imbalances in their gut microbiota and a deficiency in short-chain fatty acids (SCFAs). Following drug treatment, the composition of intestinal microbes in NMOSD patients during the remission phase closely resembled that of the healthy control population. The FMT experiment provided evidence of the significant association between intestinal flora and the pathogenesis of NMOSD. Consequently, investigating gut microbiota and identifying novel microbial markers hold promise for the diagnosis and treatment of NMOSD patients.
Collapse
Affiliation(s)
- QinFang Xie
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Jing Sun
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - MengJiao Sun
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Qi Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China.
| | - ManXia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China.
| |
Collapse
|
7
|
Zhang C, Teng W, Wang C, Shan Z. The Gut Microbiota and Its Metabolites and Their Association with the Risk of Autoimmune Thyroid Disease: A Mendelian Randomization Study. Nutrients 2024; 16:3898. [PMID: 39599685 PMCID: PMC11597551 DOI: 10.3390/nu16223898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Objectives: Observational research shows associations of the gut microbiota and its metabolites with autoimmune thyroid disease (AITD), but the causality is undetermined. Methods: Two-sample Mendelian randomization (MR) was employed to analyze the association of the gut microbiota and its metabolites with AITD. A total of 119 gut microbiotas and nine fecal/circulating metabolites were the exposures. AITD, Graves' disease (GD), and Hashimoto's thyroiditis (HT) were the outcomes. Inverse-variance weighting (IVW) was primarily used to assess causality; Cochran's Q was used to assess heterogeneity. Sensitivity analyses (weighted median, MRPRESSO regression, MRPRESSO intercept, MRPRESSO global, Steiger filtering, leave-one-out) were conducted to assess causal estimate robustness. Multivariable MR (MVMR) was used to estimate the effects of body mass index (BMI) and alcohol consumption frequency on causality. Results: The outcomes were potentially causally associated with 22 gut microbiotas and three metabolites. After multiple-test correction, 3-indoleglyoxylic acid retained significant causality with AITD (IVW: odds ratio [OR] = 1.09, 95% confidence interval [CI] = 1.05-1.14, p = 2.43 × 10-5, FDR = 0.009). The sensitivity analyses were confirmatory (weighted median: OR = 1.06, 95% CI = 1.01-1.12, p = 0.025; MRPRESSO: OR = 1.09, 95% CI = 1.15-1.14, p = 0.001). MVMR revealed no confounding effects on this association (BMI: OR = 1.21, 95% CI =1.08-1.35, p = 0.001; drinks/week: OR = 1.22, 95% CI = 1.04-1.43, p = 0.014). Conclusions: MR revealed no significant causal effects of the gut microbiota on the outcomes. However, MR revealed the causal effects of 3-indoleglyoxylic acid on the risk of AITD.
Collapse
Affiliation(s)
| | | | - Chuyuan Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of China Medical University, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, China Medical University, Shenyang 110001, China; (C.Z.); (W.T.)
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of China Medical University, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, China Medical University, Shenyang 110001, China; (C.Z.); (W.T.)
| |
Collapse
|
8
|
Zhang Y, Fu L. Evaluating the causal effects between Grave's disease and diabetes mellitus: a bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1420499. [PMID: 39568808 PMCID: PMC11576183 DOI: 10.3389/fendo.2024.1420499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/01/2024] [Indexed: 11/22/2024] Open
Abstract
Background Graves' disease (GD) is an autoimmune disease associated with an increased incidence of other autoimmune diseases. To investigate the causality between GD and Diabetes mellitus (DM), we designed bidirectional two-sample Mendelian randomization (MR) and multivariable MR (MVMR) studies. Methods Single-nucleotide polymorphisms (SNPs) associated with GD, thyroid peroxidase (TPO), thyroglobulin (Tg), thyroid-stimulating hormone (TSH), type 1 diabetes (T1D), and type 2 diabetes (T2D) were obtained from the IEU Open GWAS and FinnGen biobank databases. For the forward MR study, we used GD (sample size = 458,620) as the exposure and T1D (sample size = 520,580) and T2D (sample size = 211,766) as the outcomes. Next, high risk of T1D and T2D were used as exposure variables, and GD was used as the outcome variable for the reverse MR analysis. Finally, MVMR analysis was conducted to investigate the probable relationship between DM and indicators for thyroid function like TPO, Tg, and TSH. The inverse variance weighting (IVW) was used as the main method. Finally, the heterogeneity and sensitivity were assessed. Results There were 27, 88, and 55 SNPs associated with GD, T1D, and T2D, respectively. A significant causal connection between higher genetic liability of GD and the risk of T2D (OR [95% CI] = 1.059 [1.025-1.095], P = 5.53e-04) was found in the forward MR analysis. Comparatively, the significant causal relationship between higher genetic liability of GD and the risk of T1D was not demonstrated (OR [95% CI] = 0.998[0.927,1.074], P=0.949). However, reverse MR suggested that there was a genetic susceptibility to T1D that increased the likelihood of developing GD (OR [95% CI] = 1.173[1.117,1.231], P = 1.913e-10), while T2D did not (OR [95% CI] = 0.963 [0.870-1.066], P = 0.468). Furthermore, there was inadequate evidence to suggest that abnormal TSH, TPO, and Tg levels increase the risk of incident T1D or T2D in individuals with GD. MVMR revealed no causal relationship among Tg, TSH, TPO, T1D, or T2D. Conclusion There was no increased risk of T1D with an increase in genetic susceptibility to GD, although higher genetic susceptibility to T1D has been shown to be associated with increased risk of developing GD. A unidirectional causal relationship between the genetic liability for GD and increased risk of T2D was observed using MR analyses. MVMR analysis showed no statistically relevant causality between the genetic liability for TSH, TPO, or Tg and the risk of either T1D or T2D.
Collapse
Affiliation(s)
- Yuhan Zhang
- Emergency Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, China
- General Surgery Center, Department of Thyroid Surgery, The 1st Hospital of Jilin University, Chang Chun, China
- Department of General Surgery, Panzhihua Central Hospital, Panzhihua, China
| | - Liuxiang Fu
- Emergency Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, China
| |
Collapse
|
9
|
Zhou J, Xu Y, Wang H, Chen C, Wang K. Decoding skin mysteries: Unveiling the link between microbiota and keloid scars through a Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40004. [PMID: 39465868 PMCID: PMC11479508 DOI: 10.1097/md.0000000000040004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/19/2024] [Indexed: 10/29/2024] Open
Abstract
The cause of keloids remains unclear, but studies suggest a link between skin microbiota and keloid formation. However, the causal relationship has not been confirmed. This study utilized Genome-Wide Association Studies (GWAS) data from 2 population-based German cohorts, comprising a total of 1656 skin samples. To bolster the reliability of our results, we incorporated GWAS data from 3 keloid cohorts, encompassing 2555 patients and 870,556 controls (GWAS ID: keloid1, ebi-a-GCST90018874; keloid2, bbj-a-131; keloid3, ebi-a-GCST90018654). Subsequently, we employed bidirectional 2-sample Mendelian randomization (MR) analysis to probe the causal relationship between the variables. The primary method employed was the inverse-variance weighted (IVW) method, supported by heterogeneity analysis, horizontal pleiotropy testing, outlier detection, and "leave-one-out" sensitivity analysis. By synthesizing the results from 3 groups of MR analyses, we discovered a negative causal association between a.ASV063 [Finegoldia (unc.)] located on the volar forearm and keloid disease (IVW (keloid1) odds ratio (OR): 0.939, 95% confidence interval (CI): 0.886-0.994, P = .032; IVW (keloid2) OR: 0.897, 95% CI: 0.813-0.990, P = .031; IVW (keloid3) OR: 0.900, 95% CI: 0.825-0.981, P = .017). Similarly, a negative causal relationship may also exist between the genus: Bacteroides from the antecubital fossa and keloid disease (IVW (keloid1) OR: 0.928, 95% CI: 0.884-0.973, P = .002; IVW (keloid2) OR: 0.891, 95% CI: 0.820-0.968, P = .007; IVW (keloid3) OR: 0.918, 95% CI: 0.849-0.992, P = .030). Additionally, no reverse causation was found, with all analyses showing no signs of horizontal pleiotropy or heterogeneity. This study offers new insights for the prevention and treatment of keloids.
Collapse
Affiliation(s)
- Jie Zhou
- Department of General Surgery, The Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of General Surgery, The Wujin Clinical college of Xuzhou Medical University, Changzhou, China
| | - Yixin Xu
- Department of General Surgery, The Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of General Surgery, The Wujin Clinical college of Xuzhou Medical University, Changzhou, China
| | - Haitao Wang
- Department of General Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Chao Chen
- Department of General Surgery, The Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of General Surgery, The Wujin Clinical college of Xuzhou Medical University, Changzhou, China
| | - Kun Wang
- Department of General Surgery, The Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of General Surgery, The Wujin Clinical college of Xuzhou Medical University, Changzhou, China
| |
Collapse
|
10
|
Yan K, Sun X, Fan C, Wang X, Yu H. Unveiling the Role of Gut Microbiota and Metabolites in Autoimmune Thyroid Diseases: Emerging Perspectives. Int J Mol Sci 2024; 25:10918. [PMID: 39456701 PMCID: PMC11507114 DOI: 10.3390/ijms252010918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Autoimmune thyroid diseases (AITDs) are among the most prevalent organ-specific autoimmune disorders, with thyroid hormones playing a pivotal role in the gastrointestinal system's structure and function. Emerging evidence suggests a link between AITDs and the gut microbiome, which is a diverse community of organisms that are essential for digestion, absorption, intestinal homeostasis, and immune defense. Recent studies using 16S rRNA and metagenomic sequencing of fecal samples from AITD patients have revealed a significant correlation between a gut microbiota imbalance and the severity of AITDs. Progress in animal models of autoimmune diseases has shown that intervention in the gut microbiota can significantly alter the disease severity. The gut microbiota influences T cell subgroup differentiation and modulates the pathological immune response to AITDs through mechanisms involving short-chain fatty acids (SCFAs), lipopolysaccharides (LPSs), and mucosal immunity. Conversely, thyroid hormones also influence gut function and microbiota composition. Thus, there is a bidirectional relationship between the thyroid and the gut ecosystem. This review explores the pathogenic mechanisms of the gut microbiota and its metabolites in AITDs, characterizes the gut microbiota in Graves' disease (GD) and Hashimoto's thyroiditis (HT), and examines the interactions between the gut microbiota, thyroid hormones, T cell differentiation, and trace elements. The review aims to enhance understanding of the gut microbiota-thyroid axis and proposes novel approaches to mitigate AITD severity through gut microbiota modulation.
Collapse
Affiliation(s)
- Kai Yan
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (K.Y.); (C.F.)
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Xin Sun
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Chenxi Fan
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (K.Y.); (C.F.)
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Xin Wang
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (K.Y.); (C.F.)
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| |
Collapse
|
11
|
Wu R, Li N, Wang X, Wang S, Tan J, Wang R, Zheng W. Mouse model of Graves' orbitopathy induced by the immunization with TSHR A and IGF-1R α subunit gene. J Endocrinol Invest 2024; 47:2507-2519. [PMID: 38662129 DOI: 10.1007/s40618-024-02344-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/18/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE The study aimed to establish a mouse model of Graves' disease (GD) with Graves' orbitopathy (GO; GD + GO) that can represent the clinical disease characteristics. METHODS A eukaryotic expression plasmid of insulin-like growth factor 1 receptor (IGF-1R) α subunit (pcDNA3.1/IGF-1Rα) and a thyrotropin receptor (TSHR) A subunit plasmid (pcDNA3.1/TSHR-289) were injected in female BALB/c mice followed by immediate electroporation to induce a GD + GO model. Grouping was performed according to the frequency of injection (2- to 4-week intervals) and type of injected plasmids: T: pcDNA3.1/TSHR-289( +), I: pcDNA3.1/IGF-1Rα( +), or co-injection T + I: pcDNA3.1/TSHR-289( +) and pcDNA3.1/IGF-1Rα( +). Serum TSH, T4, TSAb, TSBAb, body weight, and blood glucose levels were evaluated. Thyroid 99mTcO4- imaging and retrobulbar magnetic resonance imaging (MRI) were performed, and bilateral eye muscle volumes were measured. Immunohistochemistry and hematoxylin-eosin staining were performed on the relevant tissues, and semi-quantitative analysis was performed. RESULTS A total of 60% of mice (3/5, one mouse died) in the T group developed GD + GO. In the T + I group, 83.3% of mice (5/6) developed GD + GO. Mice in the I group did not develop GD. Compared with the control group, serum T4, TSAb, and TSBAb of the mice in the GD + GO model groups were increased to varying degrees (P < 0.05), and serum TSH and body weight were significantly lower compared to the control group (P < 0.05). The thyroid uptake capacity of 99mTcO4- and the volume of eye muscle of mice in the GD + GO group were significantly higher compared to the control group (P < 0.05). The thyroid and retrobulbar muscles of these mice showed varying inflammatory infiltration and interstitial muscle edema. The severity of GD + GO in the co-injection group was not related to injection frequency; however, GD and ocular signs in co-injection mice were more severe compared to the T group. CONCLUSIONS We successfully induced a GD + GO mouse model by a repeated co-injection of pcDNA3.1/IGF-1Rα and pcDNA3.1/TSHR-289 plasmids. Injection of pcDNA3.1/IGF-1Rα alone failed to induce GD. Co-injection of two plasmids induced more severe GD + GO than pcDNA3.1/TSHR-289( +) alone.
Collapse
Affiliation(s)
- R Wu
- Department of Nuclear Medicine, General Hospital of Tianjin Medical University, 154 Anshan Road, Heping, Tianjin, 300052, China
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Middle Road, Jing'an, Shanghai, 200072, China
| | - N Li
- Department of Nuclear Medicine, General Hospital of Tianjin Medical University, 154 Anshan Road, Heping, Tianjin, 300052, China
| | - X Wang
- Department of Nuclear Medicine, General Hospital of Tianjin Medical University, 154 Anshan Road, Heping, Tianjin, 300052, China
| | - S Wang
- Department of Nuclear Medicine, General Hospital of Tianjin Medical University, 154 Anshan Road, Heping, Tianjin, 300052, China
| | - J Tan
- Department of Nuclear Medicine, General Hospital of Tianjin Medical University, 154 Anshan Road, Heping, Tianjin, 300052, China
| | - R Wang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Middle Road, Jing'an, Shanghai, 200072, China
| | - W Zheng
- Department of Nuclear Medicine, General Hospital of Tianjin Medical University, 154 Anshan Road, Heping, Tianjin, 300052, China.
| |
Collapse
|
12
|
Chen H, Cao J, Zhang F, Xiong W. Significance of Gut Microbiota on Graves' Disease. Int J Gen Med 2024; 17:3967-3974. [PMID: 39281039 PMCID: PMC11402343 DOI: 10.2147/ijgm.s467888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Growing research proves gut microbiota and thyroid autoimmunity are linked. Graves' disease (GD), as an autoimmune thyroid disease (AITD), is attributed to the production of thyroid-stimulating hormone receptor (TSHR) autoantibodies that bind to the thyroid follicular endothelial cells. It is well known that genetic factors, environmental factors, and immune disorders count for much in the development of GD. So far, the pathogenesis of GD is not elucidated. Emerging research reveals that the change in gut microbiota composition and its metabolites are related to GD. The gut microbial diversity is reduced in GDs compared with healthy controls (HCs). Firmicutes and Bacteroidetes account for a large proportion at the genus level. It is found that phyla Bacteroidetes increased while phyla Firmicutes decreased in Graves' Disease patients (GD patients). Moreover, gut microbiota modulates the immune system to produce cytokines through bacterial metabolites. This article aims to find out the relation between gut microbiota dysbiosis and the development of GD. As more molecular pathways of bacterial metabolites are revealed, targeting microbiota is expected to the treatment of GD.
Collapse
Affiliation(s)
- Haiyan Chen
- Wuzhou Workers Hospital, Wuzhou, Guangxi Zhuang, People's Republic of China
| | - Jiamin Cao
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Feng Zhang
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Wei Xiong
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| |
Collapse
|
13
|
Zhu XX, Zhao CY, Meng XY, Yu XY, Ma LC, Chen TX, Chang C, Chen XY, Zhang Y, Hou B, Cai WW, Du B, Han ZJ, Qiu LY, Sun HJ. Bacteroides uniformis Ameliorates Carbohydrate and Lipid Metabolism Disorders in Diabetic Mice by Regulating Bile Acid Metabolism via the Gut-Liver Axis. Pharmaceuticals (Basel) 2024; 17:1015. [PMID: 39204119 PMCID: PMC11357665 DOI: 10.3390/ph17081015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a metabolic syndrome characterized by chronic inflammation, insulin resistance, and islet cell damage. The prevention of T2DM and its associated complications is an urgent public health issue that affects hundreds of millions of people globally. Numerous studies suggest that disturbances in gut metabolites are important driving forces for the pathogenesis of diabetes. However, the functions and mechanisms of action of most commensal bacteria in T2DM remain largely unknown. METHODS The quantification of bile acids (BAs) in fecal samples was performed using ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS). The anti-diabetic effects of Bacteroides uniformis (B. uniformis) and its metabolites cholic acid (CA) and chenodeoxycholic acid (CDCA) were assessed in T2DM mice induced by streptozocin (STZ) plus high-fat diet (HFD). RESULTS We found that the abundance of B. uniformis in the feces and the contents of CA and CDCA were significantly downregulated in T2DM mice. B. uniformis was diminished in diabetic individuals and this bacterium was sufficient to promote the production of BAs. Colonization of B. uniformis and intragastric gavage of CA and CDCA effectively improved the disorder of glucose and lipid metabolism in T2DM mice by inhibiting gluconeogenesis and lipolysis in the liver. CA and CDCA improved hepatic glucose and lipid metabolism by acting on the Takeda G protein-coupled receptor 5 (TGR5)/adenosine monophosphate-activated protein kinase (AMPK) signaling pathway since knockdown of TGR5 minimized the benefit of CA and CDCA. Furthermore, we screened a natural product-vaccarin (VAC)-that exhibited anti-diabetic effects by promoting the growth of B. uniformis in vitro and in vivo. Gut microbiota pre-depletion abolished the favorable effects of VAC in diabetic mice. CONCLUSIONS These data suggest that supplementation of B. uniformis may be a promising avenue to ameliorate T2DM by linking the gut and liver.
Collapse
Affiliation(s)
- Xue-Xue Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
- Department of Physiology, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Chen-Yang Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Xin-Yu Meng
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Xiao-Yi Yu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Lin-Chun Ma
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Tian-Xiao Chen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Chang Chang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Xin-Yu Chen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Yuan Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Wei-Wei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Bin Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Zhi-Jun Han
- Department of Clinical Research Center, Jiangnan University Medical Center, Wuxi 214001, China;
| | - Li-Ying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
14
|
Ludgate ME, Masetti G, Soares P. The relationship between the gut microbiota and thyroid disorders. Nat Rev Endocrinol 2024:10.1038/s41574-024-01003-w. [PMID: 38906998 DOI: 10.1038/s41574-024-01003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/23/2024]
Abstract
Disorders of the thyroid gland are common, more prevalent in women than in men, and range from inflammatory to neoplastic lesions. Autoimmune thyroid diseases (AITD) affect 2-5% of the population, while thyroid cancer is the most frequent endocrine malignancy. Treatment for AITD is still restricted to management rather than prevention or cure. Progress has been made in identifying genetic variants that predispose to AITD and thyroid cancer, but the increasing prevalence of all thyroid disorders indicates that factors other than genes are involved. The gut microbiota, which begins to develop before birth, is highly sensitive to diet and the environment, providing a potential mechanism for non-communicable diseases to become communicable. Its functions extend beyond maintenance of gut integrity: the gut microbiota regulates the immune system, contributes to thyroid hormone metabolism and can generate or catabolize carcinogens, all of which are relevant to AITD and thyroid cancer. Observational and interventional studies in animal models support a role for the gut microbiota in AITD, which has been confirmed in some reports from human cohorts, although considerable geographic variation is apparent. Reports of a role for the microbiota in thyroid cancer are more limited, but evidence supports a relationship between gut dysbiosis and thyroid cancer.
Collapse
Affiliation(s)
| | | | - Paula Soares
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S), Porto, Portugal
| |
Collapse
|
15
|
Zufry H, Zulfa PO, Hariyanto TI. The gut microbiota and its role in Graves' Disease: a systematic review and meta-analysis. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:300-308. [PMID: 39364132 PMCID: PMC11444861 DOI: 10.12938/bmfh.2024-020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/21/2024] [Indexed: 10/05/2024]
Abstract
Emerging research indicates the potential involvement of gut bacteria in the etiology of Graves' Disease (GD). However, the evidence regarding this matter is still conflicting. The primary objective of this investigation was to examine the correlation between gut microbiota and GD. A comprehensive search was conducted of the Cochrane Library, Scopus, Europe PMC, and Medline databases up until August 1, 2023, utilizing a combination of relevant keywords. This review incorporates literature that examined the composition of gut microbiota in patients with GD. We employed random-effect models to analyze the standardized mean difference (SMD) and present the outcomes together with their corresponding 95% confidence intervals (CIs). A total of ten studies were incorporated. The results of our meta-analysis indicated that patients with GD have a reduced alpha diversity of gut microbiota as evidence by a significant reduction of Chao1 (std. mean difference -0.58; 95% CI -0.90, -0.26, p=0.0004; I2 =61%), ACE (std. mean difference -0.64; 95% CI -1.09, -0.18, p=0.006; I2 =77%), and Shannon index (std. mean difference -0.71; 95% CI -1.25, -0.17, p=0.01; I2 =90%) when compared with healthy controls. At the phylum level, the abundance of Firmicutes was reduced in GD patients, while that of Bacteroidetes was increased. This study suggests a notable decrease in the richness and variety of gut microbiota among people diagnosed with GD in comparison with healthy controls.
Collapse
Affiliation(s)
- Hendra Zufry
- Division of Endocrinology, Metabolism, and Diabetes, Thyroid Center, Department of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala/Dr. Zainoel Abidin Hospital, Banda Aceh, Aceh 24415, Indonesia
- Innovation and Research Center of Endocrinology, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Putri Oktaviani Zulfa
- Innovation and Research Center of Endocrinology, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | | |
Collapse
|
16
|
Liu G, Liu X, Wang F, Jia G, Zhao H, Chen X, Wang J. Effects of Dietary Glutamine Supplementation on the Modulation of Microbiota and Th17/Treg Immune Response Signaling Pathway in Piglets after Lipopolysaccharide Challenge. J Nutr 2024; 154:1711-1721. [PMID: 38367809 DOI: 10.1016/j.tjnut.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Glutamine (Gln) has an important effect on the growth performance and immune function of piglets. However, the effect of Gln on intestinal immunity in piglets through modulating the signaling pathways of the helper T cells 17 (Th17)/regulatory T cells (Treg) immune response has not been reported. OBJECTIVE This study aimed to determine the effect of Gln on piglet growth performance and immune stress response and its mechanism in piglets. METHODS Twenty-four weaned piglets were randomly assigned to 4 treatments with 6 replicates each, using a 2 × 2 factorial arrangement: diet (basal diet or 1% Gln diet) and immunological challenge [saline or lipopolysaccharide (LPS)]. After 21 d, half of the piglets on the basal diet and 1% Gln diet received the intraperitoneal injection of LPS and the other half received the same volume of normal saline. RESULTS The results showed that Gln increased average daily feed intake and average daily weight gain in comparison with the control group (P < 0.05). Dietary Gln increased the villus height, villus height-to-crypt depth ratio, and the abundance of Bacteroidetes, Lactobacillus sp., and Ruminococcus sp. while reducing the abundance of Firmicutes, Clostridium sensu stricto 1 sp., and Terrisporobacter sp. (P < 0.05). Furthermore, Gln increased the concentration of short-chain fatty acids in the colon and the expression of genes of interleukin (IL)-10, transforming growth factor-beta-1, forkhead box P3 while downregulating the expression of genes of IL-6, IL-8, IL-1β, tumor necrosis factor-α, IL-17A, IL-21, signal transducer and activator of transcription 3, and rar-related orphan receptor c in ileum (P < 0.05). Correlation analysis demonstrated a strong association between colonic microbiota, short-chain fatty acids, and ileal inflammatory cytokines. CONCLUSIONS These results suggest that dietary Gln could improve growth performance and attenuate LPS-challenged intestinal inflammation by modulating microbiota and the Th17/Treg immune response signaling pathway in piglets.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China.
| | - Xinlian Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Fang Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Dai HY, Zhang ZX, Tan C, Xian X, Ji D, Yang J, Sun J, Yao H. Propionic acid ameliorates cognitive function through immunomodulatory effects on Th17 cells in perioperative neurocognitive disorders. Heliyon 2024; 10:e28817. [PMID: 38699705 PMCID: PMC11063405 DOI: 10.1016/j.heliyon.2024.e28817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
Background Elderly patients undergoing surgery are prone to cognitive decline known as perioperative neurocognitive disorders (PND). Several studies have shown that the microglial activation and the decrease of short-chain fatty acids (SCFAs) in gut induced by surgery may be related to the pathogenesis of PND. The purpose of this study was to determine whether microglia and short-chain fatty acids were involved in cognitive dysfunction in aged rats. Methods Male wild-type Wistar rats aged 11-12 months were randomly divided into control group (Ctrl: Veh group), propionic acid group (Ctrl: PA group), exploratory laparotomy group (LP: Veh group) and propionic acid + exploratory laparotomy group (LP: PA group) according to whether exploratory laparotomy (LP) or PA pretreatment for 21 days was performed. The motor ability of the rats was evaluated by open field test on postoperative day 3 (POD3), and then the cognitive function was evaluated by Y-maze test and fear conditioning test. The expression of IL-1β, IL-6, RORγt and IL-17A mRNA in hippocampus was detected by RT-qPCR, the expression of IL-17A and IL-17RA in hippocampus was detected by Western blot, and the activation of microglia was detected by immunofluorescence. Results The PND rat model was successfully established by laparotomy. Compared with Ctrl: Veh group, the body weight of LP: Veh group decreased, the percentage of spontaneous alternations in Y maze decreased (P < 0.001), and the percentage of freezing time in contextual fear test decreased (P < 0.001). Surgery triggers neuroinflammation, manifested as the elevated levels of the inflammatory cytokines IL-1β (P < 0.001) and IL-6 (P < 0.001), the increased expression of the transcription factor RORγt (P = 0.0181, POD1; P = 0.0073, POD5)and major inflammatory cytokines IL-17A (P = 0.0215, POD1; P = 0.0071, POD5), and the increased average fluorescence intensity of Iba1 (P < 0.001, POD1; P < 0.001, POD5). After PA preconditioning, the recovery of rats in LP: PA group was faster than that in LP: Veh group as the body weight lost on POD1 (P = 0.0148) was close to the baseline level on POD5 (P = 0.1846), and they performed better in behavioral tests. The levels of IL-1β (P < 0.001) and IL-6 (P = 0.0035) inflammatory factors in hippocampus decreased on POD1 and the average fluorescence intensity of Iba1 decreased (P = 0.0024, POD1; P < 0.001, POD5), representing the neuroinflammation was significantly improved. Besides, the levels of RORγt mRNA (P = 0.0231, POD1; P = 0.0251, POD5) and IL-17A mRNA (P = 0.0208, POD1; P = 0.0071, POD5) in hippocampus as well as the expression of IL-17A (P = 0.0057, POD1; P < 0.001, POD5) and IL-17RA (P = 0.0388) decreased. Conclusion PA pretreatment results in reduced postoperative neuroinflammation and improved cognitive function, potentially attributed to the regulatory effects of PA on Th17-mediated immune responses.
Collapse
Affiliation(s)
- Hong-yu Dai
- Department of Anesthesiology, Surgery and Pain Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ze-xin Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Tan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xian Xian
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dong Ji
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Yang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jie Sun
- Department of Anesthesiology, Surgery and Pain Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hao Yao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Tian Z, Zhang X, Yao G, Jin J, Zhang T, Sun C, Wang Z, Zhang Q. Intestinal flora and pregnancy complications: Current insights and future prospects. IMETA 2024; 3:e167. [PMID: 38882493 PMCID: PMC11170975 DOI: 10.1002/imt2.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2023] [Accepted: 12/22/2023] [Indexed: 06/18/2024]
Abstract
Numerous studies have demonstrated the pivotal roles of intestinal microbiota in many physiopathological processes through complex interactions with the host. As a unique period in a woman's lifespan, pregnancy is characterized by changes in hormones, immunity, and metabolism. The gut microbiota also changes during this period and plays a crucial role in maintaining a healthy pregnancy. Consequently, anomalies in the composition and function of the gut microbiota, namely, gut microbiota dysbiosis, can predispose individuals to various pregnancy complications, posing substantial risks to both maternal and neonatal health. However, there are still many controversies in this field, such as "sterile womb" versus "in utero colonization." Therefore, a thorough understanding of the roles and mechanisms of gut microbiota in pregnancy and its complications is essential to safeguard the health of both mother and child. This review provides a comprehensive overview of the changes in gut microbiota during pregnancy, its abnormalities in common pregnancy complications, and potential etiological implications. It also explores the potential of gut microbiota in diagnosing and treating pregnancy complications and examines the possibility of gut-derived bacteria residing in the uterus/placenta. Our aim is to expand knowledge in maternal and infant health from the gut microbiota perspective, aiding in developing new preventive and therapeutic strategies for pregnancy complications based on intestinal microecology.
Collapse
Affiliation(s)
- Zhenyu Tian
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Xinjie Zhang
- Department of Biology University College London London UK
| | - Guixiang Yao
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Jiajia Jin
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Tongxue Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Chunhua Sun
- Department of Health Management Center, Qilu Hospital, Cheeloo College of Medicine Shandong University Jinan China
| | - Zhe Wang
- Department of Geriatrics Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan China
| | - Qunye Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
- Cardiovascular Disease Research Center of Shandong First Medical University Central Hospital Affiliated to Shandong First Medical University Jinan China
| |
Collapse
|
19
|
Liu Y, Tang S, Feng Y, Xue B, Cheng C, Su Y, Wei W, Zhang L, Huang Z, Shi X, Fang Y, Yang J, Zhang Y, Deng X, Wang L, Ren H, Wang C, Yuan H. Alteration in gut microbiota is associated with immune imbalance in Graves' disease. Front Cell Infect Microbiol 2024; 14:1349397. [PMID: 38533382 PMCID: PMC10963416 DOI: 10.3389/fcimb.2024.1349397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Background Graves' disease (GD), characterized by immune aberration, is associated with gut dysbiosis. Despite the growing interest, substantial evidence detailing the precise impact of gut microbiota on GD's autoimmune processes remains exceedingly rare. Objective This study was designed to investigate the influence of gut microbiota on immune dysregulation in GD. Methods It encompassed 52 GD patients and 45 healthy controls (HCs), employing flow cytometry and enzyme-linked immunosorbent assay to examine lymphocyte and cytokine profiles, alongside lipopolysaccharide (LPS) levels. Gut microbiota profiles and metabolic features were assessed using 16S rRNA gene sequencing and targeted metabolomics. Results Our observations revealed a disturbed B-cell distribution and elevated LPS and pro-inflammatory cytokines in GD patients compared to HCs. Significant differences in gut microbiota composition and a marked deficit in short-chain fatty acid (SCFA)-producing bacteria, including ASV263(Bacteroides), ASV1451(Dialister), and ASV503(Coprococcus), were observed in GD patients. These specific bacteria and SCFAs showed correlations with thyroid autoantibodies, B-cell subsets, and cytokine levels. In vitro studies further showed that LPS notably caused B-cell subsets imbalance, reducing conventional memory B cells while increasing naïve B cells. Additionally, acetate combined with propionate and butyrate showcased immunoregulatory functions, diminishing cytokine production in LPS-stimulated cells. Conclusion Overall, our results highlight the role of gut dysbiosis in contributing to immune dysregulation in GD by affecting lymphocyte status and cytokine production.
Collapse
Affiliation(s)
- Yalei Liu
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shasha Tang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Feng
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Binghua Xue
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chaofei Cheng
- Stem Cell Research Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Su
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Wei
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lijun Zhang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhoufeng Huang
- Institution of Hematology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyang Shi
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanyuan Fang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junpeng Yang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yun Zhang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinru Deng
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Limin Wang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyan Ren
- Shanghai Mobio Biomedical Technology Corporation Limited, Shanghai, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
20
|
Pilkington M, Lloyd D, Guo B, Watson SL, Ooi KGJ. Effects of dietary imbalances of micro- and macronutrients on the ocular microbiome and its implications in dry eye disease. EXPLORATION OF MEDICINE 2024:127-147. [DOI: 10.37349/emed.2024.00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/02/2023] [Indexed: 01/04/2025] Open
Abstract
Dry eye disease (DED) is a complex and multifactorial ocular surface disease affecting a large proportion of the population. There is emerging evidence of the impact of the microbiomes of the ocular surface and gut on the symptoms of DED, with many parallels being drawn to inflammatory diseases of other organ systems. A key factor involved in the promotion of healthy microbiomes, and which has been associated with ocular surface disease, is micro- and macronutrient deficiency. A comprehensive review of how these deficiencies can contribute to DED is absent from the literature. This review reports the composition of healthy ocular and gut microbiomes, and how nutrient deficiencies may impact these floral populations, with linkage to the subsequent impact on ocular health. The review highlights that vitamin B1 and iron are linked to reduced levels of butyrate, a fatty acid implicated in inflammatory conditions such as ulcerative colitis which itself is a condition known to be associated with ocular surface diseases. Vitamin B12 has been shown to have a role in maintaining gut microbial eubiosis and has been linked to the severity of dry eye symptoms. Similar beneficial effects of gut microbial eubiosis were noted with vitamin A and omega-3 polyunsaturated fatty acids. Selenium and calcium have complex interactions with the gut microbiome and have both been implicated in the development of thyroid orbitopathy. Further, diabetes mellitus is associated with ocular surface diseases and changes in the ocular microbiome. A better understanding of how changes in both the gut and eye microbiome impact DED could allow for an improved understanding of DED pathophysiology and the development of new, effective treatment strategies.
Collapse
Affiliation(s)
| | | | - Brad Guo
- Sydney Eye Hospital, Sydney 2000, Australia
| | - Stephanie L. Watson
- Sydney Eye Hospital, Sydney 2000, Australia; Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney 2000, Australia
| | - Kenneth Gek-Jin Ooi
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia; Cornea Research Group, Discipline of Ophthalmology, Save Sight Institute, Sydney Eye Hospital Campus, Sydney 2000, Australia
| |
Collapse
|
21
|
Hajra D, Kirthivasan N, Chakravortty D. Symbiotic Synergy from Sponges to Humans: Microflora-Host Harmony Is Crucial for Ensuring Survival and Shielding against Invading Pathogens. ACS Infect Dis 2024; 10:317-336. [PMID: 38170903 DOI: 10.1021/acsinfecdis.3c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Gut microbiota plays several roles in the host organism's metabolism and physiology. This phenomenon holds across different species from different kingdoms and classes. Different species across various classes engage in continuous crosstalk via various mechanisms with their gut microbiota, ensuring homeostasis of the host. In this Review, the diversity of the microflora, the development of the microflora in the host, its regulations by the host, and its functional implications on the host, especially in the context of dysbiosis, are discussed across different organisms from sponges to humans. Overall, our review aims to address the indispensable nature of the microbiome in the host's survival, fitness, and protection against invading pathogens.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore, Karnataka-560012, India
| | - Nikhita Kirthivasan
- Undergraduate Programme, Indian Institute of Science, Bangalore, Karnataka-560012, India
| | - Dipshikha Chakravortty
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore, Karnataka-560012, India
| |
Collapse
|
22
|
Liu S, Li F, Cai Y, Ren L, Sun L, Gang X, Wang G. Bacteroidaceae, Bacteroides, and Veillonella: emerging protectors against Graves' disease. Front Cell Infect Microbiol 2024; 14:1288222. [PMID: 38404289 PMCID: PMC10884117 DOI: 10.3389/fcimb.2024.1288222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Background Graves' disease (GD) is the most common cause of hyperthyroidism, and its pathogenesis remains incompletely elucidated. Numerous studies have implicated the gut microbiota in the development of thyroid disorders. This study employs Mendelian randomization analysis to investigate the characteristics of gut microbiota in GD patients, aiming to offer novel insights into the etiology and treatment of Graves' disease. Methods Two-sample Mendelian randomization (MR) analysis was employed to assess the causal relationship between Graves' disease and the gut microbiota composition. Gut microbiota data were sourced from the international consortium MiBioGen, while Graves' disease data were obtained from FINNGEN. Eligible single nucleotide polymorphisms (SNPs) were selected as instrumental variables. Multiple analysis methods, including inverse variance-weighted (IVW), MR-Egger regression, weighted median, weighted mode, and MR-RAPS, were utilized. Sensitivity analyses were conducted employing MR-Egger intercept test, Cochran's Q test, and leave-one-out analysis as quality control measures. Results The Mendelian randomization study conducted in a European population revealed a decreased risk of Graves' disease associated with Bacteroidaceae (Odds ratio (OR) [95% confidence interval (CI)]: 0.89 [0.89 ~ 0.90], adjusted P value: <0.001), Bacteroides (OR: [95% CI]: 0.555 [0.437 ~ 0.706], adjusted P value: <0.001), and Veillonella (OR [95% CI]: 0.632 [0.492 ~ 0.811], adjusted P value: 0.016). No significant evidence of heterogeneity, or horizontal pleiotropy was detected. Furthermore, the preliminary MR analysis identified 13 bacterial species including Eubacterium brachy group and Family XIII AD3011 group, exhibiting significant associations with Graves' disease onset, suggesting potential causal effects. Conclusion A causal relationship exists between gut microbiota and Graves' disease. Bacteroidaceae, Bacteroides, and Veillonella emerge as protective factors against Graves' disease development. Prospective probiotic supplementation may offer a novel avenue for adjunctive treatment in the management of Graves' disease in the future.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Jilin, Changchun, China
| | - Fan Li
- Department of Gastroenterology, The First Hospital of Jilin University, Jilin, Changchun, China
| | - Yunjia Cai
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Jilin, Changchun, China
| | - Linan Ren
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Jilin, Changchun, China
| | - Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Jilin, Changchun, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Jilin, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Jilin, Changchun, China
| |
Collapse
|
23
|
Cui H, Wang N, Li H, Bian Y, Wen W, Kong X, Wang F. The dynamic shifts of IL-10-producing Th17 and IL-17-producing Treg in health and disease: a crosstalk between ancient "Yin-Yang" theory and modern immunology. Cell Commun Signal 2024; 22:99. [PMID: 38317142 PMCID: PMC10845554 DOI: 10.1186/s12964-024-01505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024] Open
Abstract
The changes in T regulatory cell (Treg) and T helper cell (Th) 17 ratios holds paramount importance in ensuring internal homeostasis and disease progression. Recently, novel subsets of Treg and Th17, namely IL-17-producing Treg and IL-10-producing Th17 have been identified. IL-17-producing Treg and IL-10-producing Th17 are widely considered as the intermediates during Treg/Th17 transformation. These "bi-functional" cells exhibit plasticity and have been demonstrated with important roles in multiple physiological functions and disease processes. Yin and Yang represent opposing aspects of phenomena according to the ancient Chinese philosophy "Yin-Yang" theory. Furthermore, Yin can transform into Yang, and vice versa, under specific conditions. This theory has been widely used to describe the contrasting functions of immune cells and molecules. Therefore, immune-activating populations (Th17, M1 macrophage, etc.) and immune overreaction (inflammation, autoimmunity) can be considered Yang, while immunosuppressive populations (Treg, M2 macrophage, etc.) and immunosuppression (tumor, immunodeficiency) can be considered Yin. However, another important connotation of "Yin-Yang" theory, the conversion between Yin and Yang, has been rarely documented in immune studies. The discovery of IL-17-producing Treg and IL-10-producing Th17 enriches the meaning of "Yin-Yang" theory and further promotes the relationship between ancient "Yin-Yang" theory and modern immunology. Besides, illustrating the functions of IL-17-producing Treg and IL-10-producing Th17 and mechanisms governing their differentiation provides valuable insights into the mechanisms underlying the dynamically changing statement of immune statement in health and diseases.
Collapse
Affiliation(s)
- Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ning Wang
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Hanzhou Li
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuhong Bian
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Weibo Wen
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Kavita, Om H, Chand U, Kushawaha PK. Postbiotics: An alternative and innovative intervention for the therapy of inflammatory bowel disease. Microbiol Res 2024; 279:127550. [PMID: 38016379 DOI: 10.1016/j.micres.2023.127550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Inflammatory Bowel Disease (IBD) is a persistent gastrointestinal (GI) tract inflammatory disease characterized by downregulated mucosal immune activities and a disrupted microbiota environment in the intestinal lumen. The involvement of bacterium postbiotics as mediators between the immune system and gut microbiome could be critical in determining why host-microbial relationships are disrupted in IBD. Postbiotics including Short-chain fatty acids (SCFAs), Organic acids, Proteins, Vitamins, Bacteriocins, and Tryptophan (Trp) are beneficial bioactive compounds formed via commensal microbiota in the gut environment during the fermentation process that can be used to improve consumer health. The use of metabolites or fragments from microorganisms can be a very attractive treatment and prevention technique in modern medicine. Postbiotics are essential in the immune system's development since they alter the barrier tightness, and the gut ecology and indirectly shape the microbiota's structure. As a result, postbiotics may be beneficial in treating or preventing various diseases, even some for which there is no effective causative medication. Postbiotics may be a promising tool for the treatment of IBD in individuals of all ages, genders, and even geographical locations. Direct distribution of postbiotics may provide a new frontier in microbiome-based therapy for IBD since it allows both the management of host homeostasis and the correction of the negative implications of dysbiosis. Further studies of the biological effects of these metabolites are expected to reveal innovative applications in medicine and beyond. This review attempts to explore the possible postbiotic-based interventions for the treatment of IBD.
Collapse
Affiliation(s)
- Kavita
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India
| | - Hari Om
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India
| | - Umesh Chand
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India
| | - Pramod Kumar Kushawaha
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
25
|
Xie Z, Zhou J, Zhang X, Li Z. Clinical potential of microbiota in thyroid cancer therapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166971. [PMID: 38029942 DOI: 10.1016/j.bbadis.2023.166971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Thyroid cancer is one of the most common tumors of the endocrine system because of its rapid and steady increase in incidence and prevalence. In recent years, a growing number of studies have identified a key role for the gut, thyroid tissue and oral microbiota in the regulation of metabolism and the immune system. A growing body of evidence has conclusively demonstrated that the microbiota influences tumor formation, prevention, diagnosis, and treatment. We provide extensive information in which oral, gut, and thyroid microbiota have an effect on thyroid cancer development in this review. In addition, we thoroughly discuss the various microbiota species, their potential functions, and the underlying mechanisms for thyroid cancer. The microbiome offers a unique opportunity to improve the effectiveness of immunotherapy and radioiodine therapy thyroid cancer by maintaining the right type of microbiota, and holds great promise for improving clinical outcomes and quality of life for thyroid cancer patients.
Collapse
Affiliation(s)
- Zilan Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Jiating Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Xuan Zhang
- Department of General Surgery, The Second People's Hospital of Hunan, Furong Middle Road, Changsha 410078, PR China
| | - Zhi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| |
Collapse
|
26
|
Virili C, Stramazzo I, Bagaglini MF, Carretti AL, Capriello S, Romanelli F, Trimboli P, Centanni M. The relationship between thyroid and human-associated microbiota: A systematic review of reviews. Rev Endocr Metab Disord 2024; 25:215-237. [PMID: 37824030 PMCID: PMC10808578 DOI: 10.1007/s11154-023-09839-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 10/13/2023]
Abstract
In recent years, a growing number of studies have examined the relationship between thyroid pathophysiology and intestinal microbiota composition. The reciprocal influence between these two entities has been proven so extensive that some authors coined the term "gut-thyroid axis". However, since some papers reported conflicting results, several aspects of this correlation need to be clarified. This systematic review was conceived to achieve more robust information about: 1)the characteristics of gut microbiota composition in patients with the more common morphological, functional and autoimmune disorders of the thyroid; 2)the influence of gut microbial composition on micronutrients that are essential for the maintenance of thyroid homeostasis; 3)the effect of probiotics, prebiotics and synbiotics, some of the most popular over-the-counter products, on thyroid balance; 4)the opportunity to use specific dietary advice. The literature evaluation was made by three authors independently. A five steps strategy was a priori adopted. After duplicates removal, 1106 records were initially found and 38 reviews were finally included in the analysis. The systematic reviews of reviews found that: 1) some significant variations characterize the gut microbiota composition in patients with thyroid disorders. However, geographical clustering of most of the studies prevents drawing definitive conclusions on this topic; 2) the available knowledge about the effect of probiotics and synbiotics are not strong enough to suggest the routine use of these compounds in patients with thyroid disorders; 3) specific elimination nutrition should not be routine suggested to patients, which, instead have to be checked for possible micronutrients and vitamins deficiency, often owed to gastrointestinal autoimmune comorbidities.
Collapse
Affiliation(s)
- Camilla Virili
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza" University of Rome, Corso Della Repubblica 79, Latina, Italy.
- Endocrinology Unit, Santa Maria Goretti Hospital, Latina, Italy.
| | | | - Maria Flavia Bagaglini
- Endocrinology Unit, Santa Maria Goretti Hospital, Latina, Italy
- Department of Experimental Medicine, Sapienza" University of Rome, Rome, Italy
| | - Anna Lucia Carretti
- Endocrinology Unit, Santa Maria Goretti Hospital, Latina, Italy
- Department of Experimental Medicine, Sapienza" University of Rome, Rome, Italy
| | | | - Francesco Romanelli
- Department of Experimental Medicine, Sapienza" University of Rome, Rome, Italy
| | - Pierpaolo Trimboli
- Clinic for Endocrinology and Diabetology, Lugano Regional Hospital, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana (USI), Lugano, Switzerland
| | - Marco Centanni
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza" University of Rome, Corso Della Repubblica 79, Latina, Italy
- Endocrinology Unit, Santa Maria Goretti Hospital, Latina, Italy
| |
Collapse
|
27
|
Guo Z, Yiu N, Hu Z, Zhou W, Long X, Yang M, Liao J, Zhang G, Lu Q, Zhao M. Alterations of fecal microbiome and metabolome in pemphigus patients. J Autoimmun 2023; 141:103108. [PMID: 37714737 DOI: 10.1016/j.jaut.2023.103108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/12/2023] [Accepted: 08/24/2023] [Indexed: 09/17/2023]
Abstract
The role of gut microbiome and metabolic substances in the development of autoimmune diseases has gradually been revealed. However, the relevant gut features in pemphigus have not been well clarified. We collected stool samples from pemphigus patients and healthy controls (HCs). Metagenomic sequencing and liquid chromatography-mass spectrometry (LC/MS) metabolome sequencing were performed to analyze the compositional and metabolic alternations of the gut microbiome in pemphigus patients and HCs. We observed the reduced richness and diversity and greater heterogeneity in pemphigus patients, which was characterized by a significant decrease in Firmicutes and an increase in Proteobacteria. At the species level, Intestinal pathogenic bacteria such as Escherichia coli and Bacteroides fragilis were significantly enriched, while anti-inflammatory bacteria and butyric acid-producing bacteria were significantly reduced, which were related to clinical indicators (Dsg1/3 and PDAI). 4 species were selected by the machine learning algorithm to better distinguish pemphigus patients from healthy people. Metabolomic analysis showed that the composition of pemphigus patients was different from that of HCs. PE (18:3 (6Z,9Z, 12Z)/14:1 (9Z)) was the main metabolic substance in pemphigus and involved in a variety of metabolic pathways. While Retinol, flavonoid compounds and various amino acids decreased significantly compared with HCs. Furthermore, we found that differences in the levels of these metabolites correlated with changes in the abundance of specific species. Our study provides a comprehensive picture of gut microbiota and metabolites in pemphigus patients and suggests a potential mechanism of the aberrant gut microbiota and metabolites in the pathogenesis of pemphigus.
Collapse
Affiliation(s)
- Ziyu Guo
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Nam Yiu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Zhi Hu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Wenyu Zhou
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Xuan Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Miao Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Jieyue Liao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Guiying Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
28
|
Fenneman AC, van der Spek AH, Hartstra A, Havik S, Salonen A, de Vos WM, Soeters MR, Saeed P, Nieuwdorp M, Rampanelli E. Intestinal permeability is associated with aggravated inflammation and myofibroblast accumulation in Graves' orbitopathy: the MicroGO study. Front Endocrinol (Lausanne) 2023; 14:1173481. [PMID: 38107520 PMCID: PMC10724020 DOI: 10.3389/fendo.2023.1173481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/20/2023] [Indexed: 12/19/2023] Open
Abstract
Background Graves' disease (GD) and Graves' orbitopathy (GO) result from ongoing stimulation of the TSH receptor due to autoantibodies acting as persistent agonists. Orbital pre-adipocytes and fibroblasts also express the TSH receptor, resulting in expanded retro-orbital tissue and causing exophthalmos and limited eye movement. Recent studies have shown that GD/GO patients have a disturbed gut microbiome composition, which has been associated with increased intestinal permeability. This study hypothesizes that enhanced intestinal permeability may aggravate orbital inflammation and, thus, increase myofibroblast differentiation and the degree of fibrosis. Methods Two distinct cohorts of GO patients were studied, one of which was a unique cohort consisting of blood, fecal, and retro-orbital tissue samples. Intestinal permeability was assessed by measuring serum lipopolysaccharide-binding protein (LBP), zonulin, TLR5, and TLR9 ligands. The influx of macrophages and accumulation of T-cells and myofibroblast were quantified in orbital connective tissue. The NanoString immune-oncology RNA targets panel was used to determine the transcriptional profile of active fibrotic areas within orbital sections. Results GO patients displayed significantly higher LBP serum concentrations than healthy controls. Within the MicroGO cohort, patients with high serum LBP levels also showed higher levels of zonulin and TLR5 and TLR9 ligands in their circulation. The increased intestinal permeability was accompanied by augmented expression of genes marking immune cell infiltration and encoding key proteins for immune cell adhesion, antigen presentation, and cytokine signaling in the orbital tissue. Macrophage influx was positively linked to the extent of T cell influx and fibroblast activation within GO-affected orbital tissues. Moreover, serum LBP levels significantly correlated with the abundance of specific Gram-negative gut bacteria, linking the gut to local orbital inflammation. Conclusion These results indicate that GO patients have enhanced intestinal permeability. The subsequent translocation of bacterial compounds to the systemic circulation may aggravate inflammatory processes within the orbital tissue and, as a consequence, augment the proportion of activated myofibroblasts, which actively secrete extracellular matrix leading to retro-orbital tissue expansion. These findings warrant further exploration to assess the correlation between specific inflammatory pathways in the orbital tissue and the gut microbiota composition and may pave the way for new microbiota-targeting therapies.
Collapse
Affiliation(s)
- Aline C. Fenneman
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Anne H. van der Spek
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Annick Hartstra
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Stefan Havik
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Willem M. de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Maarten R. Soeters
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Peeroz Saeed
- Department of Ophthalmology, Amsterdam University Medical Centre (UMC), Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Elena Rampanelli
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
29
|
Kustrimovic N, Gallo D, Piantanida E, Bartalena L, Lai A, Zerbinati N, Tanda ML, Mortara L. Regulatory T Cells in the Pathogenesis of Graves' Disease. Int J Mol Sci 2023; 24:16432. [PMID: 38003622 PMCID: PMC10671795 DOI: 10.3390/ijms242216432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Maintaining a delicate balance between the prompt immune response to pathogens and tolerance towards self-antigens and commensals is crucial for health. T regulatory (Treg) cells are pivotal in preserving self-tolerance, serving as negative regulators of inflammation through the secretion of anti-inflammatory cytokines, interleukin-2 neutralization, and direct suppression of effector T cells. Graves' disease (GD) is a thyroid-specific autoimmune disorder primarily attributed to the breakdown of tolerance to the thyroid-stimulating hormone receptor. Given the limitations of currently available GD treatments, identifying potential pathogenetic factors for pharmacological targeting is of paramount importance. Both functional impairment and frequency reduction of Tregs seem likely in GD pathogenesis. Genome-wide association studies in GD have identified polymorphisms of genes involved in Tregs' functions, such as CD25 (interleukin 2 receptor), and Forkhead box protein P3 (FOXP3). Clinical studies have reported both functional impairment and a reduction in Treg frequency or suppressive actions in GD, although their precise involvement remains a subject of debate. This review begins with an overview of Treg phenotype and functions, subsequently delves into the pathophysiology of GD and into the existing literature concerning the role of Tregs and the balance between Tregs and T helper 17 cells in GD, and finally explores the ongoing studies on target therapies for GD.
Collapse
Affiliation(s)
- Natasa Kustrimovic
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Gallo
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, 21100 Varese, Italy (M.L.T.)
| | - Eliana Piantanida
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, 21100 Varese, Italy (M.L.T.)
| | - Luigi Bartalena
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, 21100 Varese, Italy (M.L.T.)
| | - Adriana Lai
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, 21100 Varese, Italy (M.L.T.)
| | - Nicola Zerbinati
- Dermatology Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, 21100 Varese, Italy
| | - Maria Laura Tanda
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, 21100 Varese, Italy (M.L.T.)
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
30
|
Godha Y, Kumar S, Wanjari A. Role of Gut Microbiota in the Development and Management of Rheumatoid Arthritis: A Narrative Review. Cureus 2023; 15:e49458. [PMID: 38152780 PMCID: PMC10751463 DOI: 10.7759/cureus.49458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/26/2023] [Indexed: 12/29/2023] Open
Abstract
Rheumatoid arthritis is an autoimmune condition that damages and inflames the joints. It causes severe disability and lowers the quality of life. While the precise cause of rheumatoid arthritis is still unknown, mounting evidence suggests that the gut microbiota, a diverse colony of bacteria that inhabits the gastrointestinal tract, may play a vital role in the progression and management of this debilitating condition. By evaluating relationships, probable processes, and therapeutic ramifications, this narrative review intends to examine the complex relationship between intestinal microbiota and rheumatoid arthritis. Additionally, for the management of rheumatoid arthritis, the review will assess prospective therapeutic approaches that target the gut flora. Multiple studies have shown that people with rheumatoid arthritis have dysbiosis or an imbalance in their gut microbial ecosystems. Increased intestinal permeability has been linked to changes in the gut microbiota, which allows the transfer of bacterial products into the bloodstream. A search was undertaken through PubMed in June 2023 using keywords like "microbiota", "rheumatoid arthritis" and "treatment". Overall 42 articles were included. Probiotics, prebiotics, and dietary changes are some examples of therapies that can be used to modify the gut microbiota and lessen symptoms, slower the progression of the disease, and enhance therapy results. Understanding the interplay between intestinal microbiota and rheumatoid arthritis will pave the way for innovative and personalized therapeutic interventions that could revolutionize the management of this chronic autoimmune disease.
Collapse
Affiliation(s)
- Yuti Godha
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sunil Kumar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anil Wanjari
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
31
|
Alkader DAA, Asadi N, Solangi U, Singh R, Rasuli SF, Farooq MJ, Raheela FNU, Waseem R, Gilani SM, Abbas K, Ahmed M, Tanoh DB, Shah HH, Dulal A, Hussain MS, Talpur AS. Exploring the role of gut microbiota in autoimmune thyroid disorders: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1238146. [PMID: 37964972 PMCID: PMC10641821 DOI: 10.3389/fendo.2023.1238146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/15/2023] [Indexed: 11/16/2023] Open
Abstract
Background Autoimmune thyroid diseases (AITDs) are characterized by unique immune responses against thyroid antigens and persist over time. The most common types of AITDs are Graves' disease (GD) and Hashimoto's thyroiditis (HT). There is mounting evidence that changes in the microbiota may play a role in the onset and development of AITDs. Objective The purpose of this comprehensive literature study was to answer the following query: Is there a difference in microbiota in those who have AITDs? Methods According to the standards set out by the PRISMA statement, 16 studies met the requirements for inclusion after being screened for eligibility. Results The Simpson index was the only diversity measure shown to be considerably lower in patients with GD compared to healthy participants, whereas all other indices were found to be significantly greater in patients with HT. The latter group, however, showed a greater relative abundance of Bacteroidetes and Actinobacteria at the phylum level, and consequently of Prevotella and Bifidobacterium at the genus level. The strongest positive and negative relationships were seen for thyroid peroxidase antibodies and bacterial load. Conclusion Overall, both GD and HT patients showed significant changes in the gut microbiota's diversity and composition. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023432455.
Collapse
Affiliation(s)
| | | | - Uzma Solangi
- Department of Medicine, Liaquat University of Medical & Health Sciences, Jamshoro, Pakistan
| | - Ransherjit Singh
- Department of Medicine, Civil Hospital Karachi, Karachi, Pakistan
| | | | - Muhammad Jawad Farooq
- Department of Medicine, Liaquat University of Medical & Health Sciences, Jamshoro, Pakistan
| | - F. N. U. Raheela
- Department of Medicine, University of Toledo, Toledo, OH, United States
| | - Radeyah Waseem
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Syed Mujahid Gilani
- Department of Medicine, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
| | - Kiran Abbas
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Moiz Ahmed
- Department of Medicine, National Institute of Cardiovascular Diseases, Karachi, Pakistan
| | - Desmond Boakye Tanoh
- Department of Medicine, Insight Hospital and Medical Center Chicago, Chicago, IL, United States
| | - Hussain Haider Shah
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Ayusha Dulal
- Department of Human Physiology, Nepalese Army Institute of Health Science, Kathmandu, Nepal
| | | | - Abdul Subhan Talpur
- Department of Medicine, Liaquat University of Medical & Health Sciences, Jamshoro, Pakistan
| |
Collapse
|
32
|
Berryman MA, Ilonen J, Triplett EW, Ludvigsson J. Important denominator between autoimmune comorbidities: a review of class II HLA, autoimmune disease, and the gut. Front Immunol 2023; 14:1270488. [PMID: 37828987 PMCID: PMC10566625 DOI: 10.3389/fimmu.2023.1270488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Human leukocyte antigen (HLA) genes are associated with more diseases than any other region of the genome. Highly polymorphic HLA genes produce variable haplotypes that are specifically correlated with pathogenically different autoimmunities. Despite differing etiologies, however, many autoimmune disorders share the same risk-associated HLA haplotypes often resulting in comorbidity. This shared risk remains an unanswered question in the field. Yet, several groups have revealed links between gut microbial community composition and autoimmune diseases. Autoimmunity is frequently associated with dysbiosis, resulting in loss of barrier function and permeability of tight junctions, which increases HLA class II expression levels and thus further influences the composition of the gut microbiome. However, autoimmune-risk-associated HLA haplotypes are connected to gut dysbiosis long before autoimmunity even begins. This review evaluates current research on the HLA-microbiome-autoimmunity triplex and proposes that pre-autoimmune bacterial dysbiosis in the gut is an important determinant between autoimmune comorbidities with systemic inflammation as a common denominator.
Collapse
Affiliation(s)
- Meghan A. Berryman
- Triplett Laboratory, Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eric W. Triplett
- Triplett Laboratory, Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Johnny Ludvigsson
- Crown Princess Victoria’s Children’s Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
33
|
Yoshida M, Funasaka Y, Saeki H, Yamamoto M, Kanda N. Dietary Fiber Inulin Improves Murine Imiquimod-Induced Psoriasis-like Dermatitis. Int J Mol Sci 2023; 24:14197. [PMID: 37762500 PMCID: PMC10531541 DOI: 10.3390/ijms241814197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Psoriasis is a chronic skin disease with interleukin (IL)-17-dominated inflammation and hyperproliferation of epidermis. Dietary fiber is fermented by the gut microbiome into short-chain fatty acids (SCFAs) that manifest anti-inflammatory effects. We examined if feeding with an inulin-enriched high-fiber diet (HFD) might improve topical imiquimod-induced psoriasis-like dermatitis in mice. HFD reduced thickening and total severity scores of imiquimod-induced dermatitis and reduced epidermal thickness, inflammatory infiltrates, including Ly6G+ neutrophils, and epidermal Ki67+ proliferating cells. HFD reduced mRNA levels of IL-17A, IL-17F, IL-22, IL-1β, tumor necrosis factor (TNF)-α, CXCL1, CXCL2, and keratin 16 and increased those of transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1A in imiquimod-induced dermatitis. In 16S rRNA sequencing of the gut microbiome, imiquimod increased relative abundance of phylum Firmicutes, while HFD increased that of phylum Bacteroidota and genus Bacteroides. HFD increased serum and fecal concentrations of SCFA propionate. Oral propionate reduced inflammatory infiltrates and epidermal Ki67+ cells and reduced mRNA levels of IL-17A, IL-17F, IL-17C, IL-22, IL-1β, IL-6, TNF-α, CXCL1, CCL20 and increased those of TGF-β1and IL-10 in imiquimod-indued dermatitis. Dietary inulin supplementation improves imiquimod-induced psoriasis-like dermatitis partially via propionate, and may be a promising adjunctive therapy for psoriasis.
Collapse
Affiliation(s)
- Mai Yoshida
- Department of Dermatology, Nippon Medical School, Bunkyo City 113-8602, Tokyo, Japan; (M.Y.); (Y.F.); (H.S.)
| | - Yoko Funasaka
- Department of Dermatology, Nippon Medical School, Bunkyo City 113-8602, Tokyo, Japan; (M.Y.); (Y.F.); (H.S.)
| | - Hidehisa Saeki
- Department of Dermatology, Nippon Medical School, Bunkyo City 113-8602, Tokyo, Japan; (M.Y.); (Y.F.); (H.S.)
| | - Masami Yamamoto
- Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Musashino 180-8602, Tokyo, Japan;
| | - Naoko Kanda
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai 270-1694, Chiba, Japan
| |
Collapse
|
34
|
Fu X, Tan H, Huang L, Chen W, Ren X, Chen D. Gut microbiota and eye diseases: a bibliometric study and visualization analysis. Front Cell Infect Microbiol 2023; 13:1225859. [PMID: 37621873 PMCID: PMC10445766 DOI: 10.3389/fcimb.2023.1225859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction Recently the role of gut microbial dysbiosis in many ocular disorders, including but not limited to uveitis, age-related macular degeneration (AMD), diabetic retinopathy (DR), dry eye, keratitis and orbitopathy is a hot research topic in the field. Targeting gut microbiota to treat these diseases has become an unstoppable trend. Bibliometric study and visualization analysis have become essential methods for literature analysis in the medical research field. We aim to depict this area's research hotspots and future directions by bibliometric software and methods. Methods We search all the related publications from the Web of Science Core Collection. Then, CiteSpace was applied to analyze and visualize the country distributions, dual-map overlay of journals, keyword bursts, and co-cited references. VOSviewer was employed to identify authors, co-cited authors, journals and co-cited journals and display the keyword co-occurrence networks. Results A total of 284 relevant publications were identified from 2009 to 2023. The number of studies has been small in the first five years and has grown steadily since 2016. These studies were completed by 1,376 authors from 41 countries worldwide, with the United States in the lead. Lin P has published the most papers while Horai R is the most co-cited author. The top journal and co-cited journal are both Investigative Ophthalmology & Visual Science. In the keyword co-occurrence network, except gut microbiota, inflammation becomes the keyword with the highest frequency. Co-citation analyses reveal that gut dysbiosis is involved in common immune- and inflammation-mediated eye diseases, including uveitis, diabetic retinopathy, age-related macular degeneration, dry eye, and Graves' orbitopathy, and the study of microbiomes is no longer limited to the bacterial populations. Therapeutic strategies that target the gut microbiota, such as probiotics, healthy diet patterns, and fecal microbial transplantation, are effective and critical to future research. Conclusions In conclusion, the bibliometric analysis displays the research hotspots and developmental directions of the involvement of gut microbiota in the pathogenesis and treatment of some ocular diseases. It provides an overview of this field's dynamic evolution and structural relationships.
Collapse
Affiliation(s)
- Xiangyu Fu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Haishan Tan
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Huang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyue Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Ren
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Danian Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Deng Y, Wang J, Xie G, Zou G, Li S, Zhang J, Cai W, Xu J. Correlation between gut microbiota and the development of Graves' disease: A prospective study. iScience 2023; 26:107188. [PMID: 37485373 PMCID: PMC10362358 DOI: 10.1016/j.isci.2023.107188] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
The association between gut microbiota and development of Graves' disease (GD) remains unclear. This study aimed to profile the gut microbiota of 65 patients newly diagnosed with GD before and after treatment and 33 physical examination personnel via 16S rRNA sequencing. Significant differences in the gut microbiota composition were observed between the two groups, showing relative bacterial abundances of 1 class, 1 order, 5 families, and 14 genera. After treatment, the abundance of the significantly enriched biota in the GD group decreased considerably, whereas that of the previously decreased biota increased considerably. Further, interleukin-17 levels decreased significantly. The random forest method was used to identify 12 genera that can distinguish patients with GD from healthy controls. Our study revealed that the gut microbiota of patients with GD exhibit unique characteristics compared with that of healthy individuals, which may be related to an imbalance in the immune system and gut microbiota.
Collapse
Affiliation(s)
- Yuanyuan Deng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang 330006, People's Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang 330006, People’s Republic of China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang 330006, People's Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang 330006, People’s Republic of China
| | - Guijiao Xie
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Guilin Zou
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang 330006, People's Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang 330006, People’s Republic of China
| | - Shanshan Li
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Wei Cai
- Department of Medical Genetics and Cell Biology, Medical College of Nanchang University, Nanchang 330006, People’s Republic of China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang 330006, People's Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang 330006, People’s Republic of China
| |
Collapse
|
36
|
Biscarini F, Masetti G, Muller I, Verhasselt HL, Covelli D, Colucci G, Zhang L, Draman MS, Okosieme O, Taylor P, Daumerie C, Burlacu MC, Marinò M, Ezra DG, Perros P, Plummer S, Eckstein A, Salvi M, Marchesi JR, Ludgate M. Gut Microbiome Associated With Graves Disease and Graves Orbitopathy: The INDIGO Multicenter European Study. J Clin Endocrinol Metab 2023; 108:2065-2077. [PMID: 36683389 PMCID: PMC10807910 DOI: 10.1210/clinem/dgad030] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
CONTEXT Gut bacteria can influence host immune responses but little is known about their role in tolerance-loss mechanisms in Graves disease (GD; hyperthyroidism caused by autoantibodies, TRAb, to the thyrotropin receptor, TSHR) and its progression to Graves orbitopathy (GO). OBJECTIVE This work aimed to compare the fecal microbiota in GD patients, with GO of varying severity, and healthy controls (HCs). METHODS Patients were recruited from 4 European countries (105 GD patients, 41 HCs) for an observational study with cross-sectional and longitudinal components. RESULTS At recruitment, when patients were hyperthyroid and TRAb positive, Actinobacteria were significantly increased and Bacteroidetes significantly decreased in GD/GO compared with HCs. The Firmicutes to Bacteroidetes (F:B) ratio was significantly higher in GD/GO than in HCs. Differential abundance of 15 genera was observed in patients, being most skewed in mild GO. Bacteroides displayed positive and negative correlations with TSH and free thyroxine, respectively, and was also significantly associated with smoking in GO; smoking is a risk factor for GO but not GD. Longitudinal analyses revealed that the presence of certain bacteria (Clostridiales) at diagnosis correlated with the persistence of TRAb more than 200 days after commencing antithyroid drug treatment. CONCLUSION The increased F:B ratio observed in GD/GO mirrors our finding in a murine model comparing TSHR-immunized with control mice. We defined a microbiome signature and identified changes associated with autoimmunity as distinct from those due to hyperthyroidism. Persistence of TRAb is predictive of relapse; identification of these patients at diagnosis, via their microbiome, could improve management with potential to eradicate Clostridiales.
Collapse
Affiliation(s)
- Filippo Biscarini
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
- Department of Bioinformatics, Parco Tecnologico Padano Srl (PTP), Lodi, 26900, Italy
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council (CNR), Milan, 20133, Italy
| | - Giulia Masetti
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
- Department of Bioinformatics, Parco Tecnologico Padano Srl (PTP), Lodi, 26900, Italy
| | - Ilaria Muller
- Department of Clinical Sciences and Community Health, University of Milan, Milan, 35-I-20122, Italy
- Graves' Orbitopathy Center, Endocrinology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Milan, 35-I-20122, Italy
| | - Hedda Luise Verhasselt
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, 45147, Germany
- Cultech Ltd., Baglan, Port Talbot, SA12 7BZ, UK
| | - Danila Covelli
- Department of Bioinformatics, Parco Tecnologico Padano Srl (PTP), Lodi, 26900, Italy
- Graves' Orbitopathy Center, Endocrinology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Milan, 35-I-20122, Italy
- Cultech Ltd., Baglan, Port Talbot, SA12 7BZ, UK
| | - Giuseppe Colucci
- Graves' Orbitopathy Center, Endocrinology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Milan, 35-I-20122, Italy
| | - Lei Zhang
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
- Centre for Stem Cell Biology, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mohd Shazli Draman
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
- KPJ Healthcare University College, Kota Seriemas, 71800 Nilai, Negeri Sembilan, Malaysia
| | - Onyebuchi Okosieme
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
| | - Pete Taylor
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
| | - Chantal Daumerie
- Department of Endocrinology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, B-1200, Belgium
| | - Maria-Cristina Burlacu
- Department of Endocrinology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, B-1200, Belgium
| | - Michele Marinò
- Department of Endocrinology, University Hospital of Pisa, Pisa, 56124, Italy
- Department of Clinical and Experimental Medicine, Endocrinology Unit I, University of Pisa, Pisa, 56124, Italy
| | - Daniel George Ezra
- Moorfields Eye Hospital NIHR Biomedical Research Centre for Ophthalmology, London and UCL Institute of Ophthalmology, London, EC4 9EL, UK
| | - Petros Perros
- Department of Endocrinology, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - Sue Plummer
- Cultech Ltd., Baglan, Port Talbot, SA12 7BZ, UK
| | - Anja Eckstein
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Essen, 45147, Germany
| | - Mario Salvi
- Graves' Orbitopathy Center, Endocrinology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Milan, 35-I-20122, Italy
| | - Julian R Marchesi
- Microbiomes, Microbes and Informatics Group, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W2 1NY, UK
| | - Marian Ludgate
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
| |
Collapse
|
37
|
Mendoza-León MJ, Mangalam AK, Regaldiz A, González-Madrid E, Rangel-Ramírez MA, Álvarez-Mardonez O, Vallejos OP, Méndez C, Bueno SM, Melo-González F, Duarte Y, Opazo MC, Kalergis AM, Riedel CA. Gut microbiota short-chain fatty acids and their impact on the host thyroid function and diseases. Front Endocrinol (Lausanne) 2023; 14:1192216. [PMID: 37455925 PMCID: PMC10349397 DOI: 10.3389/fendo.2023.1192216] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023] Open
Abstract
Thyroid disorders are clinically characterized by alterations of L-3,5,3',5'-tetraiodothyronine (T4), L-3,5,3'-triiodothyronine (T3), and/or thyroid-stimulating hormone (TSH) levels in the blood. The most frequent thyroid disorders are hypothyroidism, hyperthyroidism, and hypothyroxinemia. These conditions affect cell differentiation, function, and metabolism. It has been reported that 40% of the world's population suffers from some type of thyroid disorder and that several factors increase susceptibility to these diseases. Among them are iodine intake, environmental contamination, smoking, certain drugs, and genetic factors. Recently, the intestinal microbiota, composed of more than trillions of microbes, has emerged as a critical player in human health, and dysbiosis has been linked to thyroid diseases. The intestinal microbiota can affect host physiology by producing metabolites derived from dietary fiber, such as short-chain fatty acids (SCFAs). SCFAs have local actions in the intestine and can affect the central nervous system and immune system. Modulation of SCFAs-producing bacteria has also been connected to metabolic diseases, such as obesity and diabetes. In this review, we discuss how alterations in the production of SCFAs due to dysbiosis in patients could be related to thyroid disorders. The studies reviewed here may be of significant interest to endocrinology researchers and medical practitioners.
Collapse
Affiliation(s)
- María José Mendoza-León
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | | | - Alejandro Regaldiz
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Enrique González-Madrid
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Ma. Andreina Rangel-Ramírez
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Oscar Álvarez-Mardonez
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Constanza Méndez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melo-González
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Ma. Cecilia Opazo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
38
|
Tieu V, Tibi S, Ling J. Regulation of SARS-CoV-2 infection by diet-modulated gut microbiota. Front Cell Infect Microbiol 2023; 13:1167827. [PMID: 37457959 PMCID: PMC10339388 DOI: 10.3389/fcimb.2023.1167827] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection has claimed millions of lives since late 2019, yet there are still many unexplored areas in its pathogenesis and clinical outcomes. COVID-19 is a disease that can affects multiple systems, some of which are overlapped with those modulated by gut microbiota, especially the immune system, thus leading to our concentration on analyzing the roles of microbiota in COVID-19 pathogenesis through the gut-lung axis. Dysbiosis of the commensal intestinal microbes and their metabolites (e.g., SCFAs) as well as the expression and activity of ACE2 in the gut could influence the host's immune system in COVID-19 patients. Moreover, it has been known that the elderly and individuals diagnosed with comorbidities (e.g., hypertension, type 2 diabetes mellitus, cardiovascular disease, etc.) are more susceptible to gut flora alterations, SARS-CoV-2 infection, and death. Thus, in this review we will focus on analyzing how the gut microbiota regulates the immune system that leads to different responses to SARS-CoV-2 infection. Since diet is a major factor to modulate the status of gut microbiota, dietary influence on COVID-19 pathogenesis will be also discussed, aiming to shed light on how diet-modulated gut microbiota regulates the susceptibility, severity, and treatment of SARS-CoV-2 infection.
Collapse
|
39
|
Liu W, Tan Z, Geng M, Jiang X, Xin Y. Impact of the gut microbiota on angiotensin Ⅱ-related disorders and its mechanisms. Biochem Pharmacol 2023:115659. [PMID: 37330020 DOI: 10.1016/j.bcp.2023.115659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
The renin-angiotensin system (RAS) consists of multiple angiotensin peptides and performs various biological functions mediated by distinct receptors. Angiotensin II (Ang II) is the major effector of the RAS and affects the occurrence and development of inflammation, diabetes mellitus and its complications, hypertension, and end-organ damage via the Ang II type 1 receptor. Recently, considerable interest has been given to the association and interaction between the gut microbiota and host. Increasing evidence suggests that the gut microbiota may contribute to cardiovascular diseases, obesity, type 2 diabetes mellitus, chronic inflammatory diseases, and chronic kidney disease. Recent data have confirmed that Ang II can induce an imbalance in the intestinal flora and further aggravate disease progression. Furthermore, angiotensin converting enzyme 2 is another player in RAS, alleviates the deleterious effects of Ang II, modulates gut microbial dysbiosis, local and systemic immune responses associated with coronavirus disease 19. Due to the complicated etiology of pathologies, the precise mechanisms that link disease processes with specific characteristics of the gut microbiota remain obscure. This review aims to highlight the complex interactions between the gut microbiota and its metabolites in Ang II-related disease progression, and summarize the possible mechanisms. Deciphering these mechanisms will provide a theoretical basis for novel therapeutic strategies for disease prevention and treatment. Finally, we discuss therapies targeting the gut microbiota to treat Ang II-related disorders.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Zining Tan
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Mengrou Geng
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy and Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
40
|
Logoń K, Świrkosz G, Nowak M, Wrześniewska M, Szczygieł A, Gomułka K. The Role of the Microbiome in the Pathogenesis and Treatment of Asthma. Biomedicines 2023; 11:1618. [PMID: 37371713 DOI: 10.3390/biomedicines11061618] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The role of the microbiome in the pathogenesis and treatment of asthma is significant. The purpose of this article is to show the interplay between asthma and the microbiome, and main areas that require further research are also highlighted. The literature search was conducted using the PubMed database. After a screening process of studies published before May 2023, a total of 128 articles were selected in our paper. The pre-treatment bronchial microbiome in asthmatic patients plays a role in their responsiveness to treatment. Gut microbiota and its dysbiosis can contribute to immune system modulation and the development of asthma. The association between the microbiome and asthma is complex. Further research is necessary to clarify which factors might moderate that relationship. An appropriate gut microbiome and its intestinal metabolites are a protective factor for asthma development. Prebiotics and certain dietary strategies may have a prophylactic or therapeutic effect, but more research is needed to establish final conclusions. Although the evidence regarding probiotics is ambiguous, and most meta-analyses do not support the use of probiotic intake to reduce asthma, several of the most recent studies have provided promising effects. Further studies should focus on the investigation of specific strains and the examination of their mechanistic and genetic aspects.
Collapse
Affiliation(s)
- Katarzyna Logoń
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Gabriela Świrkosz
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Monika Nowak
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Martyna Wrześniewska
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Aleksandra Szczygieł
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
41
|
Rasouli-Saravani A, Jahankhani K, Moradi S, Gorgani M, Shafaghat Z, Mirsanei Z, Mehmandar A, Mirzaei R. Role of microbiota short-chain fatty acid chains in the pathogenesis of autoimmune diseases. Biomed Pharmacother 2023; 162:114620. [PMID: 37004324 DOI: 10.1016/j.biopha.2023.114620] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
There is emerging evidence that microbiota and its metabolites play an important role in helath and diseases. In this regard, gut microbiota has been found as a crucial component that influences immune responses as well as immune-related disorders such as autoimmune diseases. Gut bacterial dysbiosis has been shown to cause disease and altered microbiota metabolite synthesis, leading to immunological and metabolic dysregulation. Of note, microbiota in the gut produce short-chain fatty acids (SCFAs) such as acetate, butyrate, and propionate, and remodeling in these microbiota metabolites has been linked to the pathophysiology of a number of autoimmune disorders such as type 1 diabetes, multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, celiac disease, and systemic lupus erythematosus. In this review, we will address the most recent findings from the most noteworthy studies investigating the impact of microbiota SCFAs on various autoimmune diseases.
Collapse
Affiliation(s)
- Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Moradi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Mehmandar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
42
|
Sun CY, Yang N, Zheng ZL, Liu D, Xu QL. T helper 17 (Th17) cell responses to the gut microbiota in human diseases. Biomed Pharmacother 2023; 161:114483. [PMID: 36906976 DOI: 10.1016/j.biopha.2023.114483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The gut microbiota colonizing the gastrointestinal tract, is an indispensable "invisible organ" that affects multiple aspects of human health. The gut microbial community has been assumed to be an important stimulus to the immune homeostasis and development, and increasing data support the role of the gut microbiota-immunity axis in autoimmune diseases. Host's immune system requires recognition tools to communicate with the gut microbial evolutionary partners. Among these microbial perceptions, T cells enable the widest spectrum of gut microbial recognition resolution. Specific gut microbiota direct the induction and differentiation of Th17 cells in intestine. However, the detailed links between the gut microbiota and Th17 cells have not been well established. In this review, we describe the generation and characterization of Th17 cells. Notably, we discuss the induction and differentiation of Th17 cells by the gut microbiota and their metabolites, as well as recent advances in our understanding of interactions between Th17 cells and the gut microbiota in human diseases. In addition, we provide the emerging evidences in support of interventions targeting the gut microbes/Th17 cells in human diseases.
Collapse
Affiliation(s)
- Chao-Yue Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China
| | - Na Yang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China
| | | | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China
| | - Qi-Lin Xu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China.
| |
Collapse
|
43
|
Wilburn AN, McAlees JW, Haslam DB, Graspeuntner S, Schmudde I, Laumonnier Y, Rupp J, Chougnet CA, Deshmukh H, Zacharias WJ, König P, Lewkowich IP. Delayed Microbial Maturation Durably Exacerbates Th17-driven Asthma in Mice. Am J Respir Cell Mol Biol 2023; 68:498-510. [PMID: 36622830 PMCID: PMC10174167 DOI: 10.1165/rcmb.2022-0367oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/09/2023] [Indexed: 01/10/2023] Open
Abstract
Microbial maturation disrupted by early-life dysbiosis has been linked with increased asthma risk and severity; however, the immunological mechanisms underpinning this connection are poorly understood. We sought to understand how delaying microbial maturation drives worsened asthma outcomes later in life and its long-term durability. Drinking water was supplemented with antibiotics on Postnatal Days 10-20. To assess the immediate and long-term effects of delaying microbial maturation on experimental asthma, we initiated house dust mite exposure when bacterial diversity was either at a minimum or had recovered. Airway hyperresponsiveness, histology, pulmonary leukocyte recruitment, flow cytometric analysis of cytokine-producing lymphocytes, and assessment of serum IgG1 (Immunoglobulin G1) and IgE (Immunoglobulin E) concentrations were performed. RT-PCR was used to measure IL-13 (Interleukin 13)-induced gene expression in sequentially sorted mesenchymal, epithelial, endothelial, and leukocyte cell populations from the lung. Delayed microbial maturation increased allergen-driven airway hyperresponsiveness and Th17 frequency compared with allergen-exposed control mice, even when allergen exposure began after bacterial diversity recovered. Blockade of IL-17A (Interleukin 17A) reversed the airway hyperresponsiveness phenotype. In addition, allergen exposure in animals that experienced delayed microbial maturation showed signs of synergistic signaling between IL-13 and IL-17A in the pulmonary mesenchymal compartment. Delaying microbial maturation in neonates promotes the development of more severe asthma by increasing Th17 frequency, even if allergen exposure is initiated weeks after microbial diversity is normalized. In addition, IL-17A-aggravated asthma is associated with increased expression of IL-13-induced genes in mesenchymal, but not epithelial cells.
Collapse
Affiliation(s)
| | | | | | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology
- German Center for Infection Research (DZIF), partner-site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany; and
| | - Inken Schmudde
- Institute of Anatomy, and
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology
- German Center for Infection Research (DZIF), partner-site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany; and
| | - Claire A. Chougnet
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Immunobiology
| | - Hitesh Deshmukh
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - William J. Zacharias
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Peter König
- Institute of Anatomy, and
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Ian P. Lewkowich
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Immunobiology
| |
Collapse
|
44
|
Song Y, Wang X, Ma W, Yang Y, Yan S, Sun J, Zhu X, Tang Y. Graves' disease as a driver of depression: a mechanistic insight. Front Endocrinol (Lausanne) 2023; 14:1162445. [PMID: 37152963 PMCID: PMC10157224 DOI: 10.3389/fendo.2023.1162445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Graves' disease (GD) is characterized by diffuse enlargement and overactivity of the thyroid gland, which may be accompanied by other physical symptoms. Among them, depression can dramatically damage patients' quality of life, yet its prevalence in GD has not received adequate attention. Some studies have established a strong correlation between GD and increased risk of depression, though the data from current study remains limited. The summary of mechanistic insights regarding GD and depression has underpinned possible pathways by which GD contributes to depression. In this review, we first summarized the clinical evidence that supported the increased prevalence of depression by GD. We then concentrated on the mechanistic findings related to the acceleration of depression in the context of GD, as mounting evidence has indicated that GD promotes the development of depression through various mechanisms, including triggering autoimmune responses, inducing hormonal disorders, and influencing the thyroid-gut-microbiome-brain axis. Finally, we briefly presented potential therapeutic approaches to decreasing the risk of depression among patients with GD.
Collapse
Affiliation(s)
- Yifei Song
- Beijing University of Chinese Medicine, Beijing, China
| | - Xinying Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Wenxin Ma
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Yang
- Tongling Municipal hospital, Anhui, China
| | - Shuxin Yan
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiapan Sun
- Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Xiaoyun Zhu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Tang
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
45
|
Hansen M, Cheever A, Weber KS, O’Neill KL. Characterizing the Interplay of Lymphocytes in Graves' Disease. Int J Mol Sci 2023; 24:6835. [PMID: 37047805 PMCID: PMC10094834 DOI: 10.3390/ijms24076835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Graves' disease (GD) is a thyroid-specific autoimmune disease with a high prevalence worldwide. The disease is primarily mediated by B cells, which produce autoantibodies against the thyroid-stimulating hormone receptor (TSHR), chronically stimulating it and leading to high levels of thyroid hormones in the body. Interest in characterizing the immune response in GD has motivated many phenotyping studies. The immunophenotype of the cells involved and the interplay between them and their secreted factors are crucial to understanding disease progression and future treatment options. T cell populations are markedly distinct, including increased levels of Th17 and follicular helper T cells (Tfh), while Treg cells appear to be impaired. Some B cells subsets are autoreactive, and anti-TSHR antibodies are the key disease-causing outcome of this interplay. Though some consensus across phenotyping studies will be discussed here, there are also complexities that are yet to be resolved. A better understanding of the immunophenotype of Graves' disease can lead to improved treatment strategies and novel drug targets.
Collapse
Affiliation(s)
| | | | | | - Kim L. O’Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (M.H.); (A.C.); (K.S.W.)
| |
Collapse
|
46
|
Shen F, Liu J, Fang L, Fang Y, Zhou H. Development and application of animal models to study thyroid-associated ophthalmopathy. Exp Eye Res 2023; 230:109436. [PMID: 36914000 DOI: 10.1016/j.exer.2023.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/08/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
Thyroid-associated ophthalmopathy (TAO), also known as Graves' ophthalmopathy, is an autoimmune disease that is usually accompanied by hyperthyroidism. Its pathogenesis involves the activation of autoimmune T lymphocytes by a cross-antigen reaction of thyroid and orbital tissues. The thyroid-stimulating hormone receptor (TSHR) is known to play an important role in the development of TAO. Because of the difficulty of orbital tissue biopsy, the establishment of an ideal animal model is important for developing novel clinical therapies of TAO. To date, TAO animal modeling methods are mainly based on inducing experimental animals to produce anti-thyroid-stimulating hormone receptor antibodies (TRAbs) and then recruit autoimmune T lymphocytes. Currently, the most common methods are hTSHR-A subunit plasmid electroporation and hTSHR-A subunit adenovirus transfection. These animal models provide a powerful tool for exploring the internal relationship between local and systemic immune microenvironment disorders of the TAO orbit, facilitating the development of new drugs. However, existing TAO modeling methods still have some defects, such as low modeling rate, long modeling cycles, low repetition rate, and considerable differences from human histology. Hence, the modeling methods require further innovation, improvement, and in-depth exploration.
Collapse
Affiliation(s)
- Feiyang Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Jin Liu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Lianfei Fang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Yan Fang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Huifang Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| |
Collapse
|
47
|
Li B, Xu M, Wang Y, Feng L, Xing H, Zhang K. Gut microbiota: A new target for traditional Chinese medicine in the treatment of depression. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116038. [PMID: 36529248 DOI: 10.1016/j.jep.2022.116038] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE The causes of depression are complex. Many factors are involved in its pathogenesis, including the individual's biological and social environment. Although numerous studies have reported that the gut microbiota plays a significant role in depression, drugs that regulate the gut microbiota to treat depression have not yet been comprehensively reviewed. At the same time, more and more attention has been paid to the characteristics of traditional Chinese medicine (TCM) in improving depression by regulating gut microbiota. In ancient times, fecal microbiota transplantation was recorded in TCM for the treatment of severe diseases. There are also records in Chinese ancient books about the use of TCM to adjust gut microbiota to treat diseases, which has opened up a unique research field in TCM. Therefore, this article focuses on the pharmacological effects, targets, and mechanisms of TCM in improving depression by mediating the influence of gut microbiota. AIM OF THIS REVIEW To summarize the role the gut microbiota plays in depression, highlight potential regulatory targets, and elucidate the anti-depression mechanisms of TCMs through regulation of the gut microbiota. METHODS A systematic review of 256 clinical trials and pharmaceutical studies published until June 2022 was conducted in eight electronic databases (Web of Science, PubMed, SciFinder, Research Gate, ScienceDirect, Google Scholar, Scopus, and China Knowledge Infrastructure), according to the implemented PRISMA criteria, using the search terms "traditional Chinese medicine," "depression," and "gut microbiota." RESULTS Numerous studies reported the effects of different gut bacteria on depression and that antidepressants work through the gut microbiota. TCM preparations based on compound Chinese medicine, the Chinese Materia Medica, and major bioactive components exerted antidepressant-like effects by improving levels of neurotransmitters, short-chain fatty acids, brain-derived neurotrophic factor, kynurenine, and cytokines via regulation of the gut microbiota. CONCLUSION This review summarized the anti-depression effects of TCM on the gut microbiota, providing evidence that TCMs are safe and effective in the treatment of depression and may provide a new therapeutic approach.
Collapse
Affiliation(s)
- Boru Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meijing Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yu Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lijin Feng
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hang Xing
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China; Jiangsu Kanion Pharmaceutical Co, Ltd, Lianyungang, 222001, China.
| | - Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China; Tianjin UBasio Biotechnology Group, Tianjin, 300457, China.
| |
Collapse
|
48
|
Wang Y, Fang S, Zhou H. Pathogenic role of Th17 cells in autoimmune thyroid disease and their underlying mechanisms. Best Pract Res Clin Endocrinol Metab 2023; 37:101743. [PMID: 36841747 DOI: 10.1016/j.beem.2023.101743] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Autoimmune thyroid disease, encompassing Graves' disease and Hashimoto's thyroiditis, has a very complex etiology. Pathogenesis of the disease involves both genetic susceptibility and environmental triggers. Traditionally, imbalance of T helper cell 1 and 2 was thought to result in the immune disorders in Graves' disease and Hashimoto's thyroiditis. However, increasing evidence recently revealed the important role of T helper 17 cell and its relative cellular and secretory components in the pathogenesis and progression of autoimmune thyroid disease. This review is aimed to summarize the published studies on the involvement of T helper 17 cell in autoimmune thyroid disease and discuss the underlying regulatory mechanisms, which could possibly serve as the foundation of discovering new therapeutic targets.
Collapse
Affiliation(s)
- Yi Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China; Chinese Consortium for Thyroid Eye Disease (CCTED), China; Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China.
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China; Chinese Consortium for Thyroid Eye Disease (CCTED), China; Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China.
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China; Chinese Consortium for Thyroid Eye Disease (CCTED), China.
| |
Collapse
|
49
|
Li Y, Luo B, Tong B, Xie Z, Cao J, Bai X, Peng Y, Wu Y, Wang W, Qi X. The role and molecular mechanism of gut microbiota in Graves' orbitopathy. J Endocrinol Invest 2023; 46:305-317. [PMID: 35986869 DOI: 10.1007/s40618-022-01902-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/10/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE Graves' orbitopathy (GO) is an autoimmune orbital disorder. Gut microbiota dysfunction plays a vital role in autoimmune diseases, including Graves' disease (GD) and GO. In the present study, we aimed to investigate the change of gut microbiota in GD/GO using mouse model. METHODS The murine model of GD/GO was established by the challenge of adenovirus expressing thyroid-stimulating hormone (TSH) receptor (TSHR) (Ad-TSHR). The histological changes of orbital and thyroid tissues were analyzed by hematoxylin and eosin (H&E), Masson staining, and immunohistochemistry (IHC) staining. The fecal samples were collected for 16S rRNA gene sequencing and bioinformatics analysis. RESULTS The GD/GO model was established successfully, as manifested as the broadened eyelid, exophthalmia and conjunctive redness, severe inflammatory infiltration among thyroid glands and between extraocular muscle space, hypertrophic extraocular muscles, elevated thyroxine (T4) and decreased TSH, and positive CD34, CD40, collagen I, and α-SMA staining. A total of 222 operational taxonomic units (OUTs) were overlapped between mice in the Ad-NC and Ad-TSHR groups. The microbial composition of the samples in the two groups was mainly Bacteroidia and Clostridia, and the Ad-NC group had a significantly lower content of Bacteroidia and higher content of Clostridia. KEGG orthology analysis results revealed differences in dehydrogenase, aspartic acid, bile acid, chalcone synthase, acetyltransferase, glutamylcyclotransferase, glycogenin, and 1-phosphatidylinositol-4-phosphate 5-kinase between two groups; enzyme commission (EC) analysis results revealed differences in several dehydrogenase, oxidase, thioxy/reductase between two groups; MetaCyc pathways analysis results revealed differences in isoleucine degradation, oxidation of C1 compounds, tricarboxylic acid (TCA) cycle IV, taurine degradation, and biosynthesis of paromamine, heme, colonic acid building blocks, butanediol, lysine/threonine/methionine, and histidine/purine/pyrimidine between two groups. CONCLUSION This study induced a mouse model of GD/GO by Ad-TSHR challenge, and gut microbiota characteristics were identified in the GD/GO mice. The Bacteroidia and Clostridia abundance was changed in the GD/GO mice. These findings may lay a solid experimental foundation for developing personalized treatment regimens for GD patients according to the individual gut microbiota. Given the potential impact of regional differences on intestinal microbiota, this study in China may provide a reference for the global overview of the gut-thyroid axis hypothesis.
Collapse
Affiliation(s)
- Y Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - B Luo
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - B Tong
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Z Xie
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - J Cao
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - X Bai
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Y Peng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Y Wu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - W Wang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - X Qi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
50
|
Campbell C, Kandalgaonkar MR, Golonka RM, Yeoh BS, Vijay-Kumar M, Saha P. Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines 2023; 11:294. [PMID: 36830830 PMCID: PMC9953403 DOI: 10.3390/biomedicines11020294] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Gut microbes and their metabolites are actively involved in the development and regulation of host immunity, which can influence disease susceptibility. Herein, we review the most recent research advancements in the gut microbiota-immune axis. We discuss in detail how the gut microbiota is a tipping point for neonatal immune development as indicated by newly uncovered phenomenon, such as maternal imprinting, in utero intestinal metabolome, and weaning reaction. We describe how the gut microbiota shapes both innate and adaptive immunity with emphasis on the metabolites short-chain fatty acids and secondary bile acids. We also comprehensively delineate how disruption in the microbiota-immune axis results in immune-mediated diseases, such as gastrointestinal infections, inflammatory bowel diseases, cardiometabolic disorders (e.g., cardiovascular diseases, diabetes, and hypertension), autoimmunity (e.g., rheumatoid arthritis), hypersensitivity (e.g., asthma and allergies), psychological disorders (e.g., anxiety), and cancer (e.g., colorectal and hepatic). We further encompass the role of fecal microbiota transplantation, probiotics, prebiotics, and dietary polyphenols in reshaping the gut microbiota and their therapeutic potential. Continuing, we examine how the gut microbiota modulates immune therapies, including immune checkpoint inhibitors, JAK inhibitors, and anti-TNF therapies. We lastly mention the current challenges in metagenomics, germ-free models, and microbiota recapitulation to a achieve fundamental understanding for how gut microbiota regulates immunity. Altogether, this review proposes improving immunotherapy efficacy from the perspective of microbiome-targeted interventions.
Collapse
Affiliation(s)
- Connor Campbell
- Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Mrunmayee R. Kandalgaonkar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|