1
|
Microglial Cytokines Induce Invasiveness and Proliferation of Human Glioblastoma through Pyk2 and FAK Activation. Cancers (Basel) 2021; 13:cancers13246160. [PMID: 34944779 PMCID: PMC8699228 DOI: 10.3390/cancers13246160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Microglia infiltrate most gliomas and have been demonstrated to promote tumor growth, invasion, and treatment resistance. To develop improved treatment methods, that take into consideration the supporting role of microglia in tumor progression, the functional and mechanistic pathways of glioma–microglia interactions need to be identified and experimentally dissected. Our recent studies and literature reports revealed the overexpression of Pyk2 and FAK in glioblastomas. Pyk2 and FAK signaling pathways have been shown to regulate migration and proliferation in glioma cells, including microglia-promoted glioma cell migration. However, the specific factors released by microglia that modulate Pyk2 and FAK to promote glioma invasiveness and proliferation are poorly understood. The aim of this study was to identify key microglia-derived signaling molecules that induce the activation of Pyk2- and FAK-dependent glioma cell proliferation and invasiveness. Abstract Glioblastoma is the most aggressive brain tumor in adults. Multiple lines of evidence suggest that microglia create a microenvironment favoring glioma invasion and proliferation. Our previous studies and literature reports indicated the involvement of focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) in glioma cell proliferation and invasion, stimulated by tumor-infiltrating microglia. However, the specific microglia-released factors that modulate Pyk2 and FAK signaling in glioma cells are unknown. In this study, 20 human glioblastoma specimens were evaluated with the use of RT-PCR and western blotting. A Pierson correlation test demonstrated a correlation (0.6–1.0) between the gene expression levels for platelet-derived growth factor β(PDGFβ), stromal-derived factor 1α (SDF-1α), IL-6, IL-8, and epidermal growth factor (EGF) in tumor-purified microglia and levels of p-Pyk2 (Y579/Y580) and p-FAK(Y925) in glioma cells. siRNA knockdown against Pyk2 or FAK in three primary glioblastoma cell lines, developed from the investigated specimens, in combination with the cytokine receptor inhibitors gefitinib (1 μM), DMPQ (200 nM), and burixafor (1 μM) identified EGF, PDGFβ, and SDF-1α as key extracellular factors in the Pyk2- and FAK-dependent activation of invadopodia formation and the migration of glioma cells. EGF and IL-6 were identified as regulators of the Pyk2- and FAK-dependent activation of cell viability and mitosis.
Collapse
|
2
|
Johnson CN, Hashim MM, Bailey CA, Byrd JA, Kogut MH, Arsenault RJ. Feeding of yeast cell wall extracts during a necrotic enteritis challenge enhances cell growth, survival and immune signaling in the jejunum of broiler chickens. Poult Sci 2020; 99:2955-2966. [PMID: 32475430 PMCID: PMC7597693 DOI: 10.1016/j.psj.2020.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/30/2020] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
Necrotic enteritis (NE) is one of the most common and costly diseases in the modern broiler industry, having an estimated economic impact of $6 billion dollars annually. Increasing incidents of NE have resulted from restrictions on the use of antibiotic feed additives throughout the broiler industry. As such, finding effective antibiotic alternatives has become a priority. In this study, an experimental model of NE was used, comprising a commercial infectious bursal disease virus vaccine and Clostridium perfringens (C. perfringens) inoculation. Yeast cells wall (YCW) components, β-glucan (BG), and mannoproteins (MPTs) were evaluated for their effects on disease development. Chicken-specific immunometabolic kinome peptide arrays were used to measure differential phosphorylation between control (uninfected), challenged (infected), and challenged and treated birds in duodenal, jejunal, and ileal tissues. Treatment groups included crude YCW preparation, BG, MPT, or BG+MPT as feed additives. Data analysis revealed kinome profiles cluster predominantly by tissue, with duodenum showing the greatest relative signaling and jejunum showing the greatest response to treatment. BG, MPT, and BG+MPT cluster together, separate from controls and challenge birds in each tissue. Changes in signaling resulting from the treatments were observed in cell growth and survival responses as well as immune responses. None of the treatments of disease challenge returned the profiles to control-like. This is attributable to immune modulation and metabolic effects of the treatments generating distinct profiles from control. Importantly, all the treatments are distinct from the challenge group despite being challenged themselves. Only BG+MPT treatment had a significant effect on bird weight gain compared with the NE challenge group, and this treatment had the greatest impact on gut tissue signaling in all segments. The signaling changes elicited by BG+MPT during an NE challenge were increased cell growth and survival signaling, reducing cell death, apoptosis and innate inflammatory responses, and generating compensatory signaling to reduce disease severity.
Collapse
Affiliation(s)
- Casey N Johnson
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| | - Mohammed M Hashim
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
| | - Christopher A Bailey
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
| | - James A Byrd
- USDA - ARS, Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Michael H Kogut
- USDA - ARS, Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Ryan J Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
3
|
Naser R, Aldehaiman A, Díaz-Galicia E, Arold ST. Endogenous Control Mechanisms of FAK and PYK2 and Their Relevance to Cancer Development. Cancers (Basel) 2018; 10:E196. [PMID: 29891810 PMCID: PMC6025627 DOI: 10.3390/cancers10060196] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023] Open
Abstract
Focal adhesion kinase (FAK) and its close paralogue, proline-rich tyrosine kinase 2 (PYK2), are key regulators of aggressive spreading and metastasis of cancer cells. While targeted small-molecule inhibitors of FAK and PYK2 have been found to have promising antitumor activity, their clinical long-term efficacy may be undermined by the strong capacity of cancer cells to evade anti-kinase drugs. In healthy cells, the expression and/or function of FAK and PYK2 is tightly controlled via modulation of gene expression, competing alternatively spliced forms, non-coding RNAs, and proteins that directly or indirectly affect kinase activation or protein stability. The molecular factors involved in this control are frequently deregulated in cancer cells. Here, we review the endogenous mechanisms controlling FAK and PYK2, and with particular focus on how these mechanisms could inspire or improve anticancer therapies.
Collapse
Affiliation(s)
- Rayan Naser
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Abdullah Aldehaiman
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Escarlet Díaz-Galicia
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
4
|
Wiese H, Gelis L, Wiese S, Reichenbach C, Jovancevic N, Osterloh M, Meyer HE, Neuhaus EM, Hatt HH, Radziwill G, Warscheid B. Quantitative phosphoproteomics reveals the protein tyrosine kinase Pyk2 as a central effector of olfactory receptor signaling in prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:632-40. [PMID: 25219547 DOI: 10.1016/j.bbapap.2014.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/21/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
Abstract
The prostate-specific G-protein-coupled receptor 1 (PSGR1) is an olfactory receptor specifically expressed in the prostate gland. PSGR1 expression is elevated both in benign prostatic hyperplasia tissue and in prostate cancer. Stimulation of PSGR1 by the odorant β-ionone leads to an increase in the intracellular Ca(2+) concentration, activation of mitogen-activated protein (MAP) kinases and a decrease in prostate cancer cell proliferation. To further extend our knowledge about PSGR1 signaling in prostate cancer cells, we performed a quantitative phosphoproteomics study using stable isotope labeling by amino acids in cell culture and mass spectrometry. We report 51 differentially regulated phosphorylation sites in 24 proteins with functions in cytoskeletal remodeling, signaling and ion transport. Activation of PSGR1 evoked an increase in intracellular pH mediated by the sodium/hydrogen exchanger NHE1. Furthermore, we report the protein tyrosine kinase Pyk2 as a central effector of PSGR1 signaling cascades in LNCaP cells. Our data show that phosphorylation of p38 MAP kinase is triggered by Pyk2. In addition, we confirmed dephosphorylation of the tumor suppressor protein N-myc downstream regulated gene 1 (NDRG1) at Ser330 downstream of Pyk2. Since NDRG1 impacts oncogenic signaling pathways interfering with tumor progression, we suggest that the Pyk2-NDRG1 axis is possibly involved in conveying the anti-proliferative effect of β-ionone in prostate cancer cells. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Heike Wiese
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Lian Gelis
- Department of Cell Physiology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Sebastian Wiese
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Christa Reichenbach
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Nikolina Jovancevic
- Department of Cell Physiology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Markus Osterloh
- Department of Cell Physiology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Helmut E Meyer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Eva M Neuhaus
- Department of Pharmacology and Toxicology, University of Jena, Drackendorfer Str. 1, 07747 Jena, Germany
| | - Hanns H Hatt
- Department of Cell Physiology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Gerald Radziwill
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.
| |
Collapse
|
5
|
Barrett A, Pellet-Many C, Zachary IC, Evans IM, Frankel P. p130Cas: a key signalling node in health and disease. Cell Signal 2012; 25:766-77. [PMID: 23277200 DOI: 10.1016/j.cellsig.2012.12.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 12/21/2012] [Indexed: 01/08/2023]
Abstract
p130Cas/breast cancer anti-oestrogen resistance 1 (BCAR1) is a member of the Cas (Crk-associated substrate) family of adaptor proteins, which have emerged as key signalling nodes capable of interactions with multiple proteins, with important regulatory roles in normal and pathological cell function. The Cas family of proteins is characterised by the presence of multiple conserved motifs for protein-protein interactions, and by extensive tyrosine and serine phosphorylations. Recent studies show that p130Cas contributes to migration, cell cycle control and apoptosis. p130Cas is essential during early embryogenesis, with a critical role in cardiovascular development. Furthermore, p130Cas has been reported to be involved in the development and progression of several human cancers. p130Cas is able to perform roles in multiple processes due to its capacity to regulate a diverse array of signalling pathways, transducing signals from growth factor receptor tyrosine kinases, non-receptor tyrosine kinases, and integrins. In this review we summarise the current understanding of the structure, function, and regulation of p130Cas, and discuss the importance of p130Cas in both physiological and pathophysiological settings, with a focus on the cardiovascular system and cancer.
Collapse
Affiliation(s)
- Angela Barrett
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, London WC1E 6JJ, United Kingdom.
| | | | | | | | | |
Collapse
|
6
|
Moody TW, Di Florio A, Jensen RT. PYK-2 is tyrosine phosphorylated after activation of pituitary adenylate cyclase activating polypeptide receptors in lung cancer cells. J Mol Neurosci 2012; 48:660-666. [PMID: 22581436 PMCID: PMC3419816 DOI: 10.1007/s12031-012-9785-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 04/17/2012] [Indexed: 11/26/2022]
Abstract
The signal transduction mechanisms of pituitary adenylate cyclase activating polypeptide (PACAP) were investigated in lung cancer cells. Previously, PACAP-27 addition to NCI-H838 cells increased phosphatidylinositol turnover and intracellular cAMP leading to proliferation of lung cancer cells. Also, PACAP receptors (PAC1) regulated the tyrosine phosphorylation of ERK, focal adhesion kinase, and paxillin. In this communication, the effects of PACAP on cytosolic Ca(2+) and PYK-2 tyrosine phosphorylation were investigated. PACAP-27 increased cytosolic Ca(2+) within seconds after addition to FURA-2 AM loaded NCI-H838 cells. The increase in cytosolic Ca(2+) caused by PACAP was inhibited by PACAP(6-38) (PAC1 antagonist), U73122 (phospholipase C inhibitor), or BAPTA (calcium chelator), but not H89 (PKA inhibitor). PACAP-38, but not vasoactive intestinal peptide (VIP), addition to NCI-H838 or H1299 cells significantly increased the tyrosine phosphorylation of PYK-2 after 2 min. The increase in PYK-2 tyrosine phosphorylation caused by PACAP was inhibited by PACAP(6-38), U73122, or BAPTA, but not H89. The results suggest that PAC1 regulates PYK-2 tyrosine phosphorylation in a calcium-dependent manner.
Collapse
Affiliation(s)
- Terry W Moody
- NCI Office of the Director, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
7
|
YANG LIANGLIANG, LIU FAYU, XU ZHONGFEI, GUO NAN, ZHENG XIAOJIAO, SUN CHANGFU. Chemokine receptor 7 via proline-rich tyrosine kinase-2 upregulates the chemotaxis and migration ability of squamous cell carcinoma of the head and neck. Oncol Rep 2012; 28:1659-64. [DOI: 10.3892/or.2012.1989] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/10/2012] [Indexed: 11/06/2022] Open
|
8
|
Wang D, Olman MA, Stewart J, Tipps R, Huang P, Sanders PW, Toline E, Prayson RA, Lee J, J.Weil R, Palmer CA, Gillespie GY, Liu WM, Pieper RO, Guan JL, Gladson CL. Downregulation of FIP200 induces apoptosis of glioblastoma cells and microvascular endothelial cells by enhancing Pyk2 activity. PLoS One 2011; 6:e19629. [PMID: 21602932 PMCID: PMC3094350 DOI: 10.1371/journal.pone.0019629] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 04/11/2011] [Indexed: 12/30/2022] Open
Abstract
The expression of focal adhesion kinase family interacting protein of 200-kDa (FIP200) in normal brain is limited to some neurons and glial cells. On immunohistochemical analysis of biopsies of glioblastoma tumors, we detected FIP200 in the tumor cells, tumor-associated endothelial cells, and occasional glial cells. Human glioblastoma tumor cell lines and immortalized human astrocytes cultured in complete media also expressed FIP200 as did primary human brain microvessel endothelial cells (MvEC), which proliferate in culture and resemble reactive endothelial cells. Downregulation of endogenous expression of FIP200 using small interfering RNA resulted in induction of apoptosis in the human glioblastoma tumor cells, immortalized human astrocytes, and primary human brain MvEC. It has been shown by other investigators using cells from other tissues that FIP200 can interact directly with, and inhibit, proline-rich tyrosine kinase 2 (Pyk2) and focal adhesion kinase (FAK). In the human glioblastoma tumor cells, immortalized human astrocytes, and primary human brain MvEC, we found that downregulation of FIP200 increased the activity of Pyk2 without increasing its expression, but did not affect the activity or expression of FAK. Coimmunoprecipitation and colocalization studies indicated that the endogenous FIP200 was largely associated with Pyk2, rather than FAK, in the glioblastoma tumor cells and brain MvEC. Moreover, the pro-apoptotic effect of FIP200 downregulation was inhibited significantly by a TAT-Pyk2-fusion protein containing the Pyk2 autophosphorylation site in these cells. In summary, downregulation of endogenous FIP200 protein in glioblastoma tumor cells, astrocytes, and brain MvECs promotes apoptosis, most likely due to the removal of a direct interaction of FIP200 with Pyk2 that inhibits Pyk2 activation, suggesting that FIP200 expression may be required for the survival of all three cell types found in glioblastoma tumors.
Collapse
Affiliation(s)
- Dongyan Wang
- Division of Neuropathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Mitchell A. Olman
- Division of Pulmonary/Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jerry Stewart
- Division of Neuropathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Russell Tipps
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ping Huang
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Paul W. Sanders
- Department of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Eric Toline
- Division of Neuropathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Richard A. Prayson
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jeongwu Lee
- Department of Stem Cell and Regenerative Medicine, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Robert J.Weil
- Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Cheryl A. Palmer
- Division of Neuropathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - G. Yancey Gillespie
- Neurosurgery Division, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Wei Michael Liu
- Division of Neuropathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Russell O. Pieper
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, United States of America
| | - Jun-Lin Guan
- Division of Molecular Medicine and Genetics, Cell and Developmental Biology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Candece L. Gladson
- Division of Neuropathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, United States of America
- Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
9
|
Vomaske J, Varnum S, Melnychuk R, Smith P, Pasa-Tolic L, Shutthanandan JI, Streblow DN. HCMV pUS28 initiates pro-migratory signaling via activation of Pyk2 kinase. HERPESVIRIDAE 2010; 1:2. [PMID: 21429240 PMCID: PMC3050435 DOI: 10.1186/2042-4280-1-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 12/07/2010] [Indexed: 12/20/2022]
Abstract
Background Human Cytomegalovirus (HCMV) has been implicated in the acceleration of vascular disease and chronic allograft rejection. Recently, the virus has been associated with glioblastoma and other tumors. We have previously shown that the HCMV-encoded chemokine receptor pUS28 mediates smooth muscle cell (SMC) and macrophage motility and this activity has been implicated in the acceleration of vascular disease. pUS28 induced SMC migration involves the activation of the protein tyrosine kinases (PTKs) Src and Focal adhesion kinase as well as the small GTPase RhoA. The PTK Pyk2 has been shown to play a role in cellular migration and formation of cancer, especially glioblastoma. The role of Pyk2 in pUS28 signaling and migration are unknown. Methods In the current study, we examined the involvement of the PTK Pyk2 in pUS28-induced cellular motility. We utilized in vitro migration of SMC to determine the requirements for Pyk2 in pUS28 pro-migratory signaling. We performed biochemical analysis of Pyk2 signaling in response to pUS28 activation to determine the mechanisms involved in pUS28 migration. We performed mass spectrometric analysis of Pyk2 complexes to identify novel Pyk2 binding partners. Results Expression of a mutant form of Pyk2 lacking the autophosphorylation site (Tyr-402) blocks pUS28-mediated SMC migration in response to CCL5, while the kinase-inactive Pyk2 mutant failed to elicit the same negative effect on migration. pUS28 stimulation with CCL5 results in ligand-dependent and calcium-dependent phosphorylation of Pyk2 Tyr-402 and induced the formation of an active Pyk2 kinase complex containing several novel Pyk2 binding proteins. Expression of the autophosphorylation null mutant Pyk2 F402Y did not abrogate the formation of an active Pyk2 kinase complex, but instead prevented pUS28-mediated activation of RhoA. Additionally, pUS28 activated RhoA via Pyk2 in the U373 glioblastoma cells. Interestingly, the Pyk2 kinase complex in U373 contained several proteins known to participate in glioma tumorigenesis. Conclusions These findings represent the first demonstration that pUS28 signals through Pyk2 and that this PTK participates in pUS28-mediated cellular motility via activation of RhoA. Furthermore, these results provide a potential mechanistic link between HCMV-pUS28 and glioblastoma cell activation.
Collapse
Affiliation(s)
- Jennifer Vomaske
- The Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton OR 97006 USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Block ER, Tolino MA, Klarlund JK. Pyk2 activation triggers epidermal growth factor receptor signaling and cell motility after wounding sheets of epithelial cells. J Biol Chem 2010; 285:13372-9. [PMID: 20215112 DOI: 10.1074/jbc.m109.083089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Activation of the epidermal growth factor receptor (EGFR) is a key signaling event that promotes cells to move and cover wounds in many epithelia. We have previously shown that wounding activates the EGFR through activation of the Src family kinases (SFKs), which induce proteolytic shedding of epidermal growth factor-like ligands from the cell surface. A major goal in wound healing research is to identify early signals that promote motility, and here we examined the hypothesis that members of the focal adhesion kinase family are upstream activators of the SFKs after wounding. We found that focal adhesion kinase is not activated by wounding but that a different family member, Pyk2 (PTK2B/RAFTK/CAKbeta), is activated rapidly and potently. Pyk2 interaction with c-Src is increased after wounding, as determined by co-immunoprecipitation experiments. Disruption of Pyk2 signaling either by small interfering RNA or by expression of a dominant negative mutant led to inhibition of wound-induced activation of the SFKs and the EGFR, and conversely, overexpression of wild-type Pyk2 stimulated SFK and EGFR kinase activities in cells. In wound healing studies, Pyk2 small interfering RNA or dominant negative inhibited cell migration. These results show that activation of Pyk2 is an early signal that promotes wound healing by stimulating the SFK/EGFR signaling pathway.
Collapse
Affiliation(s)
- Ethan R Block
- Ophthalmology and Visual Sciences Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
11
|
Zhang S, Guo D, Luo W, Zhang Q, Zhang Y, Li C, Lu Y, Cui Z, Qiu X. TrkB is highly expressed in NSCLC and mediates BDNF-induced the activation of Pyk2 signaling and the invasion of A549 cells. BMC Cancer 2010; 10:43. [PMID: 20156366 PMCID: PMC2830183 DOI: 10.1186/1471-2407-10-43] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 02/16/2010] [Indexed: 11/12/2022] Open
Abstract
Background Aberrant regulation in the invasion of cancer cells is closely associated with their metastatic potentials. TrkB functions as a receptor tyrosine kinase and is considered to facilitate tumor metastasis. Pyk2 is a non-receptor tyrosine kinase and integrates signals in cell invasion. However, little is known about the expression of TrkB in NSCLC and whether Pyk2 is involved in TrkB-mediated invasion of A549 cells. Methods The expression of TrkB was investigated in NSCLC by immunohistochemical staining. Both HBE and A549 cells were treated with BDNF. The expression of TrkB, Pyk2 and ERK phosphorylations were assessed by western blot. Besides, A549 cells were transfected with TrkB-siRNA or Pyk2-siRNA, or treated with ERK inhibitor where indicated. Transwell assay was performed to evaluate cell invasion. Results 40 cases (66.7%) of NSCLC were found higher expression of TrkB and patients with more TrkB expression had significant metastatic lymph nodes (p = 0.028). BDNF facilitated the invasion of A549 cells and the activations of Pyk2 in Tyr402 and ERK. However, the effects of BDNF were not observed in HBE cells with lower expression of TrkB. In addition, the increased Pyk2 and ERK activities induced by BDNF were significantly inhibited by blocking TrkB expression, so was the invasion of A549 cells. Knockdown studies revealed the essential role of Pyk2 for BDNF-induced cell invasion, since the invasion of A549 cells was abolished by Pyk2-siRNA. The application of ERK inhibitor also showed the suppressed ERK phosphorylation and cell invasion. Conclusion These data indicated that higher expression of TrkB in NSCLC was closely correlated with lymph node metastasis, and BDNF probably via TrkB/Pyk2/ERK promoted the invasion of A549 cells.
Collapse
Affiliation(s)
- Siyang Zhang
- Center of Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Manso AM, Kang SM, Plotnikov SV, Thievessen I, Oh J, Beggs HE, Ross RS. Cardiac fibroblasts require focal adhesion kinase for normal proliferation and migration. Am J Physiol Heart Circ Physiol 2009; 296:H627-38. [PMID: 19136609 PMCID: PMC2660223 DOI: 10.1152/ajpheart.00444.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 01/05/2009] [Indexed: 01/18/2023]
Abstract
Migration and proliferation of cardiac fibroblasts (CFs) play an important role in the myocardial remodeling process. While many factors have been identified that regulate CF growth and migration, less is known about the signaling mechanisms involved in these processes. Here, we utilized Cre-LoxP technology to obtain focal adhesion kinase (FAK)-deficient adult mouse CFs and studied how FAK functioned in modulating cell adhesion, proliferation, and migration of these cells. Treatment of FAK(flox/flox) CFs with Ad/Cre virus caused over 70% reduction of FAK protein levels within a cell population. FAK-deficient CFs showed no changes in focal adhesions, cell morphology, or protein expression levels of vinculin, talin, or paxillin; proline-rich tyrosine kinase 2 (Pyk2) expression and activity were increased. Knockdown of FAK protein in CFs increased PDGF-BB-induced proliferation, while it reduced PDGF-BB-induced migration. Adhesion to fibronectin was not altered. To distinguish between the function of FAK and Pyk2, FAK function was inhibited via adenoviral-mediated overexpression of the natural FAK inhibitor FAK-related nonkinase (FRNK). Ad/FRNK had no effect on Pyk2 expression, inhibited the PDGF-BB-induced migration, but did not change the PDGF-BB-induced proliferation. FAK deficiency had only modest effects on increasing PDGF-BB activation of p38 and JNK MAPKs, with no alteration in the ERK response vs. control cells. These results demonstrate that FAK is required for the PDGF-BB-induced migratory response of adult mouse CFs and suggest that FAK could play an essential role in the wound-healing response that occurs in numerous cardiac pathologies.
Collapse
Affiliation(s)
- Ana Maria Manso
- Department of Medicine, University of California-San Diego School of Medicine, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Iiizumi M, Bandyopadhyay S, Pai SK, Watabe M, Hirota S, Hosobe S, Tsukada T, Miura K, Saito K, Furuta E, Liu W, Xing F, Okuda H, Kobayashi A, Watabe K. RhoC promotes metastasis via activation of the Pyk2 pathway in prostate cancer. Cancer Res 2008; 68:7613-20. [PMID: 18794150 PMCID: PMC2741300 DOI: 10.1158/0008-5472.can-07-6700] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
RhoC is a member of the Ras-homologous family of genes which have been implicated in tumorigenesis and tumor progression. However, the exact role of RhoC is controversial and is yet to be clarified. We have examined the effect of RhoC on prostate tumor cells and found that RhoC had no effect on cell proliferation in vitro or on tumor growth in mice. However, RhoC significantly enhanced the metastatic ability of the tumor cells in these animals, suggesting that RhoC affects only the metastasis but not the growth of prostate tumor cells. The results of our immunohistochemical analyses on tumor specimens from 63 patients with prostate cancer indicate that RhoC expression had no significant correlation with Gleason grade. However, the expression of RhoC showed significant positive correlation with both lymph node and distant metastasis, and it was inversely correlated with patient survival. We also found that RhoC significantly augmented the invasion and motility of prostate tumor cells by activating matrix metalloproteinases 2 and 9 (MMP2 and MMP9) in vitro. The results of our antibody array analysis for signal molecules revealed that RhoC significantly activated kinases including mitogen-activated protein kinase (MAPK), focal adhesion kinase (FAK), Akt, and Pyk2. Inhibition of Pyk2 kinase blocked the RhoC-dependent activation of FAK, MAPK, and Akt, followed by the suppression of MMP2 and MMP9. Inhibitors of both MAPK and Akt also significantly blocked the activities of these MMPs. Therefore, our results indicate that RhoC promotes tumor metastasis in prostate cancer by sequential activation of Pyk2, FAK, MAPK, and Akt followed by the up-regulation of MMP2 and MMP9, which results in the stimulation of invasiveness of tumor cells.
Collapse
Affiliation(s)
- Megumi Iiizumi
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62702, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Anand AR, Cucchiarini M, Terwilliger EF, Ganju RK. The tyrosine kinase Pyk2 mediates lipopolysaccharide-induced IL-8 expression in human endothelial cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:5636-44. [PMID: 18390748 DOI: 10.4049/jimmunol.180.8.5636] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Secretion of proinflammatory cytokines by LPS activated endothelial cells contributes substantially to the pathogenesis of sepsis. However, the mechanism involved in this process is not well understood. In the present study, we determined the role of a nonreceptor proline-rich tyrosine kinase, Pyk2, in LPS-induced IL-8 (CXCL8) production in endothelial cells. First, we observed a marked activation of Pyk2 in response to LPS. Furthermore, inhibition of Pyk2 activity in these cells by transduction with the catalytically inactive Pyk2 mutant, transfection with Pyk2-specific small interfering RNA, or treatment with Tyrphostin A9 significantly blocked LPS-induced IL-8 production. The supernatants of LPS-stimulated cells exhibiting attenuated Pyk2 activity blocked transendothelial neutrophil migration in comparison to the supernatants of LPS-treated controls, thus confirming the inhibition of functional IL-8 production. Investigations into the molecular mechanism of this pathway revealed that LPS activates Pyk2 leading to IL-8 production through the TLR4. In addition, we identified the p38 MAPK pathway to be a critical step downstream of Pyk2 during LPS-induced IL-8 production. Taken together, these results demonstrate a novel role for Pyk2 in LPS-induced IL-8 production in endothelial cells.
Collapse
Affiliation(s)
- Appakkudal R Anand
- Department of Pathology, Ohio State University Medical Center, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
15
|
Zhang S, Qiu X, Gu Y, Wang E. Up-regulation of proline-rich tyrosine kinase 2 in non-small cell lung cancer. Lung Cancer 2008; 62:295-301. [PMID: 18571765 DOI: 10.1016/j.lungcan.2008.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 04/06/2008] [Accepted: 05/05/2008] [Indexed: 11/16/2022]
Abstract
Proline-rich tyrosine kinase 2 (PYK2) is a non-receptor tyrosine kinase, plays different roles in intracellular signaling pathways, that regulates a number of biological processes, such as cell proliferation, differentiation, adhesion and migration, which have been shown to correlate with tumor development and aggression. However, the involvement of PYK2 in human non-small cell lung cancer (NSCLC) has not yet been determined. In the present study, 90 patients with NSCLC (represented by adenocarcinoma and squamous cell carcinoma) were included retrospectively. NSCLC tissues were detected for the expression of PYK2 by immunohistochemistry. Correlation between the expression of PYK2 with the clinicopathological characteristics was analyzed. There were 64% (58 out of 90) of NSCLC patients with higher level of PYK2. Higher expression of PYK2 was significantly correlated with lymph node metastasis (node positive versus node negative, p=0.007). Patients with higher expression of PYK2 had advanced stage of NSCLCs (I+II versus III+IV, p=0.012). Protein level of PYK2 was also examined in 30 of these tumorous samples and matched non-tumorous counterparts by western blotting. PYK2 was apparently up-regulated in NSCLC tissues (tumor versus non-tumor, p=0.000). In the cell studies, extensive expression and activation of PYK2 were both found in higher metastatic BE1 cells. The activity of ERK1/2 in BE1 cells appeared extremely high as well. In conclusion, our results demonstrated that PYK2 is up-regulated in NSCLCs, and the higher expression and activation of PYK2 may play a role in modulating the activity of ERK1/2, and lead to the progression of NSCLC.
Collapse
Affiliation(s)
- Siyang Zhang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, and Department of Pathology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | | | | | | |
Collapse
|
16
|
de Amicis F, Lanzino M, Kisslinger A, Calì G, Chieffi P, Andò S, Mancini FP, Tramontano D. Loss of proline-rich tyrosine kinase 2 function induces spreading and motility of epithelial prostate cells. J Cell Physiol 2006; 209:74-80. [PMID: 16783820 DOI: 10.1002/jcp.20709] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although prostate carcinoma is an aggressive cancer preferentially metastasizing to the bones, many prostate tumors remain localized and confined to the prostate indefinitely. Prediction of the behavior of anatomically localized and moderately differentiated prostate tumors remains difficult because of lack of prognostic markers. Cell motility is an important step in the progression of epithelial tumor toward invasive metastatic carcinomas and changes in the expression and function of adhesion molecules contribute to the acquisition of a more malignant phenotype. Proline-rich tyrosine kinase 2 (Pyk2) is implicated in regulating the organization of actin cytoskeleton, a process critical for cell migration, mitosis, and tumor metastasis. In this report, we investigated whether Pyk2 played a role in the acquisition of an aggressive phenotype in prostate cell. Data reported here demonstrate that loss of Pyk2 kinase function results in induction of cell motility and migration in EPN cells, a line of non-transformed epithelial cells derived from human normal prostate tissue. Changes in motility and migration of prostate cells were associated with changes in the expression of several proteins involved in cell adhesion and reorganization of actin cytoskeleton. Ablation of Pyk2 kinase activity caused a dramatic decrease of the expression of E-cadherin and IRS1 and an increase of the expression of alpha5-integrin. In addition, a massive reorganization of actin cytoskeleton was observed. Our data indicate that Pyk2 plays a central role in the mechanism that regulate cell-cell and cell-substrate interaction and lack of its kinase activity induces prostate cells to acquire a malignant, migrating phenotype.
Collapse
Affiliation(s)
- Francesca de Amicis
- Dipartimento Farmaco-Biologico, Università della Calabria Arcavacata, Cosenza, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wu SS, Jácamo RO, Vong SK, Rozengurt E. Differential regulation of Pyk2 phosphorylation at Tyr-402 and Tyr-580 in intestinal epithelial cells: roles of calcium, Src, Rho kinase, and the cytoskeleton. Cell Signal 2006; 18:1932-40. [PMID: 16574377 DOI: 10.1016/j.cellsig.2006.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2006] [Revised: 02/21/2006] [Accepted: 02/22/2006] [Indexed: 10/25/2022]
Abstract
The calcium-dependent proline-rich tyrosine kinase Pyk2 is activated by tyrosine phosphorylation, associates with focal adhesion proteins, and has been linked to proliferative and migratory responses in a variety of mesenchymal and epithelial cell types. Full Pyk2 activation requires phosphorylation at functionally distinct sites, including autophosphorylation site Tyr-402 and catalytic domain site Tyr-580, though the mechanisms involved are unclear. The pathways mediating Pyk2 phosphorylation at Tyr-402 and Tyr-580 were therefore investigated. Both sites were rapidly and transiently phosphorylated following cell stimulation by Ang II or LPA. However, only Tyr-580 phosphorylation was rapidly enhanced by intracellular Ca(2+) release, or inhibited by Ca(2+) depletion. Conversely, Tyr-402 phosphorylation was highly sensitive to inhibition of actin stress fibers, or of Rho kinase (ROK), an upstream regulator of stress fiber assembly. Ang II also induced a delayed (30-60 min) secondary phosphorylation peak occurring at Tyr-402 alone. Unlike the homologous focal adhesion kinase (FAK), Pyk2 phosphorylation was sensitive neither to the Src inhibitor PP2, nor to truncation of its N-terminal region, which contains a putative autoinhibitory FERM domain. These results better define the mechanisms involved in Pyk2 activation, demonstrating that autophosphorylation is ROK- and stress fiber-dependent, while transphosphorylation within the kinase domain is Ca(2+)-dependent and Src-independent in intestinal epithelial cells. This contrasts with the tight sequential coupling of phosphorylation seen in FAK activation, and further underlines the differences between these closely related kinases.
Collapse
Affiliation(s)
- Steven S Wu
- Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, 900 Veteran Avenue, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
18
|
Basile JR, Afkhami T, Gutkind JS. Semaphorin 4D/plexin-B1 induces endothelial cell migration through the activation of PYK2, Src, and the phosphatidylinositol 3-kinase-Akt pathway. Mol Cell Biol 2005; 25:6889-98. [PMID: 16055703 PMCID: PMC1190270 DOI: 10.1128/mcb.25.16.6889-6898.2005] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Semaphorins are cell surface and secreted proteins that provide axonal guidance in neuronal tissues and regulate cell motility in many cell types. They act by binding a family of transmembrane receptors known as plexins, which belong to the c-Met family of scatter factor receptors but lack an intrinsic tyrosine kinase domain. Interestingly, we have recently shown that Plexin-B1 is highly expressed in endothelial cells and that its activation by Semaphorin 4D elicits a potent proangiogenic response (J. R. Basile, A. Barac, T. Zhu, K. L. Guan, and J. S. Gutkind, Cancer Res. 64:5212-5224, 2004). In searches for the underlying molecular mechanism, we observed that Semaphorin 4D-stimulated endothelial cell migration requires the activation of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway. Surprisingly, we found that Plexin-B1 stimulates PI3K-Akt through the activation of an intracellular tyrosine kinase cascade that involves the sequential activation of PYK2 and Src. This results in the tyrosine phosphorylation of Plexin-B1, the rapid recruitment of a multimeric signaling complex that includes PYK2, Src, and PI3K to Plexin-B1 and the activation of Akt. These findings suggest that Plexin-B1 may achieve its numerous physiological functions through the direct activation of intracellular tyrosine kinase cascades.
Collapse
Affiliation(s)
- John R Basile
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|