1
|
Murtazina DA, Arreguin-Arevalo JA, Cantlon JD, Ebrahimpour-Boroojeny A, Shrestha A, Hicks JA, Magee C, Kirkley K, Jones K, Nett TM, Chitsaz H, Clay CM. Enrichment of ovine gonadotropes via adenovirus gene targeting enhances assessment of transcriptional changes in response to estradiol-17 beta†. Biol Reprod 2020; 102:156-169. [PMID: 31504222 PMCID: PMC7443347 DOI: 10.1093/biolre/ioz166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Gonadotropes represent approximately 5-15% of the total endocrine cell population in the mammalian anterior pituitary. Therefore, assessing the effects of experimental manipulation on virtually any parameter of gonadotrope biology is difficult to detect and parse from background noise. In non-rodent species, applying techniques such as high-throughput ribonucleic acid (RNA) sequencing is problematic due to difficulty in isolating and analyzing individual endocrine cell populations. Herein, we exploited cell-specific properties inherent to the proximal promoter of the human glycoprotein hormone alpha subunit gene (CGA) to genetically target the expression of a fluorescent reporter (green fluorescent protein [GFP]) selectively to ovine gonadotropes. Dissociated ovine pituitary cells were cultured and infected with an adenoviral reporter vector (Ad-hαCGA-eGFP). We established efficient gene targeting by successfully enriching dispersed GFP-positive cells with flow cytometry. Confirming enrichment of gonadotropes specifically, we detected elevated levels of luteinizing hormone (LH) but not thyrotropin-stimulating hormone (TSH) in GFP-positive cell populations compared to GFP-negative populations. Subsequently, we used next-generation sequencing to obtain the transcriptional profile of GFP-positive ovine gonadotropes in the presence or absence of estradiol 17-beta (E2), a key modulator of gonadotrope function. Compared to non-sorted cells, enriched GFP-positive cells revealed a distinct transcriptional profile consistent with established patterns of gonadotrope gene expression. Importantly, we also detected nearly 200 E2-responsive genes in enriched gonadotropes, which were not apparent in parallel experiments on non-enriched cell populations. From these data, we conclude that CGA-targeted adenoviral gene transfer is an effective means for selectively labeling and enriching ovine gonadotropes suitable for investigation by numerous experimental approaches.
Collapse
Affiliation(s)
- Dilyara A Murtazina
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | | | - Jeremy D Cantlon
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | | | - Akash Shrestha
- Department of Computer Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jennifer A Hicks
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Christianne Magee
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Kelly Kirkley
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Kenneth Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Terry M Nett
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Hamidreza Chitsaz
- Department of Computer Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Colin M Clay
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Stamatiades GA, Kaiser UB. Gonadotropin regulation by pulsatile GnRH: Signaling and gene expression. Mol Cell Endocrinol 2018; 463:131-141. [PMID: 29102564 PMCID: PMC5812824 DOI: 10.1016/j.mce.2017.10.015] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022]
Abstract
The precise orchestration of hormonal regulation at all levels of the hypothalamic-pituitary-gonadal axis is essential for normal reproductive function and fertility. The pulsatile secretion of hypothalamic gonadotropin-releasing hormone (GnRH) stimulates the synthesis and release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) by pituitary gonadotropes. GnRH acts by binding to its high affinity seven-transmembrane receptor (GnRHR) on the cell surface of anterior pituitary gonadotropes. Different signaling cascades and transcriptional mechanisms are activated, depending on the variation in GnRH pulse frequency, to stimulate the synthesis and release of FSH and LH. While changes in GnRH pulse frequency may explain some of the differential regulation of FSH and LH, other factors, such as activin, inhibin and sex steroids, also contribute to gonadotropin production. In this review, we focus on the transcriptional regulation of the gonadotropin subunit genes and the signaling pathways activated by pulsatile GnRH.
Collapse
Affiliation(s)
- George A Stamatiades
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
3
|
Wang H, Butnev V, Bousfield GR, Kumar TR. A human FSHB transgene encoding the double N-glycosylation mutant (Asn(7Δ) Asn(24Δ)) FSHβ subunit fails to rescue Fshb null mice. Mol Cell Endocrinol 2016; 426:113-24. [PMID: 26911932 PMCID: PMC5130991 DOI: 10.1016/j.mce.2016.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/13/2016] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
Abstract
Follicle-stimulating hormone (FSH) is a gonadotrope-derived heterodimeric glycoprotein. Both the common α- and hormone-specific β subunits contain Asn-linked N-glycan chains. Recently, macroheterogeneous FSH glycoforms consisting of β-subunits that differ in N-glycan number were identified in pituitaries of several species and subsequently the recombinant human FSH glycoforms biochemically characterized. Although chemical modification and in vitro site-directed mutagenesis studies defined the roles of N-glycans on gonadotropin subunits, in vivo functional analyses in a whole-animal setting are lacking. Here, we have generated transgenic mice with gonadotrope-specific expression of either an HFSHB(WT) transgene that encodes human FSHβ WT subunit or an HFSHB(dgc) transgene that encodes a human FSHβ(Asn7Δ 24Δ) double N-glycosylation site mutant subunit, and separately introduced these transgenes onto Fshb null background using a genetic rescue strategy. We demonstrate that the human FSHβ(Asn7Δ 24Δ) double N-glycosylation site mutant subunit, unlike human FSHβ WT subunit, inefficiently combines with the mouse α-subunit in pituitaries of Fshb null mice. FSH dimer containing this mutant FSHβ subunit is inefficiently secreted with very low levels detectable in serum. Fshb null male mice expressing HFSHB(dgc) transgene are fertile and exhibit testis tubule size and sperm number similar to those of Fshb null mice. Fshb null female mice expressing the mutant, but not WT human FSHβ subunit-containing FSH dimer are infertile, demonstrate no evidence of estrus cycles, and many of the FSH-responsive genes remain suppressed in their ovaries. Thus, HFSHB(dgc) unlike HFSHB(WT) transgene does not rescue Fshb null mice. Our genetic approach provides direct in vivo evidence that N-linked glycans on FSHβ subunit are essential for its efficient assembly with the α-subunit to form FSH heterodimer in pituitary. Our studies also reveal that N-glycans on FSHβ subunit are essential for FSH secretion and FSH in vivo bioactivity to regulate gonadal growth and physiology.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of Molecular and Integrative Physiology
| | - Vladimir Butnev
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - T Rajendra Kumar
- Department of Molecular and Integrative Physiology; Center for Reproductive Sciences, Institute for Reproductive Health and Regenerative Medicine; Department of Pathology and Laboratory Medicine; Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
4
|
Wang H, Hastings R, Miller WL, Kumar TR. Fshb-iCre mice are efficient and specific Cre deleters for the gonadotrope lineage. Mol Cell Endocrinol 2016; 419:124-38. [PMID: 26472536 PMCID: PMC4684453 DOI: 10.1016/j.mce.2015.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 02/06/2023]
Abstract
Genetic analysis of development and function of the gonadotrope cell lineage within mouse anterior pituitary has been greatly facilitated by at least three currently available Cre strains in which Cre was either knocked into the Gnrhr locus or expressed as a transgene from Cga and Lhb promoters. However, in each case there are some limitations including CRE expression in thyrotropes within pituitary or ectopic expression outside of pituitary, for example in some populations of neurons or gonads. Hence, these Cre strains often pose problems with regard to undesirable deletion of alleles in non-gonadotrope cells, fertility and germline transmission of mutant alleles. Here, we describe generation and characterization of a new Fshb-iCre deleter strain using 4.7 kb of ovine Fshb promoter regulatory sequences driving iCre expression exclusively in the gonadotrope lineage within anterior pituitary. Fshb-iCre mice develop normally, display no ectopic CRE expression in gonads and are fertile. When crossed onto a loxP recombination-mediated red to green color switch reporter mouse genetic background, in vivo CRE recombinase activity is detectable in gonadotropes at more than 95% efficiency and the GFP-tagged gonadotropes readily purified by fluorescence activated cell sorting. We demonstrate the applicability of this Fshb-iCre deleter strain in a mouse model in which Dicer is efficiently and selectively deleted in gonadotropes. We further show that loss of DICER-dependent miRNAs in gonadotropes leads to profound suppression of gonadotropins resulting in male and female infertility. Thus, Fshb-iCre mice serve as a new genetic tool to efficiently manipulate gonadotrope-specific gene expression in vivo.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of Molecular and Integrative Physiology
| | | | - William L Miller
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - T Rajendra Kumar
- Department of Molecular and Integrative Physiology; Center for Reproductive Sciences, Institute for Reproductive Health and Regenerative Medicine; Department of Pathology and Laboratory Medicine; Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
5
|
Thompson IR, Kaiser UB. GnRH pulse frequency-dependent differential regulation of LH and FSH gene expression. Mol Cell Endocrinol 2014; 385:28-35. [PMID: 24056171 PMCID: PMC3947649 DOI: 10.1016/j.mce.2013.09.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 12/14/2022]
Abstract
The pituitary gonadotropin hormones, FSH and LH, are essential for fertility. Containing an identical α-subunit (CGA), they are comprised of unique β-subunits, FSHβ and LHβ, respectively. These two hormones are regulated by the hypothalamic decapeptide, GnRH, which is released in a pulsatile manner from GnRH neurons located in the hypothalamus. Varying frequencies of pulsatile GnRH stimulate distinct signaling pathways and transcriptional machinery after binding to the receptor, GnRHR, on the cell surface of anterior pituitary gonadotropes. This ligand-receptor binding and activation orchestrates the synthesis and release of FSH and LH, in synergy with other effectors of gonadotropin production, such as activin, inhibin and steroids. Current research efforts aim to discover the mechanisms responsible for the decoding of the GnRH pulse signal by the gonadotrope. Modulating the response to GnRH has the potential to lead to new therapies for patients with altered gonadotropin secretion, such as those with hypothalamic amenorrhea or polycystic ovarian syndrome.
Collapse
Affiliation(s)
- Iain R Thompson
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
6
|
Jia J, Shafiee-Kermani F, Miller WL. Gonadotrope-specific expression and regulation of ovine follicle stimulating hormone Beta: transgenic and adenoviral approaches using primary murine gonadotropes. PLoS One 2013; 8:e66852. [PMID: 23874399 PMCID: PMC3715487 DOI: 10.1371/journal.pone.0066852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/13/2013] [Indexed: 01/21/2023] Open
Abstract
The beta subunit of follicle stimulating hormone (FSHB) is expressed specifically in pituitary gonadotropes in vertebrates. Transgenic mouse studies have shown that enhancers in the proximal promoter between −172/−1 bp of the ovine FSHB gene are required for gonadotrope expression of ovine FSHB. These enhancers are associated with regulation by activins and gonadotropin releasing hormone (GnRH). Additional distal promoter sequence between −4741/−750 bp is also required for expression. New transgenic studies presented here focus on this distal region and narrow it to 1116 bp between −1866/−750 bp. In addition, adenoviral constructs were produced to identify these critical distal sequences using purified primary mouse gonadotropes as an in vitro model system. The adenoviral constructs contained −2871 bp, −750 bp or −232 bp of the ovine FSHB promoter. They all showed gonadotrope-specific regulation since they were induced only in purified primary gonadotropes by activin A (50 ng/ml) and inhibited by GnRH (100 nM) in the presence of activin (except −232FSHBLuc). However, basal expression of all three viral constructs (in the presence of follistatin to block cellular induction by activin) was relatively high in pituitary non-gonadotropes as well as gonadotropes. Thus, gonadotrope-specific regulation associated with the proximal promoter was observed as expected, but the model was blind to distal promoter elements between −2871/−750 necessary for gonadotrope-specific expression of ovine FSHB in vivo. The new adenoviral-based in vitro technique did detect, however, a novel GnRH response element between −750 bp and −232 bp of the ovine FSHB promoter. We conclude that adenoviral-based studies in primary gonadotropes can adequately recognize regulatory elements on the ovine FSHB promoter associated with gonadotrope-specific regulation/expression, but that more physiologically based techniques, such as transgenic studies, will be needed to identify sequences between −1866/−750 bp of the ovine FSHB promoter that are also required for tissue/cell specific expression in vivo.
Collapse
Affiliation(s)
- Jingjing Jia
- Mount Sinai School of Medicine, Department of Neurology, New York City, New York, United States of America
| | - Farideh Shafiee-Kermani
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, United States of America
| | - William L. Miller
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
7
|
Rejon CA, Ho CC, Wang Y, Zhou X, Bernard DJ, Hébert TE. Cycloheximide inhibits follicle-stimulating hormone β subunit transcription by blocking de novo synthesis of the labile activin type II receptor in gonadotrope cells. Cell Signal 2013; 25:1403-12. [PMID: 23499904 DOI: 10.1016/j.cellsig.2013.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/04/2013] [Indexed: 01/08/2023]
Abstract
The pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), play essential roles in the regulation of vertebrate reproduction. Activins and inhibins have opposing actions on FSH (but not LH) synthesis, either inducing or inhibiting transcription of the FSHβ subunit gene (Fshb). The translational inhibitor cycloheximide (CHX) produces inhibin-like effects in cultured pituitary cells, selectively suppressing FSH production. Using the murine gonadotrope-like cell line, LβT2, as a model, we tested the hypothesis that a component of the activin pathway is highly labile in gonadotrope cells and that its rapid loss following CHX treatment impairs activin-stimulated Fshb transcription. Treatment of cells with CHX for 6h, but not 1h, blocked activin A-stimulated Fshb transcription. Pre-treatment of LβT2 cells with CHX for as few as 2-3h inhibited activin A-stimulated SMAD2/3 phosphorylation without altering total SMAD2/3 protein levels. These data indicated that CHX affects activin signalling upstream of SMAD proteins, most likely at the receptor level. Indeed, CHX rapidly reduced activin A binding to LβT2 cells. We went on to show that activin A signals via the type II receptor ACVR2, rather than ACVR2B, to regulate Fshb transcription and that the receptor has a half life of ~2h in LβT2 cells. The mechanism of ACVR2 turnover remains undefined, but appears to be ligand-, proteasome-, and lysosome-independent. Collectively, these data indicate that CHX produces inhibin-like effects in gonadotropes by preventing de novo synthesis of the highly labile ACVR2, thereby blocking activin signaling to the Fshb promoter.
Collapse
Affiliation(s)
- Carlis A Rejon
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Choi SG, Jia J, Pfeffer RL, Sealfon SC. G proteins and autocrine signaling differentially regulate gonadotropin subunit expression in pituitary gonadotrope. J Biol Chem 2012; 287:21550-60. [PMID: 22549790 DOI: 10.1074/jbc.m112.348607] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) acts at gonadotropes to direct the synthesis of the gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH). The frequency of GnRH pulses determines the pattern of gonadotropin synthesis. Several hypotheses for how the gonadotrope decodes GnRH frequency to regulate gonadotropin subunit genes differentially have been proposed. However, key regulators and underlying mechanisms remain uncertain. We investigated the role of individual G proteins by perturbations using siRNA or bacterial toxins. In LβT2 gonadotrope cells, FSHβ gene induction depended predominantly on Gα(q/11), whereas LHβ expression depended on Gα(s). Specifically reducing Gα(s) signaling also disinhibited FSHβ expression, suggesting the presence of a Gα(s)-dependent signal that suppressed FSH biosynthesis. The presence of secreted factors influencing FSHβ expression levels was tested by studying the effects of conditioned media from Gα(s) knockdown and cholera toxin-treated cells on FSHβ expression. These studies and related Transwell culture experiments implicate Gα(s)-dependent secreted factors in regulating both FSHβ and LHβ gene expression. siRNA studies identify inhibinα as a Gα(s)-dependent GnRH-induced autocrine regulatory factor that contributes to feedback suppression of FSHβ expression. These results uncover differential regulation of the gonadotropin genes by Gα(q/11) and by Gα(s) and implicate autocrine and gonadotrope-gonadotrope paracrine regulatory loops in the differential induction of gonadotropin genes.
Collapse
Affiliation(s)
- Soon-Gang Choi
- Center for Translational Systems Biology and the Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
9
|
Bliss SP, Navratil AM, Xie J, Roberson MS. GnRH signaling, the gonadotrope and endocrine control of fertility. Front Neuroendocrinol 2010; 31:322-40. [PMID: 20451543 PMCID: PMC2923852 DOI: 10.1016/j.yfrne.2010.04.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 04/26/2010] [Accepted: 04/30/2010] [Indexed: 11/28/2022]
Abstract
Mammalian reproductive cycles are controlled by an intricate interplay between the hypothalamus, pituitary and gonads. Central to the function of this axis is the ability of the pituitary gonadotrope to appropriately respond to stimulation by gonadotropin-releasing hormone (GnRH). This review focuses on the role of cell signaling and in particular, mitogen-activated protein kinase (MAPK) activities regulated by GnRH that are necessary for normal fertility. Recently, new mouse models making use of conditional gene deletion have shed new light on the relationships between GnRH signaling and fertility in both male and female mice. Within the reproductive axis, GnRH signaling is initiated through discrete membrane compartments in which the receptor resides leading to the activation of the extracellular signal-regulated kinases (ERKs 1/2). As defined by gonadotrope-derived cellular models, the ERKs appear to play a central role in the regulation of a cohort of immediate early genes that regulate the expression of late genes that, in part, define the differentiated character of the gonadotrope. Recent data would suggest that in vivo, conditional, pituitary-specific disruption of ERK signaling by GnRH leads to a gender-specific perturbation of fertility. Double ERK knockout in the anterior pituitary leads to female infertility due to LH biosynthesis deficiency and a failure in ovulation. In contrast, male mice are modestly LH deficient; however, this does not have an appreciable impact on fertility.
Collapse
Affiliation(s)
- Stuart P Bliss
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | | | | | | |
Collapse
|
10
|
Naidich M, Shterntal B, Furman R, Pawson AJ, Jabbour HN, Morgan K, Millar RP, Jia J, Tomic M, Stojilkovic S, Stern N, Naor Z. Elucidation of mechanisms of the reciprocal cross talk between gonadotropin-releasing hormone and prostaglandin receptors. Endocrinology 2010; 151:2700-12. [PMID: 20392830 DOI: 10.1210/en.2009-1335] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently described a novel GnRH receptor signaling pathway mediated by the prostaglandins (PGs) F(2alpha) and PGI(2), which acts through an autocrine/paracrine modality to limit autoregulation of the GnRH receptor and inhibit LH but not FSH release. Here we further explore the cross talk between GnRH and the PG receptors. GnRH stimulates arachidonic acid (AA) release from LbetaT2 gonadotrope cells via the Ca(2+)-independent phospholipase A(2) (iPLA(2)) and not via the more common Ca(2+)-dependent cytosolic phospholipase A(2)alpha (cPLA(2)alpha). AA release was followed by a marked induction of cyclooxygenase (COX)-1 and COX-2 by GnRH via the protein kinase C/c-Src/phosphatidylinositol 3-kinase/MAPK pathway. COX-2 transcription by GnRH is mediated by the two nuclear factor-kappaB sites and the CCAAT/enhancer-binding protein site within its promoter. Indeed, GnRH stimulates p65/RelA phosphorylation (22-fold) in LbetaT2 cells and the two nuclear factor-kappaB sites apparently act as a composite response element. Although GnRH stimulates cAMP formation in LbetaT2 cells, we found no role for cAMP acting via the cAMP response element site in the COX-2 promoter. PGF(2alpha), PGI(2), or PGE(2) had no effect on GnRH-stimulated ERK, c-Jun N-terminal kinase, and p38MAPK activation or on GnRH- and high K(+)-stimulated intracellular Ca(2+) elevation in LbetaT2 and gonadotropes in primary culture. Although, PGF(2alpha), PGI(2), and PGE(2) reduced GnRH-stimulated cAMP formation, we could not correlate it to the inhibition of GnRH receptor expression, which is exerted only by PGF(2alpha) and PGI(2.) Hence, the inhibition by PGF(2alpha) and PGI(2) of the autoregulation of GnRH receptor expression is most likely mediated via inhibition of GnRH-stimulated phosphoinositide turnover and not by inhibition of Ca(2+) elevation and MAPK activation.
Collapse
Affiliation(s)
- Michal Naidich
- Department of Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bernard DJ, Fortin J, Wang Y, Lamba P. Mechanisms of FSH synthesis: what we know, what we don't, and why you should care. Fertil Steril 2010; 93:2465-85. [DOI: 10.1016/j.fertnstert.2010.03.034] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 03/11/2010] [Indexed: 12/17/2022]
|
12
|
Thackray VG, Mellon PL, Coss D. Hormones in synergy: regulation of the pituitary gonadotropin genes. Mol Cell Endocrinol 2010; 314:192-203. [PMID: 19747958 PMCID: PMC2815122 DOI: 10.1016/j.mce.2009.09.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 09/02/2009] [Accepted: 09/02/2009] [Indexed: 11/23/2022]
Abstract
The precise interplay of hormonal influences that governs gonadotropin hormone production by the pituitary includes endocrine, paracrine and autocrine actions of hypothalamic gonadotropin-releasing hormone (GnRH), activin and steroids. However, most studies of hormonal regulation of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in the pituitary gonadotrope have been limited to analyses of the isolated actions of individual hormones. LHbeta and FSHbeta subunits have distinct patterns of expression during the menstrual/estrous cycle as a result of the integration of activin, GnRH, and steroid hormone action. In this review, we focus on studies that delineate the interplay among these hormones in the regulation of LHbeta and FSHbeta gene expression in gonadotrope cells and discuss how signaling cross-talk contributes to differential expression. We also discuss how recent technological advances will help identify additional factors involved in the differential hormonal regulation of LH and FSH.
Collapse
Affiliation(s)
| | | | - Djurdjica Coss
- To whom the correspondence should be addressed: Djurdjica Coss, Department of Reproductive Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0674, Phone: (858) 534-1762, Fax: (858) 534-1438,
| |
Collapse
|
13
|
Resuehr HES, Resuehr D, Olcese J. Induction of mPer1 expression by GnRH in pituitary gonadotrope cells involves EGR-1. Mol Cell Endocrinol 2009; 311:120-5. [PMID: 19616057 DOI: 10.1016/j.mce.2009.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 05/30/2009] [Accepted: 07/08/2009] [Indexed: 12/01/2022]
Abstract
We reported earlier that gonadotropin-releasing hormone (GnRH) activates period1 (mPer1) gene expression in immortalized gonadotropes through protein kinase C and p42/44 mitogen-activated protein kinase pathways. GnRH stimulation also leads to the upregulation of early growth response protein 1 (EGR-1), a critical transcription factor for GnRH-induced luteinizing hormone beta (LHbeta) synthesis. The parallels between the GnRH-LHbeta and the GnRH-mPer1 pathways led us to explore whether EGR-1 is involved in the regulation of mPer1 expression in gonadotropes. Of particular interest was the presence of an EGR-1 binding site in the proximal promoter of the mPer1 gene. Stimulation of LbetaT2 gonadotrope cells with a GnRH agonist caused the rapid induction of Egr-1 mRNA, which was rapidly followed by mPer1 expression. Chromatin immunoprecipitation revealed that the mPer1 promoter can bind EGR-1, while site-directed mutagenesis experiments confirmed the involvement of Egr-1 sequences in maintaining basal and allowing GnRH-stimulated mPer1 transcription. By means of RNA interference experiments, it could also be demonstrated that silencing of Egr-1 expression resulted in markedly lower mPer1 transcript levels. This silencing effect of the Egr-1 siRNA could be rescued by transfecting the cells with an EGR-1 overexpression vector. In summary, these results all point to a role for the EGR-1 protein in transactivating both the LHbeta as well as the mPer1 gene in pituitary gonadotrope cells.
Collapse
Affiliation(s)
- H E Sikes Resuehr
- Florida State University College of Medicine, Department of Biomedical Sciences, 1115 West Call Street, Tallahassee, FL 32306-4300, USA
| | | | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW To discuss recent progress in our understanding of pituitary gonadotroph development and gonadotropin gene regulation, with an emphasis on differential luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion and subunit synthesis, and the implications this may have on female reproductive health. RECENT FINDINGS In the mature gonadotroph, there is an emerging concept that differential synthesis of gonadotropin beta-subunit genes, essential for cyclic reproductive function, is associated with modification of activation and/or stability of important regulatory proteins and transcription factors. Recent studies suggest that cellular events, which affect histone modification, play an essential role in both gonadotroph development and the ontogeny of gonadotropin subunit gene expression. Such dynamic events are under the orchestration of the hypothalamic neuropeptide gonadotropin-releasing hormone (GnRH), potentially through the ability of GnRH to activate several distinct signaling cascades within the gonadotroph. SUMMARY Greater insight into the cellular events that are key to gonadotroph physiology will contribute to our understanding of abnormal gonadotropin secretion in disorders such as hypothalamic amenorrhea and polycystic ovarian syndrome (PCOS), and provide a context for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Nick A Ciccone
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
15
|
Han SO, Miller WL. Activin A induces ovine follicle stimulating hormone beta using -169/-58 bp of its promoter and a simple TATA box. Reprod Biol Endocrinol 2009; 7:66. [PMID: 19552818 PMCID: PMC2714312 DOI: 10.1186/1477-7827-7-66] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 06/24/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Activin A increases production of follicle stimulating hormone (FSH) by inducing transcription of its beta subunit (FSHB). This induction has been studied here in LbetaT2 gonadotropes using transient expression of ovine FSHBLuc (-4741 bp of ovine FSHB promoter plus exon/intron 1 linked to Luc). Several sequences between -169/-58 bp of the ovine FSHB proximal promoter are necessary for induction by activin A in LbetaT2 cells, but deletions between -4741/-752 bp decrease induction > 70% suggesting the existence of other important 5' sequences. Induction disappears if a minimal T81 thymidine kinase promoter replaces the ovine FSHB TATA box and 3' exon/intron. The study reported here was designed to determine if sequences outside -169/-58 bp are important for induction of ovine FSHB by activin A. METHODS Progressively longer deletions of ovine FSHBLuc were created between -4741/-195 bp. Deletions internal to this region were created also, but replaced with substitute DNA. The ovine FSHB TATA box region (-40/+3 bp) was replaced by thymidine kinase and rat prolactin minimal promoters, and substitutions were made in 3' intron/exon sequences. All constructs were tested for basal and activin A-induced expression in LbetaT2 cells. RESULTS Successive 5' deletions progressively lowered fold-induction by activin A from 9.5 to zero, but progressively increased basal expression. Replacing deletions with substitute DNA showed no changes in basal expression or fold-induction. Induction by activin A was supported by the minimal rat prolactin promoter (TATA box) but not the thymidine kinase promoter (no TATA box). Replacement mutations in the 3' region did not decrease induction by activin A. CONCLUSION The data show that specific ovine FSHB sequences 5' to -175 bp or 3' of the transcription start site are not required for induction by activin A. A minimal TATA box promoter supports induction by activin A, but the sequence between the TATA box and transcription start site seems unimportant.
Collapse
Affiliation(s)
- Sang-oh Han
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, 27695-7622, USA
| | - William L Miller
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, 27695-7622, USA
| |
Collapse
|
16
|
Oride A, Kanasaki H, Purwana IN, Mutiara S, Miyazaki K. Follistatin, induced by thyrotropin-releasing hormone (TRH), plays no role in prolactin expression but affects gonadotropin FSHbeta expression as a paracrine factor in pituitary somatolactotroph GH3 cells. ACTA ACUST UNITED AC 2009; 156:65-71. [PMID: 19446581 DOI: 10.1016/j.regpep.2009.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 02/19/2009] [Accepted: 05/06/2009] [Indexed: 11/15/2022]
Abstract
Follistatin regulates FSHbeta gene expression by binding to and bioneutralizing activin effects. In this study, we found that thyrotropin-releasing hormone (TRH) increased follistatin gene expression in pituitary somatolactotroph GH3 cells. Treatment of GH3 with 100 nM TRH significantly increased follistatin mRNA expression as determined by real time PCR. TRH-induced follistatin expression was significantly abrogated in the presence of MEK inhibitor, U0126. Overexpression of constitutive active MEKK in GH3 cells dramatically increased follistatin expressions. Transfection of GH3 cells with follistatin siRNA reduced endogenous follistatin mRNA expression, but failed to modulate prolactin promoter activity. Prolactin mRNA levels were not affected by increasing the dose of follistatin, and TRH-induced prolactin promoter activity was not modulated in the presence of follistatin. In other experiments using pituitary gonadotroph LbetaT2 cells, activin increased FSHbeta promoter activity and mRNA expression, and follistatin completely inhibited this activin-increased FSHbeta gene expression. Treatment of GH3 cells with activin reduced the basal activity of prolactin promoter and follistatin prevented this effect. GH3 cells were co-cultured with LbetaT2 cells, which had been transfected with FSHbeta promoter-linked luciferase vectors and treated with activin in the presence of TRH. Activin-induced FSHbeta promoter activity was completely inhibited in the presence of TRH. In addition to that, FSHbeta mRNA was not detected from LbetaT2 cells which were co-cultured with GH3 cells. Our current results suggest the possibility that TRH increases follistatin gene expression in prolactin-producing cells in association with ERK pathways. Somatolactotroph-derived follistatin affects gonadotrophs by countering activin-induced FSHbeta gene expression in a paracrine fashion.
Collapse
Affiliation(s)
- Aki Oride
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | | | | | | | | |
Collapse
|
17
|
Kaiser UB. Genetic labeling: new approaches to creating a gonadotroph "ID". Endocrinology 2008; 149:2699-700. [PMID: 18493024 PMCID: PMC2408798 DOI: 10.1210/en.2008-0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Ursula B Kaiser
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| |
Collapse
|
18
|
Denef C. Paracrinicity: the story of 30 years of cellular pituitary crosstalk. J Neuroendocrinol 2008; 20:1-70. [PMID: 18081553 PMCID: PMC2229370 DOI: 10.1111/j.1365-2826.2007.01616.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 07/30/2007] [Accepted: 08/13/2007] [Indexed: 11/27/2022]
Abstract
Living organisms represent, in essence, dynamic interactions of high complexity between membrane-separated compartments that cannot exist on their own, but reach behaviour in co-ordination. In multicellular organisms, there must be communication and co-ordination between individual cells and cell groups to achieve appropriate behaviour of the system. Depending on the mode of signal transportation and the target, intercellular communication is neuronal, hormonal, paracrine or juxtacrine. Cell signalling can also be self-targeting or autocrine. Although the notion of paracrine and autocrine signalling was already suggested more than 100 years ago, it is only during the last 30 years that these mechanisms have been characterised. In the anterior pituitary, paracrine communication and autocrine loops that operate during fetal and postnatal development in mammals and lower vertebrates have been shown in all hormonal cell types and in folliculo-stellate cells. More than 100 compounds have been identified that have, or may have, paracrine or autocrine actions. They include the neurotransmitters acetylcholine and gamma-aminobutyric acid, peptides such as vasoactive intestinal peptide, galanin, endothelins, calcitonin, neuromedin B and melanocortins, growth factors of the epidermal growth factor, fibroblast growth factor, nerve growth factor and transforming growth factor-beta families, cytokines, tissue factors such as annexin-1 and follistatin, hormones, nitric oxide, purines, retinoids and fatty acid derivatives. In addition, connective tissue cells, endothelial cells and vascular pericytes may influence paracrinicity by delivering growth factors, cytokines, heparan sulphate proteoglycans and proteases. Basement membranes may influence paracrine signalling through the binding of signalling molecules to heparan sulphate proteoglycans. Paracrine/autocrine actions are highly context-dependent. They are turned on/off when hormonal outputs need to be adapted to changing demands of the organism, such as during reproduction, stress, inflammation, starvation and circadian rhythms. Specificity and selectivity in autocrine/paracrine interactions may rely on microanatomical specialisations, functional compartmentalisation in receptor-ligand distribution and the non-equilibrium dynamics of the receptor-ligand interactions in the loops.
Collapse
Affiliation(s)
- C Denef
- Laboratory of Cell Pharmacology, University of Leuven, Medical School, Leuven, Belgium.
| |
Collapse
|
19
|
Gore AJ, Philips DP, Miller WL, Bernard DJ. Differential regulation of follicle stimulating hormone by activin A and TGFB1 in murine gonadotropes. Reprod Biol Endocrinol 2005; 3:73. [PMID: 16384533 PMCID: PMC1351181 DOI: 10.1186/1477-7827-3-73] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 12/29/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Activins stimulate the synthesis of follicle stimulating hormone (FSH) in pituitary gonadotropes, at least in part, by inducing transcription of its beta subunit (Fshb). Evidence from several laboratories studying transformed murine LbetaT2 gonadotropes indicates that activins signal through Smad-dependent and/or Smad-independent pathways, similar to those used by transforming growth factor beta-1 (TGFB1) in other cell types. Therefore, given common intracellular signaling mechanisms of these two ligands, we examined whether TGFBs can also induce transcription of Fshb in LbetaT2 cells as well as in purified primary murine gonadotropes. METHODS Murine Fshb promoter-reporter (-1990/+1 mFshb-luc) activity was measured in LbetaT2 cells treated with activin A or TGFB1, and in cells transfected with either activin or TGFB receptors. The ability of the ligands to stimulate phosphorylation of Smads 2 and 3 in LbetaT2 cells was measured by western blot analysis, and expression of TGFB type I and II receptors was assessed by reverse transcriptase polymerase chain reaction in both LbetaT2 cells and primary gonadotropes purified from male mice of different ages. Finally, regulation of endogenous murine Fshb mRNA levels by activin A and TGFB1 in purified gonadotropes and whole pituitary cultures was measured using quantitative RT-PCR. RESULTS Activin A dose-dependently stimulated -1990/+1 mFshb-luc activity in LbetaT2 cells, but TGFB1 had no effect at doses up to 5 nM. Similarly, activin A, but not TGFB1, stimulated Smad 2 and 3 phosphorylation in these cells. Constitutively active forms of the activin (Acvr1b-T206D) and TGFB (TGFBR1-T204D) type I receptors strongly stimulated -1990/+1 mFshb-luc activity, showing that mechanisms down stream of Tgfbr1 seem to be intact in LbetaT2 cells. RT-PCR analysis of LbetaT2 cells and whole adult murine pituitaries indicated that both expressed Tgfbr1 mRNA, but that Tgfbr2 was not detected in LbetaT2 cells. When cells were transfected with a human TGFBR2 expression construct, TGFB1 acquired the ability to significantly stimulate -1990/+1 mFshb-luc activity. In contrast to LbetaT2 cells, primary murine gonadotropes from young mice (8-10 weeks) contained low, but detectable levels of Tgfbr2 mRNA and these levels increased in older mice (1 yr). A second surprise was the finding that treatment of purified primary gonadotropes with TGFB1 decreased murine Fshb mRNA expression by 95% whereas activin A stimulated expression by 31-fold. CONCLUSION These data indicate that TGFB1-insensitivity in LbetaT2 cells results from a deficiency in Tgfbr2 expression. In primary gonadotropes, however, expression of Tgfbr2 does occur, and its presence permits TGFB1 to inhibit Fshb transcription, whereas activin A stimulates it. These divergent actions of activin A and TGFB1 were unexpected and show that the two ligands may act through distinct pathways to cause opposing biological effects in primary murine gonadotropes.
Collapse
Affiliation(s)
- A Jesse Gore
- Department of Molecular and Structural Biochemistry, Box 7622, North Carolina State University, Raleigh, NC 27695-7622, USA
| | - Daniel P Philips
- Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY 10021, USA
| | - William L Miller
- Department of Molecular and Structural Biochemistry, Box 7622, North Carolina State University, Raleigh, NC 27695-7622, USA
| | - Daniel J Bernard
- Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY 10021, USA
- The Rockefeller University, 1230 York Ave., New York, NY 10021, USA
| |
Collapse
|
20
|
Safwat N, Ninomiya-Tsuji J, Gore AJ, Miller WL. Transforming growth factor beta-activated kinase 1 is a key mediator of ovine follicle-stimulating hormone beta-subunit expression. Endocrinology 2005; 146:4814-24. [PMID: 16081641 PMCID: PMC1698747 DOI: 10.1210/en.2005-0457] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
FSH, a key regulator of gonadal function, contains a beta-subunit (FSHbeta) that is transcriptionally induced by activin, a member of the TGFbeta-superfamily. This study used 4.7 kb of the ovine FSHbeta-promoter linked to luciferase (oFSHbetaLuc) plus a well-characterized activin-responsive construct, p3TPLuc, to investigate the hypothesis that Smad3, TGFbeta-activated kinase 1 (TAK1), or both cause activin-mediated induction of FSH. Overexpression of either Smad3 or TAK1 induced oFSHbetaLuc in gonadotrope-derived LbetaT2 cells as much as activin itself. Induction of p3TPLuc by activin is known to require Smad3 activation in many cell types, and this was true in LbetaT2 cells, where 10-fold induction by activin (2-8 h after activin treatment) was blocked more than 90% by two dominant negative (DN) inhibitors of Smad3 [DN-Smad3 (3SA) and DN-Smad3 (D407E)]. By contrast, 6.5-fold induction of oFSHbetaLuc by activin (10-24 h after activin treatment) was not blocked by either DN-Smad inhibitor, suggesting that activation of Smad3 did not trigger induction of oFSHbetaLuc. By contrast, inhibition of TAK1 by a DN-TAK1 construct led to a 50% decrease in activin-mediated induction of oFSHbetaLuc, and a specific inhibitor of TAK1 (5Z-7-Oxozeanol) blocked induction by 100%, indicating that TAK1 is necessary for activin induction of oFSHbetaLuc. Finally, inhibiting p38-MAPK (often activated by TAK1) blocked induction of oFSHbetaLuc by 60%. In conclusion, the data presented here indicate that activation of TAK1 (and probably p38-MAPK), but not Smad3, is necessary for triggering induction of oFSHbeta by activin.
Collapse
Key Words
- bmp, bone morphogenetic protein
- ca-actrib, constitutively active activin receptor ib
- dn, dominant negative
- αgsu, α-glycoprotein subunit
- ofshβluc, ovine fshβ-promoter linked to luciferase
- jnk, c-jun n-terminal kinase
- mapkkk, mapk kinase kinase
- sbe, smad binding element
- tab, tak1-binding protein
- tak1, tgfβ-activated kinase 1
Collapse
Affiliation(s)
- Nedal Safwat
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622; and
| | - Jun Ninomiya-Tsuji
- Department of ToxicologyNorth Carolina State University, Raleigh, North Carolina 27695-7633
| | - A. Jesse Gore
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622; and
| | - William L. Miller
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622; and
- Address all correspondence and requests for reprints to: William L. Miller, Department of Molecular and Structural Biochemistry, Box 7622, North Carolina State University, Raleigh, North Carolina 27695-7622. E-mail:
| |
Collapse
|
21
|
Abstract
Follicle-stimulating hormone controls the maturation of mammalian ovarian follicles. In excess, it can increase ovulation (egg production). Reported here is a transgenic doxycycline-activated switch, tested in mice, that produced more FSHB subunit (therefore more FSH) and increased ovulation by the simple feeding of doxycycline (Dox). The transgenic switch was expressed selectively in pituitary gonadotropes and was designed to enhance normal expression of FSH when exposed to Dox, but to be regulated by all the hormones that normally control FSH production in vivo. Feeding maximally effective levels of Dox increased overall mRNA for FSHB and serum FSH by over half in males, and Dox treatment more than doubled the normal ovulation rate of female mice for up to 10 reproductive cycles. Lower levels of Dox increased the number of developing embryos by 30%. Ovarian structure and function appeared normal. In summary, gene switch technology and normal FSH regulation were combined to effectively enhance ovulation in mice. Theoretically, the same strategy can be used with any genetic switch to increase ovulation (or any highly conserved physiology) in any mammal.
Collapse
Affiliation(s)
- Pei Su
- Departments of Molecular and Structural Biochemistry and
| | - Joyce C. Wu
- Departments of Molecular and Structural Biochemistry and
| | - Jeffrey R. Sommer
- Animal Science, North Carolina State University, Raleigh, North Carolina 27695
| | - A. Jesse Gore
- Departments of Molecular and Structural Biochemistry and
| | - Robert M. Petters
- Animal Science, North Carolina State University, Raleigh, North Carolina 27695
| | - William L. Miller
- Departments of Molecular and Structural Biochemistry and
- Correspondence: William L. Miller, Department of Molecular and Structural Biochemistry, Box 7622, 128 Polk Hall, Broughton Dr., North Carolina State University, Raleigh, NC 27695-7622. FAX: 919 515 2047; e-mail:
| |
Collapse
|